
Leveraging Benchmarks via Information Design∗

Christopher Teh†

This version: August 26, 2024 (Latest)

Abstract

An agent’s reasoning about how others behave is often benchmarked on

payoff-irrelevant factors such as culture, biases and past performance. I study

how these benchmarks shape a designer’s optimal information disclosure in

symmetric binary action supermodular games. Agents determine their (Bayes-

Nash) equilibrium actions via introspection, anchored on a benchmark of aggre-

gate behaviour. I characterize all outcomes implementable by some information

structure, and use the result to solve the designer’s problem. I show that the

designer benefits from a higher benchmark about aggregate behaviour, and she

leverages it by disclosing information more symmetrically among agents. Mean-

while, higher benchmarks may not benefit agents. I also find that changes in the

benchmark have a greater impact when the designer limited to public informa-

tion. My approach nests prior analyses using designer-preferred or adversarial

selection, which coincides with extreme benchmarks.
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1 Introduction

In many economic settings, a designer discloses information to multiple agents engag-

ing in a coordination game. For instance, a policy maker designs stress tests which

reveal information about a bank’s fundamentals to depositors to dissuade them from

making a run on the bank. An entrepreneur decides what information to disclose

about her project in her pitch to potential investors to raise funds. A manager de-

cides what information to reveal to employees working on complementary tasks, e.g.,

about task difficulty and rewards, to motivate them to work.

Because agents’ actions are strategic complements, whether agents’ coordinate

on a given action depend not only on the information received, but also on what

they reason others will do. In light of strategic uncertainty, agents often base their

reasoning on a benchmark about others’ behaviours. These benchmarks are shaped

by a variety of payoff irrelevant factors. For example, a depositor’s benchmark about

the number of other depositors making a run on the bank depends on the bank’s

reputation or historical data about depositor behaviour. An investor’s reasoning

about whether the entrepreneur can raise enough funds from other investors to launch

the project can be shaped by perceived biases given the entrepreneur’s attractiveness,

race and gender.1 A worker’s reasoning about whether others exert effort depends on

the organization’s culture surrounding work. Thus, different benchmarks can lead to

agents reacting very differently, even to the same piece of information.2

The above leads to several natural questions. What information should the de-

signer disclose for a given benchmark? How does it vary in the benchmark? What

consequences does this have on outcomes? In this paper, I address these questions in

a general binary action supermodular setting, which models all of the examples above.

I present a systematic approach for incorporating benchmarks into the information

design problem, and study how they shape optimal information disclosure.

In the model, a designer first commits to an information structure, which reveals

information about an unknown state-of-the-world to a unit mass of symmetric agents.

1As noted by Addy Miise, co-Founder and CEO of Jetstream Africa: “In my experience..., I
have found that many...mainstream start-up investors approach investing like judges in the beauty
pageant problem. Even when they see inherent potential in great, underrepresented founders, they
discount that potential because they don’t think the other judges will see it. They believe that the
biases of the past will control outcomes in the future.” (Miishe, 2022)

2For example, Brooks et al. (2014) find that pitches by attractive, male entrepreneurs to be more
persuasive than those by other counterparts, even when the content was the same.
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Each agent then simultaneously chooses between one of two actions: invest or not

invest. The designer always prefers higher over lower aggregate investment. Likewise,

an agent’s incentive to invest over not is increasing in the aggregate investment.

The designer optimizes over information structures with a Monotone Introspective

Equilibrium (MIE) (Kets and Sandroni, 2020, Akerlof and Holden, 2019), a type of

Bayes Nash equilibrium, given the benchmark. One first computes a sequence of best-

responses for agents: a “round one (of introspection)” best-response to a common

belief about aggregate investment on each state called the benchmark, a “round two”

best-response to other agents following the round one best-response, and so on. If

agents only switch from not investing to investing during the sequence, then call the

limit strategy the MIE, which is how agents behave under the information structure.

Notably, the designer’s problem under MIE for extreme benchmarks coincides with

that under designer-preferred and adversarial equilibrium selection, the focus of the

literature (Bergemann and Morris, 2019). Thus, the problem I study nests prior work.

My main methodological contribution is to provide the means for solving the

designer’s problem under MIE. My approach relies on the observation that agents who

invest in a MIE fall into one of two roles, depending on “when” the agent switches

to invest during introspection. First, there are anchors : agents who invest against

the benchmark and so immediately switch to invest. Second, there are non-anchors,

agents who do not invest against the benchmark, but switch eventually after enough

rounds of introspection. Every information structure implements a distribution over

roles across states, called an introspective outcome. Thus, the designer’s problem can

be reformulated as optimizing over implementable introspective outcomes.

To use the reformulation, I characterize all implementable introspective outcomes.

I show that these are pinned down by introspective obedience constraints, which reflect

the incentives of agents to invest in each role. I also offer a class of information

structures which support all implementable introspective outcomes. Under it, anchors

are provided symmetric information, while different non-anchors are provided different

information. This gives a canonical interpretation for the choice of an introspective

outcome: it captures how much symmetric (anchors) and asymmetric (non-anchors)

information the designer provides to induce investment across states.

I use my approach to solve the information design problem in threshold games.

These are games where an agent’s payoff from investing is constant in the aggregate

investment whenever it is negative. These span many settings, for instance, team
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production models and regime change games (Morris and Shin, 2003). For these, I

explicitly construct an optimal introspective outcome. I show that under it, a higher

benchmark raises the aggregate investment on all states, and the mass of anchors on

most states. The former implies the designer benefits from a higher benchmark, and

she leverages it to alleviate the coordination problem. The latter implies the designer

uses more symmetric information to induce investment under a higher benchmark.

I deliver two additional insights about the interaction between benchmarks and

the optimal introspective outcome constructed. First, I identify a weak sufficient con-

dition for it to perfectly coordinate investments across all states. It requires that on

all states where agents’ payoffs from investing given the benchmark are negative, so

agents cannot be “easily” induced to invest, the designer’s payoff is convex relative

to that of agents’, so she prefers randomizing over having all agents invest and not

invest over having a fraction invest. A higher benchmark makes this condition easier

to satisfy, and so raises designer’s incentive to perfectly coordinate investments. I

also show that in many relevant settings, the condition is satisfied under all bench-

marks. If so, then changes in the benchmarks only affects the designer’s incentive to

discriminate through information provision, and not ex-post.

Second, I shed light on whether raising the benchmark increases agents’ ex-ante

payoffs under the optimal introspective outcome. The key insight is that it depends

on which states the benchmark increases on. For example, in the context of an

entrepreneur (designer) raising investment from investors (agents), the type of project

(state) the entrepreneur is perceived to be better at raising investment for (higher

benchmark) dictates whether investors are better or worse off. I characterize the kinds

of increases in the benchmark that increase or decrease agents’ payoffs. In particular,

these results show that one can often find sequences of increases in the benchmark

that lead to non-monotone changes in agents’ payoffs.

Finally, I consider the implications of limiting the designer to public information.

This applies, for instance, to the disclosure of banking stress test results or project

information in an IPO. I show that for generic benchmarks, the designer is strictly

worse off when restricted to public information than when she is not. Meanwhile, the

marginal gain to the designer from raising the benchmark is larger when restricted to

public information. This suggests payoff-irrelevant factors have a greater impact on

(optimal) outcomes when there are informational restrictions in play.
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Related literature. My paper contributes to the vast literature on optimal infor-

mation design (Bergemann and Morris, 2019, Taneva, 2019), particularly in binary

action supermodular (BAS) games. Most if not all papers impose either designer-

preferred selection (e.g., Arieli and Babichenko (2019), Candogan and Drakopoulos

(2020) and Taneva and Mathevet (2023)), or adversarial selection (e.g., Goldstein and

Huang (2016), Mathevet et al. (2020), Li et al. (2023), Hoshino (2022), Inostroza and

Pavan (2023) and Morris et al. (2022a, 2024)),3 and focus on how changes in the base

game or informational constraints shape optimal information disclosure.4 Relative to

these, my paper is, to my knowledge, the first to (also) consider “intermediate” se-

lection via intermediate benchmarks. I also develop novel results about comparative

statics of optimal information structures in the benchmark, how it affects outcomes,

and the interaction between benchmarks and informational restrictions.

My work also speaks to the literature on contracting with externalities (Segal,

1999, Segal, 2003) studying optimal mechanisms for implementing perfect coordi-

nation under adversarial equilibrium selection.5 A key insight is that the designer

optimally leverages the iterative dominance reasoning of agents which pins down the

adversarial equilibrium by discriminating between agents. For example, by offering

fully discriminatory incentives when incentives must be public (Winter, 2004), or of-

fering fully discriminatory information when incentives can be private (Halac et al.,

2021, Halac et al., 2022, Morris et al., 2022b) or must be symmetric (Moriya and

Yamashita, 2020). Complementary to these, I show that higher benchmarks, i.e., less

adversarial selection, lead to more symmetric information provision. In particular, for

generic benchmarks, partial discrmination is strictly optimal. I also find that higher

benchmarks also raise the designer’s incentive to treat agents symmetrically ex-post.

I also contribute to the recent literature on introspective equilibrium (Kets and

Sandroni, 2020). It offers a payoff-irrelevant alternative for equilibrium selection to

3Li et al. (2023), Hoshino (2022) and Morris et al. (2022a) also consider optimal information
design when restricted to a finite signal space. The exercise is reminiscent of information design under
Level-K thinking (Crawford et al., 2013) for the worst “L0” belief, where equilibrium behaviours are
taken as the Kth best response. Meanwhile, introspective equilibrium takes the limiting behaviour
as K → ∞, and I study the implications for optimal disclosure varying L0 beliefs (benchmarks).

4Relatedly, Lipnowski et al. (2024) study when the designer’s equilibrium payoff (and certain
features of equilibrium information structures) is robust to varying selection in Bayesian Persuasion.
Carroll (2016) and Ziegler (2020) study adversarial information design in bilateral settings.

5Traditionally, these papers study the problem when the designer chooses among mechanisms
with a unique equilibrium. When the designer’s objective is to achieve perfect coordination, this
problem coincides with the one under adversarial selection.
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the global games approach (Carlsson and van Damme, 1993). Ongoing work applies

this to study complete information environments, e.g., capital assembly for projects

(Akerlof and Holden, 2019),6 competition in markets with network externalities (Ak-

erlof et al., 2023), supply chain coordination (Akerlof and Holden, 2023) and orga-

nizational design (Kets, 2021). Meanwhile, I extend the introspective equilibrium

concept to incomplete information settings where agents share common uncertainty

about a payoff-relevant state-of-the-world.7, and study optimal information design.

The main innovation, allowing the benchmark to vary across states, turns out to be

crucial for studying how changes in the benchmark affect players’ welfare.

My paper also relates to the literature on implementation via information de-

sign in games. Aumann (1974) and Bergemann and Morris (2016) characterize the

equilibrium outcomes that arise under some information structure in games without

and with common state uncertainty respectively. Oyama and Takahashi (2020) and

Morris and Ui (2005) provide necessary and sufficient conditions, respectively, for full

implementation in complete information BAS games.8 Morris et al. (2024) extends

the construction of Oyama and Takahashi (2020) to fully characterize smallest and

unique implementation in incomplete information BAS games. I build on these results

by characterizating implementation under intermediate adversariality (benchmarks).

Finally, my work sheds light on how payoff-irrelevant factors such as culture, biases

and reputation can shape outcomes. This speaks to broader questions about persis-

tent performance differences among seemingly similar enterprises (Chassang, 2010,

Gibbons and Henderson, 2013), how culture affects institutional design (Alesina and

Giuliano, 2015) and communication in organizations (Crémer, 1993), and how statis-

tical discrimination (Phelps, 1972, Arrow, 1973) shapes entrepreneurial outcomes.

Organization. Section 2 solves an example to highlight the main insights of the

paper. Section 3 introduces the general model. Section 4 characterizes implementable

outcomes. Section 5 studies the general information design problem. Section 6 ex-

amines the implications of restricting the designer to public information. Section 7

concludes. Formal proofs and additional details are relegated to the Appendix A-C

6Akerlof and Holden (2016) use the global games approach to study a similar problem.
7In contrast, Kets et al. (2022) only allows for payoff-irrelevant state uncertainty.
8Also related are Kajii and Morris (1997) and Rubinstein (1989), who show that risk-dominance

is necessary and sufficient for an equilibrium to be fully implementable, i.e., robust to incomplete
information, in 2× 2 complete information games, and Frankel et al. (2003), who provides sufficient
conditions for full implementation in general complete information supermodular games.
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and the Online Supplementary Appendix.

2 Main Example

An entrepreneur is raising investment for her project from a unit mass of investors. An

investor who does not invest receives zero. An investor who chooses to invest incurs

a cost of 1, and obtains a yield of 2 conditional on project success. The probability

of success depends on both the aggregate investment I ∈ [0, 1], and the unobserved

project quality θ ∈ {H(igh), L(ow)}. If the quality is high, then the project succeeds

with probability p(I,H) = (3+I)/4. If the quality is low, then the project always fails:

p(I, L) = 0. Assume that qualities are equally likely: Pr(θ = H) = Pr(θ = L) = 1/2.

The entrepreneur decides what verifiable information about θ to gather and dis-

close in her pitch to investors. I model this as the entrepreneur committing to a pitch

structure S ≡ (S, π(·|H), π(·|L)), delivering pitches s ∈ S to investors such that the

empirical distribution over pitches is µ ∈ ∆(S) with probability π(µ|θ) on quality θ.

The delivery of pitches does not discriminate between investors ex-ante, so each in-

vestor privately observes pitch s with probability µ(s). Finally, investors form beliefs

over what other investors observe and θ, and decide whether to invest.9

Investors’ (Bayes-Nash equilibrium) behaviour under a pitch structure S is deter-

mined by introspection, anchored on a belief about aggregate investment across states

b ∈ [0, 1] called the benchmark. More precisely, consider a sequence of “introspective”

best-responses defined as follows. The first term in the sequence is the investor’s

best-response against the benchmark b. Under it, the investor invests if and only if

E[2p(b, θ)− 1|s] ≥ 0, where E[·|s] is the expectation given the investor’s belief about

(µ, θ) observing s. The k ≥ 2th term is the investor’s best response after k rounds of

introspection. Under it, the investor invests if and only if E[2p(Ik−1(µ), θ)− 1|s] ≥ 0,

where Ik−1(µ) is the aggregate investment when the distribution over (other) in-

vestors’ signals is µ, and other investors follow their k − 1th round best-response.

9Alternatively, the entrepreneur can raise investments on a crowdfunding platform. Here, in-
vestors incur a sunk cost from investment when a flexible funding model is used (e.g., on Indiegogo),
or when opportunity costs are large (e.g., for equity crowdfunding). The simultaneous investment
timing captures the idea that most investments are made early or late in the funding cycle (Colombo
et al., 2015, Crosetto and Regner, 2018). Assume the platform earns commission on funds raised,
so its interests are aligned with the entrepreneur. Then, the platform’s design problem, choosing
what verifiable information the entrepreneur provides via its information policy, and what projects
to privately recommend to investors via its recommender system, mirrors the entrepreneur’s.
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If an investor only ever switches to investing and never back along the sequence,

then call the limit the b-Monotone Introspective Equilibrium (b-MIE) of S, which is

how investors behave under S.10 The entrepreneur chooses among pitch structures

to maximize the (expected) aggregate investment in her project.

The benchmark b captures investors’ reasoning about the entrepreneur’s ability

to raise investment. This is shaped by exogenous, payoff-irrelevant factors. For

instance, investor biases about the entrepreneur’s attractiveness, race and gender not

correlated with project quality. It can also reflect investors benchmarking on the

investment raised by (other) entrepreneurs with similar characteristics in the past.

Finally, it can depend on the entrepreneur’s or backing venture capitalist reputation.

If the benchmark b is high enough, then disclosing no information induces all

investors to invest. To see this, let b = 1. The expected payoff from investing against

the benchmark is E[2p(1, θ) − 1] = 0, so an investor invests at the first round of

introspection. Anticipating all other investors to do so the same, an investor then

invests at the second round of introspection. Repeating the argument, investors invest

at all rounds of introspection, and so in the limit, i.e., the b-MIE.

Now consider b = 1/2. Here, investors no longer invest under no disclosure,

as they are insufficiently optimistic about the quality being high to invest against

the benchmark. Thus, the entrepreneur must disclose more information about the

project quality to induce investment. More strikingly, the entrepreneur now also finds

it optimal to deliver different pitches to different investors.

Pr
(
all observe s = 1 |H

)
= 1 Pr

(
all observe s = 1 |L

)
=

3

4

Pr
(
all observe s = ∞ |L

)
=

1

4

Figure 1: A symmetric pitch structure for benchmark b = 1/2

To see this, suppose the entrepreneur delivers the same pitch to all investors

as in Figure 1. Here, all investors are optimistic enough about the quality being

high observing pitch s = 1 to invest under it, but not under pitch s = ∞. More

importantly, an investor observing s = 1, knowing all other investors invest at all

10If one does not exist for b, then investors’ behaviours coincide with the largest b̃-MIE satisfying
b̃ ≤ b. As Section 3.3 discusses, the designer always finds a pitch structure with a b-MIE optimal.
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rounds of introspection, has a payoff of E[2p(1, θ)− 1|1] = 1/8 > 0 from investing at

rounds two and above of introspection, and so strictly prefers to invest then.

Pr

(
4/5 observe s = 1
1/5 observe s = 2

|H
)

= 1 Pr

(
4/5 observe s = 1
1/5 observe s = 2

|L
)

=
3

4

Pr
(
all observe s = 2 |L

)
=

3

100
Pr
(
all observe s = ∞ |L

)
=

22

100

Figure 2: A strict improvement over Figure 1 for benchmark b = 1/2

To capitalize on this “slack”, consider the pitch structure in Figure 2. By only

slightly reducing the fraction of investors who observe s = 1 but preserving the

frequencies on which it is drawn across qualities, an investor continues to invest at all

rounds of introspection under s = 1. Meanwhile, under the new pitch s = 2 created,

an investor is too pessimistic about project quality to invest against the benchmark.

However, because such an investor believes many other investors have observed pitch

s = 1 and so invest at all rounds of introspection, the investor’s payoff from investing

at rounds two and above of introspection is positive. Thus, the investor switches to

investing at the second round of introspection. In turn, all investors invest under

pitches s = 1 and s = 2. This strictly raises investment in the low quality project.

Pr

(
b anchors, and

1− b non-anchors
|H
)

= 1 Pr

(
2b(1+b)
3+b2

anchors, and
3−b2−2b
3+b2

non-anchors
|L

)
=

3 + b2

4

Pr
(
all investors do not invest |L

)
=

1− b2

4

Figure 3: Optimal distribution over anchors and non-anchors given benchmark b

The key insight is that the entrepreneur can “use” the investment of anchors,

investors who prefer to invest against the benchmark (i.e., those who observe pitch

s = 1), to induce non-anchors to invest after further introspection (i.e., those who

observe pitch s = 2). The “cost” of using anchors, however, is that anchors require

a more optimistic pitch about project quality to invest, which the entrepreneur has

limited ability to generate. An optimal pitch structure balances the two.

Using the methods developed in this paper, I derive the distribution over anchors

and non-anchors induced by an optimal pitch structure, given in Figure 3. Observe
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that investors’ investments are always perfectly coordinated : either all investors invest

or all do not. This has to do with the convexity of the entrepreneur’s objective: when

she cannot easily induce investment in the (low-quality) project, she at least prefers

to induce a randomization over all investors investing and not, over having a fraction

invest. Hence, investment outcomes remain extreme regardless of the benchmark.

Mass

b

1

0

(a) Quality θ = H

Mass

b

1

0

Total investment
Anchors

Non-anchors

(b) Quality θ = L

Figure 4: Investment composition under the optimal distribution over anchors and non-anchors

Meanwhile, as seen in Figure 4, a higher benchmark does raise the probability the

low quality project is (fully) funded. Intuitively, a higher benchmark raises anchors’

incentives to invest in the high quality project. The designer can leverage this by

more frequently pitching a low quality project to investors while maintaining their

incentives to invest. This benefits the entrepreneur but harms investors.11

Finally, the mass of anchors induced is increasing in the benchmark. Intuitively, by

raising investors’ payoffs from investing against the benchmark, a higher benchmark

also reduces the relative “cost” of inducing investment from anchors over non-anchors.

This means replacing some non-anchors with anchors is now optimal. As I show later,

the optimal distribution can always be implemented by delivering symmetric pitches

to anchors, while different non-anchors receive different pitches. Thus, the result

states that the entrepreneur now pitches more symmetrically.12

11This is consistent with some findings from the literature. Ewens and Townsend (2020) find
that male investors, who make up a majority of investors in their dataset, express more interest
in funding male over female entrepreneur led start-ups, and these biases are not based on inherent
gender differences. They also find that female led start-ups, i.e., the ones with a lower benchmark,
outperform their male counterparts on average. Hebert (2023) finds a similar result.

12In the crowdfunding interpretation (see footnote 9), this suggests that projects helmed by
entrepreneurs with high benchmarks, e.g, “superstars”, should be more widely broadcast (more
anchors) and rely less on targeted recommendations (less non-anchors) then those which are not.
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3 General Model

3.1 Set-up

A designer discloses information about an unknown state of the world θ ∈ [0, 1] to a

unit mass of symmetric agents i ∈ [0, 1]. Each agent chooses either to invest (ai = 1),

or not to invest (ai = 0). An agent’s payoff from not investing is zero. Meanwhile,

an agent’s payoff from investing u(I, θ), and the designer’s payoff v(I, θ), depend on

the aggregate investment I =
∫
i
aidi and the state θ. Both v(I, θ) and u(I, θ) are

bounded and upper semicontinuous in (I, θ). Players share a common prior over

states F ∈ ∆([0, 1]), where F has a compact support denoted by supp(F ) ≡ Θ.13

I impose three main assumptions on the base game. First, u(I, θ) is non-decreasing

in I. Hence, an agent’s incentive to invest (over not) is non-decreasing in the aggregate

investment. Second, v(I, θ) is non-decreasing in I and v(0, θ) = 0. Hence, the designer

prefers more over less investment. Third, there exists sets Θ,Θ ⊆ Θ of strictly positive

measure under F where for all θ ∈ Θ, u(0, θ) > 0 so investing is a strictly dominant

action, and for all θ ∈ Θ, u(1, θ) < 0 so not investing is a strictly dominant action.

An information structure is a pair S ≡ (S, (π(·|θ))θ∈Θ).14 S ∈ B(R) is a non-empty

set of signals. Meanwhile, for each θ ∈ Θ, π(·|θ) ∈ ∆(∆(S)) is a distribution over

signal distributions µ ∈ ∆(S). Denote the induced joint distribution over S×∆(S)×Θ

by π, so π(X×Y ×Z) ≡
∫
Z

∫
Y

∫
X
dµ(s)dπ(µ|θ)dF (θ) for all X ∈ B(S), Y ∈ B(∆(S))

and Z ∈ B(Θ). Further let π(·|s) denote any version of the regular conditional

probability on ∆(S) × Θ given signal s ∈ S under π. I focus on S which induces a

marginal distribution over signals with full support.

The designer first chooses an information structure S. Then, the state θ ∈ Θ

is drawn according to F , and a signal distribution µ ∈ ∆(S) is drawn according to

π(·|θ). Signals are then allocated anonymously across agents: each agent privately

observes an independent draw of s from µ. By an appropriate “large of large numbers”

(Sun, 2006), µ is the empirical distribution over other agents signals. Each agent then

simultaneously chooses to invest or not, and payoffs are subsequently realized.

13Given a topological space X, B(X) denotes the Borel sigma-algebra of X. ∆(X) denotes the
set of Borel probability measures over X. The support of a measure µ ∈ ∆(X), denoted by supp(µ),
is defined as the smallest closed set with measure one.

14This modelling approach is also used in Morris et al. (2022a) and Li et al. (2023).
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3.2 Monotone Introspective Equilibrium

An information structure S induces a Bayesian game between agents. A (symmetric,

pure) strategy for agents in this game is a map α : S → {0, 1}. The aggregate invest-
ment under distribution µ given strategy α is I(µ|α) ≡

∫
S
α(s)dµ(s). A (symmetric)

Bayes-Nash Equilibrium (BNE) of S is a strategy profile α∗ under which no agent

has a unilateral incentive to deviate. That is,

α∗(s) ∈ argmax
a∈{0,1}

{
a×

∫
∆(S)×Θ

u(I(µ|α∗), θ)dπ(µ, θ|s)
}
, ∀s ∈ S

The designer anticipates the BNE selected under an information structure to be its

monotone introspective equilibrium. As in Section 2, this is the limit of an intro-

spective best-response process, anchored on a benchmark of other agents’ behaviours.

Unlike Section 2, a benchmark is now an upper semicontinuous function b : Θ → [0, 1],

where b(θ) is agents’ benchmark about aggregate investment raised on state θ. For

example, this captures the possibility that prior entrepreneurs had different success

with raising investment for different quality projects, leading to different benchmarks.

Denote the set of benchmarks by B. Definition 1 below formally defines the mono-

tone introspective equilibrium of an information structure for a given benchmark.

Definition 1. Given a benchmark b ∈ B, let (αS,b,k)k≥1 denote the sequence of pure

strategies defined as follows:

1. If k = 1, then

αS,b,1(s) =

1,
∫
∆(S)×Θ

u(b(θ), θ)dπ(µ, θ|s) ≥ 0

0,
∫
∆(S)×Θ

u(b(θ), θ)dπ(µ, θ|s) < 0
, ∀s ∈ S (1)

2. If k > 1, then

αS,b,k(s) =

1,
∫
∆(S)×Θ

u(I(µ|αS,b,k−1), θ)dπ(µ, θ|s) ≥ 0

0,
∫
∆(S)×Θ

u(I(µ|αS,b,k−1), θ)dπ(µ, θ|s) < 0
, ∀s ∈ S (2)

If (αS,b,k)k≥1 is pointwise non-decreasing in k, then call the limit αS,b ≡ limk→∞ αS,b,k

the b-Monotone Introspective Equilibrium (b-MIE) of S.
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The next result says that b-MIE is indeed a BNE selection criterion. It also says that

higher benchmarks15 select larger BNE, which benefits the designer.

Lemma 1. Take an information structure S and any two benchmarks b, b̃ ∈ B

1. If αS,b exists, then it is a BNE of S

2. If b ≥ b̃, and both αS,b and αS,b̃ exist, then αS,b(s) ≥ αS,b̃(s) for all s ∈ S.

Part 1 holds as an agent’s MIE strategy must be a best-response to other agents’

strategies at high enough rounds of introspection and so in the limit. Part 2 holds

because of the supermodularity of agents’ payoffs. Higher benchmarks lead to more

investment at the first round of introspection, which, by raising agents’ payoffs from

investing, leads to more investment at the second round, and so on.

3.3 Designer’s Problem

Given benchmark b, let Π(b) be the set of information structures with a b-MIE. Π(b) is

non-empty as it includes no disclosure.16 Then, the designer’s problem is to optimize

over information structures in Π(b), anticipating b-MIE selection:

V ∗(b) ≡ sup
S∈Π(b)

∫
Θ

∫
∆(S)

v(I(µ|αS,b), θ)dπ(µ|θ)dF (θ) (3)

The goal is to understand how changes in the benchmark affect optimal information

provision, i.e., solutions to (3). In light of this, it is a priori unclear how to interpret

the results obtained. This is because raising the benchmark affects not only the

equilibrium selected αS,b, but also the feasible set of information structures Π(b).

To resolve this, it is worth noting that the designer’s payoff V ∗(b) is non-decreasing

in the benchmark (see Section 5.5). Hence, if the designer (strictly) prefers to switch

to choosing a new information structure after raising the benchmark, then it is because

the BNE selected under the new information structure strictly outperforms that under

the old one, not simply because the old information structure no longer has a MIE

under the higher benchmark. Combining this observation with Lemma 1 yields the

following interpretation for comparative statics in the benchmark.

15I say that b is higher than b̃, written as b ≥ b̃ if b(θ) ≥ b̃(θ) for all θ ∈ Θ. A function g : B → R
is non-decreasing in b if for all b, b̃ ∈ B, b ≥ b̃ implies g(b) ≥ g(b̃).

16I define no disclosure as any information structure with |S| = 1. It has a unique b-MIE in which
all agents invest if

∫
Θ
u(b(θ), θ)dF (θ) ≥ 0, and do not invest if

∫
Θ
u(b(θ), θ)dF (θ) < 0.

13



Remark 1. A higher benchmark affects optimal information disclosure because it

leads to less adversarial equilibrium selection.

4 Introspective Implementation

This section builds the tools used to study the designer’s problem under MIE. I

first introduce introspective outcomes. These provide a possible description of agents’

MIE behaviours under an information structure. I then fully characterize the set

introspective outcomes implemented by some information structure, and provide a

canonical class of information structures which implement them. Using these results, I

then reformulate the designer’s problem as one involving optimizing over introspective

outcomes. Finally, I discuss the connection between the designer’s problem studied

here, to that under other selection criterion used in the literature.

4.1 Introspective Outcomes

Fix an information structure S with a b-MIE. An agent who observes signal s ∈
S and invests in the b-MIE, so αS,b(s) = 1, can be divided into one of two roles.

First, an agent can be an anchor. These are agents who prefer to invest against

the benchmark and so switch at the first round, so αS,b,k(s) = 1 for all k ≥ 1.

Second, the agent can be a non-anchor. These are agents who do not invest against

the benchmark, but eventually switches to invest, so αS,b,1(s) = 0 but αS,b(s) = 1.

Observe then each signal distribution µ ∈ ∆(S) can be associated to a pair IS,b(µ) ≡
(IS,bA (µ), IS,bN (µ)), where IS,bA (µ) ≡

∫
S
αS,b,1(s)dµ(s) is the mass of anchors induced,

and IS,bN (µ) ≡
∫
S
αS,b(s)dµ(s)− IS,bA (µ) is the mass of non-anchors induced.

Let I ≡ {(IA, IN) ∈ [0, 1]2 : IA + IN ≤ 1} be the possible combinations of

(masses of) anchors IA and non-anchors IN drawn. Call a map σ : Θ → ∆(I) an

introspective outcome, where σ(·|θ) ∈ ∆(I) is the conditional distribution over masses

of anchors and non-anchors on state θ. Because every information structure S (with

a b-MIE) induces a distribution over signal distributions across states, it implements

an introspective outcome σ, defined by

σ(W |θ) ≡ π((IS,b)−1(W )|θ), ∀W ∈ B(I), ∀θ ∈ Θ (4)

Call an introspective outcome σ b-implementable if there exists an information struc-
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ture S with a b-MIE such that (4) holds under σ. Note that the designer’s payoff

under any information structure which implements σ is the same, and is given by

V (σ) ≡
∫
Θ

∫
I
v(IA + IN , θ)dσ(IA, IN |θ)dF (θ)

Finally, denote the total variation of (joint distribution induced by) an introspective

outcome σ by17

∥σ∥ ≡ sup
W∈B(I),Θ̃∈B(I)

∣∣∣∣ ∫
Θ̃

∫
W

dσ(IA, IN |θ)dF (θ)

∣∣∣∣ (5)

Then call an introspective outcome σ approximately b-implementable if there exists

a sequence of b-implementable introspective outcomes (σn)n≥1 that converges to σ in

total variation. That is, σ can be approximately implemented by some information

structure with a b-MIE.

4.2 Characterization of Implementability

I now characterize b-implementability. To start, the next result states a necessary

condition for an introspective outcome to be b-implementable.

Theorem 1. If an introspective outcome σ is b-implementable, then it is b-obedient.

That is, it satisfies the following three conditions:

1. Anchor obedience:∫
Θ

∫
I
IAu(b(θ), θ)dσ(IA, IN |θ)dF (θ) ≥ 0 (6)∫

Θ

∫
I
IAu(IA, θ)dσ(IA, IN |θ)dF (θ) ≥ 0 (7)

2. Non-anchor obedience:∫
Θ

∫
I

(∫ IA+IN

IA

u(i, θ)di

)
dσ(IA, IN |θ)dF (θ) ≥ 0 (8)

17By identifying an introspective outcome σ with the equivalence class {σ′ : ∥σ − σ′∥ = 0}, I
topologize the space of introspective outcomes with ∥·∥ moving forward.
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3. Downwards obedience:∫
Θ

∫
I
INdσ(IA, IN |θ)dF (θ) > 0 ⇒

∫
Θ

∫
I
INu(b(θ), θ)dσ(IA, IN |θ)dF (θ) < 0 (9)∫

Θ

∫
I
(1− IA − IN )u(b(θ), θ)dσ(IA, IN |θ)dF (θ) ≤ 0 (10)∫

Θ

∫
I
(1− IA − IN )u(IA + IN , θ)dσ(IA, IN |θ)dF (θ) ≤ 0 (11)

The intuition is as follows. Take an information structure S that b-implements the

introspective outcome σ. Equations (6) and (7) are the aggregate payoffs of anchors

from investing against, respectively, the benchmark and when other agents follow

αS,b,1(·). Thus, both are positive. (8) is obtained from aggregating the payoffs of

non-anchors from investing at the earliest round of introspection in which the agent

switches to invest, k = min{k′ : αS,b,k′(s) = 1}. Thus, it is positive. (9) is the aggre-

gate payoff of non-anchors from investing against the benchmark, which is negative.

Finally (10) and (11) are the aggregate payoffs of agents who do not invest under the

signal observed, from investing against, respectively, the benchmark and assuming

only other anchors and non-anchors invest. Thus, both are negative.

The next result says that b-obedience is basically sufficient for b-implementability.

Theorem 2. If an introspective outcome σ is b-obedient, then it is approximately

b-implementable.

The proof involves constructing, for any b-obedient introspective outcome σ, a se-

quence of information structures which implement introspective outcomes that ap-

proximate σ. These information structures share two key features. First, they supply

(approximately) all anchors symmetric information. This is because the main re-

quirement to be an anchor, to prefer to invest against the benchmark, is symmetric

across agents. Second, different non-anchors are supplied different information. This

is done to maximize the heterogeneity in the rounds non-anchors switch to invest

during introspection. Because agents’ payoffs are increasing in investment, this maxi-

mizes their aggregate incentives to switch to invest. Hence, the choice of an b-obedient

introspective outcome can be understood as choosing the distribution over symmetric

(anchors) and asymmetric information (non-anchors) supplied to agents to induce

investment. I use this interpretation moving forward.

Figure 5 gives an example of a constructed information structure that implements

an introspective outcome which approximates σ. For simplicity, I assume here that σ
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If θ ∈ Θ and
(IA, IN ) = (1, 0)

If θ /∈ Θ or
(IA, IN ) ̸= (1, 0)

Draw
θ ∼ F

Draw
(IA, IN ) ∼ σ(·|θ)

Draw
ξ ∼ Geo(η)

IA observe s = 0,
IN
N observe s = k + ξ,

(k ∈ {1, ..., N})
1− IA − IN observe s = ∞

1− ϵ̃ observe s = 0,
ϵ̃

N−1 observe s = k

(k ∈ {1, ..., N − 1})

Figure 5: An information structure that approximately implements σ. Here, 0 < ϵ̃ is taken suffi-
ciently small, 0 < η ≪ ϵ̃, and Geo(η) denotes the geometric distribution with parameter η

also satisfies b-obedience strictly, and draws (IA, IN) = (1, 0) on all states θ ∈ Θ with

probability at least ϵ > 0, where investing is a strictly dominant action for agents.

Also, N > 1 is large enough so that non-anchor obedience in (8) still holds strictly

when replacing
∫ IA+IN
IA

u(i, θ)di with
∑N

i=1 u(IA + IN(i− 1)/N, θ)/N .

Note that agents observing s ≤ N − 1 are anchors, N ≤ s < ∞ are non-anchors,

and s = ∞ do not invest. To see this, first observe that as ϵ̃ is small, IA agents

observe s = 0 with probability ≈ σ(IA, IN |θ) on all states θ. Since σ satisfies anchor

obedience strictly, these agents’ expected payoffs from investing against the bench-

mark and when only other agents are positive. In turn, all such agents invest at

the first two rounds of introspection which ensures they invest at all higher rounds

as anchors. A similar argument implies all agents observing s = ∞ do not invest.

Finally, as ϵ̃ ≫ η, an agent observes 1 ≤ s ≤ N − 1 with large probability on

states in Θ. Hence, they find investing a strictly dominant action, and so invest

at all rounds of introspection as an anchor. Meanwhile, any agent observes s ≥ N

with frequencies close to
∫
I INdσ(IA, IN |θ) on state θ. Since σ satisfies downwards

obedience in (9) strictly, all such agents do not invest at the first round of intro-

spection. Meanwhile, the payoff from investing provided lower signal agents invest

is approximately the expectation of
∑N

i=1 u(IA + IN(i − 1)/N, θ)/N under σ. As∫ IA+IN
IA

u(i, θ)di ≈
∑N

i=1 u(IA + IN(i − 1)/N, θ)/N and σ satisfies non-anchor obedi-

ence strictly, this is positive. An induction argument onN then implies all such agents

switch to investing at some round larger than s. Thus, these agents are non-anchors.

The above is important as for any pair (IA, IN) drawn, if ξ ≥ N is also drawn, then

IA agents observe s ≤ N − 1, i.e., are anchors, and IN agents observe N ≤ s < ∞,

i.e., are non-anchors. Since ξ ≥ N is drawn with probability ≈ 1 for ϵ̃ ≈ 0, the

17



introspective outcome implemented by Figure 5 approximates σ. Furthermore. the

fraction of anchors observing s = 0 goes to one as ϵ̃ → 0. Meanwhile, as N → ∞,

the mass of non-anchors observing a single s ≥ N goes to zero. In turn, the mass of

agents observing symmetric signals is approximately the mass of anchors.

4.3 Information Design as Introspection Manipulation

I now use Theorems 1 and 2 to reformulate the designer’s problem to one involving

optimizing over introspective outcomes. First, combining the two results implies

{σ : σ is b-implementable} ⊆ {σ : σ is b-obedient} ⊆
{
σ :

σ is approximately

b-implementable

}

The right-most set is the closure of the left-most set. Furthermore, the designer’s

payoff as a function of introspective outcomes V (·) is continuous.18 Therefore, the

designer’s payoff in the problem (3), V ∗(b), can be identified by optimizing over

approximately b-implementable introspective outcomes. But this can also be achieved

by optimizing over b-obedient introspective outcomes. Hence,

V ∗(b) = sup
σ is b-obedient

V (σ) (12)

Next, I will simplify (12) further. Say that an introspective outcome σ investment

dominates (resp. anchor dominates) another one σ′ if the distribution over aggre-

gate investment (resp. anchors) under σ first-order stochastically dominates the one

induced by σ′.19 As the designer’s payoff is monotone in investment, if σ invest-

ment dominates σ′, then the designer weakly prefers σ over σ′. Meanwhile, by the

discussion in Section 4.2, if σ anchor dominates σ′, then the designer supplies more

symmetric information to induce investment under σ over σ′.

Say an introspective outcome is upper b-obedient if it satisfies anchor obedience

(6) and (7), and non-anchor obedience (8), but not necessarily downwards obedience.

Thus, these are characterized by fewer obedience constraints than b-obedient intro-

18By definition, V (σ) is linear in σ. Furthermore, for all σ, |V (σ)| ≤ maxθ∈Θ v(1, θ) ∥σ∥. Hence,
V (·) is a bounded and so continuous linear functional.

19That is, σ investment dominates (resp. anchor dominates) σ′ if for all non-decreasing functions
f : [0, 1] → R and all states θ ∈ Θ,

∫
I f(IA + IN )dσ(IA, IN |θ) ≥

∫
I f(IA + IN )dσ′(IA, IN |θ) (resp.∫

I f(IA)dσ(IA, IN |θ) ≥
∫
I f(IA)dσ

′(IA, IN |θ)).
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spective outcomes. The next result simplifies the designer’s to optimizing over upper

b-obedient introspective outcomes.

Proposition 1. Take an upper b-obedient introspective outcome σ. Then, there exists

a b-obedient introspective outcome that investment and anchor dominates σ. Hence,

V ∗(b) = sup
σ is upper b-obedient

V (σ) (P)

The proof shows that a two step modification can be applied to any upper b-obedient

introspective outcome σ to make it b-obedient. Step 1 involves, for each pair (IA, IN)

drawn, raising the total mass of anchors and non-anchors to one, unless both u(b(θ), θ) <

0 and u(IA, IN , θ) < 0 hold. This means that any time there are agents who do not in-

vest, their expected payoff from investing against the benchmark and when all other

anchors and non-anchors invest are both negative. Hence, the result satisfies con-

ditions (10) and (11) for downwards obedience. Step 2 involves pooling the entire

mass of non-anchors to anchors if (9) for downwards obedience is violated. Hence,

the result satisfies b-obedience. Further notice every step weakly raises the aggregate

investment and anchors induced, so the result investment and anchor dominates σ.

Moving forward, I refer to (P) as “the” designer’s problem, and call any solution

to (P) an optimal introspective outcome. The next result shows that a solution exists.

Lemma 2. There exists an optimal introspective outcome σ.

As the designer’s payoff is monotone in investment, an optimal introspective outcome

is generally b-obedient. If so, then it describes the distribution over roles that the

designer prefers to implement and, by the discussion in Section 4.2, the type of infor-

mation the designer can supply to implement it. Even if it is not b-obedient, it still

identifies a lower bound on the amount of investment and anchors induced under a

b-obedient introspective outcome that the designer equally prefers to it, which can be

constructed via the procedure described following Proposition 1. Thus, it is without

loss of generality to study optimal information disclosure through problem (P).

4.4 Connection to Other Selection Criteria

I conclude by discussing the connection between the designer’s problem (P), to the de-

signer’s problem under other equilibrium selection criteria. All proofs and additional

details in this section are given in the supplementary appendix.
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Extreme selection criterion. I first discuss the connection to the designer’s prob-

lem under the extreme designer-preferred and adversarial equilibrium selection. Both

are used extensively in the information design literature.

Call a map q : Θ → ∆([0, 1]) an outcome, where q(·|θ) ∈ ∆([0, 1]) represents

the distribution over the aggregate investment of agents under q on state θ. Let

∥q∥ denote the total variation of (the joint distribution induced by) the outcome q,

extended appropriately from (5).20

Let αS and αS denote, respectively, the largest and smallest BNE of an infor-

mation structure S. These are, respectively, a designer-preferred and adversarial

BNE of S.21 Say that an outcome q is designer-preferred implementable if it is

the designer-preferred equilibrium distribution over investment of some information

structure. That is, if there exists an information structure S such that

qn(W |θ) = π(I−1(W |αS)|θ) ∀W ∈ B([0, 1]), θ ∈ Θ (13)

Call an outcome q approximately designer-preferred implementable if there exists a

sequence of designer-preferred implementable outcomes (qn)n≥1 that converges to q

in total variation. Approximate implementability for adversarial selection and b-MIE

are defined verbatim, replacing αS in (13) with αS and αS,b respectively.

In the standard approach to optimal information design, one optimizes over (ap-

proximately) implementable outcomes under the selection criterion, and then backs

out an information structure which (approximately) implements the solution through

an appropriate “revelation principle” (Bergemann and Morris, 2019). In the case of

designer-preferred and adversarial selection, these problems are given by, respectively,

V ≡ sup
q is approximately

designer-preferred implementable

∫
Θ

∫ 1

0

v(I, θ)dq(I|θ)dF (θ)

V ≡ sup
q is approximately

adversarially implementable

∫
Θ

∫ 1

0

v(I, θ)dq(I|θ)dF (θ)

Similarly, an alternative, albeit less useful, formulation of the designer’s problem (P)

20Formally, ∥q∥ ≡ supW∈B([0,1]),Θ̃∈B(I) |
∫
Θ̃

∫
W

dq(I|θ)dF (θ)|.
21As an agent’s payoff u may not be lower semicontinuous, for a non-generic information structure

S, αS may not exist. If so, then to avoid this minor technicality, I let αS be the 0-MIE of S, which
always exists. As I discuss later, the two coincide for generic S, which justifies this approach.
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is as optimizing over approximately b-MIE implementable outcomes. As such, one

way of connecting the designer’s problem under extreme selection criterion to b-MIE is

to connect the outcomes approximately implementable under each. Here, it is useful

to recall that higher benchmarks capture less adversarial equilibrium selection under

MIE (Remark 1). Proposition 2 below shows that this means outcomes implementable

under extreme selection criterion are connected to those implementable under the

extreme benchmarks 0 and 1 taking on, respectively, a value of 0 and 1 on all states.

Proposition 2.

1. An outcome is approximately adversarially implementable if and only if it is

approximately 0-MIE implementable. Hence, V ∗(0) = V .

2. If an outcome is approximately 1-MIE implementable, then it is approximately

designer-preferred implementable. If an outcome is approximately designer-

preferred implementable, then there exists an approximately 1-MIE implementable

outcome that first-order stochastically dominates it.22 Hence, V ∗(1) = V .

For Part 1, first note that the adversarial BNE of an information structure is the

limit of the pure strategies sequence in Definition 1, but breaking ties in favour of not

investing (Milgrom and Roberts, 1990). For generic information structures, this is the

0-MIE. In fact, I find that any approximately implementable outcome under either

0-MIE or adversarial selection can be approximated by outcomes implementable by

information structures where the 0-MIE is the adversarial equilibrium. This implies

the designer’s problem under 0-MIE and adversarial selection coincide.23

For Part 2, first note that under designer-preferred selection, all optimal outcomes

for the designer are approximately implementable by direct information structures,

where agents observe “recommendations” to invest or not invest. These are simply

a special case of the information structures discussed in Section 4.2 which never

draw signals 1 ≤ s < ∞, and where one interprets signal s = 0 and s = ∞ to

invest and not to invest respectively. I also find that these “anchor-only” information

structures support all outcomes implementable under 1-MIE. This is because under

22Given outcomes q, q′, q first-order stochastically dominates q′ if for all θ ∈ Θ and all non-

decreasing functions f : [0, 1] → R,
∫ 1

0
f(I)dq(I|θ) ≥

∫ 1

0
f(I)dq′(I|θ).

23Another way to see the connection is as follows. Consider the subset of information structures
described in Section 4.2 which never draw signal s = 0. Morris et al. (2024) shows that (a finite
agent analogue of) such information structures support all outcomes implementable under adversarial
selection. I show that the same is true for outcomes approximately implementable under 0-MIE.
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the highest benchmark 1, anchors prefer to (switch to) invest against the benchmark

so long as investing is not strictly dominated, so inducing investment via anchors is

always “less difficult” than non-anchors. This yields Part 2. In fact, when one uses

designer-preferred selection, it is standard to only focus on optimizing over outcomes

implementable by direct information structures (Bergemann and Morris, 2019). Thus,

the designer’s problem under 1-MIE and designer-preferred selection coincide.

Other selection criterion. The next result provides conditions for when the payoff

for the designer under every selection criterion is attained under b-MIE for some

benchmark b. This speaks to the richness of MIE as a selection criterion.

Proposition 3. Suppose u and v are continuous. Then for any payoff for the designer

attained under a selection criterion V ∈ [V , V ], there exists a benchmark b ∈ B such

that V = V ∗(b).

Proposition 3 holds because V ∗(b) is continuous in the class of constant benchmarks

{λ0+ (1− λ)1}λ∈[0,1] under the stated assumptions. To establish this, I show in the

supplementary appendix that the set of joint distributions over I×Θ induced by upper

b-obedient introspective outcomes is weak∗-compact24 and continuous in constant

benchmarks. Likewise, the designer’s objective V (·) (adapted to joint distributions)

is weak∗ continuous. Applying Berge’s Maximum Theorem then yields the claim.

One example for when this holds is the setting of Section 2.

5 Optimal Information Design

In this section, I study the designer’s problem for the class of threshold games.

Assumption 1 (Threshold Games). For all θ ∈ Θ, and all I ∈ {I ′ ∈ [0, 1] :

u(I ′, θ) < 0}, u(I, θ) = u(0, θ).

In a threshold game, agents payoffs are constant from a marginal increase in aggregate

investment unless a threshold is met, i.e., I ≥ I(θ) ≡ sup{I ′ ∈ [0, 1] : u(I ′, θ) < 0}.
These games model many relevant economic settings. Two are discussed next.

24This is why the joint distribution approach is needed. By Riesz’s Lemma, the set of upper
b-introspective outcomes is not ∥·∥-compact, which precludes the use of Berge’s Theorem.
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Example 1. Suppose there exists a constant c > 0 and upper semicontinuous func-

tions Ĩ : Θ → R and W : Θ → (c,∞) such that u(I, θ) = W (θ) − c > 0 if I ≥ Ĩ(θ),

and u(I, θ)−c if I < Ĩ(θ). Then, the base game is a game of regime change: the regime

is maintained if and only if there is sufficient investment (I ≥ Ĩ(θ)), and agents ben-

efit only when the regime is maintained. This models many settings, including team

project coordination in organizations and bank-runs (see Morris and Shin, 2003). Re-

cent papers studying information design in this setting include Goldstein and Huang

(2016), Li et al. (2023) and Inostroza and Pavan (2023).

Example 2. