Constructing Fan Charts from the Ragged Edge of SPF Forecasts

Todd E. Clark ¹ Gergely Ganics ² Elmar Mertens ³

 $^1{\rm Federal}$ Reserve Bank of Cleveland, $^2{\rm Banco}$ de España, $^3{\rm Deutsche}$ Bundesbank

The results presented here do not necessarily represent the views of Federal Reserve Bank of Cleveland, the Federal Reserve System, the Banco de España, the Deutsche Bundesbank, or the Eurosystem

August 2024

RESEARCH AGENDA

Setup

We observe point forecasts from the SPF (or a similar source) for fixed horizons and fixed events and for a given set of forecast horizons

RESEARCH AGENDA

Setup

We observe point forecasts from the SPF (or a similar source) for fixed horizons and fixed events

and for a given set of forecast horizons

Problem

How to construct fan charts

i.e. term structures of expectations and uncertainty

that are consistent with the SPF?

... by modeling the distribution of SPF forecast errors and filling in missing values

TERM STRUCTURE OF SPF-CONSISTENT FORECASTS

$$egin{aligned} Y_t \equiv F_t egin{bmatrix} y_{t-1} \ y_t \ y_{t+1} \ dots \ y_{t+h} \ dots \ y_{t+h} \ dots \ y_{t+H} \end{bmatrix} \end{aligned}$$

Details:

- SPF-consistent means observed or imputed from the SPF
- h denotes a quarterly horizon
- Lagged outcome known to SPF: $y_{t-1} = F_t y_{t-1}$
- Henceforth: y_t is a scalar outcome

DATA: U.S. SPF

Throughout, we look at point forecasts of the average respondent

Fixed-horizon forecasts

Predictions for quarterly outcomes, y_t :

 $F_t y_{t+h}$ for h = 0, 1, 2, 3, 4

Fixed-event forecasts

Predictions for calendar-year outcomes, \bar{y}_t , $F_t \bar{y}_{t+h}$ for years 1 to 3 ahead "fixed-event" forecast horizon shifts during the year: if t is in Q1: h = 7, 11, 15if t is in Q2: h = 6, 10, 14

etc.

Time-varying SPF coverage of different variables and horizons

TERM STRUCTURE OF SPF-CONSISTENT FORECASTS

$$egin{aligned} Y_t \equiv F_t egin{bmatrix} y_{t-1} \ y_t \ y_{t+1} \ dots \ y_{t+h} \ dots \ y_{t+h} \ dots \ y_{t+H} \end{bmatrix} \end{aligned}$$

Our model produces:

- **1** term structure Y_t
- ② uncertainty of y_{t+h} around $F_t y_{t+h}$

TERM STRUCTURE OF SPF-CONSISTENT FORECASTS

$$Y_t \equiv F_t egin{bmatrix} y_{t-1} \ y_t \ y_{t+1} \ dots \ y_{t+h} \ dots \ y_{t+H} \end{bmatrix}, \qquad \eta_t \equiv (F_t - F_{t-1}) egin{bmatrix} y_{t-1} \ y_t \ y_{t+1} \ dots \ y_{t+h} \ dots \ y_{t+h} \ dots \ y_{t+H} \end{bmatrix}$$

Our model produces:

- **1** term structure Y_t
- **2** uncertainty of y_{t+h} around $F_t y_{t+h}$
- **3** forecast updates η_t

APPLICATIONS

Supplement judgmental forecasts w/missing elements

- Example: FOMC's Summary of Economic Projections
- SEP fan charts combine policymaker point forecasts, with model-based measure of uncertainty

APPLICATIONS

Supplement judgmental forecasts w/missing elements

- Example: FOMC's Summary of Economic Projections
- SEP fan charts combine policymaker point forecasts, with model-based measure of uncertainty

Measure reactions of SPF forecasts to shocks

How do economic shocks shape forecast updates η_t ? (aka "SPF-consistent impulse responses")

RELATED LITERATURE

Survey uncertainty based on past forecast errors

- Reifschneider & Tulip (2007/19), Clark, McCracken & Mertens (2020)
- Lahiri & Sheng (2010), Knüppel (2014), Jo & Sekkel (2019)
- Adams, Adrian, Boyarchenko, & Giannone (2021)

Survey forecasts: term structures, densities and fixed events

- Patton & Timmermann (2011), Kozicki & Tinsley (2012)
- Aruoba (2020), Crump, Eusepi, Moench, & Preston (2022)
- Dovern, Fritsche & Slacalek (2012), Ganics, Rossi & Sekhposyan (2019)
- Bassetti, Casarin, & Del Negro (2022), Cakmakli & Demircan (2022)

Efficiency and calibration of survey forecasts

- Croushore (2010,2023), Faust & Wright (2009), Clements (2018)
- Coibion & Gorodnichenko (2015), Mertens & Nason (2020)
- Andrade & LeBihan (2013), Fuhrer (2017), Bracha & Tang (2022)
- Hajdini and Kurmann (2022), Bianchi, Ludvigson & Ma (2022), Eva & Winkler (2023)
- Angeletos, Huo, and Sastry (2021), Broer & Kohlhas (2023), Farmer, Nakamura & Steinsson (2024)

See also Clark-Mertens handbook chapter (Edward-Elgar, forth.)

