Crowding in Growth

Christian Bayer (University of Bonn, CEPR, CESifo, IZA, ECONtribute) **Fabio Stohler** (University of Bonn) EEA-ESEM 2024 August 27, 2024 **Standard effects: crowding out:** capital \Downarrow & distort. taxation: labor $\Downarrow \Rightarrow$ output \Downarrow

Standard effects: crowding out: capital \Downarrow & distort. taxation: labor $\Downarrow \Rightarrow$ output \Downarrow

This paper: liquidity service of debt with risky & growth-enhancing investment

- debt $\Uparrow \rightarrow$ interest rate $\Uparrow \rightarrow$ improves insurance against income drop
- better insurance crowds in risky investment with pos. externality \Rightarrow growth \uparrow

Standard effects: crowding out: capital \Downarrow & distort. taxation: labor $\Downarrow \Rightarrow$ output \Downarrow

This paper: liquidity service of debt with risky & growth-enhancing investment

- debt $\Uparrow \to$ interest rate $\Uparrow \to$ improves insurance against income drop
- better insurance crowds in risky investment with pos. externality \Rightarrow growth \uparrow

Crowding in \gtrless Crowding out?

Environment: het. agents + inc. markets + two assets w/o nom. frictions

Policy: change debt-to-GDP ratio by adjusting labor income tax

Environment: het. agents + inc. markets + two assets w/o nom. frictions

Policy: change debt-to-GDP ratio by adjusting labor income tax

- Qualitative result: there exists a limit for crowding in effect on risky investment
 - for small increases, higher debt improves insurance, crowding in risky investment
 - for large increases, classical crowding out effects overweight

Environment: het. agents + inc. markets + two assets w/o nom. frictions

Policy: change debt-to-GDP ratio by adjusting labor income tax

- Qualitative result: there exists a limit for crowding in effect on risky investment
 - for small increases, higher debt improves insurance, crowding in risky investment
 - for large increases, classical crowding out effects overweight
- Quantitative results: there exists potential for welfare and growth increases
 - higher debt can crowd in up to 0.5 percentage points annual growth
 - welfare increases by 2.5 percentage points of consumption equivalence

Interaction of heterogeneity and policy:

Woodford (1990), Heathcote (2005), Kitao (2008), Challe and Ragot (2010), Kaplan and Violante (2014), McKay and Reis (2016), Bayer, Born, and Luetticke (2022)

Optimal level of government debt with heterogeneous agents:

Aiyagari and McGrattan (1998), Flodén (2001), Krueger and Perri (2011), Gomes, Michaelides, and Polkovnichenko (2012), Röhrs and Winter (2015), Bhandari et al. (2016), Röhrs and Winter (2017), Dyrda and Pedroni (2023)

Endogenous growth and financial frictions literature:

Romer (1990), Buera and Shin (2013), Midrigan and Xu (2014), **Kung (2015)**, Bianchi, Kung, and Morales (2019), Anzoategui et al. (2019), Okada (2022)

Toy model

Three-period toy model

- ex-ante identical continuum of households that live for three periods
- maximize ex-ante life-time utility $V(c_1, c_{2,H}, c_{2,L}, c_{3,H}, c_{3,L})$

Three-period toy model

- households obtain (after-tax) endowments $\omega \tau_1$, $w_2 \tau_2$, and $w_3 \tau_3$
- can save in risk-free government debt $b_1 \ge 0$, $b_{2,i} \ge 0$ to smooth consumption

[•] portfolio choice between safe asset b_1 or risky asset e

Three-period toy model

- with probability φ risky investment generates payoff πe , with 1φ investment lost
- successful households have declining income profile

Three-period toy model

$$c_{1} = \omega - \tau_{1} - b_{1} - e$$

$$c_{2,L} = w_{2} - \tau_{2} + \pi e + R_{1}b_{1} - b_{2,H} \longrightarrow c_{3,H} = w_{3} - \tau_{3} + R_{2}b_{2,H}$$

$$c_{1} = \omega - \tau_{1} - b_{1} - e$$

$$c_{2,L} = w_{2} - \tau_{2} + R_{1}b_{1} - b_{2,L} \longrightarrow c_{3,L} = w_{3} - \tau_{3} + R_{2}b_{2,L}$$

