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RESEARCH AGENDA

Setup

We observe point forecasts from the SPF
(or a similar source)

for fixed horizons and fixed events
and for a given set of forecast horizons

Problem

How to construct fan charts

i.e. term structures of expectations and uncertainty

that are consistent with the SPF?

. . . by modeling the distribution of SPF forecast errors
and filling in missing values
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TERM STRUCTURE OF SPF-CONSISTENT FORECASTS

Yt ≡ Ft
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Details:
• SPF-consistent means observed or imputed from the SPF

• h denotes a quarterly horizon

• Lagged outcome known to SPF: yt−1 = Ftyt−1

• Henceforth: yt is a scalar outcome



DATA: U.S. SPF
Throughout, we look at point forecasts of the average respondent

Fixed-horizon forecasts

Predictions for quarterly outcomes, yt:

Ftyt+h for h = 0, 1, 2, 3, 4

Fixed-event forecasts

Predictions for calendar-year outcomes, ȳt,

Ftȳt+h for years 1 to 3 ahead

”fixed-event” forecast horizon shifts during the year:

if t is in Q1: h = 7, 11, 15

if t is in Q2: h = 6, 10, 14

etc.

Time-varying SPF coverage
of different variables and horizons
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Our model produces:

1 term structure Yt

2 uncertainty of yt+h around Ftyt+h

3 forecast updates ηt
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APPLICATIONS

Supplement judgmental forecasts w/missing elements

• Example: FOMC’s Summary of Economic Projections

• SEP fan charts combine policymaker point forecasts,
with model-based measure of uncertainty

Measure reactions of SPF forecasts to shocks

How do economic shocks shape forecast updates ηt?

(aka “SPF-consistent impulse responses”)

Integrate external forecasts into staff analysis

Condition a staff model on external forecasts
(be it an economic or a statistical model)
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MODEL OVERVIEW

1 Map observed data from SPF and realized series, Zt,
into latent state vector of fixed-horizon forecasts, Yt:

Zt = Ct Yt

+nt

with Ct known (based on data definitions)

2 Consider to add measurement error nt or not?

3 Use accounting identity for forecast errors

Yt = Ψ Yt−1 + ηt

with Ψ known, and H → ∞
4 For finite H , assume flat term structure beyond H

5 Specify DGP for ηt

a) In general: Bias in SPF and persistence in ηt ∼ VAR

b) If SPF unbiased: Ft = Et and Et−1ηt = 0
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MEASUREMENT EQUATIONS

Measurement vector with two types of SPF data

• Zq,t: Quarterly fixed-horizon forecasts, including yt−1

• Za,t: Fixed-event, calendar-year forecasts

Measurement equations

Zt =

[
Zq,t

Za,t

]
=

[
Cq,t

Ca,t

]
Yt

+

[
0
nt

]

• Cq,t and Ca,t are known from SPF’s data definitions

• Model can match any SPF data w/o need for
measurement error

• Horseshoe models for nt to catch occasional
discrepancies between Zq,t and Za,t
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ESTIMATION SETUP

1 Model applied separately for each outcome variable
(RGDP, PGDP, CPI, UNRATE)

2 Estimated with MCMC over growing samples
of real-time data and SPF that start in 1968Q3

(FRB Phil.’s Real-Time Data Set for Macroeconomists)

3 Generate out-of-sample predictive densities
from 1990Q1 onwards

4 Predictions evaluated against 2nd release outcomes
for RGDP and PGDP and latest data for CPI, UNRATE
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TERM STRUCTURE OF FORECASTS
Unemployment rate: Quarterly SPF-consistent forecasts, MDS model
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Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.



TERM STRUCTURE OF FORECASTS
Unemployment rate: Quarterly SPF-consistent forecasts, MDS model
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TERM STRUCTURES OF UNCERTAINTY
Unemployment rate: Width of predictive 68% bands, MDS model
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QUARTERLY SPF-CONSISTENT FAN CHARTS 2024Q1

Unemployment rate, MDS model
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By construction, mid points of fan charts
match observed SPF

(up to measurement error in case of annual forecasts)

Term structure of uncertainty steadily rises with horizon
(for UNRATE)

and displays cyclical variations over time
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FOMC “FAN CHARTS”
From the “Summary of Economic Projections” (SEP), real GDP growth

March 2024

• “Fan charts” published since March 2017

• Uncertainty ranges tabulated since first SEP in Oct 2007

• Bands: +/− 1 historical RMSE of professional forecasters

Figure published with SEP, confidence intervals based on Reifschneider & Tulip (2007/17 FEDS, 2019 IJF)



COMPARISON OF OUR MODEL BANDS AGAINST SEP

We do the following:

• From SEP: mid points and historical RMSE bands
(Reifschneider & Tulip, 2007/19)

• From model: SPF-consistent forecasts and 68% bands

• Construct forecast errors from SEP and model

• Collect the above for every quarter since 2008
(no SEP for 2020Q1)

Goal:

Which error bands have better coverage?