AGENDA

1 State space model of SPF forecasts and outcomes

- **2** Term structures of expectations and uncertainty
- **Biased or unbiased SPF?**

AGENDA

1 State space model of SPF forecasts and outcomes

- **2** Term structures of expectations and uncertainty
- **Biased or unbiased SPF?**
- Conclusions

() Map observed data from SPF and realized series, Z_t , into latent state vector of fixed-horizon forecasts, Y_t :

$$Z_t = C_t \; Y_t$$

with C_t known (based on data definitions)

• Map observed data from SPF and realized series, Z_t , into latent state vector of fixed-horizon forecasts, Y_t :

 $Z_t = C_t Y_t + n_t$

with C_t known (based on data definitions)

2 Consider to add measurement error n_t or not?

• Map observed data from SPF and realized series, Z_t , into latent state vector of fixed-horizon forecasts, Y_t :

$$Z_t = C_t \; Y_t + n_t$$

with C_t known (based on data definitions)

Oconsider to add measurement error n_t or not?
Use accounting identity for forecast errors

$$Y_t = \Psi \; Y_{t-1} + \eta_t$$

with Ψ known, and $H
ightarrow\infty$

• Map observed data from SPF and realized series, Z_t , into latent state vector of fixed-horizon forecasts, Y_t :

$$Z_t = C_t \; Y_t + n_t$$

with C_t known (based on data definitions)

Q Consider to add measurement error n_t or not?
Q Use accounting identity for forecast errors

$$Y_t = \Psi \; Y_{t-1} + \eta_t$$

with Ψ known, and $H
ightarrow \infty$

4 For finite H, assume flat term structure beyond H

• Map observed data from SPF and realized series, Z_t , into latent state vector of fixed-horizon forecasts, Y_t :

$$Z_t = C_t \; Y_t + n_t$$

with C_t known (based on data definitions)

Oconsider to add measurement error n_t or not?
Use accounting identity for forecast errors

$$Y_t = \Psi \ Y_{t-1} + \eta_t$$

with Ψ known, and $H
ightarrow\infty$

- **4** For finite H, assume flat term structure beyond H
- **\bigcirc** Specify DGP for η_t
 - a) In general: Bias in SPF and persistence in $\eta_t \sim$ VAR
 - b) If SPF unbiased: $F_t = E_t$ and $E_{t-1}\eta_t = 0$

MEASUREMENT EQUATIONS

Measurement vector with two types of SPF data

- $Z_{q,t}$: Quarterly fixed-horizon forecasts, including y_{t-1}
- Z_{a,t}: Fixed-event, calendar-year forecasts

MEASUREMENT EQUATIONS

Measurement vector with two types of SPF data

- $Z_{q,t}$: Quarterly fixed-horizon forecasts, including y_{t-1}
- Z_{a,t}: Fixed-event, calendar-year forecasts

Measurement equations

$$Z_t = egin{bmatrix} Z_{q,t} \ Z_{a,t} \end{bmatrix} = egin{bmatrix} C_{q,t} \ C_{a,t} \end{bmatrix} Y_t$$

- $C_{q,t}$ and $C_{a,t}$ are known from SPF's data definitions
- Model can match any SPF data w/o need for measurement error

MEASUREMENT EQUATIONS

Measurement vector with two types of SPF data

- $Z_{q,t}$: Quarterly fixed-horizon forecasts, including y_{t-1}
- Z_{a,t}: Fixed-event, calendar-year forecasts

Measurement equations

$$Z_t = egin{bmatrix} Z_{q,t} \ Z_{a,t} \end{bmatrix} = egin{bmatrix} C_{q,t} \ C_{a,t} \end{bmatrix} Y_t + egin{bmatrix} 0 \ n_t \end{bmatrix}$$

- $C_{q,t}$ and $C_{a,t}$ are known from SPF's data definitions
- Model can match any SPF data w/o need for measurement error
- Horseshoe models for n_t to catch occasional discrepancies between $Z_{q,t}$ and $Z_{a,t}$

ESTIMATION SETUP

- Model applied separately for each outcome variable (RGDP, PGDP, CPI, UNRATE)
- Estimated with MCMC over growing samples of real-time data and SPF that start in 1968Q3 (FRB Phil.'s Real-Time Data Set for Macroeconomists)
- Generate out-of-sample predictive densities from 1990Q1 onwards
- Predictions evaluated against 2nd release outcomes for RGDP and PGDP and latest data for CPI, UNRATE

AGENDA

State space model of SPF forecasts and outcomes

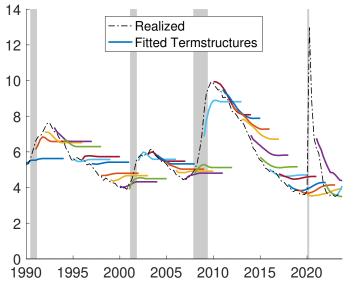
2 Term structures of expectations and uncertainty

Biased or unbiased SPF?

4 Conclusions

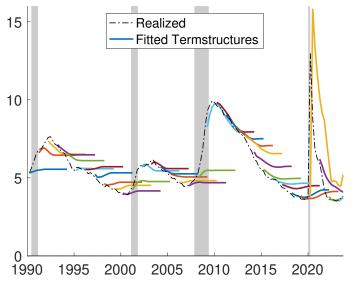
AGENDA

State space model of SPF forecasts and outcomes


Term structures of expectations and uncertainty Fan charts and term structures Comparison against the SEP fan charts

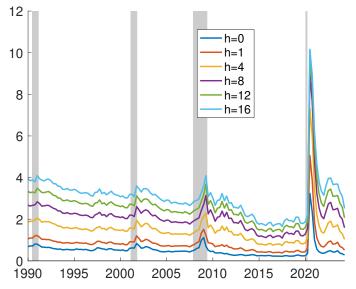
Conclusions

TERM STRUCTURE OF FORECASTS


Unemployment rate: Quarterly SPF-consistent forecasts, MDS model

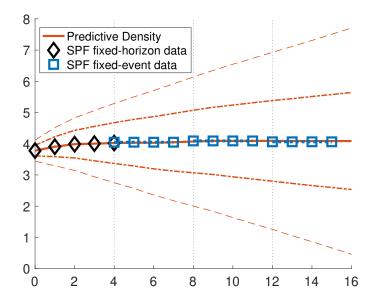
Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.