- Government: $au_1 = -\mathcal{B}, \ au_2 = (R_1 1)\mathcal{B}, \ \text{and} \ au_3 = R_2\mathcal{B}$
- Firms: $w_t = w_t(\mathcal{E}_t)$ with $\mathcal{E}_t = \int_0^1 e_{it} di$ and $w_2 < w_3$

Risky investment and household utility increase with government debt

$$rac{\partial V}{\partial \mathcal{B}} > 0 \quad ext{and} \quad rac{\partial e^*}{\partial \mathcal{B}} > 0 \quad ext{if} \quad \mathcal{B} < \mathcal{B}^*.$$

Risky investment and household utility increase with government debt

$$rac{\partial V}{\partial \mathcal{B}} > 0 \quad ext{and} \quad rac{\partial e^*}{\partial \mathcal{B}} > 0 \quad ext{if} \quad \mathcal{B} < \mathcal{B}^*.$$

Figure 2: Allocations for $\mathcal{B} = 0$

Risky investment and household utility increase with government debt

$$rac{\partial V}{\partial \mathcal{B}} > 0 \quad ext{and} \quad rac{\partial e^*}{\partial \mathcal{B}} > 0 \quad ext{if} \quad \mathcal{B} < \mathcal{B}^*.$$

Figure 2: Allocations for $0 < B < B^*$

• $\mathcal{B} \Uparrow$ enables smoother consumption \Rightarrow increases utility from successful investment

Quantitative Model

Model overview

Households

- obtain income from idiosyncratic labor $w_t h_{it} n_{it}$
- risk-free asset income $R_t a_{it}$ (government debt b_{it} and capital k_{it})
- risky equity income $\pi_t e_{it}$ from holdings of an intermediate goods variety

Model overview

Households

- obtain income from idiosyncratic labor $w_t h_{it} n_{it}$
- risk-free asset income $R_t a_{it}$ (government debt b_{it} and capital k_{it})
- risky equity income $\pi_t e_{it}$ from holdings of an intermediate goods variety

Firms Production Innovators

- symmetric interm. firms produce differentiated varieties as monopolists determining π_t
- innovator produces new variety/risky equity claims at price q_t
- final goods bundler combines capital K_t , labor N_t , and varieties $\mathcal{E}_t = \int_0^1 e_{it} di$

Model overview

Households

- obtain income from idiosyncratic labor $w_t h_{it} n_{it}$
- risk-free asset income $R_t a_{it}$ (government debt b_{it} and capital k_{it})
- risky equity income $\pi_t e_{it}$ from holdings of an intermediate goods variety

Firms Production Innovators

- symmetric interm. firms produce differentiated varieties as monopolists determining π_t
- innovator produces new variety/risky equity claims at price q_t
- final goods bundler combines capital K_t , labor N_t , and varieties $\mathcal{E}_t = \int_0^1 e_{it} di$

Government Details

• supplies bonds B_t , taxes households τ_t^L , and has wasteful expenditure G_t

$$V_{t} = \max_{\{c_{it}, n_{it}, a_{it}, e_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{it}, n_{it})$$

s.t. $c_{it} + a_{it+1} + q_{t} e_{it+1} = (1 - \tau_{t}^{L}) w_{t} h_{it} n_{it} + R_{t} a_{it} + (q_{t} + \pi_{t}) e_{it}$

$$V_{t} = \max_{\{c_{it}, n_{it}, a_{it}, e_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{it}, n_{it})$$

s.t. $c_{it} + a_{it+1} + q_{t} e_{it+1} = (1 - \tau_{t}^{L}) w_{t} h_{it} n_{it} + R_{t} a_{it} + (q_{t} + \pi_{t}) e_{it}$

$$V_{t} = \max_{\{c_{it}, n_{it}, a_{it}, e_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{it}, n_{it})$$

s.t. $c_{it} + a_{it+1} + q_{t} e_{it+1} = (1 - \tau_{t}^{L}) w_{t} \frac{h_{it}}{h_{it}} n_{it} + R_{t} a_{it} + (q_{t} + \pi_{t}) e_{it}$

