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Abstract

We compare state-space and score-driven models for option implied volatility surface

dynamics. Point forecasts of both models behave similarly, but density forecasts of

plain-vanilla score-driven models are substantially worse. We show how a simple ad-

justment of the measurement density of the score-driven model can put both models

back on an equal footing. The score-driven models can subsequently be further en-

hanced with non-Gaussian features without complicating parameter estimation in

any way to better accommodate the data. We illustrate our findings using a dataset

on S&P500 index options implied volatility surfaces.

Keywords: implied volatility surface dynamics; score-driven; state-space; dynamic

factor model.

1



1 Introduction

Implied Volatilities (IV) based on the Black and Scholes (1973) option pricing model

can be computed for every option maturity and strike price. Together, these IVs consti-

tute the so-called implied volatility surface, which has important applications in pricing,

hedging, forecasting, and risk management (see for instance Jorion, 1995). IV surfaces

are often modeled using common factors, such that the dynamics of the entire surface

are captured by a limited set of shared dynamic components. A typical approach for

this builds on a standard state-space framework (see, e.g., Bedendo and Hodges, 2009;

Koopman et al., 2010; Doz et al., 2012; Jungbacker et al., 2014; Wel et al., 2016; Wang

et al., 2017). A natural alternative to the state-space approach would be a score-driven

framework using the methodology proposed in Creal et al. (2013) and Harvey (2013).

Score-driven factor models have for instance also been used for modeling term-structure

dynamics (see, e.g., Creal et al., 2013; Quaedvlieg and Schotman, 2022; Koopman et al.,

2017). Although an IV surface, unlike a term-structure, has two dimensions rather than

one, the modeling principle remains the same. The advantage of score-driven models

over their state-space counterparts in this context is that they are observation-driven, as

classified by Cox (1981), and have an explicit expression for the likelihood function. This

facilitates estimation and inference using standard maximum likelihood (ML) methods,

even when accounting for non-Gaussian error processes. In contrast, state-space models

that deviate from a linear Gaussian case quickly become more challenging to estimate,

often requiring approximate estimation techniques such as the extended Kalman Filter,

Bayesian methods, and simulated ML.

Despite their relative simplicity from a computational perspective, score-driven models

perform remarkably well in terms of point forecast quality, even if the true data generating

process is of state-space form. Koopman et al. (2016) compare a range of time-varying

parameter models (volatility, duration, intensity, counts) for univariate time-series and

show that point forecasts based on simple score-driven models perform similarly to those

based on non-Gaussian state-space models estimated by more complex machinery. The

paper is silent, however, about the quality of the density forecasts. Results in Koopman

et al. (2017) suggest that, from a density forecasting perspective, score-driven models

might underperform compared to their state-space counterparts. In particular, the typi-

cal assumption of an exact factor structure, where all contemporaneous correlations are
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captured by a single common factor, appears too regid for score-driven models. Koop-

man et al. (2017) solve this by endowing the error terms in the factor model to have an

equicorrelation structure. The origins of the difference between the two model classes in

terms of point versus density forecasts, however, remain underexplored.

This paper provides two main contributions. First, in a two-dimensional setting of

forecasting IV surfaces, we show that score-driven models perform worse in terms of

density forecasts than a standard linear Gaussian state-space model. We can also pinpoint

how this performance gap can be attributed to an overly restrictive assumption on the

covariance structure of the measurement noise in the score-driven model. Second, we

show how a simple adaptation of the measurement equation of the score-driven model

may bring its density forecast performance much more in line with that of a state-space

modeling framework. The key is to match the covariance structure of the measurement

noise more closely with that of the predictive density of the state-space model. Indeed,

when implementing this adjustment, the state-space and score-driven approaches perform

almost at par, not only in terms of point forecasts as in Koopman et al. (2016), but also

in terms of density forecasts.

Once the density forecast performance of the score-driven and state-space approach is

put on an equal footing in the Gaussian case, we can easily extend the score-driven model

with non-Gaussian features without complicating the maximum likelihood estimation and

inference procedures. We find that incorporating such non-Gaussian features indeed in-

creases the density forecast quality of the score-driven model beyond that achieved by

the linear Gaussian state-space model. While the latter could benefit from adding non-

Gaussian features, it would entail a more challenging estimation procedure.

It is widely recognized that integrating non-Gaussian features into the model leads

to a more robust filtering procedure for time-varying parameter paths (see Creal et al.,

2013; Harvey and Luati, 2014; D’Innocenzo et al., 2023; Gasperoni et al., 2023). We show

that for more models like the two-dimensional time-varying IV surfaces in this paper,

adding non-Gaussian features to the model may also help to unmask persistent model

mis-specification in specific data segments. This can lead to seemingly accurate density

forecasts, but poor point forecast accuracy and correlated forecast errors. This finding

can lead to further improvements in the model, such as adjusting the number of factors

or refining the specification of factor loadings.
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We study the dynamics of IV surfaces of S&P500 index options using data from Jan-

uary 2010 to December 2022. The factor model follows Goncalves and Guidolin (2006),

and we include five factors: the overall level of the IV surface, moneyness slope and cur-

vature, time-to-maturity slope, and the interaction of moneyness and time-to-maturity.

We find that a linear Gaussian state-space model outperforms a plain-vanilla score-driven

model by a large margin, both in terms of density fit and Value-at-Risk (VaR) violation

rates. However, when we incorporate the adjusted covariance structure for the mea-

surement errors into the score-driven model, as proposed in this paper, the score-driven

model performs comparably to the state-space model. Adding Student’s t error terms to

the model even increases the density fit of the score-driven model beyond that of its state-

space counterpart. This allows us to obtain a clearer signal than in the Gaussian setting

that the initial model specification needs further enhancement to better capture some of

the edges and corners of the volatility surface dynamics (see Appendix A). We show that

such changes to the model indeed further improve the in-sample and out-of-sample fit.

The remainder of this paper is structured as follows. Section 2 presents the different

modeling frameworks and discusses how to close the gap in density forecasting perfor-

mance between score-driven and state-space models. Section 3 describes the data. Section

4 provides the empirical results. Section 5 concludes. Additional empirical results and

the derivation of the Student’s t information matrix for score-driven models are available

in the appendix.

