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Introduction

• Interconnectedness of units poses challenges to policy
evaluation

• Complex settings require to go beyond the common
unit-to-unit interference and usual notions of proximity

• We study settings with two distinct populations of units:
intervention units and outcome units

• This setting was named bipartite interference
(Zigler, Papadogeorgou, 2021)
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Examples of bipartite settings
1 Air Pollution Epidemiology (Zigler, Mealli, Forastiere, 2023)

• Intervention units: pollution emitters (e.g., power plants) on
which a treatment (e.g., installing a filter on smokestacks)
can be applied.

• Outcome units: populations residing in a geographical area
where outcomes (e.g., air quality, health) are measured.

2 Economics of housing (Stock, 1989)

• Intervention units: Hazardous-waste disposal sites where
treatments (cleaning up or removal) can be applied.

• Outcome units: houses where outcomes (e.g., selling
prices) are measured.

3 Education economics (Crema, 2022)

• Intervention units: Neighborhoods which may be exposed
to openings of charter schools (treatment).

• Outcome units: Traditional public schools (TPS) where
outcome (e.g., racial segregation) are measured.
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Applied literature - examples

Applied works usually use restrictions on either the bipartite
graph or exposure mapping and potential outcomes

Model-based approaches are used that typically require
specification of an outcome model as a function of an effective
treatment defined at the level of the outcome units (Manski,
2013, Borusyak, Hull, 2023)

Air pollution example:

• Intervention units are the 472 coal-burning power plants
• Outcome units are the 25,553 ZIP codes in the US
• Treatment is the indicator of having scrubbers installed
• Outcome is the number of Ischemic Heart Disease (IHD)

hospitalizations over Medicare beneficiaries
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Air pollution example (cont.)

• The bipartite graph is characterized by a 472 × 25,553
weighted adjacency matrix A denoting how much air mass
originating travels from each power plant to each ZIP code

• A bivariate treatment for the outcome units is defined as:
the treatment of the key-associated (most influencial)
power plant and a linear function of the treatment statuses
of all other power plants, weighted by elements of A

• Identifying assumptions are specified at the level of
outcome units, which is however not the level where
treatment assignment takes place
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Challenges

Fully acknowledging and exploting the bipartite structure in a
design-based approach requires to address non trivial
differences in the formulation of:

• SUTVA-type assumptions, limiting the potential outcomes
(or restricting the model space, Savje et al., (2024)

• policy relevant causal estimands, associated with
implementable policies

• testing, estimation and inference
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Related literature and our contributions

We contribute to recent literature on causal inference under bipartite
interference (Zigler and Papadogeorgou, 2021, Zigler et al., 2023,
Harshaw et al., 2023, Doudchenko et al., 2020, Pouget-Abadie et al.,
2019, Brennan et al., 2022, Harshaw et al., 2022, Song and
Papadogeorgou, 2024)

• We first discuss Fisher randomization testing for sharp null
hypotheses under bipartite interference

• We then establish causal estimands for bipartite settings under a
variety of actionable policies

• We discuss design-based estimation and inference, being
agnostic and avoiding stringent restrictions on potential
outcomes, allowing TEH, non-linearity, non-additivity

• We also discuss possible optimal designs and optimal policies
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Formalization of Bipartite Structure
• The first population is composed of N intervention units,

N = {1,2, . . . ,N}, n ∈ N , eligible to receive a (binary)
treatment, Wn ∈ W = {0,1}, W ∈ WN denotes the
N-vector of treatment assignments.

• The second population is composed of M outcome units,
M = {1,2, . . . ,M}.

• The outcome unit m has 2N potential outcomes
Ym(w) ∈ R, for w ∈ WN .

• The M vector of potential outcomes under the
N-component treatment vector w is denoted by the M
component vector

Y (w) = (Y1(w),Y2(w), . . . ,YM(w)) ∈ RM

.
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Restricting POs according to a partially
known bipartite graph

• Suppose there exists a bipartite graph G with two sets of
nodes, N and M, and edges which can only exist between
an intervention and an outcome unit

• G = {N ,M,A} where A is an N × M binary matrix,
Anm = 1 if nodes n,m are connected with respect to G, and
Anm = 0 otherwise

• G is a fixed quantity that characterizes the populations

• Partially known graph because we do not assume to know
the strength of the connections between nodes
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1 2 3

1 2 3 4 5 6 7 8

General bipartite interference graph with 3 interventional units
and 8 outcome units
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B-SUTVA: BIPARTITE STABLE UNIT

TREATMENT VALUE ASSUMPTION

• Outcome Set for Intervention Unit n: Mn = {m ∈ M : Anm = 1}
• Intervention Set for Outcome Unit m: Nm = {n ∈ N : Anm = 1}
• Consistent Experience for Outcome Unit m: given w ,w ′, an

outcome unit m has a consistent experience if wi = w ′
i for all all

n such that Anm = 1; that is, if wNm = w ′
Nm

B-SUTVA: The potential outcomes for outcome unit m agree
with the bipartite graph G if it holds: if w ,w ′ ∈ {0,1}N provide
unit m a consistent experience, then Ym(w) = Ym(w ′).

If B-SUTVA holds potential outcomes for unit m are denoted as
Ym(wNm ) and Y (w) = (Y1(wN1),Y2(wN2), . . . ,YN(wNN ))
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Examples

1 2 3 4 5

1 2 3 4 5

Special Case 1: M = N , A identity matrix

1 2 3

1 2 3 4 5 6 7 8 9

Special Case 2: M ≥ N,
∑

n Anm = 1 for all m (clusters)
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Examples

1 2 3

1 2 3 4 5 6 7 8

4 5 6

9 10 11 12 13 14 15

Special Case 3: Partial Bipartite Interference
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Estimands

• The All Versus Nothing Effect: τaon = Y (1)− Y (0)

Y (0) =
1
M

M∑
m=1

Ym(0N) and Y (1) =
1
M

M∑
m=1

Ym(1N)

• The Status Quo Effect for the Treated: τ sq
0 = Y (W )− Y (0)

• The Status Quo Effect for the Controls: τ sq
1 = Y (1)−Y (W )
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Estimation and Inference for AoN, SQs

We consider weighting estimators,weight for each outcome unit
involves the probability of the realized treatment for the unit
intervention set Nm, πNm

Ŷ (0) =
1
M

M∑
m=1

I(WNm = 0)
πNm(WNm)

Ym

Ŷ (1) =
1
M

M∑
m=1

I(WNm = 1)
πNm(WNm)

Ym
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Theorem
Assume that π is a treatment allocation strategy with
πNm(a) > 0 for all m and for a = (a,a, . . . ,a) equal treatment
level. Then, for a = 0 or 1,

•
[
Ŷ (a)

]
= Y (a). As a result, we also have unbiased

estimators for τ and τ sq.

• Var
[
Ŷ (a)

]
is equal to

1
M2

[
M∑

m=1

πNm(a) (1 − πNm(a))
[

Ym(a)
πNm(a)

]2

+
∑

m ̸=m′

(
πNm,m′ (a)− πNm(a)πNm′ (a)

) Ym(a)
πNm(a)

Ym′(a)
πNm′ (a)

 ,

where Nm,m′ = Nm ∪Nm′ is the intervention set for
outcome units m,m′.
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Consistency and CLT

• Condition 1: the maximum size of the intervention set of all
outcome units must not grow too fast with the number of
outcome units to ensure that the positivity assumption for
each outcome unit holds

• Condition 2: overlap of outcome units’ interventional sets:
the maximum number of common intervential units across
all outcome units pairs must not grow too fast to restrict the
pairs of outcome units with“correlated” treatment levels

• In general, N cannot grow too fast with M, otherwise
positivity will be violated. But also N cannot grow too
slowly with M, otherwise we will have too many outcome
units that share interventional units, so we do not see
enough variability in their exposures
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Stochastic intervention effects
Alternative estimands may be easier to estimate than others,
those corresponding to smaller changes in the distribution of
assignments relative to the AoN estimands.

• For outcome unit m ∈ M, we hypothesize a distribution
hm,α : WNm → [0,1] with parameter α over the treatment
assignment of its interventional set, Nm

• Y m,hm,α =
∑

wNm∈WNm Ym(wNm)hm,α(w)

• For the collective stochastic intervention
hα = (h1,α,h2,α, . . . ,hM,α) define:Y hα = 1

M
∑M

m=1 Y m,hm,α

• The causal effect of switching the hypothetical distribution
from parameter α to α′ is τ(α, α′) = Y hα′ − Y hα

.
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Stochastic interventions: special cases

• Bernoulli interventions (Hudgens, Halloran, 2008)

• Completely randomized interventions

• Interventions on key-associated interventional units (Zigler,
Papdogeorgou, 2021)

• Targeted exposures for each outcome units through
exposure mapping (Aronow, Samii, 2017; Forastiere et al.,
2021)

• The effect of treating one additional control intervention
unit randomly chosen

• Actionable vs Non-actionable policies
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Estimation and inference

• For stochastic intervention, hα, define the estimator for the
average potential outcome as

Ŷhα =
1
M

M∑
m=1

hm,α(WNm)

πNm(WNm)
Ym

• Unbiasdness, Variance, Consistency under specific
regimes of growth of the bipartite graph

• Compare variances of estimators of similar estimands
under different restrictions on the potential outcomes
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Concluding remarks and future work

• Causal inference in bipartite settings

▷ Relevant for many interventions with a clear distinction
between intervention and outcome units

▷ Complex exposure patterns generate different types of
interference, going beyond unit-to-unit or spatial
interference

▷ Introduce new types of causal questions and estimands

• Implications of our results: treatment effect heterogeneity and
optimal policies

• Introduce optimal designs for different target estimands

• Extension to observational settings