- labor productivity h_{it} fluctuates according to AR(1) log $h_{it} = \rho_h \log h_{it-1} + \epsilon_t$
 - households cannot insure risk due to market incompleteness

$$V_{t} = \max_{\{c_{it}, n_{it}, a_{it}, e_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{it}, n_{it})$$

s.t. $c_{it} + a_{it+1} + q_t e_{it+1} = (1 - \tau_t^L) w_t h_{it} n_{it} + \frac{R_t a_{it}}{R_t a_{it}} + (q_t + \pi_t) e_{it}$

- labor productivity h_{it} fluctuates according to AR(1) log $h_{it} = \rho_h \log h_{it-1} + \epsilon_t$
 - households cannot insure risk due to market incompleteness
- asset income from risk-free asset $R_t a_{it}$ and risky asset $(q_t + \pi_t)e_{it}$
 - ullet risky asset is lost with probability $1-\varphi$

$$V_{t} = \max_{\{c_{it}, n_{it}, a_{it}, e_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{it}, n_{it})$$

s.t. $c_{it} + a_{it+1} + q_t e_{it+1} = (1 - \tau_t^L) w_t h_{it} n_{it} + R_t a_{it} + (q_t + \pi_t) e_{it}$

- labor productivity h_{it} fluctuates according to AR(1) log $h_{it} = \rho_h \log h_{it-1} + \epsilon_t$
 - households cannot insure risk due to market incompleteness
- asset income from risk-free asset $R_t a_{it}$ and risky asset $(q_t + \pi_t)e_{it}$
 - ullet risky asset is lost with probability $1-\varphi$
- households face portfolio choice between a_{it+1} and e_{it+1}
 - e_{it} is risky, but offers $1 + \pi_t/q_t > R_t$

$$V_{t} = \max_{\{c_{it}, n_{it}, a_{it}, e_{it}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{it}, n_{it})$$

s.t. $c_{it} + a_{it+1} + q_t e_{it+1} = (1 - \tau_t^L) w_t h_{it} n_{it} + R_t a_{it} + (q_t + \pi_t) e_{it}$

- labor productivity h_{it} fluctuates according to AR(1) log $h_{it} = \rho_h \log h_{it-1} + \epsilon_t$
 - households cannot insure risk due to market incompleteness
- asset income from risk-free asset $R_t a_{it}$ and risky asset $(q_t + \pi_t)e_{it}$
 - $\bullet~$ risky asset is lost with probability $1-\varphi$
- households face portfolio choice between a_{it+1} and e_{it+1}
 - e_{it} is risky, but offers $1 + \pi_t/q_t > R_t$

Key features: return risk + portfolio choice

Quantitative Exercise

Government budget constraint along BGP

$$(r_t - g_t)\tilde{B}_t = \tau_t^L \tilde{w}_t N_t - \tilde{G}_t$$

Government budget constraint along BGP

$$(r_t - g_t)\tilde{B}_t = \tau_t^L \tilde{w}_t N_t - \tilde{G}_t$$

Experiment: change debt \tilde{B}_t and adjust labor income tax τ_t^L or gov. expenditure \tilde{G}_t alternative preferences, fixed growth rate, illiquid capital

Government budget constraint along BGP

$$(r_t - g_t)\tilde{B}_t = \tau_t^L \tilde{w}_t N_t - \tilde{G}_t$$

Experiment: change debt \tilde{B}_t and adjust labor income tax τ_t^L or gov. expenditure \tilde{G}_t alternative preferences, fixed growth rate, illiquid capital

Questions:

- Does government debt crowd in risky investment and growth?
- Does crowding in compensated classic crowding out effects?