(out of sample)



SEP VS MODEL: ERROR BANDS AND REALIZED ERRORS
Real GDP growth: next-year forecast
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Note: 68% bands. Out-of-sample forecasts.
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SEP VS MODEL: ERROR BANDS AND REALIZED ERRORS
Inflation: next-year forecast
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Note: 68% bands. Out-of-sample forecasts. SEP for PCI, SPF for CPI inflation.



• Similar forecast error patterns from SPF and SEP

• Fixed events: clustering of errors and sawtooth bands

• SEP bands typically wider & w/too much coverage
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We find

significant predictability of SPF forecast errors in sample,

which is, however, hard to exploit out of sample
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RELATIVE FORECAST ACCURACY MDS VS VAR MODEL
Values above one indicate that VAR does worse

RMSE CRPS

h RGDP UNRATE PGDP CPI RGDP UNRATE PGDP CPI

0 1.01 1.12 0.99 0.91∗∗ 1.02 0.95 1.00 0.93∗∗∗

1 1.04 1.05 1.02 1.01 1.01 1.00 1.00 1.01
2 0.99 1.07 1.01 1.01 0.99 1.01 0.99 1.01
3 1.00 1.04 1.02 1.01 1.01 1.00 1.00 1.01
4 1.00 1.02 1.03 1.01 1.00 1.00 1.00 1.01
5 1.00 1.02 1.04 1.01 1.00 1.01 1.01 1.01
6 1.00 1.02 1.04 1.01 1.01 1.02 1.02 1.01
7 1.00 1.02 1.04 1.01 0.99 1.03 1.02 1.01
8 1.00 1.02∗ 1.04 1.01 1.00 1.03 1.02 1.01
9 1.00 1.03∗ 1.04 1.01 1.00 1.04 1.03 1.01
10 1.00 1.03 1.04 1.01 1.00 1.04 1.03 1.02
11 1.00 1.02 1.04 1.01 1.00 1.03 1.03 1.02
12 1.00 1.01 1.04 1.01 1.00 1.02 1.03 1.01
13 1.00 1.00 1.04 1.01 1.00 1.00 1.03 1.01
14 1.00 0.99 1.04 1.01 1.01 0.99 1.04 1.01
15 1.00 1.00 1.04 1.01 1.01 1.00 1.03 1.01
16 1.00 1.00 1.04 1.00 1.01 0.99 1.03 1.01

Note: Relative RMSE and CRPS of VAR model (with MDS in denominator). Quarterly forecast horizons,
h. Evaluation window from 1990Q1 through 2023Q4 (and as far as realized values are available).
Significance assessed by Diebold-Mariano tests using Newey-West standard errors with h+ 1 lags. ∗∗∗, ∗∗

and ∗ denote significance at the 1%, 5%, and 10% level, respectively.



MARGINAL DATA DENSITIES
Recursive mean differences: VAR less MDS

MDS scores consistently better

RGDP
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Considering predictions for future outcomes,

MDS and VAR model are either on par,
or prefer the MDS model
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COIBION-GORODNICHENKO REGRESSIONS

Coibion & Gorodnichenko (2015, AER)

CG regress forecast errors on last forecast update

yt+h − Ftyt+h = αh + βh (Ft − Ft−1) yt+h + errort+h

and report significant slopes βh

CG slopes βh implied by VAR model

Conditional on parameter draws compute population regression

Variable 5% 50% 95%

RGDP 0.02 0.12 0.23
UNRATE 0.06 0.15 0.27
PGDP 0.04 0.18 0.35
CPI 0.14 0.25 0.36

Similar in-sample fit as in empirical literature
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SUMMARY

Our contributions:

Model that transforms an arbitrary set
of fixed-event/-horizon SPF data

into a consistent term structure of expectations

• Matches observed SPF w/flexible outcome process

• Can be used to produce SEP-like fan charts

• Bayesian estimation with MCMC/Gibbs sampler

Findings

• Error bands more nimble and more accurate than SEP

• Significant in-sample SPF bias

• But, potential bias hard to exploit out-of-sample
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ONGOING AND FUTURE WORK

SPF-consistent responses to economic shocks

Our framework delivers estimates of SPF-consistent “shocks”:

(Ft − Ft−1)


yt

yt+1
...

yt+H


To do: Correlate with proxies for structural shocks

e.g., Gilchrist & Zakrajsek, 2012; Jarocinski & Karadi, 2020

Incorporate SPF histograms

See ongoing companion work

Application to other survey sources

ECB SPF, Consensus Economics and related sources . . .
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9 Out-of-sample predictions of SPF point forecasts

10 Volatile imputations in noise-free models

11 Shifting endpoints of term structure of expectations

12 Incorporating histograms
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AVAILABILITY OF SPF POINT FORECASTS

Fixed-horizon Fixed-event calendar years

Variable h = 0, . . . , 4 next 2-year 3-year

Real GDP 1968Q4 1981Q3 2009Q2 2009Q2
Unemployment 1968Q4 1981Q3 2009Q2 2009Q2
GDP prices 1968Q4 1981Q3 NA NA
CPI inflation 1981Q3 1981Q3 2005Q3 NA

Note: Current-year SPF disregarded due to overlap w/quarterly fixed-horizon predictions.



CALENDAR-YEAR FORECASTS FROM SPF BACKUP

Calendar-year data map into linear combinations of quarterly outcomes

For UNRATE and CPI: Average level

ȳt =
1

4
×

3∑
j=0

yt−j

Observe Ftȳt+h when t+ h is in Q4

For RGDP and PGDP: Annual-average growth

ŷt = 100 × log

(
It + It−1 + It−2 + It−3

It−4 + It−5 + It−6 + It−7

)
≈

6∑
j=0

wjyt−j

With “tent-shaped” weights wj
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THREE ASSUMPTIONS ON THE TERM STRUCTURE

1) Flat term structure beyond horizon H

y∗
t = Ftyt+H+1 = Ftyt+H+j , ∀ j > 0

2) Endpoint of term structure is unbiased

y∗
t = lim

j→∞
Etyt+H+j

= y∗
t−1 + w∗

t Et−1w
∗
t = 0

In other words, y∗
t , is the Beveridge-Nelson trend of yt

3) Endpoint is common trend in outcomes and SPF

Yt = Ỹt + 1 y∗
t , lim

j→∞
Et Ỹt+j = Ȳ

This means: deviations from rationality are mean-stationary
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STATE DYNAMICS

Recall from previous slide:

Yt = Ỹt + 1 y∗
t ,

y∗
t = y∗

t−1 + w∗
t

Accounting identities imply

Ỹt =
(
I − Ψ̃

)
Ȳ + Ψ̃Ỹt−1 + η̃t

• Ψ̃ is a matrix of ones and zeros

• η̃t are forecast updates adjusted for trend shocks and bias

Yet to be specified: Dynamics of η̃t
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Ȳ + Ψ̃Ỹt−1 + η̃t

• Ψ̃ is a matrix of ones and zeros

• η̃t are forecast updates adjusted for trend shocks and bias

Yet to be specified: Dynamics of η̃t



TWO MODEL VERSIONS: UNBIASED OR BIASED SPF

1) SPF has bias: predictable updates η̃t

• Unconditional bias captured by Ȳ

• Conditional bias captured by VAR in η̃:

η̃t = Π̃ η̃t−1 + ε̃t , with ε̃t ∼ N (0, Σ̃t)

“VAR” model

2) SPF is unbiased: η̃ is unpredictable

Ȳ = 0 ; Π̃ = 0

“MDS” model
since η̃t is a martingale difference sequence, Et−1η̃t = 0



SHOCK DISTRIBUTIONS

Overview

Fat-tailed shocks with time-varying variances
and conditionally Gaussian distributions

w∗
t ∼ (0, ω∗

t ) , ε̃t ∼ N (0, Σ̃t)

