Statistical Discrimination and Optimal Mismatch in College Major Selection

Mary Kate Batistich Timothy N. Bond Sebastian Linde Kevin J. Mumford

University of Notre Dame Purdue University Texas A&M University

August 21, 2024

Mismatch and Major Choice

- College major decision is one of most important investment choices for high skill workers
- Wage difference between college graduates with high paying and low paying degrees nearly as large as gap between high school and college graduates (Altonji et al., 2012)
- Central argument against affirmative action in admissions preferences is potential effect on major choice (e.g., *Students for Fair Admissions v. Harvard*)
- Black students attempt lower paying majors at more prestigious institutions than they would have if they attended less prestigious institutions (e.g., Arcidiacono et al., 2012, 2016).

Information and Major Choice

- Focus on role of two types of information frictions in major choice and empirical implications for mismatch
- Mismatch literature (Arcidiacono et al. 2011)
 - Students have incomplete information on their own aptitude
 - Admissions decisions cause students to update their beliefs
 - Black students who are admitted due to diversity preferences will form overly positive beliefs about their aptitude, make too difficult human capital investments which lower welfare
- Statistical discrimination literature (Lang and Manove 2011)
 - Employers have less precise information on the productivity of black applicants than white applicants
 - Rely more heavily on observable indicators for black applicants
 - Incentivizes black students to overinvest in education

Our Model

Our Model of Majors

- Students with incomplete information on their aptitude choose from a menu of majors that differ in their human capital production function
- Black students have less precise beliefs about their aptitude than white students
- Employers cannot initially observe accrued human capital but they do observe major, college grades, and a signal of productivity
- Following standard assumptions in statistical discrimination literature, signal is more precise for white students

Tensions of Information Frictions

- Student incomplete information
 - Lowers the value of black major choice as a signal to employers since black students are less informed of their aptitude when choosing their major
 - Reduces incentive for black students to choose more difficult majors
 - Causes black students in equilibrium to attempt *less* difficult majors than similar white students
- Statistical Discrimination
 - *Raises* value of black major choice as a signal to employer since labor market signal less reliable
 - Increases incentive for black students to choose a more difficult major leading black students to attempt less difficult majors than similar white students
 - Causes black students in equilibrium to attempt *more* difficult majors than similar white students

Empirical Results

- Test for which of these two frictions are more important using three different data sets
- Find support that statistical discrimination is dominant force
- Black students take higher paid and more STEM-focused majors than white students conditional on SAT, high school grades
- Disparity grows when moving up the SAT distribution
- Black students earn lower wages than white students in same major, both conditional and unconditional on SAT scores
- Largest racial wage disparity is among those in highest earning majors
- Find evidence that black students have less precise beliefs about their aptitude when choosing college major using racial differences in labor market return to college grades

Literature

Literature Review

- Affirmative Action and College Mismatch
 - Sander (2004)
 - Arcidiacono et al. (2011)
 - Mountjoy and Hickman (2021)
 - Bleemer and Mehta (2022)
 - Akhtari et al. (2024)
- Racial Differences in College Major Selection
 - Arcidiacono et al. (2012)
 - Arcidiacono et al. (2016)
 - Hill (2017)
 - Sovero et al. (2021)
 - Bleemer and Mehta (2021)
- Effect of market conditions on major choice
 - Ersoy (2020)
 - Han and Winters (2020)
 - Blom et al. (2021)
 - Weinstein (forthcoming)

Primitives

- Large number of (b)lack and (w)hite students possess normally distributed beliefs about their aptitude, with black students having a higher variance in their beliefs than white students
- Choose from continuum of investment technologies *m* which differ in complementary with aptitude (difficulty)
- Conditional on aptitude, human capital production function single-peaked, choosing too easy or too difficult major will lead to lower realized productivity
- Employers do not observe realized productivity, instead observe major choice, college grades, and an unbiased labor market signal
- Labor market signal more precise for white workers, unobservable to econometrician
- Grades equally precise across race, observable to econometrician

Primitives

Equilibrium Major Selection

- In equilibrium, there is a race-specific one-to-one mapping of aptitude to major
- Lowest types choose the major which maximizes human capital (no incentive to deviate)
- All other workers choose more difficult majors than optimal (sheepskin incentives)
- Student information frictions dominate: White workers overcredentialize more than black workers, because employers view major choice as an imprecise measure of black worker productivity → more human capital, higher wages, larger observed return to major difficulty
- Statistical discrimination dominates: Black workers overcredentialize more than whites, because employers view major choices as a relatively more precise measure of black worker productivity → less human capital, lower wages, lower observed return to major difficulty