Parameter	Value	Description	Source / Target	
Households				
β	0.986	Discount factor	K/Y = 9.0 Auclert et al. (2021)	
γ	2	Inverse Frisch	Chetty et al. (2011)	
A	0.3%	Portfolio adj. prob.	Income Gini $= 0.5$	
J	0.88	Scale labor disutility	$N_t = 1.0$ along BGP	
^o h	0.98	Labor income persistence	Storesletten, Telmer, and Yaron (2004)	
⁷ h	0.16	Labor income std.	Storesletten, Telmer, and Yaron (2004)	
irms				
χ	0.31	Capital share	62% labor income	
	1.19	Substitution elasticity	profit share of 10%	
õ	1.75%	Depreciation rate	Bayer, Born, and Luetticke (2022)	
)	0.1	Growth to equity inv.	conservative value based on estimates	
ĸ	0.1	New varieties scalar	Growth rate of 0.5% qtly.	
ρ	92.5%	Prob. keeping equity	Guvenen, Kaplan, and Song (2014)	
Government				
r ^L	37.8%	Tax rate level	G/Y = 0.2	

Table 1: Calibration Details (Quarterly Frequency)

Higher debt crowds out labor and capital...

Figure 3: Varying government debt \tilde{B}_t and adjusting labor income tax τ_t^L residually

• higher debt $\tilde{B}_t \Rightarrow$ higher tax rate $\tau_t^L \Rightarrow$ crowding out of capital \tilde{K}_t and labor N_t

...but initially crowds in growth and welfare

Figure 4: Varying government debt \tilde{B}_t and adjusting labor income tax τ_t^L residually

- debt crowds in growth up to 0.5 percentage points
- consumption equivalence increases up to 2.5 percentage points

Debt reduces wealth inequality and stimulates poor households' risky investment

Figure 5: Wealth inequality and relative investment rates

- higher debt reduces wealth inequality through asset accumulation
- households at lower end of the distribution invest more in risky equity

Highest wealth decile benefits in utility terms due to asset income

Figure 6: Consumption equivalence and income shares along wealth deciles

- equity holders benefit from $B \uparrow \Rightarrow$ crowding in equity investment
- households at the bottom of the distribution suffer

Changing the debt level and adjusting Government expenditure G_t

14

Conclusion

Model with risky investment features crowding in effect of public debt

- · higher debt enhances household insurance and crowds in risky investment
- results in initially higher growth and welfare gains
- crowding out of capital and labor more important for higher levels

Literature

Literature i

Aiyagari, S. R., & McGrattan, E. R. (1998). The optimum quantity of debt. Journal of Monetary Economics, 42(3), 447-469. Anzoategui, D., Comin, D., Gertler, M., & Martinez, J. (2019). Endogenous technology adoption and r&d as sources of business cycle persistence. American Economic Journal: Macroeconomics, 11(3), 67–110. Auclert, A., Rognlie, M., Souchier, M., & Straub, L. (2021, May). Exchange rates and monetary policy with heterogeneous agents: Sizing up the real income channel (tech. rep.). National Bureau of Economic Research. Bayer, C., Born, B., & Luetticke, R. (2022). The liquidity channel of fiscal policy. Journal of Monetary Economics.

Literature ii

- Bhandari, A., Evans, D., Golosov, M., & Sargent, T. J. (2016). Fiscal policy and debt management with incomplete markets*. The Quarterly Journal of Economics, 132(2), 617–663.
- Bianchi, F., Kung, H., & Morales, G. (2019). **Growth, slowdowns, and recoveries.** *Journal of Monetary Economics, 101,* 47–63.
- Buera, F. J., & Shin, Y. (2013). Financial frictions and the persistence of history: A quantitative exploration. *Journal of Political Economy*, 121(2), 221–272.
 Challe, E., & Ragot, X. (2010). Fiscal policy in a tractable liquidity-constrained economy. *The Economic Journal*, 121(551), 273–317.
- Chetty, R., Guren, A., Manoli, D., & Weber, A. (2011). Are micro and macro labor supply elasticities consistent? a review of evidence on the intensive and extensive margins. *American Economic Review*, 101(3), 471–475.