TERM STRUCTURE OF FORECASTS


Unemployment rate: Quarterly SPF-consistent forecasts, MDS model

Showing only forecast origins in Q2. Out-of-sample forecasts. NBER recessions shaded.

TERM STRUCTURES OF UNCERTAINTY


Unemployment rate: Width of predictive 68% bands, MDS model

Out-of-sample forecasts. NBER recessions shaded.

QUARTERLY SPF-CONSISTENT FAN CHARTS

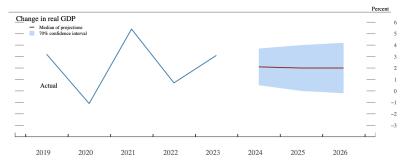
Unemployment rate, MDS model

By construction, mid points of fan charts match observed SPF (up to measurement error in case of annual forecasts) Term structure of uncertainty steadily rises with horizon (for UNRATE) and displays cyclical variations over time

AGENDA

State space model of SPF forecasts and outcomes

2 Term structures of expectations and uncertainty


- Fan charts and term structures
- Comparison against the SEP fan charts

3 Biased or unbiased SPF?

Conclusions

FOMC "FAN CHARTS" From the "Summary of Economic Projections" (SEP), real GDP growth March 2024

Median projection and confidence interval based on historical forecast errors

- "Fan charts" published since March 2017
- Uncertainty ranges tabulated since first SEP in Oct 2007
- Bands: +/-1 historical RMSE of professional forecasters

Figure published with SEP, confidence intervals based on Reifschneider & Tulip (2007/17 FEDS, 2019 IJF)

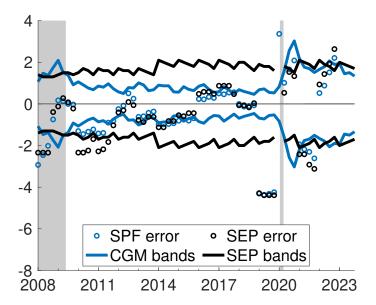
COMPARISON OF OUR MODEL BANDS AGAINST SEP

We do the following:

- From SEP: mid points and historical RMSE bands (Reifschneider & Tulip, 2007/19)
- From model: SPF-consistent forecasts and 68% bands
- Construct forecast errors from SEP and model
- Collect the above for every quarter since 2008 (no SEP for 2020Q1)

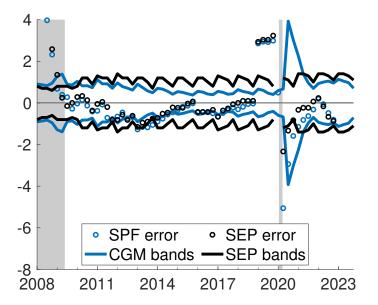
Goal:

Which error bands have better coverage?

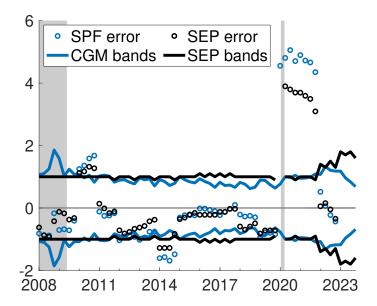

(out of sample)

SEP VS MODEL: ERROR BANDS AND REALIZED ERRORS Real GDP growth: next-year forecast

Note: 68% bands. Out-of-sample forecasts.


SEP VS MODEL: ERROR BANDS AND REALIZED ERRORS Real GDP growth: next-year forecast

Note: 68% bands. Out-of-sample forecasts.


SEP VS MODEL: ERROR BANDS AND REALIZED ERRORS

Unemployment rate: next-year forecast

Note: 68% bands. Out-of-sample forecasts.

SEP VS MODEL: ERROR BANDS AND REALIZED ERRORS Inflation: next-year forecast

Note: 68% bands. Out-of-sample forecasts. SEP for PCI, SPF for CPI inflation.

Similar forecast error patterns from SPF and SEP Fixed events: clustering of errors and sawtooth bands SEP bands typically wider & w/too much coverage

AGENDA

State space model of SPF forecasts and outcomes

- **2** Term structures of expectations and uncertainty
- **③** Biased or unbiased SPF?

4 Conclusions

We find

significant predictability of SPF forecast errors in sample, which is, however, hard to exploit out of sample

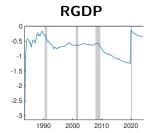
AGENDA

State space model of SPF forecasts and outcomes

- 2 Term structures of expectations and uncertainty
- Biased or unbiased SPF?
 Out-of-sample predictions for SPF and outcomes
 Predictable-error regressions implied by VAR model