Batistich et al. (2024)

Grades

- Previous tests only differentiate between whether statistical discrimination is stronger or weaker than student information frictions
- Do not tell us if weaker force exists at all
- From econometrician's perspective regression of wages on grades and major choice is simply E[w|m,g] (law of iterated expectations)
- That is, regression coefficients will tell us which is a stronger predictor of worker productivity: major or grades
- Grades are equally precise across race, but major less correlated with black student's productivity only if black students had worse information about their aptitude when making major choice
- Provides independent test of information friction hypothesis

Testable Predictions

- Black students should graduate in more (less) difficult majors conditional on measures of college preparation (SAT scores) if statistical discrimination (information frictions) dominates
- This gap should increase (decrease) as we move up the SAT score distribution if statistical discrimination (information frictions) dominates
- Black workers will earn less (more) than similar white workers within major if statistical discrimination (information frictions) dominates
- Black workers should have a lower (higher) observed return to major difficulty (i.e., this gap should grow as we move up the major difficulty distribution) if statistical discrimination (information frictions) dominates
- Black workers should have a higher observed return to college grades if they face stronger information frictions about their preparation than white workers

Batistich et al. (2024)

Data

MIDFIELD State School Sample Data

- Administrative data from 12 large public universities: Clemson, Colorado, Colorado State, Florida, Florida State, Georgia Tech, North Carolina State, North Carolina - Charlotte, Oklahoma, Purdue, Utah State, Virginia Tech
- Include courses taken, majors, grades, test scores, GPAs for students between 1987-2018
- American Community Survey 2011-2021 (wages and college major)
- Baccalaureate and Beyond
 - Nationally representative longitudinal data of college students in 2007-2008 graduating class
 - Information on major, grades, test scores, and institution
 - Wage data for 2009, 2012, 2018

Data

Major Difficulty

- Compute two wage-based metrics
 - Average residual from regression of log wage on age and year fixed effects for native-born full-time year-round employed 25-54 year old whites with at least a four-year college degree
 - Percentile ranking of majors from those residuals
- 5 Lowest Return: Early Childhood Education, Library Science, Studio Arts, Human Services and Community Organization, Teacher Education: Multiple Levels
- 5 Highest Return: Petroleum Engineering; Metallurgical Engineering; Mining and Mineral Engineering; Pharmacy, Pharmaceutical Sciences, and Administration; Naval Architecture and Marine Engineering
- Economics 18th, Computer Science 19th, Finance 23rd (out of 173)
- Compute one course-based metric: fraction of course credits in STEM for average graduate of each major

SAT Scores and First Major Percentile Return by Race: State School Sample

SAT Scores and Graduation Major Percentile Return by Race: State School Sample

SAT Scores and Major Percentile Return by Race: B&B Sample

Table 1: Major Selection by Race and SAT Score

State Schools B&B 1st-Yr. Major Grad. Major Grad. Major (1)(2)(3) (4)(5)(6) Panel A: Major Wage Return 0.037*** Black 0.032*** 0.037*** 0.030*** 0.053*** 0.067*** (0.002)(0.002)(0.003)(0.003)(0.006)(0.009)0.008*** $\mathsf{Black} \times \mathsf{SAT}$ 0.005*** 0.008** (0.001)(0.001)(0.003)Panel B: Major Percentile Return Black 0.042*** 0 049*** 0.037*** 0.047*** 0.076*** 0.094*** (0.003)(0.003)(0.004)(0.004)(0.009)(0.012) $Black \times SAT$ 0.007*** 0.010*** 0.011** (0.001)(0.001)(0.004)Panel C: Maior STEM Courses 0.060*** 0.029*** Black 0.034*** 0.018*** 0.027*** 0.042*** (0.002)(0.002)(0.003)(0.003)(0.008) $\mathsf{Black} \times \mathsf{SAT}$ 0.005*** 0.009*** 0.010** (0.001)(0.001)(0.004)Student Characteristics Х Х Х Х Х Х SAT Fixed Effects Х Х Х Х Х Х Institution x Start Year FE Х Х Х Х Carnegie Classificiation FE Х Х Observations 934,448 934,448 450,987 11,530 11,530 450,987

Batistich et al. (2024)