2 The modeling frameworks

We begin by modeling IV using the standard frameworks of state-space and score-driven

models in Section 2.1. In Section 2.2, we examine the disparity between these approaches

and propose a solution to reconcile them.

2.1 Standard state-space and score-driven models

We model log implied volatilities IVt ∈ RNt for t = 1, . . . , T , over a possibly time-varying

grid of moneyness values Mt ⊂ Rκt and times-to-maturity Tt ⊂ Rτt
≥0, where the IVs may

not be observed at each grid point at each time. The total number of IVs observed at

time t is given by Nt ≤ κt · τt. This set-up accommodates a time-varying number of
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option contracts and allows for changes in the type of option contracts over time, in line

with typical options data characteristics. For instance, because the expiry date of an

option contract is fixed, its time-to-maturity decreases as time progresses. Upon expiry,

the option contract is completely removed from the dataset.

We assume that log IVt evolves as follows:

log IVt =Mtβt + εt, εt ∼ h (εt | Ht;ϑε) , (1)

βt+1 = (Ip −B) ϑβ +Bβt + ξt. (2)

The measurement equation in (1) consists of the matrix of factor loadings Mt ∈ RNt×p,

p ∈ Z+, a vector of factors βt ∈ Rp×1, and an independent innovation term εt with

distribution h( · | Ht;ϑε), where h denotes the distribution with mean zero, covariance

matrix Ht, and shape parameter vector ϑε. The state transition equation in (2) has

an intercept vector (Ip − B)ϑβ ∈ Rp where ϑβ denotes the unconditional mean of βt,

autoregressive matrix B ∈ Rp×p with ∥B∥2 < 1, and ‘state increment’ vector ξt ∈ Rp.

Here, Ip denotes an identity matrix of size p, and ∥ · ∥2 represents the spectral norm. We

gather all static parameters of the model, such as ϑε, ϑβ, B, as well as any parameters

describing the matrices Mt and Ht, or defining the shape of the distribution or the

specification of ξt, into a vector ψ that requires estimation.

This set-up unifies both state-space and score-driven frameworks, depending on our

choice of ξt. For instance, if
{
(ε⊤t , ξ

⊤
t )

⊤} is an independently and identially distributed

(iid) sequence of innovations with mutually independent components εt and ξt, then Eqs.

(1)–(2) collapse to a standard linear state-space set-up (see Durbin and Koopman, 2012).

Conversely, if ξt is a measurable function that depends solely on βt and IVt, the model

becomes observation-driven. If, furthermore, ξt is chosen as the derivative (with respect

to βt) of the log predictive density of IVt given βt, we recover the score-driven framework

of Creal et al. (2013).

Eq. (1) does not yet fully specify the distribution of the error term εt, other than its

mean and covariance matrix. For instance, if (ε⊤t , ξ
⊤
t )

⊤ is normally distributed, we obtain

the linear Gaussian state-space model as used in for instance Goncalves and Guidolin

(2006) for IV surfaces. For such a state-space specification, we can then estimate the
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static parameter vector ψ by maximizing L(ψ), given by

L(ψ) = −1

2

T∑
t=1

(
log |2πFt|+ v⊤t F−1

t vt
)
, vt = log IVt − log IVt|t−1, (3)

where the prediction errors vt and their conditional covariance matrix Ft follow directly

from the Kalman filter. For a non-Gaussian εt, the standard Kalman filter recursions

break down, or more precisely, only provide minimum mean-squared error forecasts of

the states. Other estimation techniques such as simulated maximum likelihood based

on importance sampling or particle filtering can be used in such non-Gaussian and/or

non-linear (see, e.g., Durbin and Koopman, 2012, for an overview). Such techniques are

typically more challenging and computationally intensive.

In a score-driven framework, the parameter vector ψ can be estimated by standard

maximum likelihood (ML) techniques, whether εt is normally distributed or not. In

an observation-driven framework, ξt is predetermined such that the likelihood is known

in analytic form through a standard prediction error decomposition. That is, ξt is

Ft−1-measurable, where Ft = σ
(
IVs, s ≤ t

)
, containing information up to time t.

For convenience, let Et(·) = E( · | Ft). To illustrate, consider a normal distribution

with covariance matrix Ht for the density h( · |Ht;ϑε). Given the conditional nor-

mality of εt, there is no additional shape parameter ϑε. Defining the scaled score as

st = Et−1

[(
∇t∇⊤

t

)−1∇t

]
YC says: “Should it be st =

[
Et−1

(
∇t∇⊤

t

)]−1

∇t ??” with

∇t = ∂ log h(IVt |βt;Ht,ϑε)/∂β, and letting ξt = Ast for a parameter matrix A ∈ Rp×p,

we obtain

ξt = A Et−1

[(
∇t∇⊤

t

)−1∇t

]
= A (M⊤

t H
−1
t Mt)

−1M⊤
t H

−1
t εt, (4)

L(ψ) = −1

2

T∑
t=1

(
log |2πHt|+ ε⊤t H−1

t εt
)
, (5)

where εt = log IVt −Mtβt, and where we used inverse information matrix scaling of

the score as defined in Creal et al. (2013). The scaled-score step in Eq. (4) has an

intuitive interpretation by adjusting the time-varying regression parameter βt using a

GLS improvement step. Moreover, when the errors follow a Student’s t distribution with
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a degree of freedom ν > 2, the expressions change to

ξt =
1 + (Nt + 1)/ν

1 + ε⊤t H
−1
t εt/(ν − 2)

A (M⊤
t H

−1
t Mt)

−1M⊤
t H

−1
t εt, (6)

L(ψ) = −1

2

T∑
t=1

[
log |(ν − 2)πHt|

+ (ν +Nt) log

(
1 +

ε⊤t H
−1
t εt

ν − 2

)
+ 2 log Γ

(ν
2

)
− 2 log Γ

(
ν +Nt

2

)]
; (7)

see Appendix B for a derivation of the scaled score in (6). YC says: “From the

appendix, I obtain (Nt+2)/ν in Eq. (6).” Note that as ν → ∞, Eqs. (6)–(7) collapse

to (4)–(5). If ν < ∞, the score in (6) downweighs the GLS step for large incidental

outliers via the factor ε⊤t H
−1
t εt in the denominator and thus mitigates their effect on

the dynamics of the time-varying parameter βt; see also, for instance, Harvey and Luati

(2014) and Gasperoni et al. (2023) for the robustness features of score-driven filters based

on fat-tailed observations.

