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This paper studies how to combine screening menus and inspection
in mechanism design. A Principal procures a good from an Agent
whose cost is his private information. The Principal has three in-
struments: screening menus — i.e., quantities and transfers — and
(ex-ante) inspection. Inspection is costly but reveals the Agent’s cost.
The combination of inspection and screening menus mitigates ineffi-
ciencies: the optimal mechanism procures an efficient quantity from
all Agents whose cost of production is sufficiently low, regardless of
whether inspection has taken place. However, quantity distortions still
necessarily occur in optimal regulation; the quantity procured from
Agents with higher production costs is inefficiently low. In contrast
to settings without inspection, incentive compatibility constraints do
not bind locally. Nonetheless, the paper characterizes which incentive
constraints bind. Keywords: Mechanism Design, Verification, Principal-
Agent, Inspection, Procurement.
JEL: D82, D86, L51.

1. Introduction
Contemporary approaches to regulation operate under the assumption that

regulators have less information about important data than the entity targeted
by the regulation. For instance, a government lacks knowledge about a defense
manufacturer’s production costs, or a municipality is uninformed about the cost of
constructing new infrastructure. The literatures on regulation and procurement
show how to design transfer schemes in order to alleviate the problems caused by
such asymmetric information.

In practice, however, regulators have the capabilities to acquire direct knowledge
of the unknown variable. For example, the Defense Contract Audit Agency
(DCAA), an agency under the United States Department of Defense, conducts
inspections that “are generally completed before contract award where DCAA
evaluates [...] how much it will cost the contractor to provide goods or services
to the government.”1 The U.S. General Service Administration has its own Office
of Audits whose responsibilities include conducting audits in procurement cases
and construction projects. Its “[a]udits of [construction projects] take place before
a contract is awarded” and “include the evaluation of submitted cost or pricing
data[...].”2

In this paper, we study how inspection and transfer schemes are optimally
combined. We take a mechanism design approach to regulation and allow the

1See DCAA (2023, p. 4).
2U.S. General Services Administration (2012, p. 12).
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regulator to use transfers, inspection and quantity menus. We examine the trade-offs
between using either instrument and characterize their optimal use in regulation.

In our model, an Agent produces a good that the Principal values. The Agent
has private information about his cost of production, a continuous variable. The
Principal aims to procure a cost-dependent quantity from the Agent. To elicit the
Agent’s cost, the Principal can design a transfer and quantity scheme, and she can
also learn the Agent’s cost through costly inspection.

The Principal offers a mechanism to the Agent. For each reported cost, a (direct)
mechanism specifies a probability that the Agent is inspected, as well as contingent
quantities and transfers. More precisely, the mechanism specifies a quantity the
Agent produces when not inspected and a transfer he receives as a function of
the reported cost. When inspected, the mechanism specifies a quantity and a
transfer conditional on the reported and the true cost, which has been observed
through inspection. Crucially, the Agent is free to reject the mechanism ex–post
and collect his outside option instead. This means the Principal cannot force the
Agent to produce without reimbursing his cost of production. We place no further
restrictions on the mechanism, including the magnitude of the transfers, and allow
for stochastic inspection.

The optimal mechanism is characterized by a two-thresholds policy. Specifically,
there exist two thresholds of the Agent’s cost, a “distortion threshold” and an
“inspection threshold”. The distortion threshold is always bounded away from the
lowest cost level and smaller than the inspection threshold.

The Agent produces the first–best quantity even when not inspected if his cost
is below the distortion threshold. While reminiscent of the familiar “no distortion
at the top”-result in screening problems, this is a stronger property: there is an
interval of types that produce the first-best quantity regardless of whether they are
inspected or not. Consequently, there is no downward distortion of quantities for
an interval of low-cost types. This result obtains for two reasons: first, reporting a
cost below his true cost strictly reduces the Agent’s payoff; second, local incentive
constraints do not bind. As a consequence, there is a region of cost types such
that no type is indifferent between reporting the truth and reporting a type in this
region. Distorting quantities for this region of types does not affect information
rents, and is thus strictly sub-optimal. The quantity procured from types above
the distortion threshold is strictly below the first–best benchmark.

The Agent is inspected with positive probability only if he reports a cost above
the inspection threshold. Furthermore, no type is inspected with probability 1.
Inspecting a type with probability 1 is too costly for the Principal. In particular, this
shows that restricting mechanisms to have deterministic inspection is not optimal.
Lastly, reporting higher costs need not trigger inspection with a higher probability.
We show there exist parameter values such that the inspection probability is not
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monotone in the Agent’s reported cost. We also provide sufficient conditions for
the inspection probability to be monotonically increasing in the reported cost.

In designing a mechanism, the Principal has two instruments to reduce informa-
tion rents of the Agent: inspecting the Agent with higher probability or decreasing
the quantity when not inspected. We show that, unless inspection costs are pro-
hibitively large, the Principal uses both instruments: high cost types are inspected
with positive probability and produce an inefficiently low quantity.

Our results highlight the efficiency implications of combining screening menus
with costly inspection. When inspection takes place before production, and
quantities and payments can be made contingent on its outcome, inefficiencies are
mitigated: the optimal mechanism procures an efficient quantity from all agents
whose cost of production is sufficiently low. However, quantity distortions still
necessarily occur in optimal regulation; the quantity procured from agents with
higher production costs is inefficiently low.

From a methodological point of view, we combine the literatures on costly state
verification and monopolistic screening. The literature on costly state verification
has focused on the trade-off between costly information rents and costly inspection.
The literature on monopolistic screening has emphasized the role of transfers and
quantity distortions in providing incentives. Our model combines both aspects. It
allows us to study the trade-off between quantity distortions and inspection costs
in providing incentives to the Agent.

A major challenge is that incentive constraints do not bind locally, but only glob-
ally. Consequently, we cannot employ standard techniques based on the envelope
theorem or the first-order approach. Nonetheless, we are able to characterize which
incentive constraints bind in an optimal mechanism. We characterize the binding
incentives constraint as the unique solution to a system of differential equations.
This characterization is key to determining the quantities, transfers and inspection
probabilities.

The rest of the paper is organized as follows. The next section introduces the
model. We provide our results in Section 3. The main proofs are relegated to the
Appendix. In Section 4 we discuss our contribution to the literature. Section 5
concludes. The Online Appendix contains auxiliary results and proofs of technical
lemmas.

2. Model
There is a Principal (“she”), and an Agent (“he”). The Agent produces a good

that the Principal aims to procure. The Agent’s per unit cost of production, his
type, θ ∈ [θ, θ], 0 < θ < θ, is private information. The Principal believes the
Agent’s type is distributed according to the prior F . We assume the distribution
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F admits a density f that is continuously differentiable and bounded away from 0.
The Principal aims to induce a type-contingent quantity allocation q(·) ∈ R+.

The Principal has the ability to inspect the Agent’s type. When the Principal
inspects the Agent, she learns his type perfectly.3 Inspection costs κ > 0 to the
Principal. Moreover, the Principal can pay a transfer to the Agent.

The utility of the Agent from an allocation q and a transfer t given his type θ
is U(q, θ) + t. We follow Mussa and Rosen (1978) and assume that the Agent’s
utility from an allocation q is linear in his type, i.e., U(q, θ) = −θq.

The utility of the Principal is V (q) − t − κ1inspection. We make the following
standard assumption about the Principal’s preferences.

Assumption 1. V : R+ → R+ is twice continuously differentiable, V ′ > 0, V ′′ < 0,
and satisfies the Inada conditions V ′(q) →q↘0 ∞ and V ′(q) →q→∞ 0.

The Principal offers a mechanism M to the Agent. It is without loss to focus on di-
rect mechanisms.A direct mechanism is a tuple M =

(
x(·), qI(·, ·), tI(·, ·), qN(·), tN(·)

)
.

Here, x(θ̂) denotes the probability that the Agent is inspected when he reports
type θ̂. When the Agent is inspected, the Principal learns his type θ, and the Agent
produces qI(θ̂, θ) and receives the transfer tI(θ̂, θ). Note that quantity and transfer
after inspection depend both on the Agent’s report θ̂ and his true type θ, which
the Principal has learned through inspection. When the Agent is not inspected, he
produces the quantity qN(θ̂) and gets paid the transfer tN(θ̂), conditional only on
his report.

We assume that the Agent can reject the mechanism ex–post:4 after the Agent
observes if he has been inspected and observes the quantity he needs to produce as
well as the transfer he receives, the Agent can walk away and secure a payoff of
0. When the Agent walks away from the mechanism, no production takes place,
and the Principal does not pay the transfer. This is also without loss of optimality,
as the Principal can improve on any mechanism that induces the Agent to reject
on path. Throughout, we assume that the Agent does not reject the mechanism
when indifferent. A direct mechanism that the Agent does not reject ex-post must

3This assumption can be relaxed. See the literature review for a discussion.
4Assuming the Agent can reject the mechanism ex-post puts a lower bound on the payoff the

Agent receives. Without a lower bound on the Agent’s payoff after inspection, the Principal is
able to implement the first-best quantity at a cost arbitrarily close to 0 by inspecting the Agent
with a vanishingly small probability and driving the Agent’s payoff to −∞ if the Agent has not
reported his true type. The assumption that the Agent can reject the mechanism ex-post is
stronger than putting a lower bound on transfers. Indeed, the Principal could make the Agents
payoff arbitrarily small even with bounded transfers by requiring an arbitrarily large quantity.
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satisfy, for every type θ and report θ̂, the following obedience constraints,

−qI(θ̂, θ)θ + tI(θ̂, θ) ≥ 0;

−qN(θ)θ + tN(θ) ≥ 0. (obedience constraints)

The Principal’s problem is to choose a mechanism M that induces truth-telling
and satisfies the obedience constraint.

Formally, the Principal’s problem is:

sup
M

∫ θ

θ

x(θ)
(
V (qI(θ, θ))− tI(θ, θ)− κ

)
+ (1− x(θ))

(
V (qN(θ))− tN(θ)

)
dF (θ)

subject to, for all θ, θ̂
x(θ)

(
−qI(θ, θ)θ + tI(θ, θ)

)
+ (1− x(θ))

(
−qN(θ)θ + tN(θ)

)
≥ x(θ̂)

(
−qI(θ̂, θ)θ + tI(θ̂, θ)

)
+ (1− x(θ̂))

(
−qN(θ̂)θ + tN(θ̂)

)
;

− qN(θ)θ + tN(θ) ≥ 0;

− qI(θ̂, θ)θ + tI(θ̂, θ) ≥ 0.

Denote the problem by P0 and its value by W0.
The first inequality constraint is the incentive compatibility constraint for type θ.

It requires that type θ prefers reporting his true type θ to reporting any other type θ̂.
The next two inequalities are the obedience constraints: the Agent prefers honoring
the mechanism to walking away, both after inspection and without inspection.

Under Assumption 1, for every type θ, the first-best quantity

qFB(θ) = argmax
q

V (q)− qθ

exists and is unique. We assume that there is no interval (θ′, θ′′) such that
qFB(θ) = 1/(c1θ − c2) for θ ∈ (θ′, θ′′) for positive constants c1 > 0, c2 ∈ [θ, θ].5

5The assumption guarantees that for no type θ, qFB(θ′)(θ′ − θ) is constant on an interval of
types θ′. The condition states that the payoff of type θ when producing qFB(θ′) and receiving a
transfer of θ′qFB(θ′) is not constant in θ′. The condition ensures that the set of binding incentive
constraints in the optimal mechanism is ”well-behaved”. The assumption holds if there is no
interval (q1, q2) such that V (q) = c1 ln(q)+ c2q+ c3 for constants c1, c2 > 0, c3 and all q ∈ (q1, q2).
We remark that this assumption is generically satisfied.
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3. Analysis and Results
In this section, we present the analysis of the model. All arguments in this

section can be made precise; see Appendix A and the Online Appendix for formal
proofs.

We show that the Principal’s problem P0 has a value W0, but does not admit
a maximizer, i.e., an optimal mechanism does not exist, although there exist
mechanisms whose payoff is arbitrarily close to this value. This well-known
problem is due to the lack of compactness in the transfers. Quantities, however,
are bounded. Indeed, our main result is a characterization of a quantity allocation
such that, for every ε > 0, one can supplement this allocation with transfers and
inspection probabilities such that this mechanism is ε-optimal. We discuss features
of this allocation.

In the remaining parts, we characterize that quantity allocation as the optimal
mechanism of a constrained problem. In Section 3.2, we first show that incentives in
a constrained optimal mechanism are provided only through payments after truthful
inspection. We introduce the constrained problem in Section 3.3. Section 3.4
establish that local incentive compatibility constraints do not bind in a constrained
optimal mechanism. We show how we overcome the technical difficulties caused
by non–locally binding IC constraints. We derive the quantities and inspection
probabilities in a constrained optimal mechanism in Section 3.5. Section 3.6
provides sufficient conditions for the probability of inspection to be increasing in
the reported cost.

3.1. Main result
Let WFB be first-best payoff, that is, the maximal payoff to the Principal when

she knows the Agent’s type. The first-best payoff equals

WFB =

∫ θ

θ

V (qFB(θ))− θqFB(θ) dF.

Lemma 1. The Principal’s problem P0 has a value W0. Its value is strictly less
than the first-best payoff, W0 < WFB. The Principal’s problem P0 does not admit
a solution.
Proof in Online Appendix B.1.

Lemma 1 has two parts. First, the Principal cannot obtain the first-best value.
This holds because the Agent can reject the mechanism ex-post. To induce the
Agent to not reject the mechanism ex-post, he must receive a non-negative payoff
when being inspected and when not being inspected. As a consequence, the total
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information rents the Agent receive is either bounded away from 0 or all reports
are inspected with probability close to 1. In both cases, the cost to the Principal is
non-negligible. It is therefore not possible to approximate the first-best allocation
at first-best cost.

The second part of the Lemma states that there is no optimal mechanism.
Intuitively, the Principal can increase her payoff by reducing the probability of in-
spection x(θ) for some types θ, thus saving the inspection costs, and simultaneously
increasing the transfer after inspection tI(θ) while keeping the expectation x(θ)tI(θ)
constant so that the incentive constraints continue to hold. The non-existence
of optimal mechanisms in similar models is well known; see, for example, Becker
(1968), Stigler (1970), and Mirrlees (1999).

We focus on ε-optimal contracts in the sequel. Denote by
Mε =

(
xε(·), qIε(·, ·), tIε(·, ·), qNε (·), tNε (·)

)
an ε-optimal mechanism; that is, a mecha-

nism that satisfies the incentive and obedience constraints, and yields a payoff to
the Principal of at least W0 − ε. An ε-optimal mechanism exists for all ε > 0.

Our main result is the characterization of a quantity allocation that is part of
an ε-optimal mechanism for every ε > 0. The next theorem shows the existence of
such an allocation. We discuss the characteristics of such an allocation below. The
explicit characterization is provided in Section 3.5.

Theorem 1. There exists a quantity allocation (qI∗(·, ·), qN∗ (·)) and an inspection
policy x∗(·) with the following property: for every ε > 0, one can find transfers
(tIε(·, ·), tNε (·)) and a number gε > 0 such that

Mε =
(
xε(·) = 1− gε(1− x∗(·)), qI∗(·, ·), tIε(·, ·), qN∗ (·), tNε (·)

)
is an ε-optimal mechanism. Moreover, limε→0 gε = 1.
Proof in Appendix A.1.

Theorem 1 states that there is a quantity allocation (qI∗(·, ·), qN∗ (·)) that is part
of an ε-optimal mechanism for any ε > 0. Moreover, there exists an inspection
policy x∗(·) such that there is an ε-optimal mechanism with quantity allocation
(qI∗(·, ·), qN∗ (·)) and an inspection probability xε(·) that is a scaled version of x∗(·).
This scaling factor depends only on ε; in particular, it does not depend on the type
θ. Taken together, this means: one can approximate the value of the Principal’s
problem arbitrarily closely with a sequence of mechanisms such that the quantity
allocation is constant along the sequence and the inspection probability scales.

The quantity allocation (qN∗ (·)) and the inspection probabilities x∗(·) for the
mechanism of Theorem 1 are depicted in Figure 1. Figure 1 also depicts the
inspection probabilities xε(·) of an ε-optimal mechanism with quantity allocation
(qI∗(·, ·), qN∗ (·)).
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This figure shows the the mechanism of Theorem 1 for the parameters
V (q) = ln(q), [θ, θ] = [1, 2], f(θ) = ln(2)/θ and κ = ln(3/2); see Example 1 in Section 3.5. The
first panel depicts the inspection probabilities. The horizontal axis depicts the type space and
the vertical axis the inspection probability. For low and intermediate cost types, the inspection
probability in x∗(·) is 0. For high cost types, the inspection probability is strictly positive. For
an ε-optimal mechanism, the inspection probability xε(·) is constant at xε for low and
intermediate cost type. For high cost types, the inspection probability is strictly above xε. Note
that xε(·) lies strictly above x∗(·), and the ratio (1− xε(·))/(1− x∗(·)) is a constant.
The second panel shows the quantities in the mechanism of Theorem 1. The horizontal axis
depicts the type space and the vertical axis quantities. The dashed line shows the first-best
quantity. The solid line shows the quantity without inspection qN∗ (·). The quantity without
inspection is strictly decreasing. Low cost types produce the first-best quantity when not
inspected. The quantity without inspection is strictly less than the first-best quantity for
intermediate and high cost types.

Figure 1: The mechanism of Theorem 1.
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The allocation (qI∗(·, ·), qN∗ (·)) and the inspection probabilities x∗(·) are explicitly
derived in Section 3.5. In the next paragraphs, we describe the main properties of
this allocation and inspection policy.

The quantity allocation (qI∗(·, ·), qN∗ (·)) of Theorem 1 is as follows. When the
Principal inspects the Agent and the Agent has reported his true type, the Agent
produces the first-best quantity, qI∗(θ, θ) = qFB(θ). When the Agent has misre-
ported his type, the allocation specifies a quantity of qI∗(θ̂, θ) = 0 for each θ̂ 6= θ.

