## The Importance of Being Even

#### restitution and cooperation





Marco Casari U. of Bologna

Andrea Salvanti U. Pompeu Fabra

Andrzej Skrzypacz Stanford U.



Giancarlo Spagnolo Tor Vergata

Rotterdam 28-08-2024

payback oooooo conclusions o

### Restoring cooperation after its breakdown

Cooperation lies at the heart of human economic and social development.

#### But it is *frail*, and when it *breaks down* it must be *repaired*.

The adoption of **forgiving strategies** is essential, especially in an "uncertain" world.

meta-studies 0000 payback oooooo conclusions o

### A thought experiment



 $\delta~=0.9$ : continuation probability

- Period 1 you: D; the other: C
- Period 2 you: C; the other: D

What would you choose in Period 3?

payback oooooo conclusions o

### Strategies in the repeated PD

**Memory-one** strategies are predominant in games with perfect monitoring. Dal Bò and Fréchette, AER 2019; Romero and Rosokha, AEJ-micro 2019

**Tit for Tat** emerged as a very successful strategy, albeit not subgame-perfect. Axelrod, 1984; Nowak and Sigmund, Nature 1992; Dal Bò and Fréchette, AER 2011, JEL 2018, AER 2019

**Strategic risk** is key determinant of the emergence and sustainability of cooperation with perfect, but *not with imperfect monitoring*.

Blonski et al. AEJ-micro 2011; Dal Bò and Fréchette, AER 2011; Fudenberg et al. AER 2012; Ghidoni and Suetens, AEJ-micro 2020

#### Behavioral strategies are widespread.

Breitmoser, AER 2015; Romero and Rosokha, ECMA 2023; Fudenberg and Karreskog-Rehbinder, AEJ-micro, 2024; Backhaus and Breitmoser, 2024

eta-studies 000 payback oooooo conclusions o

### The importance of being even



### Restitution and Asymmetric punishment strategies

Cooperative strategies based on asymmetric punishment have been widely studied. **Theory:** 

- renegotiation-proofness in the repeated Prisoner's Dilemma Van Damme (1989)
- repeated games with monetary payments like relational contracts Levin (2003)
- tacit collusion in repeated auctions, similarities with the "chips mechanism" *Skrzypacz* and Hopenhayn (2004)
- in pricing games, asymm. strategies perform better than strongly symmetric equilibria *Athey and Bagwell (2001), Harrington and Skrzypacz (2007)*
- in evolutionary game theory Sugden, 1986; Boyd, 1989; Wu and Axelrod, 1995; Boerljist, Nowak and Sigmund, 1997

**Empirically**, some evidence that real-life pricing cartels use asymmetric punishments – *Harrington (2006)*. No experimental evidence.

meta-studies ●000

payback oooooo conclusions o

### Evidence from meta-studies

| Dataset:                | Standard                  | Noise      | Finite              |
|-------------------------|---------------------------|------------|---------------------|
| Repeated interaction:   | Indefinite                | Indefinite | Finite              |
| Monitoring:             | Perfect                   | Imperfect  | Perfect             |
| Source:                 | Dal Bo & Frechette (2018) | This paper | Embrey et al.(2018) |
| Number of sessions:     | 103                       | 27         | 27                  |
| Number of subjects:     | 1734                      | 598        | 552                 |
| Number of observations: | 116,644                   | 60,334     | 65,720              |

### Rate of cooperation in period 3, after CD in period 2

| Outcome     | Standing at       | Standard | Noise            |                  | Finite |
|-------------|-------------------|----------|------------------|------------------|--------|
| in period 1 | start of period 3 |          | Init.intention C | Init.intention D |        |
| DC          | even              | 0.566    | 0.859            | 0.475            | 0.522  |
|             |                   | (746)    | (99)             | (198)            | (458)  |
| DD          | credit            | 0.282    | 0.521            | 0.186            | 0.242  |
|             |                   | (440)    | (73)             | (167)            | (132)  |
| CD          | credit            | 0.297    | 0.240            | 0.179            | 0.246  |
|             |                   | (617)    | (425)            | (28)             | (284)  |
| CC          | credit            | 0.239    | 0.632            | 0.100            | 0.217  |
|             |                   | (268)    | (353)            | (10)             | (138)  |
| Total       |                   | 0.383    | 0.472            | 0.325            | 0.367  |
|             |                   | (2071)   | (950)            | (403)            | (1012) |

### Rate of cooperation in period 3, after CD in period 2 - regr.

|                         | Standard | Noise     |           | Finite   |
|-------------------------|----------|-----------|-----------|----------|
| Outcome in period 1     |          | initial C | initial D |          |
| DC (even)               | 0.332*** | 0.205***  | 0.369***  | 0.319*** |
|                         | (0.036)  | (0.045)   | (0.117)   | (0.054)  |
| DD (credit)             | 0.048    | -0.167*** | 0.141     | 0.030    |
|                         | (0.038)  | (0.064)   | (0.108)   | (0.062)  |
| CD (credit)             | 0.038    | -0.421*** | 0.064     | -0.022   |
|                         | (0.037)  | (0.035)   | (0.124)   | (0.053)  |
| Intercept               | 0.339*** | 0.508***  | -0.002    | 0.131    |
|                         | (0.088)  | (0.080)   | (0.148)   | (0.128)  |
| N. of observations      | 2071     | 950       | 403       | 1012     |
| N. of subjects          | 949      | 394       | 244       | 348      |
| R <sup>2</sup> -overall | 0.143    | 0.229     | 0.151     | 0.139    |

meta-studies

payback oooooo conclusions o

### Implications

#### Asymmetric punishment:

The reaction to a unilateral defection by the opponent is much more cooperative when this outcome follows a deviation of opposite sign.

#### Memory >1:

The decision to cooperate in a period does not only depend on the outcome in the period immediately before.

#### **Experience and learning:**

With experience, repayment strategies *increase in indefinitely repeated games*, where they can be rational equilibrium behavior, while they disappear in finitely repeated ones where they could only be justified by non-equilibrium behavior (e.g. *fairness concerns*).

meta-studies 0000 payback ●○○○○○

conclusions o



payback ○●○○○○

### Cooperation in a noisy environment

#### In games with noise, unintended deviations happen on the equilibrium path.

Symmetric punishments become very costly for the players.

In contrast, asymmetric punishments in Payback can **keep the total payoff high** while still providing **sufficient incentives for cooperation**.

### Value of cooperation in noisy environments

2 players wish to coordinate on mutual cooperation: both start playing C in period 1. With probability *E*, the action of either of them is changed to D.

- $\bullet~\mbox{Grim} \rightarrow \mbox{switch}$  to mutual defection until the end of the supergame.
- TfT  $\rightarrow$  sequence of asymmetric cd-dc outcomes. Revert to (C,C) only when a second random error materializes.

Payback instead reverts to mutual cooperation after a single period of punishment.

#### Proposition 1

for all g = l > 0,  $\delta \in (0, 1)$  and  $E \in (0, \frac{1}{2})$  such that both Grim and Payback are a PPE, the **expected payoff in the Payback PPE is strictly higher** than the expected payoff in the Grim PPE ( $V_{Grim}$ ).

payback oooeoo

### Smaller critical discount factor

Value of cooperation not the only ingredient for the success of a cooperative strategy.

Incentive compatibility constraints are also important.

In a game with noise, **forgiveness** is helpful to reduce the cost of false-positive punishments, but can **undermine the incentives to follow the equilibrium strategies**.

#### Proposition 2

For all g = l > 0 and  $E \in (0, \frac{1}{2})$ , the **critical discount factor** for the Payback strategy to be a public perfect equilibrium is **lower than** the one for **Grim**.

payback ○000●○

# Risk-dominance and SizeBAD (Blonski and Spagnolo, 2015; Dal Bo and Fréchette, 2018)



**SizeBAD**: "... SizeBAD is ... the maximum probability of the other player following [grim] such that playing AD is optimal."

**Without noise:** "Cooperation rates are increasing in how robust cooperation is to strategic uncertainty, especially when cooperation is risk dominant."

#### Proposition 3

For all g = l > 0 and  $E \in (0, \frac{1}{2})$  strategic risk (SizeBAD) is lower for Payback than for Grim and TFT.

### Strategy estimation – w/o and with Payback

| Strategies             | Standard     |              | No           | Noise        |              | Finite       |  |
|------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--|
| Payback                | /            | $0.10^{***}$ | /            | 0.09***      | /            | $0.02^{*}$   |  |
| TFT                    | $0.24^{***}$ | $0.16^{***}$ | 0.07***      | 0.02***      | 0.08***      | 0.06***      |  |
| ALLC                   | 0.02***      | 0.02***      | 0.05***      | 0.05***      | 0.02***      | 0.02***      |  |
| TF2T                   | 0.03***      | $0.02^{*}$   | $0.11^{***}$ | $0.08^{***}$ | 0            | 0            |  |
| TF3T                   | $0.01^{**}$  | $0.01^{***}$ | $0.05^{***}$ | 0.05***      | /            | /            |  |
| 2TFT                   | 0.03***      | 0.02**       | 0.07***      | 0.07***      | 0            | 0            |  |
| 2TF2T                  | 0.03***      | 0.02***      | $0.10^{***}$ | $0.10^{***}$ | /            | /            |  |
| Grim                   | $0.14^{***}$ | $0.14^{***}$ | $0.06^{***}$ | 0.06***      | 0.05***      | 0.05***      |  |
| Grim-last2             | $0.01^{**}$  | 0.02***      | $0.06^{***}$ | 0.06***      | 0.03***      | 0.03***      |  |
| Grim-last3             | 0.02***      | 0.02***      | $0.10^{***}$ | 0.09***      | /            | /            |  |
| ALLD                   | 0.30***      | 0.30***      | 0.28***      | 0.28***      | 0.35***      | 0.35***      |  |
| D-TFT                  | $0.17^{***}$ | $0.17^{***}$ | $0.05^{***}$ | 0.05***      | $0.10^{***}$ | $0.10^{***}$ |  |
| Threshold $t - 3$      | /            | /            | /            | /            | 0.12***      | 0.12***      |  |
| Threshold $t - 2$      | /            | /            | /            | /            | 0.13***      | 0.13***      |  |
| Threshold $t-1$        | /            | /            | /            | /            | 0.13***      | 0.13***      |  |
| Gamma                  | 0.37         | 0.37         | 0.48         | 0.48         | 0.38         | 0.38         |  |
| Number of observations | 50           | 218          | 116          | 596          | 131          | 144          |  |

payback oooooo

### Conclusions

Restitution strategies such as Payback can be **subgame-perfect** in indefinitely repeated PD.

They represent a good empirical alternative to TFT in classifying subjects' choices...

... and have relevant **theoretical advantages**, in environments with imperfect monitoring or unintentional mistakes.

The inclusion of restitution strategies in empirical and theoretical analyses of repeated social dilemmas can improve our **understanding** of the **determinants of cooperation**.