2.2 Adjusted covariance structures for score-driven models

So far, the state-space and score-driven models appear quite similar. The main difference

lies in their choice of the state increment vector ξt: it is random for the state-space

set-up and pre-determined for the score-driven model. This distinction leads to similar

behavior in point forecasts for both models (Koopman et al., 2016). However, in terms of

density forecasts, the two models behave in a markedly different way, with the state-space

specification generally performing better.

To understand this phenomenon, consider a simple specification of (1) with a diagonal

error covariance matrix Ht. In terms of point forecasts, since both models assume inde-

pendent measurement errors εt, they yield similar results when the estimates from the

observation-driven (βsd
t ) and state-space models (βss

t|t−1) are comparably accurate, where

βss
t|t−1 := E[βt | Ft−1]. However, when it comes to density forecasts that use the full

information set Ft−1, the two models produce very different results. Note that Model (1)

can be equivalently expressed as

log IVt =Mtβ
ss
t|t−1 +Mt

(
βt − βss

t|t−1

)
+ εt. (8)

7



Conditional on Ft−1, the first component on the right side of the equation is fixed and does

not contribute to the conditional variance. Therefore, for the state-space specification,

we obtain

Var [log IVt | Ft−1] =Ht +Mt Var [βt | Ft−1]M
⊤
t

=Ht +MtQ
ss
ξ M

⊤
t +MtBVar [βt−1 | Ft−1]B

⊤M⊤
t , (9)

where Qss
ξ is the contemporaneous covariance matrix of the state-innovation in (2) given

the state-space specification of the model. Even ifHt is diagonal, the resulting state-space

predictive density clearly exhibits a non-diagonal covariance structure. On the other hand,

the predictive density of the score-driven model yields a diagonal covariance Ht, as the

dynamics of βsd
t is pre-determined conditional on Ft−1. Thus, even if the score-driven

forecast βsd
t and the state-space forecast βss

t|t−1 are close, their forecasting densities are

very different.

The non-diagonal covariance specification in (9) potentially provides a better fit to

real data compared to a diagonal Ht. To understand the intuition behind this, consider

a simple one-factor set-up (i.e., p = 1) to illustrate the core of the issue. Assume thatMt

consists of a single column of ones and that B = 1, which models the IV surface using a

single (random walk) level factor. Both models assume that for a given βt the prediction

errors around this level are uncorrelated. However, as discussed, while the state-space

approach assumes that the future value of βt+1 cannot be known with certainty today and

is therefore subject to a prediction error, the score-driven set-up excludes such prediction

error by assuming βt+1 is pre-determined given Ft. Accordingly, the score-driven set-up

maintains a diagonal structure for the prediction errors in the measurement equation,

while in the state-space framework, prediction errors are correlated due to the common

prediction error in βt+1 given Ft. Although a score-driven filter can still provide an

accurate filtered or predicted value for βt+1, the assumption that βt+1 is pre-determined

in the data generating process (DGP) is typically untenable in empirical situations.

The solution is straightforward. We can slightly adjust the covariance structure in the

measurement equation of the score-driven model to better reflect the correlation structure

of the prediction errors. We propose to replace the measurement equation of the score-
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driven factor model in (1) with

log IVt =Mtβt + εt, εt ∼ h
(
εt

∣∣ Ht +MtCM
⊤
t ;ϑε

)
, (10)

where C ∈ Rp×p is an additional static parameter matrix to be estimated. With this new

correlation structure for the score-driven modeling framework, the predictive densities of

the score-driven and state-space approaches resemble each other much more. In particular,

if the matrices in the state-space model are time-invariant, this captures the steady state

predictive density. In such a setting, we expect the adjustment in (10) to largely close

the gap in density fit between the score-driven and state-space model.

The suggested adjustment in (10) also explains the improvements in density fit ob-

tained by Koopman et al. (2017) when modeling international term structures and im-

posing an equicorrelation structure. The level factor is the most important ingredient in

their factor model. As explained before, if the DGP is of state-space with time-invariant

parameter matrices, the steady state predictive density has an equicorrelation structure.

Imposing this structure on the score-driven measurement equation therefore leads to a

substantial improvement in density fit.

It is worth noting that the adjusted covariance structure in (10) does not hinge on a

Gaussian distribution. The adjustment is equally applicable for fat-tailed or skewed den-

sity functions h. Therefore, the score-driven model can easily incorporate non-Gaussian

features by adjusting the score dynamics accordingly. This is a major advantage over

the state-space model for the estimation procedure, as it remains feasible using standard

maximum likelihood methods. In contrast, including such non-Gaussian features in the

state-space setting, as previously discussed, would be more cumbersome and usually neces-

sitates a different estimation paradigm to approximate filtering techniques. We investigate

such extensions to the score-driven model in the empirical application in Section 3.

3 Empirical data and model specification

3.1 Descriptives

Our dataset comprises European call options on the S&P 500 index and encompasses

all call and put options traded on the Chicago Board Options Exchange (CBOE). The
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dataset, retrieved from OptionDX, spans the period from January 1, 2010, to January 1,

2022. It includes the daily closing price of the index, as well as the strike prices, expiration

dates, option deltas (∆), and implied volatilities of each option contract.

We apply the filtering procedures of Barone-Adesi et al. (2008) and Wel et al. (2016) to

clean the data. Initially, we restrict our analysis to out-of-the-money options, defined by a

∆ less than 0.5 in absolute value, because out-of-the-money options typically have higher

trading activity than their in-the-money counterparts. Moreover, focusing solely on out-

of-the-money options is conceptually equivalent to studying only in-the-money options

under the assumption of put-call parity. For example, a call option with a ∆ of 0.1 should

possess the same implied volatility as an out-of-the-money put with a ∆ of -0.9. Next,

we exclude observations with more than 360 days or less than 7 days to expiration, as

these options are typically characterized by lower liquidity levels. Additionally, we discard

options with implied volatilities greater than 0.7 or less than 0.05 to mitigate the effect of

potential data errors. The final dataset comprises a total of 7,739,265 observations, with

an average of 2,722 observations per day.

Table 1 provides some summary statistics. Following Wel et al. (2016), we divide the

sample into 24 distinct groups based on time-to-maturity and moneyness. Specifically, the

maturity component is partitioned into four groups with breakpoints at 45, 90, and 180

days-to-maturity, while moneyness is split into six groups with breakpoints at ∆ values

of -0.375, -0.125, 0, 0.125, and 0.375.

We classify options with ∆ values ranging from -0.125 to 0 as deep out-of-the-money

puts (DOTM puts). Options with ∆ from -0.375 to -0.125 are classified as out-of-the-

money puts (OTM puts), and options with ∆ values between -0.5 and -0.375 are classified

as at-the-money puts (ATM puts). Calls are classified as deep OTM, OTM, and ATM,

using the same cutoffs, but with positive ∆ values.

For each of these 24 groups, we present the time-series average and standard deviation

of the implied volatility, days-to-maturity, moneyness, ∆, and trading volumes (Trading

Vol) for each bucket. The percentage of trade volumes represents the average daily number

of contracts traded within a group relative to the total trading volume across all contracts.

Table 1 highlights some of the stylized facts about the implied volatility surface. First,

the implied volatilities decrease as moneyness increases for each of the four maturity

groups, a phenomenon commonly known as the volatility smile or smirk. Second, the
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implied volatilities increase as the time-to-maturity increases, known as the volatility

term structure. Finally, we see that shorter-term or deeper out-of-the-money options

have higher trading volumes than longer-term or at-the-money products.

3.2 Restricted factor representation

A common approach when modeling the IV surface is to express it as a function of

moneyness (mi,t) and time-to-maturity (τi,t) for option contract i = 1, . . . , Nt at time

t = 1, . . . , T . Goncalves and Guidolin (2006) compare various parametric specifications

as proposed by Dumas et al. (1998) and Pena et al. (1999). They conclude that a simple

model, which linearly combines polynomial terms and interactions of moneyness and

time-to-maturity, achieves a good fit to the S&P 500 IV surface. We adopt their set-up

to illustrate the effect of using the adjusted covariance structure in score-driven factor

framework for modeling the IV surface, specifying the following five-factor specification

(Goncalves and Guidolin, 2006):

log IVi,t = β1,t + β2,tmi,t + β3,tm
2
i,t + β4,tτi,t + β5,tmi,tτi,t + εi,t =:m⊤

i,t βt + εi,t, (11)

where mi,t =
(
1,mi,t,m

2
i,t, τi,t,mi,tτi,t

)⊤
and βt = (β1,t, . . . , β5,t)

⊤. Here, β1,t represents

the time-varying level of the log implied volatility; β2,t and β3,t capture the slope and

curvature of log implied volatilities in the moneyness dimension (i.e., the volatility smile),

respectively; β4,t reflects the slope of log implied volatility in the time-to-maturity di-

mension (i.e., the implied volatility term structure); and β5,t captures the interaction

between moneyness and time-to-maturity. The model can be expressed in the form (1),

withMt =
(
m1,t, . . . ,mNt,t

)⊤
. Richer factor structures can easily be specified by adding

more terms to the right-hand side of Eq. (11). Alternatively, the factor loadings could be

estimated rather than pre-specified as in the version ofMt in (11). However, this does not

alter the results for our main focus in this paper, namely how to close the gap in density

performance between the state-space and score-driven approach. We therefore primarily

stick to the specification in (11), and investigate an additional factor with estimated factor

loadings in the robustness analysis in Section 4.2.
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Table 1: Summary Statistics

7 – 45 days 45 – 90 days 90 – 180 days 180 – 360 days

Mean SD Mean SD Mean SD Mean SD

DOTM put IV 0.32 0.13 0.33 0.11 0.35 0.11 0.35 0.10
DTM 24.51 10.68 64.36 12.25 125.59 26.40 265.68 51.93
Moneyness 0.84 0.09 0.76 0.12 0.68 0.14 0.57 0.15
∆ -0.03 0.03 -0.04 0.03 -0.04 0.04 -0.04 0.04
Trading Vol (%) 22.83 11.52 7.74 5.62

OTM put IV 0.20 0.09 0.21 0.08 0.23 0.08 0.24 0.07
DTM 26.39 10.21 65.31 12.44 129.17 26.85 270.38 52.54
Moneyness 0.96 0.02 0.94 0.03 0.91 0.04 0.87 0.06
∆ -0.23 0.07 -0.23 0.07 -0.23 0.07 -0.23 0.07
Trading Vol (%) 6.42 4.47 4.26 2.60

ATM put IV 0.18 0.10 0.17 0.07 0.19 0.07 0.19 0.05
DTM 26.29 10.18 65.48 12.50 130.22 27.14 270.39 52.98
Moneyness 0.99 0.01 0.99 0.01 0.98 0.01 0.98 0.02
∆ -0.44 0.04 -0.44 0.04 -0.43 0.04 -0.44 0.04
Trading Vol (%) 1.81 1.24 1.27 0.76

ATM call IV 0.17 0.10 0.16 0.07 0.18 0.06 0.18 0.04
DTM 26.21 10.22 65.39 12.48 129.92 27.05 271.89 52.81
Moneyness 1.01 0.01 1.01 0.01 1.02 0.01 1.03 0.02
∆ 0.44 0.04 0.44 0.04 0.44 0.04 0.44 0.04
Trading Vol (%) 1.59 1.08 1.09 0.66

OTM call IV 0.15 0.09 0.14 0.06 0.15 0.05 0.15 0.04
DTM 25.96 10.35 65.23 12.42 127.47 26.77 271.51 52.34
Moneyness 1.03 0.02 1.04 0.02 1.06 0.03 1.09 0.04
∆ 0.24 0.07 0.24 0.07 0.25 0.07 0.25 0.07
Trading Vol (%) 3.33 2.19 1.90 1.31

DOTM call IV 0.16 0.09 0.14 0.06 0.15 0.05 0.15 0.04
DTM 23.89 10.41 64.01 12.30 125.64 26.34 266.00 52.26
Moneyness 1.10 0.08 1.13 0.10 1.20 0.13 1.30 0.16
∆ 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04
Trading Vol (%) 8.80 3.50 2.28 1.74

Note: This table presents summary statistics for the option data, including the mean and standard
deviation (SD) over time for implied volatility, days to maturity (DTM), moneyness (the strike price
divided by the index), option ∆, and trading frequency across four maturity groups and six moneyness
groups. The maturity groups are 7-45, 45-90, 90-180, and 180-360 days. The six moneyness groups
are defined as deep out-of-the-money put (−0.125 < ∆ < 0, DOTM put), out-of-the-money put
(−0.375 < ∆ < −0.125, OTM put), at-the-money put (−0.5 < ∆ < −0.375, ATM put), and
similarly for call options (with positive ∆s). Each day, we identify all contracts that fall within each
maturity-moneyness group, and the numbers represent averages over time and across contracts for
each group.
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4 Estimation results

We present the main empirical results in this section. All of our analyses are done out-

of-sample. We use a rolling window of 500 observations (about 2 years) to forecast the

next 250 observations (1 year). This gives us T ⋆ = 2, 588 out-of-sample observations from

January 1, 2012, to January 1, 2022. We focus on the one-step-ahead forecasts of the

log implied volatilities. The benchmark results are presented in Section 4.1, followed by

several robustness checks in Section 4.2.