RELATIVE FORECAST ACCURACY MDS VS VAR MODEL

Values above one indicate that VAR does worse

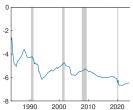

		RMS	SE		CRPS			
h	RGDP	UNRATE	PGDP	CPI	RGDP	UNRATE	PGDP	CPI
0	1.01	1.12	0.99	0.91**	1.02	0.95	1.00	0.93***
1	1.04	1.05	1.02	1.01	1.01	1.00	1.00	1.01
2	0.99	1.07	1.01	1.01	0.99	1.01	0.99	1.01
3	1.00	1.04	1.02	1.01	1.01	1.00	1.00	1.01
4	1.00	1.02	1.03	1.01	1.00	1.00	1.00	1.01
5	1.00	1.02	1.04	1.01	1.00	1.01	1.01	1.01
6	1.00	1.02	1.04	1.01	1.01	1.02	1.02	1.01
7	1.00	1.02	1.04	1.01	0.99	1.03	1.02	1.01
8	1.00	1.02^{*}	1.04	1.01	1.00	1.03	1.02	1.01
9	1.00	1.03^{*}	1.04	1.01	1.00	1.04	1.03	1.01
10	1.00	1.03	1.04	1.01	1.00	1.04	1.03	1.02
11	1.00	1.02	1.04	1.01	1.00	1.03	1.03	1.02
12	1.00	1.01	1.04	1.01	1.00	1.02	1.03	1.01
13	1.00	1.00	1.04	1.01	1.00	1.00	1.03	1.01
14	1.00	0.99	1.04	1.01	1.01	0.99	1.04	1.01
15	1.00	1.00	1.04	1.01	1.01	1.00	1.03	1.01
16	1.00	1.00	1.04	1.00	1.01	0.99	1.03	1.01

Note: Relative RMSE and CRPS of VAR model (with MDS in denominator). Quarterly forecast horizons, h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized values are available). Significance assessed by Diebold-Mariano tests using Newey-West standard errors with h + 1 lags. ***, ** and * denote significance at the 1%, 5%, and 10% level, respectively.

MARGINAL DATA DENSITIES

Recursive mean differences: VAR less MDS

2000


2010

2020

-1.5

1990

Considering predictions for future outcomes, MDS and VAR model are either on par, or prefer the MDS model

AGENDA

State space model of SPF forecasts and outcomes

- 2 Term structures of expectations and uncertainty
- Biased or unbiased SPF?
 Out-of-sample predictions for SPF and outcomes
 - Predictable-error regressions implied by VAR model

Conclusions

COIBION-GORODNICHENKO REGRESSIONS

Coibion & Gorodnichenko (2015, AER)

CG regress forecast errors on last forecast update

$$y_{t+h} - F_t y_{t+h} = lpha_h + eta_h \left(F_t - F_{t-1}
ight) y_{t+h} + ext{error}_{t+h}$$

and report significant slopes eta_h

CG slopes β_h implied by VAR model

Conditional on parameter draws compute population regression

Variable	5%	50%	95%
RGDP	0.02	0.12	0.23
UNRATE	0.06	0.15	0.27
PGDP	0.04	0.18	0.35
CPI	0.14	0.25	0.36

Similar in-sample fit as in empirical literature

AGENDA

- State space model of SPF forecasts and outcomes
- **2** Term structures of expectations and uncertainty
- **Biased or unbiased SPF?**

SUMMARY

Our contributions:

Model that transforms an arbitrary set of fixed-event/-horizon SPF data into a consistent term structure of expectations

SUMMARY

Our contributions:

Model that transforms an arbitrary set of fixed-event/-horizon SPF data into a consistent term structure of expectations

- Matches observed SPF w/flexible outcome process
- Can be used to produce SEP-like fan charts

SUMMARY

Our contributions:

Model that transforms an arbitrary set of fixed-event/-horizon SPF data into a consistent term structure of expectations

- Matches observed SPF w/flexible outcome process
- Can be used to produce SEP-like fan charts
- Bayesian estimation with MCMC/Gibbs sampler

Findings

- Error bands more nimble and more accurate than SEP
- Significant in-sample SPF bias
- But, potential bias hard to exploit out-of-sample

ONGOING AND FUTURE WORK

SPF-consistent responses to economic shocks

Our framework delivers estimates of SPF-consistent "shocks":

$$(F_t-F_{t-1})egin{bmatrix} y_t\y_{t+1}\dots\y_{t+H}\end{bmatrix}$$

To do: Correlate with proxies for structural shocks e.g., Gilchrist & Zakrajsek, 2012; Jarocinski & Karadi, 2020

Incorporate SPF histograms

See ongoing companion work

Application to other survey sources

ECB SPF, Consensus Economics and related sources ...

APPENDICES

- 6 Model details
- Process for outcomes implied by our model
- **1** Term structures of expectations and uncertainty
- **1** Out-of-sample predictions of SPF point forecasts
- **10** Volatile imputations in noise-free models
- O Shifting endpoints of term structure of expectations

APPENDICES

6 Model details

- Process for outcomes implied by our model
- Term structures of expectations and uncertainty
- **9** Out-of-sample predictions of SPF point forecasts
- **10** Volatile imputations in noise-free models
- O Shifting endpoints of term structure of expectations
- 12 Incorporating histograms

AVAILABILITY OF SPF POINT FORECASTS

	Fixed-horizon	Fixed-event calendar years			
Variable	$h=0,\ldots,4$	next	2-year	3-year	
Real GDP	1968Q4	1981Q3	2009Q2	2009Q2	
Unemployment	1968Q4	1981Q3	2009Q2	2009Q2	
GDP prices	1968Q4	1981Q3	NA	NA	
CPI inflation	1981Q3	1981Q3	2005Q3	NA	

Note: Current-year SPF disregarded due to overlap w/quarterly fixed-horizon predictions.