The quantity without inspection, qN∗ (·), and the inspection probability x∗(·) are
characterized by a two-threshold policy. More precisely, there exists a “distortion
threshold” θ1 and an “inspection threshold” θ2. The distortion threshold θ1 is
always strictly smaller than the inspection threshold, θ1 < θ2. Moreover, the
distortion threshold is in the interior of the type space, θ < θ1 < θ. The inspection
threshold is interior, θ2 < θ, unless the inspection cost κ is prohibitively high.

Types below the distortion threshold produce the first-best quantity when not
inspected, i.e., qN∗ (θ) = qFB(θ) for all types θ ≤ θ1. Types above the threshold
produce a quantity that is distorted downwards, i.e., qN∗ (θ) < qFB(θ) for all types
θ > θ1. Moreover, the quantity without inspection qN∗ (·) is continuous and strictly
decreasing.

The inspection policy x∗(·) is as follows. Types below the inspection threshold,
θ ≤ θ2, are inspected with probability x∗(θ) = 0. Types above the threshold are
inspected with positive probability, but with probability less than 1: 0 < x∗(θ) < 1
for θ > θ2. Moreover, x∗(·) is continuous. The function x∗(·) need not be monotone
for types above the inspection threshold.

For any fixed ε > 0, Theorem 1 states that there is a constant xε > 0 such
that the inspection probabilities xε(·) in a ε-optimal mechanism can be chosen as
follows. The inspection probability is constant and equal to xε for types below the
inspection threshold, θ ≤ θ2. Types above the inspection threshold are inspected
with probability strictly above xε.

Our result shows that quantity distortions are not optimal for an interval of
low cost types. This is especially remarkable since such types are inspected with
probability arbitrarily close to 0. However, intermediate cost types, i.e., types
θ ∈ (θ1, θ2], produce a quantity when not inspected that is strictly less than the
first-best quantity, yet such types are inspected with probability arbitrarily close
to 0. Hence, quantity distortions occur before the inspection probabilities are
increased.

Restricting the Principal to use deterministic inspection policies reduces her
payoff. The inspection probabilities x∗(·) are never equal to 1, and are positive for
some types unless the cost of inspection is too large.6

6We remark the following: even for arbitrarily large inspection costs κ, there exists an
ε-optimal mechanism such that all types are inspected with positive probability and that yields a
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We remark that the allocation and inspection probability of Theorem 1 has
another desirable property. It is the limit allocation and inspection probability in
any ε-optimal mechanism as ε vanishes.

Lemma 2. Let Mn be a sequence of 1/n-optimal mechanisms for P0, with quantities
(qIn(θ, θ), q

N
n (θ)) and inspection probability xn(θ) that converge point-wise almost

everywhere. Then

lim
n→∞

(xn(θ), q
I
n(θ, θ), q

N
n (θ)) = (x∗(θ), q

I
∗(θ, θ), q

N
∗ (θ)).

Proof in Online Appendix B.2.

Corollary 1. Let Mt be an optimal mechanism for P0 subject to the additional con-
straint tN(·) ≤ t, tI(·, ·) ≤ t. Suppose the point-wise limits of (xt(θ), q

I
t
(θ, θ), qN

t
(θ))

as t → ∞ exist. Then

lim
t→∞

(xt(θ), q
I
t (θ, θ), q

N
t (θ)) = (x∗(θ), q

I
∗(θ, θ), q

N
∗ (θ)).

Lemma 2 states that the limit of quantities and inspection probabilities of every
sequence of 1/n-optimal mechanisms converges to the allocation of Theorem 1.7 As
a consequence, qualitative predictions about the quantity allocation and inspection
probability do not depend on which sequence of mechanisms that approach the
value W0 we consider. In particular, we can restrict ourselves to an analytically
convenient way to characterize the limit of nearly optimal mechanism. Section 3.3
introduces a sequence of mechanisms that is relatively tractable.

Lemma 2 has the following Corollary. Consider the Principal’s problem with an
exogenous upper bound on transfers, i.e., the additional constraints tI(θ̂, θ) ≤ t
and tN(θ) ≤ t for each θ̂, θ for a fixed t > 0. Consider the optimal mechanism Mt

for this problem. Suppose Mt is such that the quantity allocation (qI
t
(·, ·), qt(·))

and the inspection probability xt(·) have a limit as t → ∞. Then this limit must
equal (x∗(·), qI∗(·, ·), tN∗ (·)). Hence, the optimal mechanism under the restriction
of an upper bound on transfers approaches the mechanism of Theorem 1 as this
upper bound increases.

payoff for Principal that is strictly higher than the payoff from any mechanism in which each
type is inspected with probability 0. This difference in payoffs does not vanish as κ → ∞.
Consequently, the Principal always receives a strictly higher payoff when inspection is feasible,
even if the cost of inspection is arbitrarily high.

7Lemma 2 does not state that the limit of the quantity allocation and inspection probability
exists for every 1/n-optimal mechanism. The lemma does not rule out sequences of 1/n-optimal
mechanisms such that the quantity allocation or inspection probability admit no convergent
subsequence.

11



3.2. Providing incentives
We start the analysis with a simple observation. Recall that the incentive

constraint for type θ reads

x(θ)
(
−qI(θ, θ)θ + tI(θ, θ)

)
+ (1− x(θ))

(
−qN(θ)θ + tN(θ)

)
≥ x(θ̂)

(
−qI(θ̂, θ)θ + tI(θ̂, θ)

)
+ (1− x(θ̂))

(
−qN(θ̂)θ + tN(θ̂)

)
for all θ̂. (IC)

Observe that the quantity and transfer after inspection, qI(θ̂, θ) and tI(θ̂, θ), for
θ̂ 6= θ do not enter the incentive constraints for any type θ′ 6= θ. Therefore, reducing
tI(θ̂, θ) and increasing qI(θ̂, θ) relaxes the incentive constraints. Moreover, tI(θ̂, θ)
and qI(θ̂, θ) do not affect the Principal’s payoff. Therefore, due to the obedience
constraints, it is without loss to restrict attention to mechanisms such that, for
every θ,

−qI(θ̂, θ)θ + tI(θ̂, θ) = 0 ∀θ̂ 6= θ.

This is intuitive: it is optimal to punish the Agent for misreporting his type as
harshly as possible. In the remainder of the paper, we abuse notation and write
tI(θ) and qI(θ) instead of tI(θ, θ) and qI(θ, θ), respectively.

The second observation concerns the quantity after inspection. If the quantity
after inspection is not the first-best quantity, i.e., qI(θ) 6= qFB(θ) for every type θ,
the Principal can increase her payoff. To see this, note that qI(θ) affects incentives
only for type θ. Therefore, changing qI(θ) to qFB(θ) and making a compensatory
change in tI(θ) by θ(qFB(θ) − qI(θ)) leaves the incentive constraints unaffected.
Clearly, this change does not violate the obedience constraints either. However,
the Principal’s payoff increases. This property is also intuitive. The rent that has
to be paid to the Agent to induce truth-telling is not affected by the quantity after
inspection. Therefore, distorting the quantity from its first-best level only reduces
the Principal’s payoff. In the following, we restrict ourselves to mechanisms such
that qI(θ) = qFB(θ).8

Denote by π(θ) the rent of type θ, i.e., the highest payoff type θ can obtain by
reporting any type θ̂. The previous Lemma implies that the Agent receives a payoff
above 0 when he misreports his type only in case he is not inspected. When he is
not inspected, his payoff is the transfer he receives minus his cost of production,
−qN(θ̂)θ + tN(θ̂). Consequently, the information rent of type θ is

π(θ) = sup
θ̂

(1− x(θ̂))(−qN(θ̂)θ + tN(θ̂)).

8While this is without loss, qI(θ) = qFB(θ) does not have to hold, e.g., when there is an
upper bound on transfers.
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A mechanism is incentive compatible if and only if the Agent’s payoff from reporting
his true type is at least as high as his information rent. Moreover, the obedience
constraints imply that the information rent is non-negative, π ≥ 0.

Consider a type θ that is inspected with positive probability. Because the Agent
is risk–neutral with respect to transfers, his incentive to report his true type
depends solely on the expected transfer (less the cost of production), x(θ)tI(θ) +
(1− x(θ))tN(θ). Therefore, his incentives are preserved if a decrease in the transfer
without inspection, tN(θ), is compensated by an increase in the transfer after
inspection, tI(θ), such that the expected transfer remains constant. Because the
Principal is risk-neutral with respect to transfers as well, this change leaves her
payoff unaffected. Reducing the transfer without inspection that is paid to type
θ, however, reduces the information rent that has to be paid to types θ

′ 6= θ.
Consequently, for any incentive-compatible mechanism, there is a payoff-equivalent
mechanism, implementing the same quantity allocation, such that the Agent gets
paid his reported cost of production when not inspected. This shows the first part
of the next Proposition.

Proposition 1. 1. For every incentive compatible mechanism that satisfies the
obedience constraints there exists a mechanism such that the transfer without
inspection equals the cost of production for types inspected with positive
probability, i.e.,

x(θ) > 0 =⇒ tN(θ) = θqN(θ),

and both mechanisms have the same quantity allocation and inspection proba-
bility. Moreover, both mechanisms yield the same payoff to the Principal.

2. For any incentive compatible mechanism that satisfies the obedience con-
straints, if for a positive measure of types θ with x(θ) > 0,

qN(θ) < qFB(θ) and tN(θ) > θqN(θ),

then there exists such a mechanism that has the same inspection probability
and yields a strictly higher payoff to the Principal.

3. For δ > 0 let
Bδ = {θ̂|tN(θ̂) ≥ qN(θ̂)θ̂ + δ, x(θ̂) > 0}

and
θ̂δ(θ) = {θ̂|(1− x(θ̂))(−qN(θ̂)θ + tN(θ̂)) ≥ π(θ)− δ > 0}.

If, for a positive measure of types θ with x(θ) > 0,

θ̂δ(θ) ⊂ Bδ,
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and Bδ has positive measure, then there is a mechanism with the same
inspection probability and quantity allocation that yields a strictly higher
payoff for the Principal.

Proof in Appendix A.2.

The first part of the Proposition 1 says that any allocation that can be imple-
mented in a direct mechanism can be implemented by a mechanism such that
tN(θ) = θqN(θ) for all types that are inspected with positive probability. All incen-
tives to the Agent can be provided through payments when the Agent is inspected
and found to have reported his true type. When the Agent is not inspected, he is
merely reimbursed his cost of production.

The Agent’s payoff is strictly higher when inspected than when not inspected.
Similar results appear already in the tax-audit literature; see Theorem 1, equation
(5.2a) in Border and Sobel (1987), Proposition 1, part c), of Mookherjee and Png
(1989), and equation (11) in Chander and Wilde (1998). The similarity to the
tax-audit literature should come as no surprise. The first part of Proposition 1
does not depend on the quantity allocation. Hence, results similar to settings
without quantities, as is the case in the tax-audit literature, are to be expected.

The first part of Proposition 1 also implies a second result: restricting attention
to mechanisms that satisfy x(θ) > 0 =⇒ tN(θ) = θqN(θ) does not rule out
any multiplicity in the quantity allocation or inspection probability for ε-optimal
mechanisms. The remainder of the Proposition illuminates to what extent this
property is required in any mechanism that is optimal for an arbitrary but fixed
inspection policy.9

The second part of the Proposition states that, for types that are inspected
with positive probability, either the transfer without inspection equals the cost of
production, or the quantity without inspection is the first-best quantity, or there
exists a mechanism with the same inspection policy that yields a higher payoff
to the Principal. To see why this is true, suppose a type θ is paid more than his
cost of production, qN(θ)θ, when not inspected and produces strictly less than his
first-best quantity. Then one can raise the quantity without inspection, keeping the
transfer tN(θ) constant, and adjust tI(θ) to offset the increase in the production
cost. This change does not affect the incentive constraint for any type θ

′ but raises
the Principal’s payoff.

The third part of the Proposition is more subtle. It is best explained using finitely
many types. Suppose a type θ1 receives a transfer without inspection strictly higher
than his cost of production, i.e., −qN(θ1)θ1 + tN(θ1) > 0, and suppose there exists
another type θ2 that is indifferent between reporting his true type and reporting θ1,
and strictly prefers reporting θ1 to reporting any other type θ̂ 6= θ1, θ2. Then the

9We remark that the non-existence of an optimal mechanism is alleviated if the inspection
policy is fixed.
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information rent that has to be paid to θ2 to induce truth-telling can be reduced
by reducing tN(θ1) and increasing tI(θ1). Thus, in an optimal mechanism, no type
gets a transfer strictly higher than his cost of production when not inspected unless
no other type finds it optimal to mimic this type. This is the intuitive meaning of
the third part of Proposition 1. Its statement needs to account for the fact that a
single type has 0 measure and thus does not affect the Principal’s payoff.

To summarize, Proposition 1 shows that all incentives to the Agent can be
provided only through payments above the outside option when inspected for types
that are inspected with positive probability. But the Proposition also shows a
partial converse for a fixed inspection policy: all incentives for types that are
inspected with positive probability must be provided through payments when
inspected, unless no other type finds it optimal to mimic them.

3.3. Constrained problem
In this section, we introduce a parameterized class of a constrained Principal’s

problem. We show that the solution to this constrained problem is an ε-optimal
mechanism for the Principal’s problem, where the level of optimality, ε, depends
on the parameter. We furthermore show that the solution to this problem has a
quantity allocation independent of the parameter. Hence, the quantity allocation
that solves the constrained problem satisfies the conclusion of Theorem 1.

Fix a real number x ∈ (0, 1). Consider the Principal’s problem with the added
constraint that the inspection probability for each type, x(θ), is at least x. Formally,
the constrained problem is:

sup
M

∫ θ

θ

x(θ)
(
V (qI(θ, θ))− tI(θ, θ)− κ

)
+ (1− x(θ))

(
V (qN(θ))− tN(θ)

)
dF (θ)

subject to, for all θ, θ̂
x(θ)

(
−qI(θ, θ)θ + tI(θ, θ)

)
+ (1− x(θ))

(
−qN(θ)θ + tN(θ)

)
≥ x(θ̂)

(
−qI(θ̂, θ)θ + tI(θ̂, θ)

)
+ (1− x(θ̂))

(
−qN(θ̂)θ + tN(θ̂)

)
;

− qN(θ)θ + tN(θ) ≥ 0;

− qI(θ̂, θ)θ + tI(θ̂, θ) ≥ 0;

x ≤ x(θ) ≤ 1.

Denote this problem by Px and its value by Wx. Call a mechanism that attains
the maximum in problem Px a constrained optimal mechanism.
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Lemma 3. Take a sequence of positive numbers {xn} that converge to 0. Then

lim
n→∞

Wxn
= W0.

Proof in Online Appendix B.3

Lemma 3 states that the value of the constrained problem Px converges to
the value of the Principal’s problem, P0, as the lower bound on the inspection
probability, x, vanishes. As a consequence, for any ε > 0 there exists a xε > 0 such
that the solution to the constrained problem Pxε

is an ε-optimal mechanism for
the unconstrained Principal’s problem P0.

Proposition 1 shows that it is without loss of generality to focus on mechanisms
such that tN(θ) = qN(θ)θ for each type θ that is inspected with positive probability.
We henceforth focus on mechanisms that satisfy this restriction. Note that every
report is inspected with positive probability in the constrained problem.

Using that −qN(θ)θ + tN(θ) = 0, it is straightforward to pin down the transfer
after inspection. Because slack incentive constraints for some types θ cannot be
optimal, the transfer after inspection must satisfy

x(θ)
(
−qFB(θ)θ + tI(θ)

)
= sup

θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ).

Here, we used −qN(θ)θ+ tN(θ) = 0 on the left–hand side of (IC) for type θ as well
as on the right-hand side for type θ̂.

Observe that the possibility of inspection implies that every quantity allocation
(qI(·), qN(·)) can be implemented in a direct mechanism. Consequently, we face no
further restrictions on the quantities and inspection probability when solving for a
constrained optimal mechanism.

This reduces the constrained problem to

max
qN (·),1≥x(·)≥x

∫
x(θ)

(
V (qFB(θ))− qFB(θ)θ − κ

)
+ (1− x(θ))

(
V (qN(θ))− qN(θ)θ)

)
− sup

θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ) dF (θ) (reduced problem)

The term in the first line is the social welfare from an allocation (x, qN , qI). The
term on the second line is the information rent.

We start the analysis of the reduced problem with an observation about the
minimal inspection probability x. The minimal inspection probability affects
the constrained optimal mechanism only through the inspection probability. In
particular, x does not affect quantities in a constrained optimal mechanism.
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Lemma 4. The quantities in a constrained optimal mechanism do not depend
on the minimal inspection probability. Formally, let x, x′ ∈ (0, 1). Then there
is a solution Mx =

(
xx(·), qIx(·, ·), tIx(·, ·), qNx (·), tNx (·)

)
to Px and a solution to Px′,

Mx′ =
(
xx′(·), qIx′(·, ·), tIx′(·, ·), qNx′ (·), tNx′(·)

)
, such that(

qIx′(·, ·), qNx′ (·), tNx′(·)
)
=
(
qIx(·, ·), qNx (·), tNx (·)

)
.

Moreover, xx and xx′ are related by

1− xx(θ)

1− x
=

1− xx′(θ)

1− x′ (1)

and
tIx(θ)− θqFB(θ) =

1

xx(θ)

(
1− x

1− x′ − (1− xx(θ))

)
(tIx′ − θqFB(θ)).

Proof in Online Appendix B.6.

Lemma 4 states that the minimal inspection probability does not affect the
quantities in a constrained optimal mechanism. The result relies on two factors.
First, the optimal quantity after inspection is independent of the inspection
probability and the quantity without inspection. Second, inspection probabilities
affect information rents in the same way as they affect the social welfare trade-off
between inspection and no-inspection. In particular, scaling the probability of not
inspecting, 1− x(θ), by the same factor for all types θ does not alter the trade-off
between higher costs of inspection, lower quantities without inspection compared
to inspection, and lower information rents. Consequently, the minimal probability
of inspection affects the mechanism only up to scale of inspection.

Quantities in a constrained optimal mechanism are not affected by the minimal
inspection probability. In fact, the only function that diverges as the lower bound
x vanishes is the transfer after inspection. For types θ that are inspected with the
minimal probability, xx(θ) = x ( ⇐⇒ xx′(θ) = x′), the transfer after inspection,
tI(·), grows unboundedly as the minimal inspection probability vanishes:

tIx(θ)− θqFB(θ) =
1− x

x

(
1

1− x′ − 1

)
(tIx′ − θqFB(θ)) → ∞

as x → 0. This is the reason for the non-existence of an optimal mechanism without
a lower bound on the inspection probability. However, the expected transfer after
inspection, x(θ)tI(θ), has a well-defined limit for every type θ. Moreover, for the
quantity and transfer without inspection, the limit coincides with the quantity
and transfer for each positive but fixed lower bound x. The significance of Lemma
4 becomes apparent in connection to Lemma 3. The value of the constrained
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problem converges to the value of the Principal’s problem as x → 0. Hence, for
every ε > 0 there exists a xε such that the constrained optimal mechanism for the
lower bound xε is an ε-optimal mechanism for the original Principal’s problem.
Lemma 4 states that the quantities in the constrained optimal mechanism do not
depend on the lower bound, i.e., (qIxε

(·, ·), qNxε
(·)) = (qI∗(·, ·), qN∗ (·)). Hence, this

quantity allocation satisfies the conclusion of Theorem 1: (qI∗(·, ·), qN∗ (·)) is part of
an ε-optimal mechanism for every ε > 0. Moreover, the inspection probability x∗(·)
of Theorem 1 is derived by taking the limit in equation (1) as x → 0 for an arbitrary
fixed x′ ∈ (0, 1). The next lemma states that the quantities (qI∗(θ, θ), q∗(θ)) and
the inspection probability x∗(θ) are unique for almost all types θ.

Lemma 5. For any x ∈ (0, 1), the quantity and inspection probabilities are almost
everywhere unique in every constrained optimal mechanism.
Proof in Appendix B.7.

The uniqueness of quantities and the inspection probability implies that the
constrained optimal mechanism is unique up to some multiplicity in transfers.
Multiplicity in transfers is limited by the results of Proposition 1. The uniqueness
of the quantity and inspection probability in the constrained optimal mechanism is
not due to the restriction tN(θ) = θqN(θ). Part 1 of Proposition 1 states that for
every incentive compatible mechanism that satisfies the obedience constraints there
exists such a mechanism with the same quantities and inspection probabilities such
that tN(θ) = θqN(θ) for all θ with x(θ) > 0.

We effectively have reduced the constrained problem to an unconstrained maxi-
mization problem. In the next section, we argue that the problem is not amenable
to standard techniques. This is due to the sup-term in the objective function and
the argmax , if it exists, not being known a priori. The next section shows how
we overcome this problem.

3.4. Global incentive compatibility
In this subsection, we deal with the main technical challenge we face when

deriving the constrained optimal mechanism: global incentive compatibility. We
argue that incentive constraints do not bind locally, but only globally. One major
advantage of locally binding incentive compatibility constraints is not the fact that
the constraints bind locally but that we know which constraints bind. Nonetheless,
we manage to characterize which incentive constraints bind. Readers who are not
interested in the methodological details may wish to skim this section.

Recall that the information rent of type θ is π(θ) = supθ̂(1 − x(θ̂))qN(θ̂)(θ̂ −
θ). Since incentive constraints bind, type θ’s payoff equals his information rent.
Moreover, the information rent for a type θ is zero if and only if for all types θ′

> θ,
(1− x(θ

′
))qN(θ

′
) = 0.
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The expression of the information rent has a remarkable implication: incentive
constraints do not bind locally for any type that receives a positive payoff π(θ) > 0.
The quantity without inspection qN(θ) is bounded from above by the first–best
quantity. Thus, for every type θ there exists a δ > 0 such that (1− x(θ̂))qN(θ̂)(θ̂−
θ) < π(θ) for all θ̂ that are within δ of θ. Hence, reporting a type θ̂ within δ of θ
gives type θ a payoff strictly less than his information rent.

A second implication is that incentive constraints only bind upwards: reporting
a type θ̂ < θ yields a negative payoff. Hence, downward incentive constraints are
slack for each type that receives a positive payoff.

Define the correspondence10

θ̂(θ) = argmax
θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ).

The correspondence gives the binding incentive constraints for type θ; that is, for
any θ̂ ∈ θ̂(θ), the Agent is indifferent between reporting his true type θ and type θ̂
because, by our choice of tI(θ),

x(θ)(−qFB(θ)θ + tI(θ)) = (1− x(θ̂))qN(θ̂)(θ̂ − θ).

The correspondence θ̂(·) depends on the entire functions qN(·) and x(·). Moreover,
it is a priori not clear that the correspondence is well-behaved in an optimal
mechanism. In particular, θ̂(·) may be empty– or multi-valued. Nonetheless, we
can show the following Lemma.

Lemma 6. The solution to the constrained problem is such that

1. (1 − x(·))qN(·) is a differentiable function that is strictly decreasing when
positive;

2. θ̂(·) is single-valued and, viewed as a function, increasing.

Proof in Appendix B.4

The intuition behind the continuity and monotonicity of (1− x(·))qN(·) ≡ QN(·)
is the following. Suppose that QN(·) is weakly increasing on the interval (θ′

, θ†).
Then QN(θ†)(θ† − θ) > QN(θ̂)(θ̂ − θ) for all θ̂ ∈ (θ

′
, θ†) for every type θ ≤ θ

′ .
10When local incentive constraints bind, θ̂(θ) = {θ}. In particular, when local incentive

constraints are sufficient and necessary for global incentive compatibility, θ̂(·) does not depend on
the quantity. When the allocation is monotone in the type, transfers exist such that the incentive
constraints hold, even without inspection. Consequently, standard optimal control techniques
can be applied. This is not possible in our case: not only are the incentive constraints not locally
binding, but the set of binding constraints depends on the entire functions x(·) and qN (·).
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Consequently, no type wants to mimic any such θ̂ and the Principal can receive a
higher payoff by increasing qN(·) on the interval (θ′

, θ†).
Continuity of QN(·) holds for a similar reason. Suppose QN(·) has a downward

jump at θ
′ . Since QN(·) is decreasing, no type wants to mimic any θ̂ ∈ (θ

′
, θ

′
+ δ)

for some small but positive δ. Consequently, the Principal can increase her payoff
by increasing qN(·) on (θ

′
, θ

′
+ δ).

Continuity of QN(θ) implies that θ̂(·) is not empty–valued. The other statements
in the Lemma are tedious to prove. See the proof for details.

Recall that, in a model where inspection is not possible, monotonicity of qN(·) is
necessary and sufficient for the existence of a transfer scheme tN(·) that implements
qN(·) in an incentive compatible manner. However, when inspection is feasible,
monotonicity of qN(·) or QN(·) is not required for incentive compatibility; any
function qN(·) can be implemented in an incentive compatible mechanism, however
weirdly behaved. The monotonicity result in Lemma 6 is due not to the feasibility,
but the optimality of implementing an allocation QN(·). Allocations for which
QN(·) is not strictly decreasing are not optimal in the constrained problem because
they entail types no other type wants to mimic, and consequently, for which
quantity distortions cannot be optimal.

Lemma 6 shows that the set of binding incentive constraints is well-behaved.
Unfortunately, this is not enough to solve for the constrained optimal mechanism:
we also need to know which constraints bind. Yet, we are able to characterize the
set of binding incentive constraints.

Lemma 7. For all θ ∈
(
θ̂(θ), θ

)
such that π(θ) > 0, the function θ̂(·) is strictly

increasing, differentiable and obeys the differential equation

(θ̂(θ)− θ)f(θ) = θ̂
′
(θ)
(
V

′
(qN(θ̂(θ)))− θ̂(θ)

)
f(θ̂(θ)) (2)

with an appropriate boundary condition.
Proof in Appendix A.3.

The intuition behind this result is closely related to results in mechanism design
without inspection. Recall that, under regularity conditions, the second-best
quantity in a setting without inspection, call it y(θ), solves11

V ′(y(θ)) = θ +
F (θ)

f(θ)
.

Multiplying both sides by y(θ), rearranging and integrating over an arbitrary

11See, e.g., Laffont and Martimort (2002, pp. 134).
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interval I ⊂ [θ, θ] yields∫
I

y(θ)[V ′(y(θ))− θ] dF (θ) =

∫
I

y(θ)
F (θ)

f(θ)
dF (θ).

The left-hand side is a (weighted measure) of the distortion of the second-best
quantity y(θ) away from the first-best quantity. Recalling that the information
rent πSB in the problem without inspection solves π̇SB(θ) = −y(θ) and hence∫

[θ,θ]

πSB(θ) dF (θ) =

∫
[θ,θ]

y(θ)
F (θ)

f(θ)
dF (θ),

so that the equation above states that the distortion needs to equal the change in
the information rent. Similarly, we can show that, in our setting with inspection,∫

I

(1− x(θ))qN(θ)[V ′(qN(θ))− θ] dF (θ) =

∫
θ̂(θ)∈I

π(θ) dF (θ).

The only difference with the case without inspection is that the integration of the
information rent is over the set θ̂(θ) ∈ I to account for the fact that local incentive
constraints do not bind. The differential equation for θ̂(·) in Lemma 7 follows from
the equation in the last display.

Lemmas 6 and 7 have another implication. For every type θ there is exactly one
type θ̂ > θ such that type θ is indifferent between reporting his true type and type
θ̂. Conversely, for every type θ̂ above a threshold θ1 there exists exactly one type θ
that is indifferent between reporting his true type and the type θ̂.

3.5. Optimal quantity and inspection probability in the
constrained problem

In this section, we describe the quantities and the inspection probability in
a constrained optimal mechanism. We then characterize quantities explicitly,
making use of the results we obtained in the last section for the binding incentive
constraints.

Proposition 2. The following holds in the constrained optimal mechanism.

1. Low-cost types produce their first-best quantity and are inspected with the
minimal probability: there exists a θ1 > θ such that

for all θ ≤ θ1, x(θ) = x and qN(θ) = qFB(θ).

2. Intermediate cost types are inspected with the minimal probability x and
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produce a quantity strictly less than first-best: there exists a θ2, θ1 < θ2 ≤ θ,
such that x(θ) = x and qN(θ) < qFB(θ) for all types θ ∈ (θ1, θ2].

3. for all types θ such that x < x(θ) < 1 the quantity without inspection is
strictly less than first-best and strictly decreasing in θ. It is given as the
unique solution q = qN(θ) to

V (qFB(θ))− θqFB(θ)− κ = V (q)− qV
′
(q). (3)

Proof in Appendix A.4.

The intuition behind the first part of Proposition 2 is the following. Type θ
receives the highest information rent. It is not optimal for type θ to mimic any
type θ̂ with (1− x)qFB(θ̂)(θ̂ − θ) < π(θ). In particular, type θ does not want to
mimic types θ̂ that are close to θ. Because the information rent is continuous
and decreasing in the type, a similar argument holds for types close enough to θ.
Consequently, there exists a type θ1 such that no other type finds it optimal to
mimic a type θ̂ < θ1.

However, if no type finds it optimal to mimic θ̂, distorting the quantity qN(θ̂)
downwards from the first-best does not lower information rents. Hence, it is not
optimal to distort the quantity for type θ̂ < θ1. Consequently, qN(θ̂) = qFB(θ̂)
for such types. Moreover, since no type finds it optimal to mimic such types,
inspecting them with probability strictly greater than x does not reduce the total
information rents. It is therefore optimal to inspect those types with the lowest
feasible probability x.12

The result regarding the quantities is reminiscent of the familiar “no-distortion-
at-the-top” property. However, it is a somewhat stronger statement, to the extent
that there is a positive mass of types [θ, θ1) that produce the first-best quantity
when not inspected. The set of types that produce first-best quantity when not
inspected can be substantial. For the parameter values of Example 1, approximately
46% of types produce the first-best quantity when not inspected; see also Figure
1. These types thus produce a quantity that is on average 16% higher than the
quantity in the optimal mechanism when inspection is not feasible.13

The property that quantities are not distorted for a positive mass of types follows
from two properties. First, incentive constraints only bind upwards. Second,

12In a tax-audit setting with finitely many income levels, Mookherjee and Png (1989, Lemma
3) find that each report which no other type wants to mimic is inspected with probability 0.
However, they do not show that there is a positive mass of types other than the highest type
that are inspected with probability 0.

13The difference in the distortion compared to a setting where inspection is not feasible can
be small; see Example 2 and the corresponding Figure 3. How much stronger than the familiar
“no-distortion-at-the-top” the result is, depends, of course, on the parameters of the model.
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incentive constraints do not bind locally. Hence, there must be an interval of
types which no other type wants to mimic. Distorting quantities is not optimal,
however, when doing so does not decrease information rents. Consequently, there
is an interval of low cost types that produce the first-best quantity even when not
inspected.

The second part of Proposition 2 states that intermediate-cost types are inspected
with the minimal inspection probability x. However, these types produce a quantity
less than the first-best quantity when not inspected. For types in some range
[θ1, θ2) there exists a type θ that is indifferent between reporting his true type and
mimicking some type in [θ1, θ2). Consequently, distorting quantities downwards in
this range reduces the information rent of some types. Hence, types in that range
produce less than the first-best quantity. We explain why it is optimal to distort
the quantity downwards instead of increasing the probability of inspection for such
types after discussing the last part of Proposition 2.

For the last part of Proposition 2, recall that the information rent is π(θ) =
supθ̂(1−x(θ̂))qN(θ̂)(θ̂−θ). Distorting quantities without inspection downwards and
increasing the probability of inspection are substitutes for reducing information
rents: both higher inspection probabilities x(·) and lower quantities without
inspection, qN(·), reduce (weakly) the information rents π(·). In particular, the
information rent is unaffected if the quantity is increased by a positive factor and
the probability of not being inspected is decreased anti-proportionally. Increasing
qN(θ) raises the Principal’s payoff by

V
′
(qN(θ))θ − qN(θ)θ.

The anti-proportional change in the inspection probability raises the Principal’s
payoff by

V (qFB(θ))− θqFB(θ)− κ−
(
V (qN(θ))− θqN(θ)

)
.

In the constrained optimal mechanism, this change cannot increase the Principal’s
payoff. Such a change is feasible whenever x < x(θ) < 1. Consequently, when
the inspection probability is interior in the constrained optimal mechanism, both
changes must offset each other: the quantity without inspection must satisfy (3).

Proposition 2 implies that the quantity without inspection does not depend on
the distribution of types, at least when x(θ) > x.14 However, the expected quantity
without inspection, (1 − x(θ))qN(θ), depends on the distribution of types. The
reason for this is as follows. Information rents that need to be granted to other
types depend only on (1 − x(·))qN(·). Hence, one can maximize the Principal’s
payoff locally by changing x(θ) and qN(θ), leaving (1− x(θ))qN(θ) constant. As

14The set of types for which x(θ) > x depends on the distribution of types and the other
parameters of the model.
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this change affects the objective for a single type θ only, the density at this type
f(θ) does not affect the trade-off between a lower quantity and higher inspection
probability for θ. Proposition 2 also implies that a change in the distribution of
types that affects the inspection probability in the constrained optimal mechanism
does not change the quantity without inspection for types that are inspected with
probability x(θ) > x before and after the change.

The quantity without inspection qN(θ) given by equation (3) is strictly less than
the type’s first-best quantity, qFB(θ), for any κ > 0.15

Using the third part of Proposition 1, we can now return to the second part
to explain why the probability of inspection for intermediate types is kept at
the minimal probability x. Recall that Lemma 6 states that (1 − x(·)qN(·) is
continuous. Moreover, the quantity without inspection is bounded from above
by the first-best quantity. As just noted, when x < x(θ) < 1, the quantity
without inspection is strictly less than first-best, qN(θ) < qFB(θ). In particular,
(1 − x(θ))q(θ) < (1 − x)qFB(θ) when q satisfies (3). Hence, there must be an
interval of types, [θ1, θ2), that are inspected with the minimal probability x; for
otherwise continuity of (1− x(·))qN(·) would be violated.

Proposition 2 is mute on the existence of a region of types that are inspected
with probability above the minimal inspection probability, x(θ) > x. In fact, there
are parameters such that no type is inspected with probability greater than x.
This happens, for example, when the cost of inspection, κ, is large.16 However, the
existence of a region in which types are inspected with probability x but produce
strictly less than their first-best quantity is guaranteed by Proposition 2. This
implies that the constrained optimal contract does not implement the first-best
quantity with probability 1.

The qualitative features of the quantity allocation of Proposition 2 differ from
the optimal quantities in related papers. First, Baron and Besanko’s (1984) seminal
“separation” result fails. For some parameters, Baron and Besanko (1984) find
that quantity distortions are independent of the inspection cost. Moreover, the
optimal quantities equal the optimal quantities in a setting where inspection is not

15Denote by q̃(θ) the optimal quantity in a model where inspection is not possible. There are
parameters such that q̃(θ) > qN (θ), that is, for some types the quantity without inspection is
distorted more than in the setting where inspection is not possible. For example, let V (q) = ln(q)
so that qFB(θ) = 1/θ, and qN (θ) = e−κ/θ for 1 > x(θ) > x. Assuming [θ, θ] = [1, 2] and
a uniform distribution over types, in the model where inspection is not feasible, the optimal
quantity is q̃(θ) = 1

θ(1+ln(θ)) . If the cost of inspection, κ, is large enough, eκ > 1 + ln(θ) so that
q̃(θ) > qN (θ).

16More precisely, there exists a κ > 0 such that for all κ ≥ κ, all types θ are inspected with
the minimal probability x ≡ x in any optimal mechanism. To see this, note that the solution
to equation (3) converges to 0 as κ → ∞. By our assumption that V ′(q) →q→0 ∞, it cannot
happen that a positive mass of types is inspected with probability strictly above x when κ is
large enough.
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feasible. This separation does not obtain in our model. In Palonen and Pekkarinen
(2022), the set of types for which quantities are distorted downward from first-best
depends on the inspection cost. However, the size of the distortion is independent
of the inspection cost. In our model, both the size of the distortion and the set of
types for which quantities are distorted depend on the inspection cost. Second,
quantities in Baron and Besanko (1984) are inefficiently low for all but a single
type — even for types that are inspected with probability 1. The first part of
Proposition 2 shows that this is false in our model. Quantities are not distorted for
a non-trivial interval of types.17 For this interval of types, inspection occurs with
the minimal probability x. Quantity distortions for all types are thus not optimal.
In particular, there is an interval of types that are inspected with arbitrarily small
probability and produce the efficient quantity.18

The following example illustrates the results of Proposition 2 and Lemma 7.

Example 1. Assume V (q) = ln(q). Then qFB(θ) = 1/θ, and the quantity without
inspection given in (3) satisfies qN(θ) = e−κ/θ.

Let f(θ) = α/θ for some α > 0, and θ = 1. Then the differential equation
characterizing the binding incentive constraints, (2) , for x(θ) > x reads

(θ̂(θ)− θ)f(θ) = θ̂
′
(θ)
(
V

′
(qN(θ̂(θ)))− θ̂(θ)

)
f(θ̂(θ)) = θ̂

′
(θ)θ̂(θ) (eκ − 1) f(θ̂(θ)),

or equivalently,

θ̂(θ)− θ

θ
= θ̂

′
(θ) (eκ − 1) ,

with end point condition θ̂(θ) = θ.19 The unique solution is

θ̂(θ) =
θ
1−A

1− A
θA − Aθ

1− A
,

17In Palonen and Pekkarinen (2022), there is a non-empty interval of types for which quantities
are first-best even when not inspected. However, the reasons in their and our setting differ. Their
result obtains because both the Principal’s and the Agent’s preferences are linear in quantities.
Their result does not obtain if the Principal’s preferences over quantities are strictly concave.
In our setting, quantities for an interval of types are not distorted for a different reason: local
incentive constraints do not bind.

18Recall that Lemma 4 implies that the quantity allocation and, in particular, the threshold
θ1, does not change if the lower bound on the probability of inspection, x, changes.

19This will follow from Lemma 9.
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where A = 1/(eκ − 1). If, for example, θ = 2 and κ = ln(3/2) then A = 2 and

θ̂(θ) = 2θ − θ2

2
.

The next Lemma states how to derive the optimal quantity without inspection
for types θ ≥ θ1 that are inspected with the minimal probability x.

Lemma 8. Suppose x(θ̂) = x for θ̂ ∈ [θ′, θ†] for some θ′ ≥ θ1. Then the quantity
without inspection q(θ̂) ≡ qN(θ̂) for types θ̂ ∈ [θ′, θ†] solves

−q
′
(θ̂)(θ̂ − θ) = q(θ̂),

θ̂ = θ̂(θ) solves (2),

for θ ∈ [θ̂−1(θ′), θ̂−1(θ†)] with an appropriate boundary condition for θ̂(·) and q(·).
Proof in Online Appendix B.5.

To see why the differential equation must hold, recall that (1 − x(·))qN(·) is
strictly decreasing by Lemma 6. Consequently, θ̂ must satisfy the first-order
condition for maximizing (1− x(θ̂))qN(θ̂)(θ̂ − θ). Since the inspection probability
is constant for θ̂ ∈ [θ1, θ2), the first-order conditions yield the differential equation
in the Lemma. The optimal quantity and the binding incentive constraints θ̂ can
and must be determined simultaneously.

Moreover, the differential equation for θ̂ implies that the quantity q(θ) in Lemma
8 is strictly less than the first-best quantity: the right-hand side in the differential
equation (2) vanishes if qN(θ̂) is the first-best quantity. By the second part of
Lemma 6, θ̂(·) is strictly increasing, which requires that qN(θ̂) < qFB(θ̂).

Knowing the optimal quantities, qN(·), and the binding incentive constraints,
θ̂(·), we can recover the inspection probability, x(·), in a constrained optimal mech-
anism. Recall that QN(·) = (1− x(·))qN(·) is strictly decreasing and differentiable.
Moreover, the set of binding incentive constraints, θ̂(·), is a strictly increasing
function. Consequently, for every θ, θ̂(θ) satisfies the first–order condition

−x′(θ̂)qN(θ̂)(θ̂ − θ) + (1− x(θ̂))
∂qN

∂θ̂
(θ̂)(θ̂ − θ) + (1− x(θ̂))qN(θ̂) = 0. (4)

Recall that θ̂(·) is determined solely by the quantity without inspection, qN(·):
the inspection probability x(·) does not show up in equation (2). Hence, we
can determine the optimal inspection probability as the solution to a differential
equation, with an appropriate boundary condition.20 Details on deriving x(·) are

20See Lemma 10.
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provided in Appendix B.10.

Example 1 (continued). Define y(θ) = 1− x(θ). By (4), we know

− dln(y(θ̂))

dθ̂
=

∂ ln( θ̂−θ

θ̂
)

∂ θ̂
.

Therefore

− ln(y(θ))

∣∣∣∣θ
t

=

∫ θ

t

∂ ln( θ̂−θ

θ̂
)

∂ θ̂
dθ̂ =

∫ θ

t

(
1

θ̂ − θ
− 1

θ̂

)
dθ̂

=

∫ θ̂−1(θ)

θ̂−1(t)

(
1

θ̂(θ)− θ

)
θ̂
′
(θ) dθ − ln(θ)

∣∣∣∣θ
t

From the differential equation for θ̂(θ), we know 1
θ(eκ−1)

= θ̂
′
(θ)

θ̂(θ)−θ
. Therefore

− ln(y(θ))

∣∣∣∣θ
t

=
1

eκ − 1
ln(θ)

∣∣∣∣θ̂−1(θ)

θ̂−1(t)

− ln(θ)

∣∣∣∣θ
t

.

Equivalently,
y(θ)

y(θ)
=

θ
A−1

θ

(θ̂−1(θ))A
=

θ

(1− A)θ + Aθ̂−1(θ)
.

Assuming again that θ = 2 and A = 2, we have

x(θ) = 1−
(
1− x(θ)

) 2θ

(2−
√
4− 2θ)2

.

The last result in this section, Lemma 9, states that it is not optimal to inspect
a type with probability 1.

Lemma 9. In the constrained optimal mechanism, no type is inspected with
probability 1.
Proof in Appendix B.8.

The intuition behind this result is the following. Suppose there is a set of
types (θ′, θ†) with θ < θ′ < θ† < θ that are inspected with probability 1 and for
some type θ̂, θ† < θ̂ < θ, the probability of inspection is less than 1, x(θ̂) < 1.
Then for all types θ < θ

′ , the information rent is bounded away from 0 since
π(θ) ≥ (1 − x(θ̂))qN(θ̂)(θ̂ − θ) > 0. Then there exists some x < 1 such that
(1 − x)qFB(θ̃)(θ̃ − θ) < π(θ)/2 for all θ < θ

′
, θ̃ ∈ (θ′, θ†). Consequently, one can
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alter the mechanism such that the probability of inspection equals x on (θ′, θ†)
without affecting the information rent of other types. This change reduces the cost
of inspection and thus increases the Principal’s payoff. The reason why there is no
threshold above which all types are inspected with probability 1 is more subtle; see
the proof of Lemma 9. Mookherjee and Png (1989) show a similar result: no type
is inspected with probability 1. However, in settings with a quantity allocation,
Baron and Besanko (1984) and Palonen and Pekkarinen (2022), this is no longer
the case. In both papers, a positive mass of types is inspected with probability 1
for some parameter values.

The last result of this section characterizes the constrained optimal mechanism.
In particular, it shows how the thresholds θ1 and θ2, that determine the regimes,
are related.

For a fixed type θ1 ∈ (θ, θ) let (q1, θ̂1) be the solution to

−q
′
(θ̂)(θ̂ − θ) = q(θ̂),

θ̂ = θ̂(θ) solves (2),

with the boundary conditions q1(θ1) = qFB(θ1), θ̂1(θ) = θ1. With q1(θ) as defined
above, denote

θ2 = min{θ, inf{θ|q1(θ) < q2(θ)}}, (5)

where q2(θ) is the solution to equation (3).

Lemma 10. A constrained optimal mechanism in which the inspection probability
is weakly increasing is uniquely characterized by the threshold θ1 = θ̂(θ). The
threshold θ1 defines a second threshold θ2 given by equation (5). These thresholds
divide the type space into three regimes: low cost types [θ, θ1], intermediate cost
types (θ1, θ2], and high cost types (θ2, θ]. The quantity without inspection, qN , for is
given as in Proposition 2, part 1 for [θ, θ1], and part 3 for (θ2, θ], respectively. The
quantity without inspection is given by q1(·) for (θ1, θ2]. The inspection probability
equals x on [θ, θ1] and (θ1, θ2], and is given by the solution to (4) on (θ2, θ].
Proof in Online Appendix B.9.

Lemma 10 does not state that threshold θ2 is strictly below θ. When the cost
of inspection, κ, is sufficiently large, the threshold equals the upper bound of the
type space θ2 = θ. In that case only the regimes for low-cost and intermediate-cost
types are part of the constrained optimal mechanism. Conversely, when the cost
of inspection is sufficiently small, θ2 < θ, and all three regimes exist.

A comment on the hypothesis of increasing inspection probability in Lemma 10 is
in order. The hypothesis is stronger than needed. It is sufficient that the inspection
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probability is strictly greater than the minimal probability, i.e., x(θ) > x, for
types above the threshold θ2. Even if that is not the case, we can characterize the
optimal mechanism: the regimes for quantity and inspection probability between
θ1 and θ2, and between θ2 and θ alternate. More precisely, there is a sequence of
thresholds (θi)ni=1 such that the quantity without inspection is given as in Lemma 8
and x(θ) = x for θ ∈ (θ2k−1, θ2k), whereas the quantity without inspection is given
by equation (3) for θ ∈ [θ2k, θ2k+1].

Example 1 (continued). We continue with the Example 1. Suppose that x = 0.1
and recall that the lower bound affects the inspection probability only up to scale.
For 21 θ1 = 1.38, θ2 = 1.64. This yields x(θ) = 0.636. Consequently, the inspection
probability is:

x(θ) =

{
0.1, for θ ∈ [1, 1.64],

1− 0.364 2θ
(2−

√
4−2θ)2

, for θ ∈ (1.64, 2].

Now we derive θ̂(·) and qN(·) for θ ≤ θ2. For ease of computation, we solve for
h(·) = θ̂−1(·) instead of θ̂(·). For q(·) = qN(·), the system of differential equations
for θ ≤ θ2 is given as

h′(θ) =
(1/q(θ)− θ)h(θ)

(θ − h(θ))θ
,

q′(θ) = − q(θ)

θ − h(θ)
.

The initial and end point conditions are:

h(θ2) = 2−
√

4− 2θ2, q(θ2) =
e−κ

θ2
, h(θ1) = θ.

Solving the above differential equation (numerically) we get h(·), and q(·). Figures
1 and 2 plot these functions.

Finally, note that for θ ≤ θ1 = 1.38, qN(θ) = qFB(θ) = 1/θ. Figure 1 shows the
the optimal mechanism. Low cost types produce the first best quantity. Intermediate
cost types produce the quantity derived using the differential equation above. High
cost types produce the quantity given by equation (3). The inspection probability
equals the minimal inspection probability for low and intermediate cost types. It is
strictly higher than the minimal inspection probability for high cost types.

Figure 2 shows the binding incentive constraints, i.e., the function θ̂(·). θ1 is

21This is the unique (numerically derived) threshold θ1 such that all necessary conditions in
Theorem 10 are satisfied.
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θ1

θ1θ

θ

θ

θ

θ2

θ2

θ̂(·)

This figure shows the binding incentive constraints, i.e., the function θ̂(·), for Example 1. The
horizontal and vertical axis depict the type space. For a type θ on the horizontal axis the graph
shows the type θ̂ on the vertical axis such that the Agent of type θ is indifferent between
reporting his true type and reporting θ̂. No type wants to mimic a type lower than θ1. Higher
types want to mimic higher types. Moreover, for every type θ̂ ≥ θ1 on the vertical axis there is
exactly one type θ on the horizontal axis indifferent between mimicking θ̂ and reporting
truthfully. Note that the binding incentive constraints θ̂(·) do not depend on the lower bound on
the inspection probability, x.

Figure 2: Binding incentive constraints in the constrained optimal mechanism of
Example 1.

the lowest type any other type wants to mimic. Higher types want to mimic higher
types.

3.6. Monotonicity of inspection
So far, we have not shown that the probability of inspection is monotone in the

Agent’s reported type. In fact, this need not be the case; Example 2 shows that
the inspection probability can be strictly decreasing in the reported cost for some
types. However, we provide sufficient conditions on the primitives of the model
that guarantee that the inspection probability is increasing in the Agent’s type.
Proposition 3 states the sufficient conditions.
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Proposition 3. Let q(·) be given as in equation (3). The probability of inspection
in the constrained optimal mechanism is weakly increasing if one of the following
three conditions hold:

1. For all θ ∈ [θ, θ], θ 7→ θq(θ) is a weakly increasing function.

2. The third derivative of the Principal’s valuation for quantity is negative,
V ′′′ ≤ 0, and the following inequality is true:

1

θ − θ
≥ −q′(θ)

q(θ)
= − qFB(θ)

q2(θ)V ′′(q(θ))
.

3. The Principal’s preferences over quantities are of the CRRA type, V (q) =
q1−α/(1− α), for α ≥ 1.

Proof in Appendix A.5.

The conditions in Proposition 3 are straightforward to verify. The idea behind
the proof of Proposition 3 is to solve for the slope of the inspection probability using
(4). One then provides a lower bound on the slope of the inspection probability.
The conditions in Proposition 3 guarantee that the lower bound is positive.

The lower bounds used in deriving the conditions for Proposition 3 do not rely
on solving for θ̂(·) explicitly, but hold when θ ≤ θ̂(θ) ≤ θ for all types θ. This is
the reason why the conditions in Proposition 3 do not depend on the distribution
of types f .

Proposition 3 provides sufficient condition for the inspection probability to be
increasing in the Agent’s reported type. Example 2 exhibits parameter values such
that the inspection probability is strictly decreasing for some type.

In Palonen and Pekkarinen (2022), the inspection probability is not monotone
in the reported types; however, inspection probabilities are monotone for all types
that are allocated a positive quantity.22 Inspection probabilities are monotone
in Border and Sobel (1987) and Chander and Wilde (1998), as well as in Baron
and Besanko (1984) for all parameters such that each type of the Agent receives
a payoff strictly above the outside option. Monotonicity fails in Mookherjee and
Png (1989).

Example 2. This example shows that the optimal probability of inspection is
not increasing in the reported cost. Assume V (q) = 2

√
q, κ = 0.0495, [θ, θ] =

[1.4, 7], x = 0.01, and F (·) is the uniform distribution. The first-best quantity
is qFB(θ) = θ−2. Because θ < 1/κ, the solution to equation (3) is given by

22In Palonen and Pekkarinen (2022), there exists an “exclusion region”, i.e., a set of types
that do not get allocated the good and are inspected with probability 0.
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q(θ) = (1/θ − κ)2. We numerically solve (4) to obtain the inspection probability
in the optimal mechanism. The first panel in Figure 3 plots the probability of
inspection in the optimal mechanism. The inspection probability is constant and
equal to the minimal inspection probability for low and intermediate cost types.
For high cost types, the probability of inspection is strictly above x. However, the
inspection probability is strictly decreasing on an interval of high cost types. The
second panel in Figure 3 plots the quantities in the optimal mechanism for this
example.

4. Related Literature
The early literature on costly state verification — Townsend (1979), Diamond

(1984), and Gale and Hellwig (1985) — and our paper share the assumption that
inspection perfectly reveals the Agent’s private information. Townsend (1979) was
the first to study mechanisms with costly state verification. He observed that
deterministic verification need not be optimal, but did not provide a characterization
of optimal stochastic inspection. In contrast to us, Diamond (1984) assumes the
Principal cannot condition her inspection decision on the Agent’s report. In Gale
and Hellwig (1985) the Agent’s private information is binary as opposed to the
compact interval in our model. This assumption simplifies the analysis significantly.

The classic paper on monopolistic screening, Mussa and Rosen (1978), does not
allow inspection of the Agent’s type. Incentives therefore need to be provided
through transfers and quantity distortions. In particular, incentive constraints
bind locally in an optimal mechanism when inspection is not feasible.

The papers closest to ours are Baron and Besanko (1984) and Palonen and
Pekkarinen (2022). Baron and Besanko (1984) add costly inspection to the seminal
work of Baron and Myerson (1982).23 There are four major difference in the
modelling assumptions. First, in contrast to our paper, Baron and Besanko
(1984) assume that the Principal cannot pay the Agent above her outside option:
using our notation, they assume −qI(θ, θ)θ + tI(θ, θ) = 0. We do not make this
assumption, and in fact show, that this restriction decreases the Principal’s payoff;
see Proposition 1.24 Second, the allocation of the good in Baron and Besanko (1984)
does not depend on the outcome of inspection. Third, the Agent in their model
cannot reject the mechanism ex-post, but has an ex-ante participation constraint.
In addition, they impose a bound on the transfer the Principal can extract from

23Khalil (1997) studies a similar problem, but assumes the Principal cannot commit to inspect
the Agent.

24Baron and Besanko (1984) claim in their footnote 18 that their assumption is with loss of
optimality, but do not discuss its effect on the allocation.
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0.5
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intermediate cost
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q(·)

θ θθ1 θ2

qN∗
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intermediate cost
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high cost types

This figure shows the inspection probability and quantity allocation in the constrained optimal
mechanism for Example 2. The first panel shows the inspection probability. Types are depicted
on the horizontal axis. The vertical axis shows the inspection probability x(·). The inspection
probability equals the minimal probability of inspection, x, for low and intermediate cost types
θ ∈ [θ, θ2]. The inspection probability increases strictly at the cut-off θ2, but decreases strictly
for higher types. In particular, the probability of inspection is not monotonically increasing in
the type.
The second panel shows the quantity allocation in the constrained optimal mechanism for
Example 2. Types are depicted on the horizontal axis. The vertical axis shows quantities. The
dashed line is the first-best quantity. The solid line shows the quantity without inspection in the
optimal mechanism. Low cost types between θ and θ1 produce the first-best quantity when not
inspected. Intermediate and high cost types produce strictly less than the first-best quantity
when not inspected.

Figure 3: Quantity and inspection probability in the constrained optimal mecha-
nism for Example 2.
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the Agent. Fourth, inspection in their model is imperfect whereas it is perfect in
our paper.

The results in Baron and Besanko (1984) differ from ours in two main respects.
First, their seminal “separation” result of quantity distortion and inspection
probabilities does not hold in our setting. For parameters such that every type
receives a payoff strictly above the outside option, Baron and Besanko (1984)
establish that the optimal quantity is equal to the optimal quantity when inspection
is not possible. In particular, the optimal quantity is independent of the inspection
cost. Their result suggest that the possibility to inspect the Agent does not affect
quantity distortions. In contrast, we find that inspection always affects the quantity.
When inspection is possible, there are no quantity distortion for a positive mass of
low-cost types (quantities are distorted for all but the lowest cost type in Baron
and Besanko (1984)). Moreover, for types that produce less than the efficient
quantity, the size of the distortion depends on the cost of inspection. Second, the
optimal inspection policy in Baron and Besanko (1984) is bang-bang: low cost
types are not inspected, and high cost types are inspected with probability 1. We
find that inspection probabilities are continuous, interior unless the inspection cost
is too high, and strictly less than 1. Furthermore, there exist parameters such that
the inspection probabilities are not increasing in the reported cost.

Our technical analysis differs from the one in Baron and Besanko (1984). In
Baron and Besanko (1984, p. 464), the “policy characterized [...] has been assumed
to satisfy the global-incentive-compatibility conditions [...] These conditions may
not, however, hold.” They “have been unable to extend the continuous-type analysis
to deal with this problem” (p. 465). Baron and Besanko (1984) provide a sufficient
condition for local incentive compatibility to imply global incentive compatibility, as
well as a numerical example (on pp. 465) that suggests their results no longer hold
if global incentive compatibility is taken into account. In contrast, we deal with
global incentive compatibility, and characterize the binding incentive constraints.
In our setting, local incentive constraints never bind.25

Palonen and Pekkarinen (2022) study a model in which the Agent can exert
costly effort to reduce the probability of being inspected. In order to focus on
this avoidance activity, they assume that the allocation and transfer in case of
inspection is exogenous; i.e., the functions qI(θ̂, θ) and tI(θ̂, θ) are a primitive of
their model. In our paper, the Principal chooses qI(θ̂, θ) and tI(θ̂, θ). The functions
Palonen and Pekkarinen (2022) assume are with loss of optimality for the Principal
in our setting. The functional form they impose on qI(θ̂, θ) and tI(θ̂, θ) implies

25We cannot unambiguously say whether our results differ from those in Baron and Besanko
(1984) because of a failure of global incentive compatibility or because of differences in the
modelling assumptions. It is conceivable that the differences are due to the imperfect inspection
technology. Elucidating what is the cause for the different result is an interesting avenue for
future research.

34



that local incentive constraints bind. In their benchmark without avoidance, they
find that the allocation qN(θ) need not be monotone in the Agent’s report θ (see
their Example 1), in contrast to the strict monotonicity of qN(θ) in our setting.
The inspection probability in Palonen and Pekkarinen (2022) is not monotone and
has a bang-bang property: a report is either not inspected, and the inspection
probability for reports θ that are inspected with positive probability is constant,
x(θ) = x. There are parameters such that the constant probability x equals 1 and
such that this probability is strictly less than 1. In contrast, we find that inspection
probabilities are interior and continuous, and no type is inspected with probability
1.

Border and Sobel (1987), Mookherjee and Png (1989), and Chander and Wilde
(1998) study wealth extraction with audits. In their models, there is no allocation
or production of a good other than monetary transfers. All three papers assume
that inspection is perfect. Border and Sobel (1987) and Chander and Wilde (1998)
impose an upper bound on transfers from the Principal to the Agent; we do not
impose an upper bound on transfer. Mookherjee and Png (1989) assume the Agent
is risk-averse, which ensures existence of an optimal mechanism. Border and Sobel
(1987), Mookherjee and Png (1989), and Chander and Wilde (1998) find that, for
a truthful report, the Agent’s payoff is higher after being inspected than when not
inspected — a result that obtains in our setting as well. In Border and Sobel (1987)
and Chander and Wilde (1998) optimal inspection probabilities are monotone.
Example 2 shows that this is not true in our model, a result that Mookherjee
and Png (1989) find as well. Mookherjee and Png (1989) find that no report is
inspected with probability 1, as do we, and in contrast to Chander and Wilde
(1998). All three papers do not explicitly characterize the optimal mechanism.
With the exception of the threshold θ1, we fully characterize the optimal mechanism
with the restriction of a lower bound on inspection probabilities. Melumad and
Mookherjee (1989) study taxation with audits and the provision of a public good.
In their model, all agents consume the same quantity of the public good whereas
in our model the allocation is type-dependent. Moreover, they rule out transfers
to the Agent’s after truthful reports.

Dana, Larsen, and Moshary (2024) study a mechanism design problem in which
the Agent has a uniform cost of misreporting his true type. This leads to incentive
constraints that do not bind locally, as in our model. In our model, however,
incentive constraints do not bind locally for a different reason: transfers in the
constrained optimal mechanism equal the cost of production when the Agent is
not inspected. Optimal mechanisms in Dana, Larsen and Moshary (2024) have the
“no-distortion-at-the-top”-property of Proposition 2.26

26The methods we use to address non-locally binding incentive constraints are different from
the ones Dana, Moshary and Larsen (2024) use. Their method does not allow them to pin down
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Alaei et al. (2024) study an auction model in which the auctioneer can inspect
the bidder’s valuation ex–post.27 There are three differences to our model: first,
Alaei et al. (2024) assume inspection is costless to the Principal and hence all
types are inspected with probability 1; second, in their paper, the allocation of
the good depends on the reported type, but not on the true type; third, their
auctioneer has no valuation for the good. Alaei et al. (2024) deal with a global
incentive constraints in a different way than we do. They convert their problem
of finding the optimal quantity into a maximization problem with the binding
incentive constraints as the choice variable. This inversion step (their Proposition
3) cannot be applied in our setting: a fixed set of binding incentive constraints θ̂(·)
does not uniquely pin down both the quantity without inspection qN(·) and the
inspection probabilities x(·).

We assume that inspection is perfect: when inspecting, the Principal observes
the true type. This is a stronger assumption than needed. Our results apply when
inspection is imperfect, but satisfies two properties. First, when inspecting, the
Principal knows whether inspection was successful and whether she observed the
true type or whether inspection was not successful. Put differently, if the Principal
inspects and observes the reported type she can distinguish between the report
having been truthful and inspection being unsuccessful. Second, the probability
of successful inspection does not depend on the type or report. The last feature
distinguishes our approach from papers with probabilistic verification, e.g., Ball and
Kattwinkel (2022). The optimal mechanisms in models of probabilistic verification
depend on the details of the verification technology, and require tools different
from ours to analyze.

There is a literature on mechanism design with costly state verification and
without transfers, e.g., Ben-Porath et al. (2014), Mylovanov and Zapechelnyuk
(2017), Erlanson and Kleiner (2019), Halac and Yared (2020), Li (2020), Kattwinkel
and Knoepfle (2023), and Ahmadzadeh (2024). Models with and without transfers
differ in their predictions as well as in the techniques needed to analyze them.

5. Conclusion
This paper examines how the ability to learn the private information of a

contracting party affects the optimal mechanism. In a procurement problem, a
Principal can use transfers and costly inspection to induce a cost-specific allocation.
We characterize the unique limit of quantities and inspection probabilities in all
approximately optimal mechanisms.

the set of binding incentive constraints in the optimal mechanism.
27See also the literature on auctions with contingent payments as surveyed in Skrzypacz

(2013).
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Combining inspection and transfers yields new insights. First, quantity distor-
tions for all types are not optimal. There is an interval of low cost types that
produce the efficient quantity even when not inspected. Higher cost types produce
less than the efficient quantity when not inspected. Both the set of types of which
produce less than the efficient quantity and the size of the distortion depend on
the cost of inspection. Second, inspection probabilities are positive for some types
(unless the inspection cost is prohibitively large), and do not satisfy a bang-bang
property. The inspection probability need not be monotone. In particular, restrict-
ing the mechanism to have deterministic inspection reduces the Principal’s payoff.
Both results are novel observations in models that combine inspection, transfers
and quantities.

We presented our results in the context of procurement and regulation. However,
the main insights carry over to a setting of a monopolist selling a good. Suppose
a seller (the Principal) sells a good in different quality levels to a buyer (the
Agent) and has the opportunity to learn the buyer’s valuation at a cost, e.g., via
a third-party data broker. In that case, the seller extracts all surplus from the
buyer unless she decides to learn the buyer’s valuation. After learning the buyer’s
valuation, the seller sells him a higher quality of the good at a price strictly below
his valuation. Moreover, the discount after learning the buyer’s valuation can be
so large that the buyer receives a net payment from the seller.

A. Appendix
A.1. Proof of Theorem 1
Proof. By Lemma 3, we know the value of problem Px converges to W0 when x
goes to zero. Lemma 4, implies quantities in a constrained optimal mechanism (for
Px) do not depend on the minimal inspection probability. In addition, by Lemma
4, xx and xx′ are related by

1− xx(θ)

1− x
=

1− xx′(θ)

1− x′ .

Define the above ratio 1− x∗(θ). Therefore for every ε, we can find x, such that
Mx satisfies all conditions. Note that the proofs of Lemmas 3, and 4 do not depend
on Theorem 1.
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A.2. Proof of Proposition 1
Proof. 1. Define qN(·) = q̃N(·), qI(·, ·) = q̃I(·, ·), and x(·) = x̃(·). Set tI(θ̂, θ) =

qI(θ̂, θ)θ for all θ̂ 6= θ. For θ such that x̃(θ) = x(θ) = 0, set tN(θ) = t̃N(θ) and
tI(θ, θ) = t̃I(θ, θ). For θ such that x̃(θ) = x(θ) > 0, set tI(θ, θ) = t̃I(θ, θ)θ +
1−x(θ)
x(θ)

(−qN(θ) + t̃N(θ)). Since M̃ satisfies obedience, −qN(θ)θ + t̃N(θ) ≥ 0.
It is easy to see that the payoff to the Principal is equal under M and M̃.
Moreover, M is incentive compatible and satisfies the obedience constraints.

2. Fix θ with 0 < x(θ) < 1 and suppose that qFB(θ) > qN(θ) and tN(θ) >
θqN(θ). Increase qN(θ) by δ > 0 small enough so that qN(θ)+δ ≤ qFB(θ) and
tN(θ) ≥ θ(qN(θ)+ δ) and increase tI(θ) by δθ(1−x(θ))/x(θ). These changes
leave the incentive compatibility constraints and the obedience constraints
satisfied but increase the payoff to the Principal.

3. For each type θ ∈ Bδ change the mechanism so that

tN(θ) ; qN(θ)θ and tI(θ) ; tI(θ) +
x(θ)

1− x(θ)
(tN(θ)− θqN(θ)).

The IC and obedience constraints for such types continue to hold. Moreover,
the IC constraints for types θ̂ ∈ θ̂δ(θ) are slack. Therefore, decreasing tI(θ̂)
or tN(θ̂) infinitesimally for such types preserves incentives. Since the set of
such types has positive measure, these changes raise the Principal’s objective.

A.3. Proof of Lemma 7
Proof. We use three claims to prove the Lemma. Define

θ̃ = min{θ|π(θ) = 0}.

Let (x, q ≡ qN) attain be the functions that attain the maximum in the reduced
problem. Fix an interval [I−, I+] ⊂ (θ̂(θ), θ̃). Let η(q)(θ) = q(θ)1θ∈[I−,I+], and
G(x, q) be the integrand in the objective of the reduced problem , i.e.,

G(x, q) =x(θ)
(
V (qFB(θ))− qFB(θ)θ − κ

)
+ (1− x(θ))

(
V (qN(θ))− qN(θ)θ)

)
− sup

θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ).
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Define g(β) for β ∈ (−1, 1) \ {0} as

g(β) =
G(x, q + βη)−G(x, q)

β
.

Claim 1. In an optimal mechanism,

lim
β→0−

g(β)

=

∫
t∈[I−,I+]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t)−

∫
θ̂(t)∈(I−,I+)

π(t) dF (t) ≥ 0,

lim
β→0+

g(β) = lim
β→0−

g(β)−
∫
θ̂(t)∈{I−,I+}

π(t) dF (t) ≤ 0.

Proof. We will compute limβ→0− g(β), and limβ→0+ g(β). If limits exist, then

lim
β→0−

g(β) ≥ 0, and lim
β→0+

g(β) ≤ 0.

First let β < 0. Define

χ(θ) = max
θ̂∈[θ,θ]\(I−,I+)

(1− x(θ̂))q(θ̂)(θ̂ − θ).

Note that χ(θ) is well defined since [θ, θ]\(I−, I+) is compact and Q(·) is continuous.
Define set I(β)

I(β) = {θ̂(θ)|χ(θ) ≤ (1 + β)π(θ)}.

A directional derivative for β < 0 gives us

lim
β→0−

g(β) =

∫
t∈[I−,I+]

(1− x(t)) (V ′(q(t))q(t)− q(t)t) dF (t)

− lim
β→0−

∫
θ̂(t)∈I(β)

π(t) dF (t)

− lim
β→0−

∫
θ̂(t)∈(I−,I+)\I(β)

χ(t)− π(t)

β
dF (t)

− lim
β→0−

∫
θ̂(t)∈[θ,θ]\(I−,I+)

π(t)− π(t)

β
dF (t)

We show that the above limit for each integral exists, and we compute it. For the
first integral, the limit can go inside the integral since inside is uniformly bounded
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above. Note that π(θ) of θ for θ̂(t) ∈ I(β) changes to (1 + β)π(θ). For types θ
such that θ̂(θ) ∈ (I−, I+) \ I(β). For types θ such that θ̂(θ) ∈ [θ, θ] \ (I−, I+) do
not change (the last integral).28 Therefore we can rewrite

lim
β→0−

g(β) =

∫
t∈[I−,I+]

(1− x(t)) (V ′(q(t))q(t)− q(t)t) dF (t)

− lim
β→0−

∫
θ̂(t)∈I(β)

π(t) dF (t)

− lim
β→0−

∫
θ̂(t)∈(I−,I+)\I(β)

χ(t)− π(t)

β
dF (t).

We show the last integral is zero. The reason is

0 =

∫
θ̂(t)∈(I−,I+)\I(β)

π(t)− π(t)

β
dF (t) ≤

∫
θ̂(t)∈(I−,I+)\I(β)

χ(t)− π(t)

β
dF (t)

≤
∫
θ̂(t)∈(I−,I+)\I(β)

(1 + β)π(t)− π(t)

β
dF (t) =

∫
θ̂(t)∈(I−,I+)\I(β)

π(t) dF (t).

Since θ̂(θ) is a function, then limβ→0− I(β) = ∪β<0I(β) = (I−, I+), by Squeeze
Theorem we conclude

0 ≤
∫
θ̂(t)∈(I−,I+)\I(β)

χ(t)− π(t)

β
dF (t) ≤ lim

β→0−

∫
θ̂(t)∈(I−,I+)\I(β)

π(t) dF (t) = 0.

Therefore

lim
β→0−

g(β) =

∫
t∈[I−,I+]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t)−

∫
θ̂(t)∈(I−,I+)

π(t) dF (t).

For β > 0, define set I(β)

I(β) = {θ̂(θ)|(1 + β)χ(θ) ≥ π(θ)},

where
χ(θ) = max

θ̃∈[I−,I+]
(1− x(θ̃))q(θ̃)(θ̃ − θ).

28Note that {I−, I+} ⊂ [θ, θ] \ (I−, I+).
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A directional derivative for β > 0 gives us

lim
β→0+

g(β) =

∫
t∈[I−,I+]

(1− x(t))q(t) (V ′(q(t))− t) dF (t)

− lim
β→0+

∫
θ̂(t)∈[I−,I+]

(1 + β)π(t)− π(t)

β
dF (t)

− lim
β→0+

∫
θ̂(t)∈[θ,θ]\I(β)

π(t)− π(t)

β
dF (t)

− lim
β→0+

∫
θ̂(t)∈I(β)\[I−,I+]

(1 + β)χ(t)− π(t)

β
dF (t).

We show that the above limit for each integral exists, and we compute it. For the
first integral, the limit can go inside the integral since inside is uniformly bounded
above. We show the last integral is zero

0 =

∫
θ̂(t)∈I(β)\[I−,I+]

π(t)− π(t)

β
dF (t) ≤

∫
θ̂(t)∈I(β)\[I−,I+]

(1 + β)χ(t)− π(t)

β
dF (t)

≤
∫
θ̂(t)∈I(β)\[I−,I+]

(1 + β)π(t)− π(t)

β
dF (t) =

∫
θ̂(t)∈I(β)\[I−,I+]

π(t) dF (t).

Since θ̂(θ) is a function, then limβ→0+ I(β) = ∩β>0I(β) = [I−, I+], by Squeeze
Theorem we conclude

− lim
β→0+

∫
θ̂(t)∈I(β)\[I−,I+]

(1 + β)χ(t)− π(t)

β
dF (t) = 0.

Therefore

lim
β→0+

g(β) =

∫
t∈[I−,I+]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t)−

∫
θ̂(t)∈[I−,I+]

π(t) dF (t).

Finally, we have

lim
β→0−

g(β)

=

∫
t∈[I−,I+]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t)−

∫
θ̂(t)∈(I−,I+)

π(t) dF (t) ≥ 0,

lim
β→0+

g(β) = lim
β→0−

g(β)−
∫
θ̂(t)∈{I−,I+}

π(t) dF (t) ≤ 0.

41



�

Claim 2. For all θ with π(θ) > 0, θ̂(·) is a strictly increasing function.

Proof. We will consider two steps. In step 1, we show the correspondence θ̂−1(·)
is a function (hence strictly increasing) in (θ̂(θ), θ̃). In step 2, we show θ̂−1(θ̂) for
θ̂ = θ̂(θ) is single valued.

Step 1) By contradiction assume for θ̂ ∈ (θ̂(θ), θ̃), correspondence θ̂−1(θ̂) is not
single valued. There exists a sequence θ̂−δ−n < θ̂ converging from left to θ̂, and a se-
quence θ̂+δ+n > θ̂ converging from right to θ̂, such that θ̂−1(θ̂+δ+n ), and θ̂−1(θ̂−δ−n )
are single valued for all n ∈ N.29 Let I+n = θ̂ + δ+n , and I−n = θ̂ − δ−n . Therefore∫
θ̂(t)∈{I−n ,I+n } π(t) dF (t) = 0. Hence limβ→0+ g(β, n) = limβ→0− g(β, n) = 0, using

Claim 1 implies (by abusing of notation g(β, n) is defined similar to g(β) in Claim
1, but for interval [I−n , I+n ])∫

θ̂(t)∈[I−n ,I+n ]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t) =

∫
θ̂(t)∈[I−n ,I+n ]

π(t) dF (t).

We know ∩n∈N[I
−
n , I

+
n ] = θ̂. When n to infinity the left side goes to zero. Therefore

the right side should go to zero as well, but the right side will be
∫
θ̂(t)∈θ̂ π(t) dF (t).

Since π(t) > 0, then θ̂−1(θ̂) is single valued. Otherwise, the above integral will be
strictly positive.

Step 2) The proof will be the same with some adaptations. Note that we
assume κ > 0 (otherwise π(θ) = 0 for all θ). Then θ̂(θ) 6= θ̃. Fix an interval
I = (θ̂(θ) − δ, θ̂(θ) + δ), and define g(β) similar to the previous step. First let
β < 0. Define

χ(θ) = max
θ̂∈[θ,θ]\I

(1− x(θ̂))q(θ̂)(θ̂ − θ).

Define set I(β) ⊂ I
I(β) = {θ̂(θ)|χ(θ) ≤ (1 + β)π(θ)}

29In fact there at most countable points θ̂ that θ̂−1(θ̂) is not single valued. Therefore the
sequence exists.
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The directional derivative for β < 0 gives us

lim
β→0−

g(β) =

∫
t∈I

(1− x(t)) (V ′(q(t))− q(t)t) dF (t)

− lim
β→0−

∫
θ̂(t)∈I(β)

π(t) dF (t)

− lim
β→0−

∫
θ̂(t)∈I\I(β)

χ(t)− π(t)

β
dF (t).

We show that the above limit for each integral exists, and we compute it. For the
first integral, the limit can go inside the integral since inside is uniformly bounded
above. The last integral is zero since

0 =

∫
θ̂(t)∈I\I(β)

π(t)− π(t)

β
dF (t) ≤

∫
θ̂(t)∈I\I(β)

χ(t)− π(t)

β
dF (t)

≤
∫
θ̂(t)∈I\I(β)

(1 + β)π(t)− π(t)

β
dF (t) =

∫
θ̂(t)∈I\I(β)

π(t) dF (t).

θ̂(θ) is a function, then limβ→0− I(β) = ∪β<0I(β) = [θ̂(θ̂), θ̂(θ̂) + δ), by Squeeze
Theorem we conclude

0 ≤
∫
θ̂(t)∈I\I(β)

χ(t)− π(t)

β
dF (t) ≤ lim

β→0

∫
θ̂(t)∈I\I(β)

π(t) dF (t) = 0.

Therefore

lim
β→0−

g(β) =

∫
t∈I

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t)−

∫
θ̂(t)∈[θ̂(θ̂),θ̂(θ̂)+δ)

π(t) dF (t).

For β > 0, define set I(β)

I(β) = {θ̂(θ)|(1 + β)χ(θ) ≥ π(θ)},

where
χ(θ) = max

θ̂∈I
(1− x(θ̂))q(θ̂)(θ̂ − θ).

The same argument leads us

lim
β→0+

g(β) =

∫
t∈I

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t)−

∫
θ̂(t)∈[θ̂(θ̂),θ̂(θ̂)+δ]

π(t) dF (t).
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Sending δ > 0 to zero, the left side goes to zero, therefore the right side should go
to zero. Which implies that θ̂−1(θ) is single valued. �

Claim 3. For all (I−, I+) ∈ R2
+ such that [I−, I+] ⊂ [θ̂(θ), θ̃] we have∫

t∈[I−,I+]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t) =

∫
θ̂(t)∈[I−,I+]

π(t) dF (t),

Proof. Using Claims 1 and 2

lim
β→0+

g(β)

=

∫
t∈[I−,I+]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t)−

∫
θ̂(t)∈(I−,I+)

π(t) dF (t) ≥ 0,

lim
β→0+

g(β) = lim
β→0−

g(β)−
∫
θ̂(t)∈{I−,I+}

π(t) dF (t) ≤ 0.

We can conclude limβ→0+ g(β) = limβ→0− g(β) = 0, and∫
t∈[I−,I+]

(1− x(t))q(t)
(
V

′
(q(t))− t

)
dF (t) =

∫
θ̂(t)∈[I−,I+]

π(t) dF (t).

Note that I+ can be θ̃ since the above equality holds for all I+ close to θ̃, and∫
θ̂(t)∈θ̃ π(t) dF (t) = 0. In addition, I− can be θ̂−1(θ) since θ̂−1(θ) is single valued.

Hence the above equality holds even when I− = θ̂(θ).�

Now we prove the Lemma. By Claim 2, θ̂(·) is strictly increasing, so both θ̂(·),
and θ̂−1(·) are differentiable almost everywhere. By Claim 3, for all (I−, I+) ∈ R2

+

such that [I−, I+] ⊂ [θ̂(θ), θ̃]∫
t∈[I−,I+]

(1− x(t)) (V ′(q(t))q(t)− q(t)t) dF (t)

=

∫
t∈[I−,I+]

(1− x(t))q(t)(t− θ̂−1(t)) dF (θ̂−1(t)),
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and∫
t∈[I−,I+]

q(t)(1− x(t))

(
(V ′(q(t))− t) f(t)− (t− θ̂−1(t))

d θ̂−1(t)

d t
f(θ̂−1(t))

)
dt

= 0.

The above equality holds for all [I−, I+] ⊂ [θ̂(θ), θ). Using the Fundamental
Theorem of Calculus for all t such that π(t) > 0, and t ∈ [θ̂(θ), θ), almost everywhere
(at all differentiable points of θ̂−1(·)) we have

(V ′(q(t))− t) f(t) = (t− θ̂−1(t))
d θ̂−1(t)

d t
f(θ̂−1(t)).

Fix t∗ ∈ (θ̂(θ), θ). We want to show θ̂−1(·) is differentiable at t∗. We know θ̂−1(·) is
almost everywhere differentiable, so there are two sequences tL, and tR converging
to t∗ from left and right such that θ̂−1(·) is differentiable at each point of them.
So, the above equation holds at each point tL, and tR. Finally, the left side of the
below equation is continuous in t, we conclude

(V ′(q(t))− t) f(t)

(t− θ̂−1(t))f(θ̂−1(t))
=

d θ̂−1(t)

d t

∣∣∣∣
t∈{t∗+,t∗−}

.

This means that θ̂−1(t) is differentiable at t∗.

A.4. Proof of Proposition 2
Proof. 1. For δ > 0 denote Bδ(θ) = {θ̂|(1 − x(θ̂))qN(θ̂)(θ̂ − θ) ≥ π(θ) − δ}.

Define
θ1 = inf

θ

⋂
δ>0

⋃
θ∈[θ,θ]

Bδ(θ).

For all θ and θ̂, define

χ(θ̂, θ) = (1− x(θ̂))qN(θ̂)(θ̂ − θ).

We show that θ1 > θ. In any optimal mechanism, qN(θ) ≤ qFB(θ) and
π(θ) > 0. Hence, for a δ > 0 small enough there exists θ† > θ such that
π(θ)− χ(θ̂, θ) ≤ 2δ for all θ̂ < θ†. Since π(·) and χ(θ̂, ·) are continuous in θ,
π(θ)− χ(θ̂, θ) ≤ δ for all θ̂ < θ† and θ ≤ θ†† or a θ†† > θ. Since χ(θ̂, θ) < 0
for all θ > θ̂, we conclude that θ1 > θ.
Therefore given θ̂, there exists δ > 0 such that π(θ)− χ(θ̂, θ) > δ for all θ,
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and θ̂ < θ1. Hence there exists β◦ such that for all β ∈ (β◦,−β◦), and for all
θ

π(θ)− (1 + β)χ(θ̂, θ) >
δ

2
.

Now maximize point-wise: an admissible variation for qN(θ) is (1 + β)qN(θ)
for β ∈ (β◦,−β◦). This variation does not change π(θ), so it changes only
V (qN(θ))− θqN(θ) in the objective of the reduced problem. Since V (q)− θq
has a unique maximizer for all θ, we conclude qN(θ) = qFB(θ) for all θ < θ1.
Therefore for all θ < θ1

V (qFB(θ))− qFB(θ)θ − κ < V (qN(θ))− qN(θ)θ.

If x(θ) > x, by a similar argument using an admissible variation of x(θ) to
(1 + β)x(θ) for β < 0, we can increase the objective, without changing π(θ)
for all θ ∈ [θ, θ].

2. By Lemma 6, QN(·) = (1 − x(·))qN(·) is continuous, so that limθ↘θ1(1 −
x(θ))qN(θ) = (1− x)qFB(θ1) from Proposition 2, part 1. Moreover, qN(·) ≤
qFB(·) and x(·) ≥ x imply that qN(θ1) = qFB(θ1).
Suppose toward a contradiction that for every n large enough there exists
θ̃n ∈ [θ1, θ1+1/n) with x(θ̃n) > x. Then qN(θ̃n) = q∗(θ̃n) where q∗(·) is given
as in Proposition 2, part 3. By definition of q∗(·) and qFB(·),

inf
θ∈[θ,θ]

qFB(θ)− q∗(θ) > 0.

Consequently,

lim sup
n

(1− x(θ̃n))q
N(θ̃n) < (1− x)qFB(θ1),

in contradiction to continuity of (1 − x(·))qN(·). Thus, there exist θ2 > θ1
such that x(θ) = x for all θ1 ≤ θ ≤ θ2.

3. An admissible variation is to change qN(θ) to (1 + β)qN(θ), and 1− x(θ) to
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1−x(θ)
1+β

for some β > 0. Rewriting the integrand of the objective for type θ:

V (qFB(θ))− qFB(θ)θ − κ

+

(
1− x(θ)

1 + β

)(
V ((1 + β)qN(θ))− (1 + β)qN(θ)θ − (V (qFB(θ))− qFB(θ)θ − κ)

)
− sup

θ̂

(
1− x(θ̂)

1 + β

)(
(1 + β)qN(θ̂)(θ̂ − θ)

)
.

Note that π(·) does not change. A derivative with respect to β gives us:

−
(
1− x(θ)

(1 + β)2

)(
V ((1 + β)qN(θ))− (1 + β)q(θ)θ − (V (qFB(θ))− qFB(θ)θ − κ)

)
+

(
1− x(θ)

1 + β

)(
∂V ((1 + β)qN(θ))

∂qN(θ)
qN(θ)− qN(θ)θ

)
.

The derivative at β = 0 must be zero, and x(θ) < 1.

−V (q(θ)) + qN(θ)θ + (V (qFB(θ)− qFB(θ)θ − κ)

+
∂V (qN(θ))

∂qN(θ)
qN(θ)− qN(θ)θ = 0.

Therefore,

V (qFB(θ))− qFB(θ)θ − κ = V (qN(θ))− ∂V (qN(θ))

∂qN(θ)
qN(θ).

A.5. Proof of Proposition 3
Proof. From Lemma 6, (1 − x(·))qN(·), is strictly decreasing and differentiable.
Moreover, θ̂(·) is single–valued. Given θ, θ̂(θ) = θ̂ solves the FOC to maxθ̂(1 −
x(θ̂))q(θ̂)(θ̂ − θ). Therefore,

x
′
(θ̂)

1− x(θ̂)
= q

′
(θ̂)(θ̂ − θ) + q(θ̂) ≥ 0

⇐⇒ 1

θ̂ − θ
≥ −q

′
(θ̂)

q(θ̂)
.

1. Since q
′
< 0, q(θ̂) + q

′
(θ̂)(θ̂ − θ) ≥ q(θ̂) + q

′
(θ̂)θ̂ . The RHS of the last
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inequality is the derivative of θ 7→ θq(θ).

2. When V
′′′ ≤ 0, −q

′
(θ̂)/q(θ̂) is decreasing. Moreover, θ̂ − θ ≤ θ − θ. The

claim follows.

3. q(θ) =

(
α

αθ1−
1
α−θ1−

1
α+

(
θ−1/α

)1−α
+ακ−κ

) 1
α−1

. Since 1/(θ̂ − θ) > 1/θ̂, the in-

equality in the last display is satisfied if 1/θ̂ ≥ −q′(θ̂)/q(θ̂). Simple algebra
shows that this inequality is true for α ≥ 1.
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B. Online Appendix
B.1. Proof of Lemma 1
Proof. We first show It holds that ∞ > WFB ≥ W0 by definition of WFB. Suppose
towards a contradiction that W0 = WFB. Then, for an ε > 0 small enough, there
exists a mechanism M that yields a payoff for the Principal of at least WFB − ε.
Note that for every type θ,

x(θ)(tI(θ)− qI(θ)θ) + (1− x(θ))(tN(θ)− qN(θ)θ) ≥ sup
θ̂

(1− x(θ̂))(tN(θ̂)− qN(θ̂)θ)

≥ sup
θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ).

The first line follows from the obedience constraint tI(θ̂, θ) − qI(θ̂, θ)θ ≥ 0. The
second line uses tN(θ̂)− qN(θ̂)θ̂ ≥ 0. One computes that for any mechanism M,∫ θ

θ

x(θ)(V (qI(θ))− tI(θ)− κ) + (1− x(θ))(V (qN(θ))− tN(θ)) dF

≤
∫ θ

θ

x(θ)(V (qI(θ))− qI(θ)θ − κ) + (1− x(θ))(V (qN(θ))− qN(θ)θ) dF

−
∫ θ

θ

sup
θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ) dF

≤
∫ θ

θ

x(θ)(V (qFB(θ))− qFB(θ)θ) + (1− x(θ))(V (qN(θ))− qN(θ)θ) dF

−
∫ θ

θ

x(θ)κ+ sup
θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ) dF.

Hence, the mechanism yields a payoff of at least WFB − ε only if∫ θ

θ

(1− x(θ))(V (qFB(θ))− V (qN(θ))− (qFB(θ)− qN(θ))θ) dF

+

∫ θ

θ

x(θ)κ+ sup
θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ) dF ≤ ε,
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for all ε > 0. Clearly, no such x(·) and qN(·) exist if ε > 0 is small enough.
The proof that P0 does not admit a solution is standard and therefore omitted.

B.2. Proof of Lemma 2
Proof. First we define two auxiliary problems. Denote the following problem by
P1, and its value by W1.

max
x(·),qN (·),qI(·,·)

∫ θ

θ

x(θ)
(
V (qI(θ, θ))− θqI(θ, θ)− κ

)
+ (1− x(θ))

(
V (qN(θ))− θqN(θ)

)
− sup

θ̂

(1− x(θ̂))(tN(θ̂)− qN(θ̂)θ) dF (θ)

subject to
0 ≤ x(θ) ≤ 1,

− qN(θ)θ + tN(θ) ≥ 0.

Denote the following problem by P2, and its value by W2.

max
x(·),qN (·),qI(·,·)

∫ θ

θ

x(θ)
(
V (qI(θ, θ))− θqI(θ, θ)− κ

)
+ (1− x(θ))

(
V (qN(θ))− θqN(θ)

)
− sup

θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ) dF (θ)

subject to
0 ≤ x(θ) ≤ 1.

Note that W0 = W1 = W2. By Lemma 3, the value of problem Px converges to
W0 as x goes to zero. A similar argument as the proof of Lemma 4, implies the
value of problem Px converges to W2 when x goes to zero.

Denote M0 =
(
x0(·), qI0(·, ·), tI0(·, ·), qN0 (·), tN0 (·)

)
, a feasible mechanism in P0. De-

fine M1 =
(
x0(·), qI0(·, ·), qN0 (·), tN0 (·)

)
, and M2 =

(
x0(·), qI0(·, ·), qN0 (·)

)
. Denote the

payoff of the objective in Pi under mechanism M by Wi(M). We proceed the proof
by showing a claim.

Claim. If M0 is a feasible mechanism in P0, then M1 is a feasible mechanism in P1,
and M2 is a feasible mechanism in P2. Moreover, W0(M0) ≤ W1(M1) ≤ W2(M2).

Proof. Define M̃0 =
(
x0(·), qI0(·, ·), t̃I0(·, ·), qN0 (·), tN0 (·)

)
such that for all θ, t̃I0(θ, θ) =

tI0(θ, θ), and for all θ̂ 6= θ, t̃I0(θ̂, θ) = θqI0(θ̂, θ). By replacing the right side of the
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incentive constraint in the objective, the value of P0 weakly increases. This implies
that M1 is a feasible mechanism in P1 and W0(M0) ≤ W1(M1).

Define M̃1 =
(
x1(·), qI1(·, ·), qN1 (·), t̃N1 (·)

)
, such that for all θ, t̃N1 (θ) = θqN1 (θ). An

immediate observation is W1(M̃1) ≥ W1(M1). This implies that M2 is a feasible
mechanism in P2 and W1(M1) ≤ W2(M2). �.

An immediate observation of the above claim is as follows: suppose M0,n is a
sequence of feasible and 1/n-optimal mechanisms to problem P0. Then M1,n, and
M2,n are sequences of feasible and 1/n−optimal mechanisms to problem P1, and
P2 respectively. Moreover, by Lebesgue’s dominated convergence theorem, the
point-wise limit (if exists) of sequences x0,n(θ), q

I
0,n(θ, θ), and qN0,n(θ) is the unique

solution of P2. The proof of the uniqueness of the solution of P2 is by Lemma 5.
Finally note that proofs of Lemma 3, and 4 do not depend on Lemma 2.

B.3. Proof of Lemma 3
Proof. Fix x > 0. Let M = (x(·), qI(·), qN(·), tI(·, ·), tN(·)) be a ε−optimal mech-
anism for the problem P0, for an arbitrarily small ε > 0. It is without loss of
generality to assume that −qI(θ̂, θ), θ) + tI(θ̂, θ) = 0 for all θ̂ 6= θ. Denote

u(θ) = (1− x(θ))
(
−qN(θ)θ + tN(θ)

)
+ x(θ)

(
qI(θ) + tI(θ)

)
.

Define a mechanism M̃ = (x̃(·), q̃I(·), q̃N(·), t̃I(·), t̃N(·)) as follows. If x(θ) ≥ x,

(x̃(·), q̃I(·), q̃N(·), t̃I(·), t̃N(·)) = (x(·), qI(·), qN(·), tI(·), tN(·)).

If x(θ) < x, (q̃I(·), q̃N(·), t̃N(·)) = (qI(·), qN(·), tN(·)), x̃(θ) = x, and

t̃I(θ) = max

{
tI(θ),

u(θ)− (1− x)(−qN(θ)θ + tN(θ))− x(−qI(θ)θ + tI(θ)

x

}
.

By construction, M̃ satisfies obedience because M does. Moreover, the payoff to
the agent with type θ from reporting θ is weakly higher under M̃ than under M,
but weakly lower when reporting θ̂ 6= θ. Hence, M̃ is incentive compatible. The
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difference in the Principal’s payoff under M and M̃ is∫
x(θ)<x

(x− x(θ))
(
κ+ V (qN(θ))− V (qI(θ))− tN(θ)

)
− x(θ)tI(θ) + xt̃I(θ) dF

≤ x

(
κ+

∫
|V (qN(θ))− V (qI(θ))− tN(θ)| dF

)
+ x

∫
t̃I(θ)>tI(θ)

(
| − qI(θ)θ + tI(θ)|+ | − qN(θ)θ + tN(θ)|

)
dF + x

∫
t̃I(θ)=tI(θ)

|tI(θ)| dF

→ 0 as x → 0.

Since W0 ≥ Wx, the Lemma is shown.

B.4. Proof of Lemma 6
Proof. Throughout the proof, denote q(·) ≡ qN(·), Q(·) ≡ (1 − x(·))qN(·) and
y(θ) = 1− x(θ).
Recall the objective

max
q(·)≥0, 1≥x(·)≥x

∫
x(θ)

(
V (qFB(θ)− qFB(θ)θ − κ

)
+ (1− x(θ)) (V (q(θ))− q(θ)θ))

− sup
θ̂

(1− x(θ̂))q(θ̂)(θ̂ − θ) dF (θ),

and π(θ) = supθ̂(1 − x(θ̂))q(θ̂)(θ̂ − θ). For all θ and θ̂ define χ(θ̂, θ) = (1 −
x(θ̂))q(θ̂)(θ̂ − θ).

We divide the proof of the Lemma into several claims.

Claim 1. Suppose (y(·), q(·)) solve the optimization problem. Then Q(·) is (almost
everywhere) equal to a decreasing continuous function on {θ|Q(θ) > 0}.

Proof. The proof of the claim is divided into four steps.

1. Suppose the set {θ|∃θ′ > θ ∧Q(θ′) ≥ Q(θ) > 0} has positive measure.
Then (y(·), q(·)) are not optimal.
Fix θ, θ′ such that θ′ > θ ∧ Q(θ′) > Q(θ) > 0. By the last inequality,
y(θ) 6= 0. If q(θ) < qFB(θ), change q(θ) ; min{qFB(θ), Q(θ′)/y(θ)} > q(θ).
Then, by definition of θ, θ′, this change leaves supθ̂ Q(θ̂)(θ̂ − θ̃) unchanged
for all θ̃ but raises the objective point-wise. If Q(θ) = Q(θ′) one can
raise q(θ) to min{qFB(θ), Q(θ′)/y(θ) + 1/n} for an n ∈ N large enough
without affecting supθ̂ Q(θ̂)(θ̂ − θ̃). If q(θ) = qFB(θ), G(θ) > 0; moreover,
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Q(θ′) ≤ (1 − x)qFB(θ′) implies y(θ) < 1 − x. Hence, one can raise y(θ)
without affecting supθ̂ Q(θ̂)(θ̂ − θ̃) for any θ̃.
If there is a positive measure of such point, the objective increases strictly.

2. Q is almost everywhere equal to a decreasing (strictly decreasing when
positive) function Q̃ such that for all θ

sup
θ̂

Q(θ̂)(θ̂ − θ) = sup
θ̂

Q̃(θ̂)(θ̂ − θ).

Denote A = {θ|∀θ′ > θ : Q(θ′) < Q(θ)}. By Step 1, A has measure 1. Define
the function Q̃(·) by

Q̃(θ) =

{
Q(θ) θ ∈ A,

supθ′>θ,θ′∈A Q(θ′).

Note that Q̃ is well-defined because A has measure 1. It is straightforward
to see that Q̃(·) has the required properties.

3. Suppose Q(·) is decreasing. Then we may assume it is left-continuous.
Recall that decreasing functions have at most countably many discontinuity
points. For each θ ∈ [θ, θ] define a new function Q̃(θ) by

Q̃(θ) = lim sup
θ′→θ

Q(θ′).

Since Q(·) is decreasing, Q̃(·) is left-continuous. Moreover, the value of the
objective under Q(·) and Q̃(·) is the same, and Q(θ) = Q̃(θ) for almost all θ.
Henceforth, assume Q(·) is decreasing and left-continuous.

4. Suppose Q(·) is left-continuous, strictly decreasing when positive and has a
discontinuity. Then Q(·) is not optimal.
Let θ1 be a discontinuity point:

lim inf
θ′→θ1

Q(θ′) = lim
θ′→θ1+

Q(θ′) > 0.

Since there is a discontinuity at θ1, Q is strictly decreasing and left-continuous
there exists a ε > 0 such that for all δ > 0,

Q(θ1) ≥ Q(θ′) + ε
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for all θ′ ∈ (θ1, θ1 + δ). Note that for any θ ∈ [θ, θ], θ̂ ∈ (θ1, θ1 + δ)

Q(θ̂)(θ̂ − θ) ≤ (Q(θ1)− ε)(δ + θ1 − θ) ≤ Q(θ1)(θ1 − θ)

where the last inequality holds for all δ > 0 small enough. Note that, since
π(θ1) > 0 there exists a δ > 0 such that for all θ ∈ (θ1 − δ, θ1),

Q(θ1)(θ1 − θ) < π(θ1) < π(θ).

This implies that, raising Q(θ′) by ε/2 for all θ′ ∈ (θ1, θ1 + δ) does not affect

sup
θ̂

Q(θ̂)(θ̂ − θ)

for any θ provided δ is small enough. This change, however, increases the
objective, in contradiction to the optimality of Q. �

From now we consider optimal x(·), q(·) such that Q(·) is continuous and strictly
decreasing. Recall the definition of the correspondence

θ̂(θ) = argmax
θ̃∈[θ,θ]

(1− x(θ̃))q(θ̃)(θ̃ − θ).

Since Q(·) is a continuous function on [θ, θ], the correspondence is non-empty
valued.

Claim 2. θ̂(·) is upper hemicontinuous with nonempty and compact values.

Proof. This follows from Berge’s Maximum Theorem.�

Claim 3. Let θ′
< θ†. Then sup θ̂(θ′) ≤ inf θ̂(θ†).

Proof. Assume θ̌ ∈ θ̂(θ
′
), and ˇ̌θ ∈ θ̂(θ†). Thus

Q(θ̌)(θ̌ − θ
′
) ≥ Q(ˇ̌θ)(ˇ̌θ − θ

′
),

Q(ˇ̌θ)(ˇ̌θ − θ†) ≥ Q(θ̌)(θ̌ − θ†).

Therefore
(θ† − θ

′
)(Q(θ̌)−Q(ˇ̌θ)) ≥ 0.

Since Q(·) is strictly decreasing, θ̌ ≤ ˇ̌θ.�
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Claim 4. If θ
′
< θ†, and θ

′
, θ† ∈ θ̂(θ̌) for a type θ̌, then q(θ′′) = qFB(θ′′), and

x(θ′′) = x for all θ′′ ∈ (θ
′
, θ†).

Proof. By Lemma 3 we know θ̂(θ) = [inf θ̂(θ), sup θ̂(θ)]. The below definitions
will be useful throughout the proof. For γ̃ > 0, and type θ

J(γ̃) = [inf θ̂(θ̌) + γ̃, sup θ̂(θ̌)− γ̃];

χ(θ, γ̃) = sup
θ′′∈J(γ̃)

χ(θ′′, θ);

I(β, γ̃) = {θ|π(θ)− (1 + β)χ(θ, γ̃) ≤ 0}.

An admissible variation of q(θ′′) for θ′′ ∈ J(γ̃) is (1 + β)q(θ′′) for small enough
β > 0. A directional derivative of the objective for β > 0 gives us

lim
β→0+

∫
t∈J(γ̃)

(1− x(t))

(
∂V ((1 + β)q(t))

∂q(t)
q(t)− q(t)t

)
dF (t)

− lim
β→0+

∫
t∈I(β,γ̃)

(1 + β)χ(t, γ̃)− π(t)

β
dF (t) ≤ 0.

The above inequality is correct only if the above limits exist for each integral. We
will compute the above limit, hence it exists. We claim the last integral is zero in
the above inequality because

0 =

∫
t∈I(β,γ̃)

π(t)− π(t)

β
dF (t) ≤

∫
t∈I(β,γ̃)

(1 + β)χ(t, γ̃)− π(t)

β
dF (t)

≤
∫
t∈I(β,γ̃)

(1 + β)π(t)− π(t)

β
dF (t) =

∫
t∈I(β,γ̃)

π(t) dF (t).

If we show limβ→0+
∫
t∈I(β,γ̃) π(t) dF (t) = 0, then by the Squeeze Theorem we

conclude that limβ→0+
∫
t∈I(β,γ̃)

(1+β)χ(t,γ̃)−π(t)
β

dF (t) = 0. For this purpose we show
∩β>0I(β, γ̃) = limβ→0+ I(β, γ̃) = θ̌. First we know θ̌ ∈ limβ→0+ I(β, γ̃), since
π(θ̌) = Q(θ′′)(θ′′ − θ̌) for all θ′′ ∈ [inf θ̂(θ), sup θ̂(θ)]. Assume there exists θ̃ 6= θ̌
such that θ̃ ∈ limβ→0+ I(β, γ̃). Fix β > 0. This means that for all i ∈ N, there exists
θi such that π(θ̃) ≤ Q(θi)(θi− θ̃)(1+ β

i
), and θi ∈ J(γ̃). The sequence {θi}∞i=1 has a

subsequence with a convergence point, call it θ̊. Since β
i

converges to zero and Q(·)
is a continuous function, we will have π(θ̃) ≤ Q(θ̊)(θ̊ − θ̃). This is a contradiction
since θ̊ ∈ J(γ̃), and by Claim 3, J(γ̃)∩ θ̂(θ̃) = ∅. Therefore limβ→0+ I(β, γ̃) = θ̌ for
all γ̃ > 0. Since π(·) is bounded we can conclude limβ→0+

∫
t∈I(β,γ̃) π(t) dF (t) = 0.
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Finally the directional derivative becomes

lim
β→0+

∫
t∈J(γ̃)

(1− x(t))

(
∂V ((1 + β)q(t))

∂q(t)
q(t)− q(t)t

)
dF (t) ≤ 0,

or
∫
t∈J(γ̃)

(1− x(t))q(t)

(
∂V (q(t))

∂q(t)
− t

)
dF (t) ≤ 0.

The second inequality follows from Dominated Convergence since the integrand is
uniformly bounded from above. The same analysis applies to all intervals that are
strictly inside θ̂(θ̌), since γ̃ > 0 was arbitrary. So for all intervals I ⊂ θ̂(θ̌).∫

t∈I
(1− x(t))q(t)

(
∂V (q(t))

∂q(t)
− t

)
dF (t) ≤ 0.

We know V ′(q(t)) > t for all t such that q(t) < qFB(t). Therefore except mea-
sure zero points of θ̂(θ̌), we have q(t) = qFB(t). By an argument similar to the
one in the proof of part 3, Proposition 2 (which does not rely on Lemma 6), we
know if q(t) = qFB(t), then x(t) = x. Therefore for almost all t ∈ θ̂(θ̌), we have
q(t) = qFB(t), and x(t) = x. Since Q(·) is a continuous function, for all t ∈ θ̂(θ̌),
we have q(t) = qFB(t), and x(t) = x.�

Claim 5. Assume that there is no interval (θ′, θ′′) such that qFB(θ) = 1/(c1θ − c2)
for θ ∈ (θ′, θ′′) for positive constants c1 > 0, c2 ∈ [θ, θ]. Then θ̂(·) is single-valued
on {θ|π(θ) > 0}.

Proof. If θ′
, θ† ∈ θ̂(θ̌), then by Claim 4, we have π(θ̌) = (1− x)qFB(θ′′)(θ′′ − θ̌),

for all θ′′ ∈ (θ
′
, θ†). This means that qFB(θ′′) = π(θ̌)

(1−x)(θ′′−θ̌)
which implies that

1
qFB(θ′′)

= Cθ′′ + D where C = 1−x

π(θ̌)
, and D = −θ̌(1−x)

π(θ̌)
for all θ′′ ∈ (θ

′
, θ†), in

contradiction to our assumption. �

Claim 6. Let M be an optimal mechanism such that Q(·) is strictly decreasing
and continuous. Then Q(·) is differentiable for all θ̂ ∈ (θ̂(θ), θ†) where θ† =
min{θ′|Q(θ′) = 0}.

Proof. Fix a point θ̂ ∈ (θ̂(θ), θ†). Since Q(·) is strictly decreasing, it is almost
everywhere differentiable. Hence, there exist sequences (θLi )i, and (θRi )i such that
(θ̂(θLi ))i, and (θ̂(θRi ))i converge to θ̂ from the left and the right, respectively, and
Q(·) is differentiable at every point in the sequence. By definition of θ̂(·), necessary

viii



conditions for all for all i ∈ N are

Q′(θ̂(θRi ))(θ̂(θ
R
i )− θRi ) +Q(θ̂(θRi )) = 0,

Q′(θ̂(θLi ))(θ̂(θ
L
i )− θLi ) +Q(θ̂(θLi )) = 0.

Therefore

Q′(θ̂(θLi )) =
−Q(θ̂(θLi ))

(θ̂(θLi )− θLi )
, and Q′(θ̂(θRi )) =

−Q(θ̂(θRi ))

(θ̂(θRi )− θRi )
.

Since Q(·) and θ̂(·) is a continuous function, the right-hand side of both expres-
sions converges so that

Q′(θ̂−) =
−Q(θ̂)

θ̂ − θ̂−1(θ̂)
= Q′(θ̂+).

Thus Q(·) is differentiable at θ̂.�

This ends the proof of Lemma 6.

B.5. Proof of Lemma 8
Proof. By definition

θ̂(θ) = argmax
θ̃∈[θ,θ]

(1− x(θ̃))q(θ̃)(θ̃ − θ).

By Lemma 6, θ̂(·) is strictly increasing. Consequently, the solution of the above
optimization problem cannot be a corner solution. Writing the first order condition
for θ such that θ̂(θ) ≤ θ2, and using the fact that x(·) for a neighborhood of θ̂(θ)
is constant, give us for q(·) = qN(·)

(q)
′
(θ̂(θ))× (θ̂(θ)− θ) + q(θ̂(θ)) = 0.
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B.6. Proof of Lemma 4
Proof. Recall that we can restrict ourselves to solutions such that tN(θ) = θqN(θ),
qI(θ) = qFB(θ) and

x(θ)tI(θ) = x(θ)qI(θ) + sup
θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ).

Hence, we can write problem Px equivalently as

max
x(·),qN (·)

∫ θ

θ

x(θ)
(
V (qFB(θ))− θqFB(θ)− κ

)
+ (1− x(θ))

(
V (qN(θ))− θqN(θ)

)
− sup

θ̂

(1− x(θ̂))qN(θ̂)(θ̂ − θ) dF (θ)

subject to
x ≤ x(θ̂) ≤ 1.

Using the notation y(θ) = (1− x(θ))(1− x), we see the problem is equivalent to

max
y(·),qN (·)

∫ θ

θ

y(θ)

1− x

(
V (qN(θ))− θqN(θ)−

(
V (qFB(θ))− θqFB(θ)− κ

))
− sup

θ̂

y(θ̂)

1− x
qN(θ̂)(θ̂ − θ) dF (θ)

subject to
0 ≤ y(θ̂) ≤ 1.

The claim follows immediately.
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B.7. Proof of Lemma 5
Proof. Throughout we dispose of a suitable set of measure 0. Recall that we can
solve the equivalent problem

max
y(·),Q(·)

∫ θ

θ

y(θ)
(
V

(
Q(θ)

y(θ)

)
− θ

Q(θ)

y(θ)
−
(
V (qFB(θ))− θqFB(θ)− κ

))
− sup

θ̂

Q(θ̂)(θ̂ − θ) dF (θ)

subject to
0 ≤ y(θ) ≤ 1− x.

where y(θ) = 1− x(θ) and Q(θ) = y(θ)qN(θ).
For two functions y : [θ, θ] → [0, 1− x], Q : [θ, θ] → R+, denote

G(y,Q) =

∫ θ

θ

y(θ)
(
V

(
Q(θ)

y(θ)

)
− θ

Q(θ)

y(θ)
−
(
V (qFB(θ))− θqFB(θ)− κ

))
− sup

θ̂

Q(θ̂)(θ̂ − θ) dF (θ);

g(y,Q)(θ) = y(θ)
(
V

(
Q(θ)

y(θ)

)
− θ

Q(θ)

y(θ)
−
(
V (qFB(θ))− θqFB(θ)− κ

))
− sup

θ̂

Q(θ̂)(θ̂ − θ)

(y,Q) 7→ g(y,Q)(θ) is concave for every θ and so is (y,QN) 7→
∫
g(y,Q)(θ) dF (θ).

Let (y1(·), Q1(·)), (y2(·), Q2(·)) be two solutions to the maximization problem.
Let α ∈ (0, 1), yα = αy1 + (1− α)y2, Qα = αQ1 + (1− α)Q2.

Suppose y1(θ) = y2(θ), but Q1(θ) 6= Q2(θ) for a positive mass of points θ. By
strict concavity of V (·), G(yα, Qα) > G(y1, Q1), a contradiction.

Suppose y1(θ) 6= y2(θ), but Q1(θ) = Q2(θ) . By strict concavity of V (·) the map
h 7→ hV (1/h) is strictly concave. Hence, G(yα, Qα) > G(y1, Q1), a contradiction.

Suppose y1(θ) < y2(θ), Q1(θ) 6= Q2(θ) but Q1(θ)/y1(θ) 6= Q2(θ)/y2(θ). By
Proposition 2, part 3, Q1(θ)/y1(θ) satisfies equation (3). Moreover, for each α ∈
(0, 1) , Qα(θ)/yα(θ) needs to satisfy equation (3), in contradiction to Q1(θ)/y1(θ) 6=
Q2(θ)/y2(θ).

Hence, we conclude that qN1 (θ) = Q1(θ)/y1(θ) = Q2(θ)/y2(θ) = qN2 (θ) for almost
all θ.

Suppose qN(θ) 6= q(θ) where q(θ) solves equation (3). Then, by the same
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argument as in the proof of Proposition 2, part 3, y1(θ) = y2(θ) = 1 − x or
y1(θ) = y2(θ) = 0. Hence, on {y1 6= y2}, qN(θ) solves equation (3).

By Claim 1, Q1(·) and Q2(·) are continuous and strictly decreasing when positive,
and, without loss, left-continuous if they have a discontinuity at inf{θ|Qi(θ) = 0}.
Assume toward a contradiction that Q1 6= Q2. Note that, for almost all θ′ ∈
{Q1 6= Q2} there exist a θi such that θ′ ∈ argmaxθ̂ Qi(θ̂)(θ̂ − θi); otherwise, an
argument similar to the proof of Claim 1 shows that Qi was not optimal. Denote
θ̌ = inf{θ|Q1(θ) 6= Q2(θ)}. Since Qi(·) is decreasing and continuous, there exists
δ > 0 such that for θ ∈ (θ̌, θ̌ + δ), Q1(θ) > Q2(θ) and Q′

1(θ) > Q′
2(θ) (almost

everywhere).
Let θ be such that (θ̌, θ̌ + δ) ⊃ argmaxθ̂ Qi(θ̂)(θ̂ − θ) for i = 1, 2. For such a

type θ,

sup
θ̂

(αQ1(θ̂) + (1− α)Q2(θ̂))(θ̂ − θ) < α sup
θ̂

Q1(θ̂)(θ̂ − θ) + (1− α) sup
θ̂

Q2(θ̂)(θ̂ − θ).

If {y1 6= y2} has positive measure, there is a positive mass of such types; a
contradiction to the optimality of y1 and y2 .

B.8. Proof of Lemma 9
Proof. Let

θ̃ = min{θ|π(θ) = 0}.

Step 1: if κ > 0, then full inspection, x(θ) = 1 for all θ, is not optimal. Recall
the objective

max
q(·)≥0, 1≥x(·)≥x

∫
x(θ)

(
V (qFB(θ)− qFB(θ)θ − κ

)
+ (1− x(θ)) (V (q(θ))− q(θ)θ))

− sup
θ̂

(1− x(θ̂))q(θ̂)(θ̂ − θ) dF (θ).

Set x(θ) = x for θ ≤ θ̌, and x(θ) = 1 for θ > θ̌. Set q(θ) = qFB(θ) for all θ. We
show there exists θ̌ > θ such that, the value of the policy that we defined above is

xii



greater than full inspection. For this purpose, we should show∫ θ

θ

(
V (qFB(θ)− qFB(θ)θ

)
dF (θ) +

∫ θ̌

θ

−xκ dF (θ)−
∫ θ

θ̌

κ dF (θ)

−
∫ θ̌

θ

sup
θ̂∈[θ,θ̌]

(1− x)qFB(θ̂)(θ̂ − θ) dF (θ)

>

∫ θ

θ

(
V (qFB(θ)− qFB(θ)θ

)
dF (θ)− κ.

Or ∫ θ̌

θ

κ− xκ dF (θ)−
∫ θ̌

θ

sup
θ̂∈[θ,θ̌]

(1− x)qFB(θ̂)(θ̂ − θ) dF (θ) > 0.

Or

(1− x)

∫ θ̌

θ

(
κ− sup

θ̂∈[θ,θ̌]
qFB(θ̂)(θ̂ − θ)

)
dF (θ) > 0.

By sending θ̌ to θ, the inside of the integral becomes positive for a θ̌ > θ. Therefore
there exists θ̌ such that the above inequality holds.

Step 2: if κ > 0, then θ̃ = θ. Define x[θ′,θ], and q[θ′,θ], the solution to the problem
P[θ′,θ], and define the value of this problem W[θ′,θ], where P[θ′,θ] is

max
x(·)∈[x,1],q(·)

∫ θ

θ′
x(θ)

(
V (qFB(θ)− qFB(θ)θ − κ

)
+ (1− x(θ))

(
V (q(θ))− q(θ)θ

)
− sup

θ̂

(1− x(θ̂))q(θ̂)(θ̂ − θ) dF (θ),

and θ′ ∈ [θ, θ]. We show if θ̃ < θ, then

W[θ̃,θ] =

∫ θ

θ̃

(
V (qFB(θ)− qFB(θ)θ − κ

)
dF (θ).

The above equality means that the solution of the problem P[θ̃,θ] is full inspection.
This is a contradiction to the first step.

Toward a contradiction assume θ̃ < θ. The solution of the problem P[θ,θ] is
x[θ,θ], and q[θ,θ] which by abuse of notation we say x, and q. Since the inspection
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probability is equal to 1 for types above θ̃, we can say the solution of P[θ,θ] for
θ ≥ θ̃ is x(θ) = 1, and q̂(θ), where q̂(θ) can be any function (since it is irrelevant).
So we can say the solution of the problem P[θ,θ] is x(θ), q(θ) for θ < θ̃, and for
θ ≥ θ̃, is 1− β(1− x[θ̃,θ](θ)), q[θ̃,θ](θ) when β = 0. Define

x̌(θ, β) =

{
x(θ) θ < θ̃,

1− β(1− x[θ̃,θ](θ)) θ ≥ θ̃,
q̌N(θ) =

{
q(θ) θ < θ̃,

q[θ̃,θ](θ) θ ≥ θ̃.

Define W[θ,θ](β) to be

∫ θ

θ

x̌(θ, β)
(
V (qFB(θ)− qFB(θ)θ − κ

)
+ (1− x̌(θ, β))

(
V (q̌N(θ))− q̌N(θ)θ

)
− sup

θ̂

(1− x̌(θ̂, β))q̌N(θ̂)(θ̂ − θ) dF (θ).

Therefore W[θ,θ](β = 0) = W[θ,θ]. We will show

lim
β→0+

W[θ,θ](β)−W[θ,θ](0)

β

exists and we will compute it. Note that if the limit exists, by optimality of x and
q we know

lim
β→0+

W[θ,θ](β)−W[θ,θ](0)

β
≤ 0.

Define χ(θ) = maxθ̂∈[θ̃,θ] (1 − x[θ̃,θ](θ̂))q
N
[θ̃,θ]

(θ̂)(θ̂ − θ). Define the set I(β) = {θ ∈
[θ, θ̃]|π(θ) ≤ βχ(θ)}. Compute W[θ,θ](β)

W[θ,θ](β) =

∫ θ

θ

(
V (qFB(θ)− qFB(θ)θ − κ

)
dF (θ)

+

∫ θ̃

θ

(1− x(t))
(
V (q(θ))− θq(θ)−

(
V (qFB(θ)− qFB(θ)θ − κ

))
dF (θ)

+

∫ θ

θ̃

β(1− x[θ̃,θ](t))
(
V (qN

[θ̃,θ]
(θ))− θqN

[θ̃,θ]
(θ)−

(
V (qFB(θ)− qFB(θ)θ − κ

))
dF (θ)

−
∫ θ

θ̃

βχ(θ) dF (θ)−
∫ θ̃

θ

max (βχ(θ), π(θ)) dF (θ).
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Therefore W[θ,θ](β)−W[θ,θ](0) equals

=

∫ θ

θ̃

β(1− x[θ̃,θ](t))
(
V (qN

[θ̃,θ]
(θ))− θqN

[θ̃,θ]
(θ)−

(
V (qFB(θ)− qFB(θ)θ − κ

))
dF (θ)

−
∫ θ

θ̃

βχ(θ) dF (θ)−
∫ θ̃

θ

max (0, βχ(θ)− π(θ)) dF (θ).

First we show

lim
β→0+

∫ θ̃

θ

max (0, βχ(θ)− π(θ))

β
dF (θ) = 0.

The reason is

0 ≤
∫ θ̃

θ

max (0, βχ(θ)− π(θ))

β
dF (θ) =

∫
I(β)

βχ(θ)− π(θ)

β
dF (θ)

≤
∫
I(β)

χ(θ) dF (θ).

Since ∩β>0I(β) = limβ→0+ I(β) = θ̃, and χ(θ) is abounded above, then
limβ→0+

∫
I(β)

χ(θ) dF (θ) = 0. Therefore limβ→0+
∫ θ̃

θ
max(0,βχ(θ)−π(θ))

β
dF (θ) = 0.

Thus limβ→0+
W[θ,θ](β)−W[θ,θ](0)

β
is equal to

=

∫ θ

θ̃

(1− x[θ̃,θ](t))
(
V (qN

[θ̃,θ]
(θ))− θqN

[θ̃,θ]
(θ)−

(
V (qFB(θ)− qFB(θ)θ − κ

))
dF (θ)

−
∫ θ

θ̃

χ(θ) dF (θ) = W[θ̃,θ] −
∫ θ

θ̃

(
V (qFB(θ)− qFB(θ)θ − κ

)
dF (θ) ≤ 0

Note that by the Dominated convergence theorem, we can transfer the limit
inside of the above integrals since the inside is bounded above. We know W[θ̃,θ] −∫ θ

θ̃

(
V (qFB(θ) − qFB(θ)θ − κ

)
dF (θ) ≥ 0 since full inspection is always feasible.

Therefore

W[θ̃,θ] =

∫ θ

θ̃

(
V (qFB(θ)− qFB(θ)θ − κ

)
dF (θ).

A contradiction.
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B.9. Proof of Lemma 10
Proof. The existence of the threshold θ1 < θ follows from Proposition 2, part 1.
Uniqueness of the threshold θ1 follows from Lemma 5 and the characterization in
part 2 of Proposition 2.

First, we show that θ1 = θ̂(θ). Suppose that θ1 > θ̂(θ). By the first part of
Proposition 2, qN(θ′) = qFB(θ′) for θ′ ∈ (θ̂(θ), θ1). Fix such a θ′ and let θ satisfy
θ̂(θ) = θ′. By Lemma 7, θ̂(θ) = θ = θ′. This implies that π(θ) = 0 and, since π(·)
is decreasing, π(θ†) = 0 for all θ† ∈ [θ′, θ]. The later requires (1−x(θ†))qN(θ†) = 0,
in contradiction to Lemma 9.
Suppose that θ1 < θ̂(θ) and let θ ∈ (θ1, θ̂(θ)). By Proposition 2, qN(θ) < qFB(θ).
Since π(θ) > (1 − x(θ))(θ − θ′) for all θ′, an infinitesimal increase in qN(θ) does
not affect information rents. However, this change raises the value of the ??, a
contradiction to the optimality of the mechanism. Consequently, θ̂(θ) = θ1.

Define θ̃2 = min{θ, inf{θ|x(θ) > x}}. Denote θ2 the unique threshold defined
by (5). We show that θ2 = θ̃2. Observe that x(θ) = x and the quantity without
inspection equals qN(θ) = q1(θ) for θ ∈ (θ1, θ̃2], according to Lemma 8.

Suppose θ̃2 > θ2. Because q1(·), q2(·) are continuous, there is a positive mass of
types θ ∈ (θ2, θ̃2) with qN(θ) = q1(θ) < q2(θ) and x(θ) = x. A variational argument
similar to the one in A.4, part 3, shows that qN(θ) < q2(θ) requires x(θ) = 1 in
any optimal mechanism, a contradiction.

Suppose θ2 > θ̃2. Then x(θ) > x for θ > θ2 by the definition of θ̃2 and the
hypothesis that the inspection probability is weakly increasing. Moreover, x(θ) < 1
by Lemma 9. Part 3 of Proposition 2 implies that qN(θ) = q2(θ) for θ > θ̃2.
Integration of (2) yields∫

θ∈[θ2,θ]
(1− x(θ))q2(θ)

(
V

′
(q2(θ))− θ

)
dF (θ) =

∫
θ̂(θ)∈[θ2,θ]

π(θ) dF (θ).

Therefore the Principal’s payoff in the reduced problem equals∫ θ̃2

θ

(1− x)
(
V (q1(θ))− q1(θ)V

′
(q1(θ))−

(
V (qFB(θ))− qFB(θ)θ − κ

))
dF (θ)

+ Eθ

[
V (qFB(θ))− qFB(θ)θ − κ

]
≡ Pθ̃2

.

Now consider an alternative inspection policy such that x(θ) = x for all θ ≤ θ2.
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The payoff in the reduced problem under this inspection policy is

Pθ2 ≡
∫ θ2

θ

(1− x)
(
V (q1(θ))− θV

′
(q1(θ))−

(
V (qFB(θ))− qFB(θ)θ − κ

))
dF (θ)

+Eθ

[
V (qFB(θ))− qFB(θ)θ − κ

]
.

Since θ2 > θ̃2 and

V (q1(θ))− θV
′
(q1(θ))−

(
V (qFB(θ))− qFB(θ)θ − κ

)
≥ 0,

Pθ2 ≥ Pθ̃2
. Since the original inspection probability was optimal, we conclude

Pθ̃2
= Pθ2 , which implies V (q1(θ))− θV

′
(q1(θ))−

(
V (qFB(θ))− qFB(θ)θ − κ

)
= 0

almost everywhere on (θ̃2, θ2). This furthermore implies that the inspection policy
x(θ) remains constant at x on the interval (θ̃2, θ2) in the initial inspection policy,
in contradiction to the definition of θ̃2.

By definition of θ̃2 and the hypothesis that the inspection probability is increasing,
Proposition 2, part 3, implies that qN(θ) is given by (3) on (θ2, θ]. Moreover,
x(θ) = x for θ ∈ (θ1, θ2], and the quantity without inspection is given as in Lemma
8 with the boundary conditions θ̂(θ) = θ1 and, by continuity, qN(θ1) = qFB(θ1);
that is, qN(θ) = q1(θ) on (θ1, θ2]. The statements regarding the probability of
inspection follow from Proposition 2 and the discussion at the end of Section
3.5.

B.10. Computing the inspection probability
Let q∗(·) be the solution to equation (3). Define y(θ) = 1− x(θ). By the first

order condition, we know

− d ln(y(θ̂))

dθ̂
=

∂ ln
(
q∗(θ̂)(θ̂ − θ)

)
∂ θ̂

.

Therefore

− ln(y(θ))

∣∣∣∣θ
t

=

∫ θ

t

∂ ln
(
q∗(θ̂)(θ̂ − θ)

)
∂ θ̂

dθ̂ =

∫ θ

t

∂ ln
(
q∗(θ̂)

)
∂ θ̂

+
∂ ln(θ̂ − θ)

∂ θ̂

 dθ̂

= ln(q∗(θ̂))

∣∣∣∣θ
t

+

∫ θ̂−1(θ)

θ̂−1(t)

(
1

θ̂(θ)− θ

)
θ̂
′
(θ) dθ
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Using the differential equation for θ̂(θ), we know

f(θ)(
V ′(qN(θ̂(θ)))− θ̂(θ)

)
f(θ̂(θ))

=
θ̂
′
(θ)

θ̂(θ)− θ
.

Therefore

− ln(y(θ))

∣∣∣∣θ
t

= ln(q∗(θ̂))

∣∣∣∣θ
t

+

∫ θ̂−1(θ)

θ̂−1(t)

f(θ)(
V ′(qN(θ̂(θ)))− θ̂(θ)

)
f(θ̂(θ))

dθ.

Rewriting, for t ≤ θ we have

y(θ) = exp

−
∫ θ

t

∂ ln
(
q∗(θ̂)(θ̂ − θ)

)
∂ θ̂

∣∣∣∣
θ̂(θ)=θ

dθ̂

 y(t).
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