Literature iii

- Comin, D., & Gertler, M. (2006). Medium-term business cycles. American Economic Review, 96(3), 523–551.
- Dyrda, S., & Pedroni, M. (2023). Optimal fiscal policy in a model with uninsurable idiosyncratic income risk. The Review of Economic Studies, 90(2), 744–780.
- Flodén, M. (2001). The effectiveness of government debt and transfers as insurance. *Journal of Monetary Economics*, 48(1), 81–108.
- Gomes, F., Michaelides, A., & Polkovnichenko, V. (2012). Fiscal policy and asset prices with incomplete markets. *Review of Financial Studies*, *26*(2), 531–566.
- Guvenen, F., Kaplan, G., & Song, J. (2014). How risky are recessions for top earners? *American Economic Review*, *104*(5), 148–153.
- Heathcote, J. (2005). Fiscal policy with heterogeneous agents and incomplete markets. *The Review of Economic Studies*, 72(1), 161–188.

Literature iv

- Kaplan, G., & Violante, G. (2014). A model of the consumption response to fiscal stimulus payments. Econometrica, 82(4), 1199–1239.
- Kitao, S. (2008). Entrepreneurship, taxation and capital investment. *Review of Economic Dynamics*, *11*(1), 44–69.
- Krueger, D., & Perri, F. (2011). Public versus private risk sharing. Journal of Economic Theory, 146(3), 920–956.
- Kung, H. (2015). Macroeconomic linkages between monetary policy and the term structure of interest rates. *Journal of Financial Economics*, 115(1), 42–57.
- McKay, A., & Reis, R. (2016). The role of automatic stabilizers in the u.s. business cycle. *Econometrica*, *84*(1), 141–194.
- Midrigan, V., & Xu, D. Y. (2014). Finance and misallocation: Evidence from plant-level data. American Economic Review, 104(2), 422–458.

Literature v

- Okada, T. (2022). Endogenous technological change and the new keynesian model. The Review of Economics and Statistics, 104(6), 1224–1240.
- Röhrs, S., & Winter, C. (2015). Public versus private provision of liquidity: Is there a trade-off? Journal of Economic Dynamics and Control, 53, 314–339.
- Röhrs, S., & Winter, C. (2017). Reducing government debt in the presence of inequality. Journal of Economic Dynamics and Control, 82, 1–20.
- Romer, P. (1990). Endogenous technological change. Journal of Political Economy, 98(5, Part 2), 71–102.
- Storesletten, K., Telmer, C. I., & Yaron, A. (2004). Cyclical dynamics in idiosyncratic labor market risk. *Journal of Political Economy*, 112(3), 695–717.
 Woodford, M. (1990). Public debt as private liquidity. The American Economic Review,

Appendix

House	eholds	Production	Government
Earn Income	Trade Assets	Development and Production of Goods	Fiscal Authority
Wages w _t	Riskless, liquid a _{it}	Intermediate Bundler	Tax & Transfer
 Supply labor N_{it} Idiosyncratic risk h_{it} 	 Real, riskless, and liquid asset 	 Buys differentiated goods Q_{ijt} 	• Taxes labor and profits τ^L
Interest R.	• Borrowing constraint $a_{it} \geq \underline{A}$	• Bundles goods into <i>Q_t</i>	• Lump-sum transfers <i>Tr_t</i>
• Liquid, riskless asset a_{it} Profits π_{it}	 Risky, illiquid e_{it} Only traded with prob. λ Irreversible 	 Final Goods Producer Use capital K_t, labor N_t, and bundle Q_t to produce Y_t 	Liquidity provision Supplies government bonds B_t
 From backyard technology <i>i</i> with <i>e_{it}</i> number of varieties <i>j</i> 	$e_{it+1} \ge e_{it} \ge 0$ • Fails with prob. $1 - \varphi$ • Enhances growth g_t \Rightarrow Incomplete Markets	 Innovator Produces new varieties Δt Sells at price qt to households 	Govern. consumption Wasteful government expenditure G_t