CALENDAR-YEAR FORECASTS FROM SPF

Calendar-year data map into linear combinations of quarterly outcomes

For UNRATE and CPI: Average level

$$ar{y}_t = rac{1}{4} imes \sum_{j=0}^3 y_{t-j}$$

Observe $F_t \bar{y}_{t+h}$ when t+h is in Q4

For RGDP and PGDP: Annual-average growth

$$egin{aligned} \hat{y}_t &= 100 imes \log \left(rac{I_t + I_{t-1} + I_{t-2} + I_{t-3}}{I_{t-4} + I_{t-5} + I_{t-6} + I_{t-7}}
ight) \ &pprox \sum_{j=0}^6 w_j y_{t-j} \end{aligned}$$

With "tent-shaped" weights w_j

APPENDICES

5 Data

6 Model details

- Process for outcomes implied by our model
- **B** Term structures of expectations and uncertainty
- **Out-of-sample predictions of SPF point forecasts**
- **10** Volatile imputations in noise-free models
- O Shifting endpoints of term structure of expectations
- 12 Incorporating histograms

THREE ASSUMPTIONS ON THE TERM STRUCTURE

1) Flat term structure beyond horizon H

$$y_t^* = F_t y_{t+H+1} = F_t y_{t+H+j} \,, \hspace{1em} orall \, j > 0$$

THREE ASSUMPTIONS ON THE TERM STRUCTURE

1) Flat term structure beyond horizon H

$$y_t^* = F_t y_{t+H+1} = F_t y_{t+H+j} \,, \hspace{1em} orall \, j > 0$$

2) Endpoint of term structure is unbiased

$$egin{aligned} y_t^* &= \lim_{j o \infty} E_t y_{t+H+j} \ &= y_{t-1}^* + w_t^* \ & E_{t-1} w_t^* = 0 \end{aligned}$$

In other words, y_t^st , is the Beveridge-Nelson trend of y_t

THREE ASSUMPTIONS ON THE TERM STRUCTURE

1) Flat term structure beyond horizon H

$$y_t^* = F_t y_{t+H+1} = F_t y_{t+H+j} \,, \hspace{1em} orall \, j > 0$$

2) Endpoint of term structure is unbiased

$$egin{aligned} y_t^* &= \lim_{j o \infty} E_t y_{t+H+j} \ &= y_{t-1}^* + w_t^* \end{aligned} \qquad E_{t-1} w_t^* = 0 \end{aligned}$$

In other words, y_t^st , is the Beveridge-Nelson trend of y_t

3) Endpoint is common trend in outcomes and SPF

$$Y_t = ilde{Y}_t + 1\, y_t^st\,, \qquad \quad \lim_{i o\infty} E_t\, ilde{Y}_{t+j} = ar{Y}$$

This means: deviations from rationality are mean-stationary

STATE DYNAMICS

Recall from previous slide:

$$egin{aligned} oldsymbol{Y}_t &= oldsymbol{ ilde{Y}}_t + 1\,oldsymbol{y}_t^st\,, \ oldsymbol{y}_t^st &= oldsymbol{y}_{t-1}^st\,+\,oldsymbol{w}_t^st\,, \end{aligned}$$

Accounting identities imply

$$ilde{oldsymbol{Y}}_t = \left(oldsymbol{I} - ilde{\Psi}
ight) oldsymbol{ar{Y}} + ilde{\Psi} oldsymbol{ ilde{Y}}_{t-1} + ilde{\eta}_t$$

- $ilde{\Psi}$ is a matrix of ones and zeros
- $ilde{\eta}_t$ are forecast updates adjusted for trend shocks and bias

STATE DYNAMICS

Recall from previous slide:

$$egin{aligned} oldsymbol{Y}_t &= oldsymbol{ ilde{Y}}_t + 1\,oldsymbol{y}_t^st\,, \ oldsymbol{y}_t^st &= oldsymbol{y}_{t-1}^st\,+\,oldsymbol{w}_t^st\,, \end{aligned}$$

Accounting identities imply

$$ilde{oldsymbol{Y}}_t = \left(oldsymbol{I} - ilde{\Psi}
ight) oldsymbol{ar{Y}} + ilde{\Psi} oldsymbol{ ilde{Y}}_{t-1} + ilde{\eta}_t$$

- $ilde{\Psi}$ is a matrix of ones and zeros
- $ilde{\eta}_t$ are forecast updates adjusted for trend shocks and bias

Yet to be specified: Dynamics of $\tilde{\eta}_t$

TWO MODEL VERSIONS: UNBIASED OR BIASED SPF

1) SPF has bias: predictable updates $ilde{\eta}_t$

- Unconditional bias captured by $ar{Y}$
- Conditional bias captured by VAR in $ilde{\eta}$:

$$ilde{\eta}_t = ilde{\Pi} \, ilde{\eta}_{t-1} + ilde{arepsilon}_t \,, \qquad ext{with} \quad ilde{arepsilon}_t \sim \mathcal{N}(0, ilde{\Sigma}_t)$$

"VAR" model

2) SPF is unbiased: $\tilde{\eta}$ is unpredictable

 $ar{Y}=0\,; ilde{\Pi}=0$

"MDS" model since $ilde{\eta}_t$ is a martingale difference sequence, $E_{t-1} ilde{\eta}_t=0$

SHOCK DISTRIBUTIONS

Overview

Fat-tailed shocks with time-varying variances and conditionally Gaussian distributions

$$w_t^* \sim \left(0, \omega_t^*
ight), \hspace{1em} ilde{arepsilon_t} \sim \mathcal{N}(0, ilde{\Sigma}_t)$$

Trend shock variances ω_t^*

- · horseshoe model allows for rare shifts in endpoints
- fat tailed prior w/substantial mass on zero

Cyclical shock variance-covariance matrix $\tilde{\Sigma}_t$

- Two blocks: near- and far-term shocks
- Each block has a persistent SV factor and a short-lived inverse-gamma scale factor