Optimal Mismatch

Table 2: Adult Log Earnings by Graduation Major Selection and Race

	ACS			B&B		
	(1)	(2)	(3)	(4)	(5)	(6)
	Panel A: I	Major = Wa	age Return			
Black	-0.220***	-0.229***	-	-0.083***	-0.074***	-0.055***
	(0.016)	(0.016)		(0.016)	(0.014)	(0.018)
Major	0.866***	0.832***	0.833***	0.594***	0.586***	0.590***
	(0.024)	(0.033)	(0.033)	(0.123)	(0.124)	(0.123)
Major × Black	-0.325***	-0.321***	-0.325***	-0.142**	-0.152**	-0.151**
	(0.052)	(0.051)	(0.052)	(0.071)	(0.072)	(0.069)
College GPA						0.069***
						(0.017)
College GPA \times Black						0.105***
						(0.034)
	Panel B. I	Major = Pe	rcentile Ret	urn		
Black	-0.099***	-0.109***		-0.033	-0.019	-0.001
	(0.013)	(0.013)		(0.029)	(0.026)	(0.029)
Major	0.649***	0.625***	0.625***	0.424***	0.417***	0.421***
	(0.023)	(0.029)	(0.029)	(0.097)	(0.098)	(0.097)
Major × Black	-0.246***	-0.242***	-0.245***	-0.102*	-0.110**	-0.109**
c	(0.038)	(0.037)	(0.038)	(0.052)	(0.053)	(0.051)
College GPA						0.069***
C II CDA DI I						(0.017)
College GFA × Black						(0.024)
	Daniel C. I	Anian - 67	EM Course			(0.054)
Rizali	0 100***	0 102***	Elvi Course	5 0.044	0.022	0.014
DIACK	-0.162	-0.193		(0.021)	-0.032	(0.032)
Major	0.460***	0.452***	0.452***	0.380***	0.367***	0.370***
wajoi	(0.090)	(0.094)	(0.094)	(0.111)	(0.113)	(0.110)
Major × Black	-0.121**	-0 118**	-0 118**	-0.080	-0.079	-0.082
	(0.057)	(0.057)	(0.058)	(0.079)	(0.079)	(0.075)
College GPA	(0.001)	(0.000.)	(0.000)	(0.0.0)	(0.01.0)	0.074***
						(0.017)
College GPA \times Black						0.106***
						(0.035)
Same FF		×		×	×	×
State V Pace EE		~	Y	^	~	^
Cornegie Classification EE			^	Y	Y	Y
CAT EE				~	Ŷ	~
0	2 650 200	2 650 300	2 650 200	26,360	26,360	26 360

Batistich et al. (2024)

Optimal Mismatch

Robustness

Race or SES?

- Alternative hypothesis is that results driven by low SES students having a stronger desire for monetary rewards
- Correlation between SES and race drives results
- Unlikely statistical discrimination mechanism holds for low SES white students
- Can compare effects on low SES white students to black students to test our mechanism
- While data on students own childhood SES is not available, both State School Sample and B&B data include home ZIP code
- Include ZIP code conventional SES measures, as well as intergenerational mobility statistics computed as part of Opportunity Insights (Chetty et al., 2018)

19/29

Robustness

Table 3: Graduation Major Selection by Race, SAT Score, and Neighborhood Characteristics, State School Sample

	State Schools			
	(1)	(2)	(3)	(4)
Black	0.042***	0.043***	0.043***	0.042***
$Black\timesSAT$	(0.004) 0.009*** (0.002)	(0.004) 0.008*** (0.002)	(0.004) 0.008*** (0.002)	(0.004) 0.007*** (0.002)
Median Income (10,000s)	(0.002)	0.001***	(0.002)	(0.002)
Median Income \times SAT		(0.000) -0.001*** (0.000)		
Median Education		(0.000)	0.002***	
Median Education \times SAT			(0.001) -0.001*** (0.000)	
Income Mobility			(****)	0.086***
Income Mobility \times SAT				(0.018) -0.090*** (0.013)
Student Characteristics	Х	Х	Х	Х
SAT FE	Х	Х	Х	Х
Institution × Start Year FE	Х	Х	Х	Х
Observations	311,520	311,520	311,520	311,520

 Table 4: Graduation Major Selection by Race, SAT Score, and Neighborhood

 Characteristics, Baccalaureate and Beyond Sample

		B&B		
	(1)	(2)	(3)	(4)
Black	0.069***	0.068***	0.068***	0.069***
$Black\timesSAT$	(0.009) 0.007*	(0.009) 0.007*	(0.009) 0.007*	(0.009) 0.007*
Median Income (10,000s)	(0.004)	-0.001 (0.001)	(0.004)	(0.004)
Median Income \times SAT		-0.000 (0.000)		
Median Education			-0.003* (0.001)	
Median Education \times SAT			-0.000 (0.000)	
Income Mobility			. ,	-0.033
Income Mobility \times SAT				(0.056) -0.005 (0.026)
Student Characteristics	Х	Х	Х	Х
SAT FE	X	X	X	X
Carnegie Classification FE	X	X	X	X
Observations	8,500	8,500	8,500	8,500

Table 5: Log Earnings by Graduation Major Selection, Race, and Neighborhood Characteristics

	B&B				
	(1)	(2)	(3)	(4)	(5)
Black	-0.088***	-0.069***	-0.079***	-0.086***	-0.062***
	(0.022)	(0.022)	(0.022)	(0.021)	(0.019)
Major	0.626***	0.541***	0.552***	0.628***	0.562***
	(0.117)	(0.139)	(0.131)	(0.175)	(0.149)
Black \times Major	-0.297***	-0.304***	-0.296***	-0.291***	-0.273***
	(0.084)	(0.080)	(0.082)	(0.079)	(0.084)
Median Income (10,000s)		0.017***			0.017***
		(0.002)			(0.002)
Median Income \times Major		0.010			0.006
		(0.008)			(0.008)
Median Education			0.020***		
			(0.004)		
Median Education × Major			0.009		
			(0.010)		
Income Mobility				0.974***	
				(0.134)	
Income Mobility × Major				-0.039	
				(0.722)	
Student Characteristics	Х	Х	Х	х	х
Year FE	Х	Х	Х	Х	Х
Carnegie Classification FE	Х	Х	Х	Х	Х
SAT FE					х
Observations	21,920	21,920	21,920	21,920	21,920

Batistich et al. (2024)

Optimal Mismatch

Robustness

Other Results

- Results robust to other major measures as well as using first declared major in the State Schools sample
- No evidence of heterogeneity by age or gender
- Results robust to major difficulty measures including non-white workers in calculation, as well as including only white men
- Institution fixed effects reduce precision in B&B but have little impact on point estimates

Summary of Results

- Results strongly indicate that black students choose more difficult majors due to anticipated statistical discrimination
- This 'mismatch' is optimal behavior of students, not distorted behavior due to institutional factors
- Important implications for current methodologies that test mismatch hypothesis on university admissions

A Simple Extension

- Consider simple extension of model where black students face barriers to human capital investments, c(m), that are increasing in difficulty
- Such barriers will reduce black student investment choices (potentially even beneficially)
- Policymakers concerned with equity can give black students an affirmative action subsidy b(m) which will induce black students to attempt higher levels of m
- If b(m) is too low, black students will "undermatch" and would see better outcomes if they attempted more difficult m
- If b(m) is too high, black students will "overmatch" and lowering affirmative action subsidies will raise average black outcomes
- When b(m) = c(m) black students will optimally mismatch as in our model, and a reduction in b(m) is arguably beneficial

Some Definitions

- \bullet Weak mismatch: Lowering b(m) on the margin would improve black outcomes
- Strong mismatch: b(m) = 0 (i.e., abolishing racial admissions preferences) would lead to better black outcomes than current b(m)
- Strong mismatch implies weak mismatch but not vice versa

Pseudo-Random Assignment

- Consider a natural experiment which leads to a small number of black students to randomly attend a more difficult institution (e.g., a RD around an admissions cutoff)
- If information is incomplete, these students will be paid a higher wage than those who attend a less difficult institution *even if* they are less productive
- Thus cannot reject weak or strong mismatch
- Signaling value of institution will lead to sharp increase in wages at discontinuity
- If information is complete (older workers) this provides test of weak mismatch because it compares outcomes from marginally changed students whose matriculation decisions depend on b(m)

Affirmative Action Ban

- Several states have banned affirmative action in admissions
- Frequent empirical strategy is to compare black outcomes before and after affirmative action ban
- Whether ban harms minority students seems to depend on state and minority group studied
- This provides a test of strong mismatch regardless of whether information is complete or incomplete, but cannot reject weak mismatch
- Natural that results could vary dramatically across studies, since each study is comparing a different level of affirmative action subsidies (state policy differences towards different classes) to same b(m) = 0 treatment

Summary

- Developed a new model of human capital investment when students have incomplete information about their aptitude and anticipate statistical discrimination
- Two different information channels have opposing effects on major selection
- Empirical evidence suggests statistical discrimination is stronger than student information frictions
- Find that black students enroll in more difficult majors, and have a lower return to majors in the labor market
- Because behavior is optimal, in equilibrium moving black students to "better matched" investments is harmful
- Researchers must think carefully about policy question of interest and level of information possessed by employers when evaluating empirical studies of racial admissions preferences