Households face idiosyncratic risk

Figure 8: Idiosyncratic risk of the household

Back

Figure 9: Households portfolio problem

liquid, riskless asset, return R_t

illiquid, risk of failure $1 - \varphi$, return $\pi_t > R_t$

Back

Figure 9: Households portfolio problem

Tradeoff consumption vs. insurance against risk vs. investment opportunity in e_{it}

Figure 10: Households interaction with other agents

Overview over households interactions with other agents Back

Figure 10: Households interaction with other agents

- supply safe asset K_t , risky asset \mathcal{E}_t , and labor N_t to firm
- receive interest income r_t , profits π_t , and wage w_t

Overview over households interactions with other agents Back

Figure 10: Households interaction with other agents

• buy new varieties \mathcal{E}_{t+1} from innovator at price q_t

Overview over households interactions with other agents Back

Figure 10: Households interaction with other agents

- raises debt B_{t+1} and collects taxes $\tau_t^L w_t N_t$
- repays interest cost of debt $r_t B_t$

Trading-off insurance against returns Back

• Households solve portfolio problem

Tases:
$$\begin{cases} (1 - \lambda) : & V_t^n(a, e, h) = \max_{c, n, a'} u(c, n) + \beta W(a', e, h) \\ \lambda : & V_t^a(a, e, h) = \max_{c, n, e', a'} u(c, n) + \beta W_{t+1}(a', e', h) \end{cases}$$

s.t.
$$c + a' = aR(a, R_t) + (1 - \tau^L)w_thn$$
,
and $a' \ge \underline{A}$

Trading-off insurance against returns (Back)

• Households solve portfolio problem

Cases:
$$\begin{cases} (1-\lambda): \quad V_t^n(a,e,h) = \max_{c,n,a'} u(c,n) + \beta W(a',e,h) \\ \lambda: \qquad V_t^a(a,e,h) = \max_{c,n,e',a'} u(c,n) + \beta W_{t+1}(a',e',h) \end{cases}$$

Consumption-saving decision

s.t.
$$c + a' = aR(a, R_t) + \pi e + (1 - \tau^L)w_thn$$
,
and $a' \ge \underline{A}$

with:

$$W(a, e, h) = \varphi \Big(\lambda \mathbb{E}_t [V_{t+1}^a(a, e, h')] + (1 - \lambda) \mathbb{E}_t [V_{t+1}^n(a, e, h')] \Big) \\ + (1 - \varphi) \Big(\lambda \mathbb{E}_t [V_{t+1}^a(a, 0, h')] + (1 - \lambda) \mathbb{E}_t [V_{t+1}^n(a, 0, h')] \Big)$$

Trading-off insurance against returns **Back**

• Households solve portfolio problem

Cases:
$$\begin{cases} (1-\lambda): \quad V_t^n(a,e,h) = \max_{c,n,a'} u(c,n) + \beta W(a',e,h) \\ \lambda: \qquad V_t^a(a,e,h) = \max_{c,n,e',a'} u(c,n) + \beta W_{t+1}(a',e',h) \end{cases}$$

Safe-risky decision

s.t.
$$c + a' + q_t e' = aR(a, R_t) + (q_t + \pi)e + (1 - \tau^L)w_thn$$
,
and $a' \ge \underline{A}$

with:

(

$$W(a, e, h) = \varphi \Big(\lambda \mathbb{E}_t [V_{t+1}^a(a, e, h')] + (1 - \lambda) \mathbb{E}_t [V_{t+1}^n(a, e, h')] \Big) \\ + (1 - \varphi) \Big(\lambda \mathbb{E}_t [V_{t+1}^a(a, 0, h')] + (1 - \lambda) \mathbb{E}_t [V_{t+1}^n(a, 0, h')] \Big)$$