APPENDICES

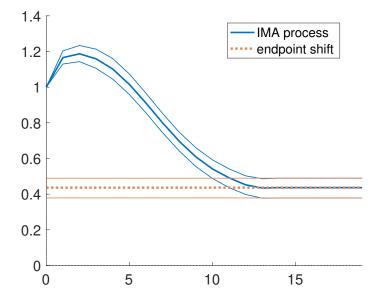
6 Model details

Process for outcomes implied by our model

- Term structures of expectations and uncertainty
- **9** Out-of-sample predictions of SPF point forecasts
- **10** Volatile imputations in noise-free models
- **1** Shifting endpoints of term structure of expectations
- 12 Incorporating histograms

PROCESS FOR OUTCOMES IMPLIED BY MODEL

- The model describes joint dynamics of SPF and outcomes
- Innovations representation backs out process for y_t :

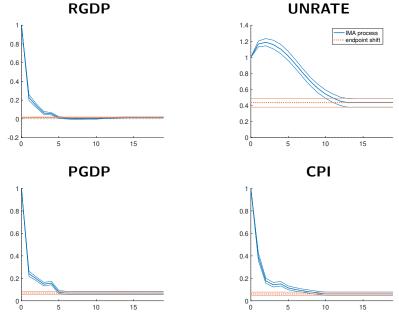

$$y_t = arepsilon_t + E(y_t|y^{t-1}) = lpha(L)arepsilon_t$$

- In general: integrated moving average process (IMA)
- In case of MDS model: IMA(1, H + 2):

$$egin{aligned} \Delta y_t &= \Delta arepsilon_t + \sum_{j=1}^{H+1} ilde{\kappa}_{j+1} \, \cdot (arepsilon_{t-j} - arepsilon_{t-j-1}) \ &+ \kappa^* \, \cdot arepsilon_{t-1} \end{aligned}$$

where $ilde{\kappa}_{j+1}$ and κ^* are Kalman gains on $ilde{Y}_{t+1}$ and y^*_{t+1}

IMPLIED PROCESS FOR UNRATE IMA coefficients


MDS

Note: Posterior median and 68% bands. Full-sample estimates.

IMPLIED PROCESS FOR DIFFERENT VARIABLES

IMA coefficients

Note: Posterior median and 68% bands. Full-sample estimates.

Unemployment rate:

Notable endpoint shift (40bp)

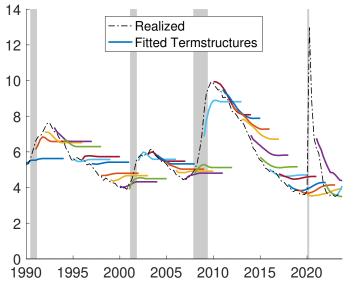
Hump-shaped cyclical response, peaks about two quarters after impact

Growth rates of real GDP, GDP prices and CPI:

Endpoint shift fairly small

Largely monotonic decay after impact, peters out within five (RGDP, PGDP) or ten (CPI) quarters

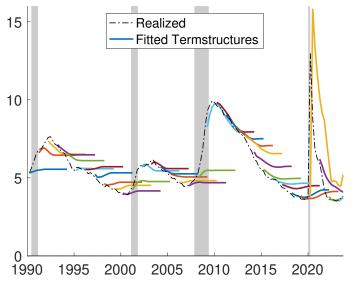
APPENDICES


- 5 Data
- 6 Model details
- Process for outcomes implied by our model

1 Term structures of expectations and uncertainty

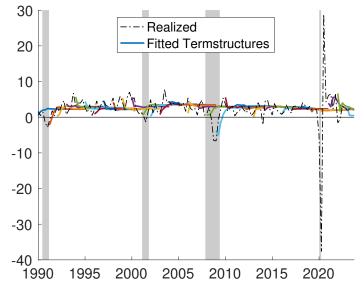
- Out-of-sample predictions of SPF point forecasts
- **10** Volatile imputations in noise-free models
- O Shifting endpoints of term structure of expectations
- **12** Incorporating histograms

TERM STRUCTURE OF FORECASTS

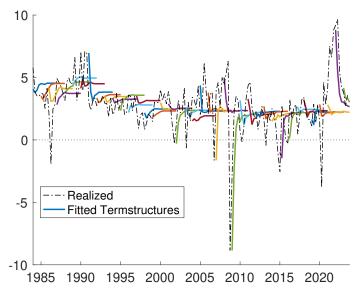

Unemployment rate: Quarterly SPF-consistent forecasts, MDS model

Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.

TERM STRUCTURE OF FORECASTS

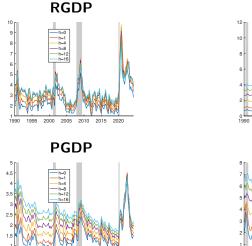

Unemployment rate: Quarterly SPF-consistent forecasts, MDS model

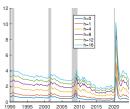
Showing only forecast origins in Q2. Out-of-sample forecasts. NBER recessions shaded.


TERM STRUCTURE OF FORECASTS

GDP growth: Quarterly SPF-consistent forecasts, MDS model

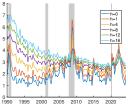
Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.


TERM STRUCTURE OF FORECASTS CPI inflation: Quarterly SPF-consistent forecasts, MDS model



Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.

TERM STRUCTURES OF UNCERTAINTY


Width of predictive 68% bands, MDS model

UNRATE

CPI

Out-of-sample forecasts. NBER recessions shaded.