Trend shock variances ω∗
t

• horseshoe model allows for rare shifts in endpoints

• fat tailed prior w/substantial mass on zero

Cyclical shock variance-covariance matrix Σ̃t

• Two blocks: near- and far-term shocks

• Each block has a persistent SV factor and a short-lived
inverse-gamma scale factor
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PROCESS FOR OUTCOMES IMPLIED BY MODEL

• The model describes joint dynamics of SPF and outcomes

• Innovations representation backs out process for yt:

yt = εt + E(yt|yt−1) = α(L)εt

• In general: integrated moving average process (IMA)

• In case of MDS model: IMA(1, H + 2):

∆yt = ∆εt +

H+1∑
j=1

κ̃j+1 · (εt−j − εt−j−1)

+ κ∗ · εt−1

where κ̃j+1 and κ∗ are Kalman gains on Ỹt+1 and y∗
t+1



IMPLIED PROCESS FOR UNRATE MDS

IMA coefficients
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Note: Posterior median and 68% bands. Full-sample estimates.



IMPLIED PROCESS FOR DIFFERENT VARIABLES MDS

IMA coefficients
RGDP
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• Unemployment rate:

• Notable endpoint shift (40bp)

• Hump-shaped cyclical response, peaks about two
quarters after impact

• Growth rates of real GDP, GDP prices and CPI:

• Endpoint shift fairly small

• Largely monotonic decay after impact,
peters out within five (RGDP, PGDP)
or ten (CPI) quarters
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TERM STRUCTURE OF FORECASTS
Unemployment rate: Quarterly SPF-consistent forecasts, MDS model
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Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.



TERM STRUCTURE OF FORECASTS
Unemployment rate: Quarterly SPF-consistent forecasts, MDS model
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Showing only forecast origins in Q2. Out-of-sample forecasts. NBER recessions shaded.



TERM STRUCTURE OF FORECASTS
GDP growth: Quarterly SPF-consistent forecasts, MDS model
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Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.



TERM STRUCTURE OF FORECASTS
CPI inflation: Quarterly SPF-consistent forecasts, MDS model
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Showing only forecast origins in Q1. Out-of-sample forecasts. NBER recessions shaded.



TERM STRUCTURES OF UNCERTAINTY
Width of predictive 68% bands, MDS model
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• Beyond h = 8, nearly flat term structure of uncertainty,
except for UNRATE and pre-2000 CPI

• Notable decline in inflation uncertainty in 1990s

• Cyclical variations in uncertainty about real activity
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PREDICTING SPF POINT FORECASTS NEXT QUARTER
Slopes of Mincer-Zarnowitz regressions

MDS and VAR slopes close to one, few rejections of β = 1

RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 1.41 1.32 0.86 0.83 0.99 0.98 1.15 1.19
(0.24) (0.25) (0.08) (0.10) (0.05) (0.06) (0.16) (0.15)

h = 1 1.02 1.02 0.91 0.86 1.02 0.99 1.01 1.00
(0.09) (0.09) (0.06) (0.08) (0.04) (0.04) (0.07) (0.06)

h = 2 1.02 0.97 0.94 0.90 0.94 0.85 0.94 0.95
(0.08) (0.08) (0.06) (0.07) (0.03) (0.03) (0.04) (0.05)

h = 3 0.94 0.80 0.96 0.91 0.92 0.86 0.92 0.92
(0.09) (0.09) (0.05) (0.06) (0.04) (0.03) (0.04) (0.04)

h = 4 0.87 0.57 0.97 0.93 0.91 0.90 0.94 0.89
(0.06) (0.09) (0.05) (0.06) (0.03) (0.04) (0.04) (0.03)

y = 1 0.94 0.91 0.96 0.93 0.93 0.91 0.98 0.96
(0.09) (0.07) (0.05) (0.06) (0.03) (0.03) (0.05) (0.05)

y = 2 0.94 0.96 0.92 0.95 — — 0.85 0.74
(0.09) (0.10) (0.07) (0.04) — — (0.11) (0.09)

y = 3 0.95 0.59 0.76 0.95 — — — —
(0.06) (0.24) (0.08) (0.04) — — — —

Note: Out-of-sample forecasts, evaluation window 1990Q1 – 2023Q4



PREDICTING SPF POINT FORECASTS NEXT QUARTER
Slopes of Mincer-Zarnowitz regressions