In the benchmark analysis (Section 4.1), we compare the state-space (SS) model with

four different score-driven (SD) models. The SD models employ either a normal or Stu-

dent’s t specification, as described in Eqs. (4)–(5) and (6)–(7), respectively. Moreover, for

the SD models, We consider versions both with and without the covariance adjustment

for the measurement equation as proposed in Eq. (10). In this first analysis, we use the

non-bucketed option dataset. Therefore, the number of option contracts, and thus the

dimension Nt of log IVt, changes over time.

We evaluate the performance of the different models in both statistical and economic

terms. First, for the statistical measures, we compute log-likelihoods, AIC criteria, mean

squared error (MSE), and mean absolute error (MAE) criteria. These are defined as

MSE = (NtT
⋆)−1

∑T ⋆

t=1

∑Nt

i=1(IVi,t − IVi,t|t−1)
2 and MAE = (NtT

⋆)−1
∑T ⋆

t=1

∑Nt

i=1

∣∣IVi,t −

IVi,t|t−1

∣∣, respectively, where log IVi,t|t−1 the one-step-ahead forecast for log IVt. Second,

for the economic evaluation, we conduct an out-of-sample Value-at-Risk (VaR) analysis at

a 99% confidence level (1−α = 99%). We concentrate on a setting where the correlation

structure is crucial for forecast performance. In particular, we consider the unweighted

overall cross-sectional average of the log IVs, Pt = N−1
t

∑Nt

i=1 log IVi,t, and consider the

one-step-ahead risk quantiles of Pt. The risk quantiles or Value-at-Risk for the score-driven

specifications are straightforward to compute due to their observation-driven nature. For

a (1− α) confidence level, they are given by

V̂ aRt+1 = Pt|t−1 +
Q(α)

Nt

√
ı⊤Nt
F̂t ıNt , (12)

where Q(α) is the α-quantile of the normal or unit-variance Student’s t distribution,

Pt|t−1 = N−1
t

∑Nt

i=1 log IVi,t|t−1, and F̂t = Ht for the standard score-driven model, and

F̂t = Ht +MtCM
⊤
t for the adjusted model. For the state-space specifications, the
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predictions Pt|t−1 and forecast error variances F̂t = Ft follow directly from the Kalman

Filter recursions.

4.1 The benchmark analysis

Table 2 presents the out-of-sample MSE, MAE, log-likelihood (labelled as “loglik”), and

AIC, for both the state-space and score-driven models used to model the log implied

volatilities, as specified in Eqs. (1)–(2). For MSE and MAE, the ratios of all models to the

corresponding measures of the state-space model are provided. It also includes the metrics

for the static factor model, which assumes that the factors described in Eq. (1) remain

constant over time (i.e., βt ≡ β). Results are shown for the entire sample period and for

two sub-sample periods: the pre-COVID period (2012-2020) and the COVID period (2020-

2022). The latter period, marked by the COVID-19 pandemic, exhibits significantly higher

volatility compared to the former. To quantify the statistical significance of performance

differences, we use the Diebold-Mariano (DM) test, with the state-space models serving

as benchmarks (Diebold and Mariano, 2002).

Table 2 highlights three main findings. First, the log-likelihood values indicate that

the linear Gaussian SS model significantly outperforms the SD model with the same dis-

tribution assumption and without covariance adjustment for the measurement equation.

However, when the covariance adjustment is applied to the SD model, its log-likelihood

closely aligns with that of the linear Gaussian SS model This pattern is also reflected in

the AIC results.

Second, the relative ratios of MSE and MAE suggest that the two approaches, whether

with or without covariance adjustment, perform similarly in terms of point forecasts. This

supports the findings of Koopman et al. (2016). For both the full sample and the pre-

COVID period, the SD model under a Gaussian distribution without covariance adjust-

ment slightly outperforms the SS model, achieving lower MSE and MAE. Conversely,

the SD model with covariance adjustment shows slightly higher values for these met-

rics compared to the SS model. In the COVID period, however, the pattern reverses:

the SD model with covariance adjustment slightly outperforms the SS model, while the

model without covariance adjustment exhibits slightly higher values compared to the SS

framework.

Third, the results for SD models utilizing a Student’s t distribution indicate that
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Table 2: Out-of-sample performance using non-bucketed data, evaluated by MSE, MAE,
log-likelihood (loglik), AIC, and BIC, for both state-space (SS) and score-driven (SD)
models for the log implied volatility model from Eqs. (1)–(2). The rows labeled “Static”
assume βt ≡ β.

Model Distr. Adj. MSE MAE loglik AIC #Par.
×10−3 ×10−3

Full sample (2012-2022)

SS N — 1.00 1.00 1557.45 -3114.86 16

SD N — 0.99 0.99∗∗∗ 1203.19∗∗∗ -2406.35 16
SD N yes 1.02∗∗ 1.02∗∗∗ 1555.56∗∗∗ -3111.08 21

SD t — 1.01 1.00 1551.76 -3103.49 17
SD t yes 1.05∗∗∗ 1.04∗∗∗ 1926.21∗∗∗ -3852.38 22

Static N — 2.12∗∗∗ 1.61∗∗∗

Pre-COVID period (2012-2020)

SS N — 1.00 1.00 1095.87 -2191.72 16

SD N — 0.98 0.99 885.25∗∗∗ -1770.47 16
SD N yes 1.04∗∗∗ 1.04∗∗∗ 1094.19∗∗∗ -2188.33 21

SD t — 0.99 1.00 1144.60 -2289.17 17
SD t yes 1.07∗∗∗ 1.06∗∗∗ 1354.35∗∗∗ -2708.65 22

Static N — 1.55∗∗∗ 1.44∗∗∗

COVID period (2020-2022)

SS N — 1.00 1.00 461.57 -923.11 16

SD N — 1.02∗∗ 0.98∗∗∗ 317.94∗∗∗ -635.85 16
SD N yes 0.97∗∗ 0.96∗∗∗ 461.37∗∗∗ -922.70 21

SD t — 1.06 1.01 407.16 -814.29 17
SD t yes 0.98∗ 0.98∗∗∗ 571.87∗∗∗ -1143.69 22

Static N — 3.84∗∗∗ 2.26∗∗∗

Note: The distribution (Distr.) can be normal (N ) or Student’s t, and the
covariance structure can be diagonal or adjusted as in Eq. (10), as indicated
by the column Adj. The last column specifies the number of parameters
in each model. The log implied volatilities are forecasted for each option
contract. For the DM test (with the state-space models as benchmarks),
∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.

incorporating non-Gaussian features enhances the density forecast performance beyond

that of the linear Gaussian SS models. Specifically, the log-likelihood and AIC of the SD

models with a Student’s t distribution surpass those of the SS models after covariance

adjustment. Even without covariance adjustment, the SD model with a Student’s t dis-

tribution achieves log-likelihood and AIC values comparable to those of the SS models.
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Table 3: Out-of-sample log-likelihood and 99% Value at Risk backtesting outcomes using
non-bucketed data, including violation ratio (Viol ratio) and tick loss, for both state-
space (SS) and score-driven (SD) models applied to the log implied volatility model from
Eqs. (1)–(2). See the note in Table 2 for additional details.

Model Distr. Adj. loglik Viol ratio Tick loss
×10−3 ×103 ×103

Full sample (2012-2022)

SS N — 1557.45 0.04 3.68

SD N — 1203.19∗∗∗ 41.07 9.99∗∗∗

SD N yes 1555.56∗∗∗ 0.04 5.16∗∗∗

SD t — 1551.76 50.88 14.60∗∗∗

SD t yes 1926.21∗∗∗ 0.00 6.14∗∗∗

Pre-COVID (2012-2020)

SS N — 1095.87 0.05 3.16

SD N — 885.25∗∗∗ 40.43 9.84∗∗∗

SD N yes 1094.19∗∗∗ 0.05 4.74∗∗∗

SD t — 1144.60 52.65 15.56∗∗∗

SD t yes 1354.35∗∗∗ 0.00 5.45∗∗∗

COVID period (2020-2022)

SS N — 461.57 0.00 6.43

SD N — 317.94∗∗∗ 44.47 10.76∗∗∗

SD N yes 461.37∗∗∗ 0.00 7.40∗∗∗

SD t — 407.16 41.51 9.49∗∗∗

SD t yes 571.87∗∗∗ 0.00 9.79∗∗∗

This observation holds true for both sub-sample periods.

In Table 3, we present the results for the 99%-Value-at-Risk (VaR). In terms of vi-

olation rates, our findings show that SD models without covariance adjustment, under

both Gaussian and Student’s t distributions, exhibit a significantly higher violation ratio

compared to the SS models. In contrast, the violation ratios for SD models with covari-

ance adjustment are much closer to those of the SS models, and all models, including

the SS model and the SD models with covariance adjustment, maintain conservative vi-

olation rates relative to the nominal level of 1%. Furthermore, both SD models without

covariance adjustment demonstrate substantially higher tick loss compared to those with

covariance adjustment, a pattern consistent across the two sub-sample periods. These

results underscore the importance of covariance adjustment in the SD model, as it is cru-
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cial for narrowing the performance gap between the SS and SD frameworks in terms of

density forecasts and VaR violation rates.

4.2 Robustness checks with bucketed data

To verify the robustness of our previous findings, we also apply our analysis to bucketed

data. Following Wel et al. (2016), Bollen and Whaley (2004), and Barone-Adesi et al.

(2008), we divide the data into four maturity groups, separated by maturities of 45, 90,

and 180 days, and six moneyness groups, separated by ∆ of -0.375, -0.125, 0, 0.125, and

0.375, as shown in Table 1. For each maturity-moneyness group, we select the contract

closest to the mid-point. Stacking the IV vector for different groups leads to a fixed-

dimensional vector of observations with 24 dimensions..

Tables 4 - 5 reproduce Tables 2 -3 using the bucketed data. As before, Table 4 reveals

that the plain-vanilla SD models still have a significantly lower log-likelihood than the

SS models. However, the log-likelihood of the SD models with covariance adjustment is

significantly higher than that of the SS models for both the whole sample period and the

first sub-sample period, providing even stronger evidence than what is shown in Table

2. For the second sub-sample period during COVID, there is no statistically significant

difference. Moreover, in terms of point forecasts, the SD models, whether with or without

covariance adjustment, generally perform better than their SS counterparts. Specifically,

for MSE, both SD models under the Gaussian distribution significantly outperform the SS

models for the entire sample period and the pre-COVID sub-sample. However, only the

SD model with covariance adjustment shows significant improvement over the SS models

during the volatile COVID period. Regarding MAE, the plain-vanilla SD model performs

significantly better than the SS models in both sub-samples. Additionally, the SD model

with Gaussian distribution and covariance adjustment matches the performance of the SS

models for the entire sample and the pre-COVID period, but it significantly outperforms

the SS models during the COVID period.

Table 5 presents the 99% VaR estimation results with the bucketed data. The violation

rates align with our main findings in Section 4. Additionally, the tick loss results indicate

that the SD models with covariance adjustment, regardless of whether they use Gaussian

or Student’s t distributions, produce significantly lower values compared to the SS models.

In Appendix A, we provide additional robustness checks using an alternative factor
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Table 4: Out-of-sample performance using bucketed data, evaluated by MSE, MAE, log-
likelihood (loglik), AIC, and BIC, for both state-space (SS) and score-driven (SD) models
for the log implied volatility model from Eqs. (1)–(2). The rows labeled “Static” assume
βt ≡ β. See the note in Table 2 for additional details.

Model Distr. Adj. MSE MAE loglik AIC #Par.
×10−3 ×10−3

Full sample (2012-2022)

SS N — 1.00 1.00 62.11 -124.18 16

SD N — 0.93∗∗ 0.97∗∗∗ 54.57∗∗∗ -109.11 16
SD N yes 0.92∗ 0.99 63.71∗∗∗ -127.38 21

SD t — 2.65 1.17 57.00∗∗∗ -113.96 17
SD t yes 1.35 1.07∗∗ 63.57∗∗∗ -127.10 22

Static N — 9.36∗∗∗ 3.41∗∗∗

Pre-COVID (2012-2020)

SS N — 1.00 1.00 53.72 -107.40 16

SD N — 0.94∗∗∗ 0.97∗∗∗ 48.25∗∗∗ -96.47 16
SD N yes 0.97∗∗ 1.00 55.03∗∗∗ -110.02 21

SD t — 1.16 1.04∗∗ 50.82∗∗∗ -101.61 17
SD t yes 1.20∗∗ 1.07∗∗∗ 55.19∗∗∗ -110.34 22

Static N — 7.35∗∗∗ 3.19∗∗∗

COVID period (2020-2022)

SS N — 1.00 1.00 8.39 -16.75 16

SD N — 0.92 0.95∗∗ 6.32 -12.61 16
SD N yes 0.87∗∗ 0.95∗∗ 8.68 -17.31 21

SD t — 4.25 1.54 6.18∗ -12.32 17
SD t yes 1.51 1.08 8.38 -16.72 22

Static N — 11.52 4.00

representation, where dummy variables are employed to capture group-specific levels.

These results are consistent with the main findings of the paper. Moreover, it shows that

the current model specifications can be improved to better capture some of the edges and

corners of the volatility surface dynamics.

5 Conclusions

In this paper, we investigated the substantial difference in density fit between state-space

and score-driven factor models and proposed a solution to bridge the gap. In particular,
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Table 5: Out-of-sample log-likelihood and 99% Value at Risk backtesting outcomes using
bucketed data, including violation ratio (Viol ratio) and tick loss, for both state-space (SS)
and score-driven (SD) models applied to the log implied volatility model from Eqs. (1)–(2)
See the note in Table 2 for additional details.

Model Distr. Adj. loglik Viol ratio Tick loss
×10−3 ×103 ×103

Full sample (2012-2022)

SS N — 62.11 0.17 1.83

SD N — 54.57∗∗∗ 17.34 4.92∗∗∗

SD N yes 63.71∗∗∗ 0.51 1.70∗∗

SD t — 57.00∗∗∗ 18.16 5.32∗∗∗

SD t yes 63.57∗∗∗ 0.47 1.60∗

Pre-COVID (2012-2020)

SS N — 53.72 0.10 1.82

SD N — 48.25∗∗∗ 19.14 5.35∗∗∗

SD N yes 55.03∗∗∗ 0.56 1.75

SD t — 50.82∗∗∗ 19.86 5.78∗∗∗

SD t yes 55.19∗∗∗ 0.56 1.61

COVID period (2020-2022)

SS N — 8.39 0.54 1.91

SD N — 6.32 7.82 2.65
SD N yes 8.68 0.27 1.47∗∗

SD t — 6.18∗ 9.16 2.84
SD t yes 8.38 0.00 1.59∗∗∗

we introduced a change in the covariance structure of the measurement equation to put the

state-space and score-driven model more on an equal footing. This adjustment facilitates

the use of standard estimation and inference methods for non-Gaussian distributions,

avoiding the complex techniques typically required by the state-space framework.

We applied the approach to model the implied volatility surface for S&P500 index op-

tion data. We confirmed that a plain-vanilla score-driven model has a significantly lower

density forecast performance than a state-space competitor. However, when the modified

covariance structure is applied to the score-driven model, this performance gap disappears

and can even reverse, especially when incorporating non-Gaussian features. The covari-

ance matrix adjustment introduced in this paper can also be applied in high-dimensional

cases due to its parsimonious nature, which is rooted in the underlying factor model
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structure. Our empirical results reveal that accounting for correlated and heteroskedastic

innovations in the score-driven framework elevates its log-likelihood to match that of the

state-space model. We demonstrate that this adjustment significantly affects the quality

of Value-at-Risk estimates.
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A Further robustness check

We propose an alternative factor representation, referred to as the four-factor representa-

tion, by replacing the interaction term between moneyness and time-to-maturity, as well

as the squared moneyness term introduced in Section 3.2, with some dummy variables.

Specifically, we divide the data into 24 groups, separated by maturities of 45, 90, and 180

days and moneyness intervals of -0.375, -0.125, 0, 0.125, and 0.375, as done previously.

For clarity, let gi,t = π(mi,t, τi,t) ∈ 1, . . . , 24 represent the group number corresponding to

(mi,t, τi,t), where π( · ·) is a function that assigns the group number according to the spec-

ified rule. To enable each maturity-moneyness group to have its own level, we introduce

the dummy variables as follows: For i = 1, . . . , Nt, t = 1, . . . , T ,

log IVi,t = β1,t + β2,tmi,t + β3,tτi,t +
24∑
g=1

β4,gi,t,t1{gi,t = g}+ εi,t, (A.1)

where 1{·} is an indicator function. Now, take mi,t =
(
1,mi,t, τi,t, 11,i,t, 12,i,t, . . . , 124,i,t

)⊤
and βt =

(
β1,t, β2,t, β3,t, β4,1,t, β4,2,t, . . . , β4,24,t

)⊤
in Eqs. (1)–(2).

The corresponding results are provided in Tables A.1 - A.2. We observe that the

four-factor representation improves the models presented in the main sections by better

capturing the edges and corners of the surface of the bucketed data.
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Table A.1: Out-of-sample performance using non-bucketed data and with a four-factor
representation, evaluated by MSE, MAE, log-likelihood (loglik), AIC, and BIC, for both
state-space (SS) and score-driven (SD) models for the log implied volatility model from
Eqs. (1)–(2). The rows labeled “Static” assume βt ≡ β.