0.5 1990 1995 2000 2005 2010 2015 2020

Beyond h = 8, nearly flat term structure of uncertainty, except for UNRATE and pre-2000 CPI

Notable decline in inflation uncertainty in 1990s

Cyclical variations in uncertainty about real activity

- 5 Data
- 6 Model details
- Process for outcomes implied by our model
- Term structures of expectations and uncertainty

1 Out-of-sample predictions of SPF point forecasts

- **10** Volatile imputations in noise-free models
- O Shifting endpoints of term structure of expectations
- 12 Incorporating histograms

PREDICTING SPF POINT FORECASTS NEXT QUARTER

Slopes of Mincer-Zarnowitz regressions

MDS and VAR slopes close to one,	few rejections of $\beta = 1$
----------------------------------	-------------------------------

	RGDP		UNRATE		PGDP		CPI	
Forecast	MDS	VAR	MDS	VAR	MDS	VAR	MDS	VAR
h = 0	$1.41 \\ (0.24)$	$1.32 \\ (0.25)$	$0.86 \\ (0.08)$	$0.83 \\ (0.10)$	$0.99 \\ (0.05)$	$0.98 \\ (0.06)$	$1.15 \\ (0.16)$	1.19 (0.15)
h = 1	$1.02 \\ (0.09)$	$1.02 \\ (0.09)$	$0.91 \\ (0.06)$	$0.86 \\ (0.08)$	$1.02 \\ (0.04)$	$0.99 \\ (0.04)$	$1.01 \\ (0.07)$	1.00 (0.06)
h = 2	$1.02 \\ (0.08)$	$\begin{array}{c} 0.97 \\ (0.08) \end{array}$	$\begin{array}{c} 0.94 \\ (0.06) \end{array}$	$0.90 \\ (0.07)$	0.94 (0.03)	0.85 (0.03)	$\begin{array}{c} 0.94 \\ (0.04) \end{array}$	0.95 (0.05)
h = 3	$0.94 \\ (0.09)$	0.80 (0.09)	$0.96 \\ (0.05)$	$0.91 \\ (0.06)$	0.92 (0.04)	0.86 (0.03)	0.92 (0.04)	0.92 (0.04)
h = 4	0.87 (0.06)	0.57 (0.09)	$0.97 \\ (0.05)$	$0.93 \\ (0.06)$	0.91 (0.03)	0.90 (0.04)	$0.94 \\ (0.04)$	0.89 (0.03
y = 1	$0.94 \\ (0.09)$	$0.91 \\ (0.07)$	$0.96 \\ (0.05)$	$0.93 \\ (0.06)$	0.93 (0.03)	0.91 (0.03)	$0.98 \\ (0.05)$	0.96 (0.05)
y = 2	$0.94 \\ (0.09)$	$0.96 \\ (0.10)$	$ \begin{array}{c} 0.92 \\ (0.07) \end{array} $	$0.95 \\ (0.04)$	_	_	$0.85 \\ (0.11)$	0.74 (0.09
y = 3	$0.95 \\ (0.06)$	$\frac{0.59}{(0.24)}$	0.76 (0.08)	$0.95 \\ (0.04)$	_	_	_	_

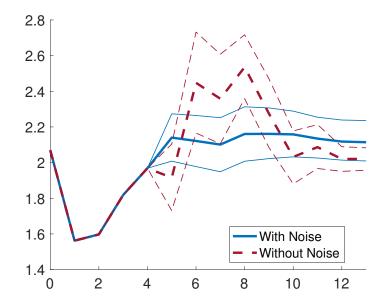
Note: Out-of-sample forecasts, evaluation window 1990Q1 - 2023Q4

PREDICTING SPF POINT FORECASTS NEXT QUARTER

Noise-free models have slope further away from unity

Slopes of Mincer-Zarnowitz regressions

				lope i		anay		anne
	RGDP		UNRATE		PGDP		CPI	
Forecast	MDS	VAR	MDS	VAR	MDS	VAR	MDS	VAR
h = 0	$1.41 \\ (0.24)$	$1.35 \\ (0.26)$	$0.86 \\ (0.08)$	$0.85 \\ (0.09)$	$0.99 \\ (0.05)$	$0.96 \\ (0.06)$	$1.15 \\ (0.16)$	1.21 (0.16)
h = 1	$1.02 \\ (0.09)$	$1.02 \\ (0.08)$	$0.91 \\ (0.06)$	$0.88 \\ (0.08)$	$1.02 \\ (0.04)$	$0.98 \\ (0.04)$	$1.01 \\ (0.07)$	1.03 (0.06)
h=2	$1.02 \\ (0.08)$	$\begin{array}{c} 0.97 \\ (0.08) \end{array}$	$0.94 \\ (0.06)$	$0.90 \\ (0.06)$	0.94 (0.03)	$\begin{array}{c} 0.99 \\ (0.04) \end{array}$	$0.94 \\ (0.04)$	$0.93 \\ (0.04)$
h = 3	$0.94 \\ (0.09)$	0.37 (0.06)	$0.96 \\ (0.05)$	$0.96 \\ (0.06)$	0.92 (0.04)	0.37 (0.03)	0.92 (0.04)	<mark>0.75</mark> (0.07
h = 4	0.39 (0.07)	0.40 (0.05)	$0.97 \\ (0.05)$	$0.93 \\ (0.05)$	0.47 (0.06)	0.89 (0.04)	0.80 (0.06)	0.82 (0.04
y = 1	$0.91 \\ (0.05)$	0.83 (0.05)	$0.96 \\ (0.06)$	$\begin{array}{c} 0.94 \\ (0.06) \end{array}$	$0.94 \\ (0.04)$	0.80 (0.05)	$\begin{array}{c} 0.94 \\ (0.04) \end{array}$	<mark>0.86</mark> (0.06
y = 2	$\frac{0.87}{(0.07)}$	0.73 (0.11)	$1.00 \\ (0.04)$	$0.94 \\ (0.03)$	_	_	0.74 (0.12)	0.66 (0.12
y = 3	0.87 (0.06)	0.58 (0.14)	$0.95 \\ (0.04)$	$0.94 \\ (0.04)$	_	_	_	_

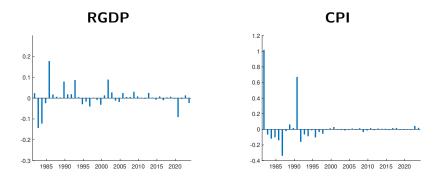

Note: Out-of-sample forecasts generated from models without measurement error, 1990Q1 - 2023Q4.

- 5 Data
- 6 Model details
- Process for outcomes implied by our model
- **B** Term structures of expectations and uncertainty
- **Out-of-sample predictions of SPF point forecasts**

10 Volatile imputations in noise-free models

- O Shifting endpoints of term structure of expectations
 - Incorporating histograms

VOLATILE IMPUTATIONS W/O NOISE RGDP per 2024Q1 with and without measurement noise in annual SPF



VOLATILE IMPUTATIONS W/O NOISE CPI per 2024Q1 with and without measurement noise in annual SPF

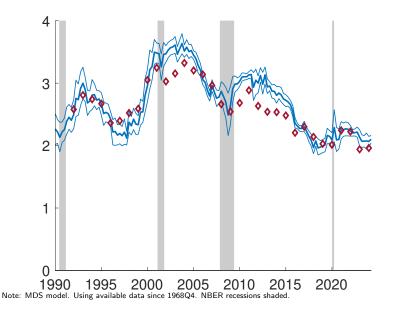
2.6 With Noise - Without Noise 2.5 2.4 2.3 2.2 2.1 2 6 8 4 0

OBSERVED DISCREPANCIES IN SPF DATA

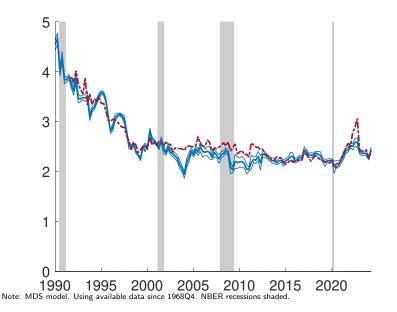
In Q4, perfect overlap between next-year SPF and $Z_{q,t}$

Irregular, but sizable discrepancies Separate horseshoe models for data in different quarters (not only Q4)

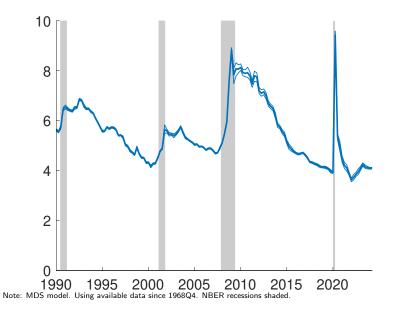
- 5 Data
- 6 Model details
- Process for outcomes implied by our model
- **B** Term structures of expectations and uncertainty
- **Out-of-sample predictions of SPF point forecasts**
- **10** Volatile imputations in noise-free models


1 Shifting endpoints of term structure of expectations

Incorporating histograms

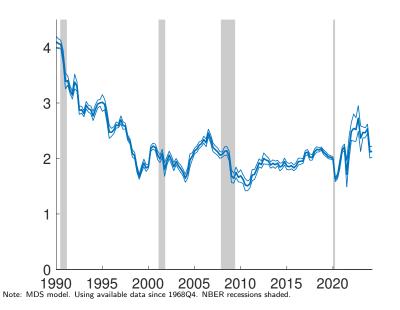

SHIFTING ENDPOINT ESTIMATES

RGDP: Real-time estimates of y_t^* , Red diamonds are SPF long-run forecasts



SHIFTING ENDPOINT ESTIMATES

CPI: Real-time estimates of y_t^* , Red diamonds are SPF long-run forecasts



SHIFTING ENDPOINT ESTIMATES UNRATE: Real-time estimates of y_t^*

SHIFTING ENDPOINT ESTIMATES

PGDP: Real-time estimates of y_t^*

- 5 Data
- 6 Model details
- Process for outcomes implied by our model
- **B** Term structures of expectations and uncertainty
- **Out-of-sample predictions of SPF point forecasts**
- **10** Volatile imputations in noise-free models
- O Shifting endpoints of term structure of expectations

Incorporating histograms

TILTING THE MODEL TO MATCH SPF HISTOGRAMS

Clark, & Mertens (2023, work in progress)

- SPF also collects subjective probability forecasts (in form of histograms)
- Potentially attractive data, though with varying views on its predictive value (Clark & Mertens, ORE, forth.)
- Typically: Fit parametric distribution to histogram

TILTING THE MODEL TO MATCH SPF HISTOGRAMS

Clark, & Mertens (2023, work in progress)

- SPF also collects subjective probability forecasts (in form of histograms)
- Potentially attractive data, though with varying views on its predictive value (Clark & Mertens, ORE, forth.)
- Typically: Fit parametric distribution to histogram
- Our work:
 - "Tilt" output of time series model (like CGM) to perfectly match entire histogram
 - ... while otherwise preserving information embedded in model (aka "entropy")
 - New: Fast computation based on analytic solutions
 - So far: Center of histogram most informative

SUMMARY

Our contributions:

Model that transforms an arbitrary set of fixed-event/-horizon SPF data into a consistent term structure of expectations

- Matches observed SPF w/flexible outcome process
- Can be used to produce SEP-like fan charts
- Bayesian estimation with MCMC/Gibbs sampler

Findings

- Error bands more nimble and more accurate than SEP
- Significant in-sample SPF bias
- But, potential bias hard to exploit out-of-sample