Production Back

Production Back

Production

Back

Production Back

Prices are determined as:

$$r_t + \delta = \phi lpha rac{Y_t}{K_t}, \quad w_t = \phi (1 - lpha) rac{Y_t}{N_t}, \quad ext{and} \ \pi_t = (1 - \phi) Y_t.$$

 α denotes the capital share in income, $1 - \phi$ denotes the profit share. r_t , δ , w_t , and π_t represent the interest rate, depreciation, wage rate, and profits

Innovator transforms final goods into new varieties Back

Innovator transforms final goods into new varieties Back

with externality as in Comin and Gertler (2006) and Kung (2015)

$$\chi_t = \chi \left(\frac{\mathcal{E}_t}{S_t}\right)^{1-\rho}$$

R&D expenditure S_t , existing varieties \mathcal{E}_t , ρ and χ as scalars

Innovator transforms final goods into new varieties Back

with externality as in Comin and Gertler (2006) and Kung (2015)

$$\chi_t = \chi \left(\frac{\mathcal{E}_t}{S_t}\right)^{1-\rho}$$

R&D expenditure S_t , existing varieties \mathcal{E}_t , ρ and χ as scalars

Firms and the Government determine prices in the economy

Firms: produce according to $Y_t = K_t^{\alpha} (\mathcal{E}_t N_t)^{1-\alpha}$, with $\mathcal{E}_t = \int_0^1 e_{it} di$ as intermediate input

 \mathcal{E}_t denotes the number of varieties in the economy

Back

Firms and the Government determine prices in the economy

Firms: produce according to $Y_t = K_t^{\alpha} (\mathcal{E}_t N_t)^{1-\alpha}$, with $\mathcal{E}_t = \int_0^1 e_{it} di$ as intermediate input

 \mathcal{E}_t denotes the number of varieties in the economy

$$r_t + \delta = \phi \alpha \frac{Y_t}{K_t}, \quad w_t = \phi (1 - \alpha) \frac{Y_t}{N_t}, \text{ and } \pi_t = (1 - \phi) Y_t.$$

- interest rate r_t and wage rate w_t from marginal products of final goods producer
- profits π_t from **monopolistic competition** of intermediate goods producer

Back

Firms and the Government determine prices in the economy

Firms: produce according to $Y_t = K_t^{\alpha} (\mathcal{E}_t N_t)^{1-\alpha}$, with $\mathcal{E}_t = \int_0^1 e_{it} di$ as intermediate input \mathcal{E}_t denotes the number of varieties in the economy

$$r_t + \delta = \phi \alpha \frac{Y_t}{K_t}, \quad w_t = \phi (1 - \alpha) \frac{Y_t}{N_t}, \text{ and } \pi_t = (1 - \phi) Y_t.$$

- interest rate r_t and wage rate w_t from marginal products of final goods producer
- profits π_t from monopolistic competition of intermediate goods producer

Government: holds debt, consumes, and runs tax and transfer system

$$G_t + Tr_t + (1 + r_t)B_t = B_{t+1} + T_t$$

- repays debt $(1 + r_r)B_t$, provides transfers Tr_t and has wasteful consumption G_t
- collects labor taxes $T_t = \tau_t^L w_t \int_0^1 h_{it} n_{it} di \tau_L$ and raises new debt B_{t+1}

Back

Details

Changing the debt level and adjusting the tax rate au^L - IV (Back

- increasing amount of government debt triggers GE-effects
- distribution actually shifts to the left

compute welfare according to

$$W^* = \sum W(a_{it}, e_{it}, h_{it}) d\Theta(a_{it}, e_{it}, h_{it}),$$

and use consumption equivalence for comparison

$$CE(B_t) = \exp((1-\beta)(W^*(B_t) - W_0^*)) - 1,$$

where W_0^* is the welfare at the benchmark level