Model Distr. Adj. MSE MAE loglik AIC #Par.
×10−3 ×10−3

Full sample (2012-2022)

SS N — 1.00 1.00 2529.16 -5058.25 37

SD N — 1.00 1.00 2087.72∗∗∗ -4175.37 37
SD N yes 1.00 1.01∗∗∗ 2526.46∗∗∗ -5052.83 41

SD t — 1.05∗∗∗ 1.02∗∗ 2336.27∗∗ -4672.46 38
SD t yes 1.13∗∗ 1.06∗∗∗ 2817.99∗∗∗ -5635.89 42

Static N — 2.98∗∗∗ 1.91∗∗∗

Pre-COVID (2012-2020)

SS N — 1.00 1.00 1930.77 -3861.47 37

SD N — 1.00 1.00∗∗ 1649.28∗∗∗ -3298.50 37
SD N yes 1.01∗∗∗ 1.02∗∗∗ 1928.41∗∗∗ -3856.73 41

SD t — 1.02 1.01∗∗∗ 1833.79∗∗ -3667.51 38
SD N yes 1.11∗∗∗ 1.07∗∗∗ 2132.30∗∗∗ -4264.51 42

Static N — 2.01∗∗∗ 1.68∗∗∗

COVID sample (2020-2022)

SS N — 1.00 1.00 598.39 -1196.70 37

SD N — 1.00 1.00 438.44∗∗ -876.80 37
SD N yes 0.97∗∗∗ 0.99∗∗ 598.05∗∗ -1196.02 41

SD t — 1.14 1.05 502.47 -1004.87 38
SD t yes 1.19 1.05 685.69∗∗∗ -1371.30 42

Static N — 6.02∗∗∗ 2.86∗∗∗

Note: The distribution (Distr.) can be normal (N ) or Student’s t, and the
covariance structure can be diagonal or adjusted as in Eq. (10), as indicated
by the column Adj. The last column specifies the number of parameters
in each model. The log implied volatilities are forecasted for each option
contract. For the DM test (with the state-space models as benchmarks),
∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level, respectively.
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Table A.2: Out-of-sample log-likelihood and 99% Value at Risk backtesting outcomes
using bucketed data and with a four-factor representation, including violation ratio (Viol
ratio) and tick loss, for both state-space (SS) and score-driven (SD) models applied to
the log implied volatility model from Eqs. (1)–(2) See the note in Table A.1 for additional
details.

Model Distr. Adj. loglik Viol ratio Tickloss
×10−3 ×103 ×103

Full sample (2012-2022)

SS N — 2529.16 0.21 1.75

SD N — 2087.72∗∗∗ 52.59 14.73∗∗∗

SD N yes 2526.46∗∗∗ 0.13 2.15∗∗∗

SD t — 2336.27∗∗ 53.40 16.56∗∗∗

SD t yes 2817.99∗∗∗ 0.00 5.72∗∗∗

Pre-COVID period (2012-2020)

SS N — 1930.77 0.20 1.65

SD N — 1649.28∗∗∗ 53.82 15.17∗∗∗

SD N yes 1928.41∗∗∗ 0.15 1.98∗∗∗

SD t — 1833.79∗∗ 55.55 17.50∗∗∗

SD t yes 2132.30∗∗∗ 0.00 6.02∗∗∗

COVID period (2020-2022)

SS N — 598.39 0.27 2.29

SD N — 438.44∗∗ 46.09 12.40∗∗∗

SD N yes 598.05∗∗ 0.00 3.07∗∗∗

SD t — 502.47 42.05 11.57∗∗∗

SD t — 685.69∗∗∗ 0.00 4.10∗∗∗
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B Information matrix for Student’s t distribution

The score for the Student’s t case with ν degrees of freedom and covariance matrix Ht is

given by:

∇t =
ν +Nt

ν − 2

M⊤
t H

−1
t εt

1 +
ε⊤t H

−1
t εt

ν − 2

=
ν +Nt

ν − 2

√
ν − 2

ν
M⊤

t H
−1/2
t

ε̃t
1 + ε̃⊤ε̃t/ν

, (B.2)

where ε̃t = ν1/2(ν − 2)−1/2H
−1/2
t εt such that ε̃t ∼ t(0, I, ν). Therefore,

Et−1[∇t∇⊤
t ] =

(ν +Nt)
2

(ν − 2)2
ν − 2

ν
M⊤

t H
−1
t Mt

1

Nt

E
[

ε̃⊤t ε̃t
(1 + ε̃⊤t ε̃t/ν)

2

]
=

(ν +Nt)
2

(ν − 2)

1

ν
M⊤

t H
−1
t Mt

1

Nt

E
[
ν

1

1 + ε̃⊤t ε̃t/ν

(
1− 1

1 + ε̃⊤t ε̃t/ν

)]
=:

(ν +Nt)
2

(ν − 2)
M⊤

t H
−1
t Mt

1

Nt

E [bν,Nt (1− bν,Nt)] ,

where bν,Nt =
(
1+ε̃⊤t ε̃t/ν

)−1 ∼ Beta(ν,Nt). Using the expressions for the mean ν/(ν+Nt)

and the second-order uncentered moment ν(ν+1)/[(ν+Nt)(ν+Nt+1)] of a beta distributed

random variable, we therefore obtain

Et−1[∇t∇⊤
t ] =

(ν +Nt)
2

(ν − 2)

1

Nt

(
ν

ν +Nt

− ν(ν + 1)

(ν +Nt)(ν +Nt + 1)

)
M⊤

t H
−1
t Mt

=
ν

(ν − 2)

ν +Nt

ν +Nt + 1
M⊤

t H
−1
t Mt.

YC says: “I replace qt by Nt above if I’m not mistaken. Moreover, it seems

bν,Nt follows a distribution of Beta(ν/2, Nt/2). This should lead to

E
[
bν,Nt(1− bν,Nt)

]
=

Ntν

(ν +Nt)(ν +Nt + 2)
.

Therefore,

Et−1[∇t∇⊤
t ] =

ν

(ν − 2)

ν +Nt

ν +Nt + 2
M⊤

t H
−1
t Mt.

”

26


	1 Introduction
	2 The modeling frameworks
	2.1 Standard state-space and score-driven models
	2.2 Adjusted covariance structures for score-driven models

	3 Empirical data and model specification
	3.1 Descriptives
	3.2 Restricted factor representation

	4 Estimation results
	4.1 The benchmark analysis
	4.2 Robustness checks with bucketed data

	5 Conclusions
	A Further robustness check
	B Information matrix for Student's t distribution