Noise-free models have slope further away from unity

RGDP UNRATE PGDP CPI

Forecast MDS VAR MDS VAR MDS VAR MDS VAR

h = 0 1.41 1.35 0.86 0.85 0.99 0.96 1.15 1.21
(0.24) (0.26) (0.08) (0.09) (0.05) (0.06) (0.16) (0.16)

h = 1 1.02 1.02 0.91 0.88 1.02 0.98 1.01 1.03
(0.09) (0.08) (0.06) (0.08) (0.04) (0.04) (0.07) (0.06)

h = 2 1.02 0.97 0.94 0.90 0.94 0.99 0.94 0.93
(0.08) (0.08) (0.06) (0.06) (0.03) (0.04) (0.04) (0.04)

h = 3 0.94 0.37 0.96 0.96 0.92 0.37 0.92 0.75
(0.09) (0.06) (0.05) (0.06) (0.04) (0.03) (0.04) (0.07)

h = 4 0.39 0.40 0.97 0.93 0.47 0.89 0.80 0.82
(0.07) (0.05) (0.05) (0.05) (0.06) (0.04) (0.06) (0.04)

y = 1 0.91 0.83 0.96 0.94 0.94 0.80 0.94 0.86
(0.05) (0.05) (0.06) (0.06) (0.04) (0.05) (0.04) (0.06)

y = 2 0.87 0.73 1.00 0.94 — — 0.74 0.66
(0.07) (0.11) (0.04) (0.03) — — (0.12) (0.12)

y = 3 0.87 0.58 0.95 0.94 — — — —
(0.06) (0.14) (0.04) (0.04) — — — —

Note: Out-of-sample forecasts generated from models without measurement error, 1990Q1 – 2023Q4.
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VOLATILE IMPUTATIONS W/O NOISE
RGDP per 2024Q1 with and without measurement noise in annual SPF
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VOLATILE IMPUTATIONS W/O NOISE
CPI per 2024Q1 with and without measurement noise in annual SPF
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OBSERVED DISCREPANCIES IN SPF DATA
In Q4, perfect overlap between next-year SPF and Zq,t

RGDP
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Irregular, but sizable discrepancies

Separate horseshoe models for data in different quarters
(not only Q4)
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SHIFTING ENDPOINT ESTIMATES
RGDP: Real-time estimates of y∗

t , Red diamonds are SPF long-run forecasts
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Note: MDS model. Using available data since 1968Q4. NBER recessions shaded.



SHIFTING ENDPOINT ESTIMATES
CPI: Real-time estimates of y∗

t , Red diamonds are SPF long-run forecasts
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Note: MDS model. Using available data since 1968Q4. NBER recessions shaded.



SHIFTING ENDPOINT ESTIMATES
UNRATE: Real-time estimates of y∗

t
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Note: MDS model. Using available data since 1968Q4. NBER recessions shaded.



SHIFTING ENDPOINT ESTIMATES
PGDP: Real-time estimates of y∗

t
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Note: MDS model. Using available data since 1968Q4. NBER recessions shaded.
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TILTING THE MODEL TO MATCH SPF HISTOGRAMS
Clark, & Mertens (2023, work in progress)

• SPF also collects subjective probability forecasts
(in form of histograms)

• Potentially attractive data, though with varying views on
its predictive value (Clark & Mertens, ORE, forth.)

• Typically: Fit parametric distribution to histogram

• Our work:

• “Tilt” output of time series model (like CGM) to
perfectly match entire histogram

• . . . while otherwise preserving information embedded
in model (aka “entropy”)

• New: Fast computation based on analytic solutions

• So far: Center of histogram most informative
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• SPF also collects subjective probability forecasts
(in form of histograms)

• Potentially attractive data, though with varying views on
its predictive value (Clark & Mertens, ORE, forth.)

• Typically: Fit parametric distribution to histogram

• Our work:

• “Tilt” output of time series model (like CGM) to
perfectly match entire histogram

• . . . while otherwise preserving information embedded
in model (aka “entropy”)

• New: Fast computation based on analytic solutions

• So far: Center of histogram most informative



SUMMARY

Our contributions:

Model that transforms an arbitrary set
of fixed-event/-horizon SPF data

into a consistent term structure of expectations

• Matches observed SPF w/flexible outcome process

• Can be used to produce SEP-like fan charts

• Bayesian estimation with MCMC/Gibbs sampler

Findings

• Error bands more nimble and more accurate than SEP

• Significant in-sample SPF bias

• But, potential bias hard to exploit out-of-sample
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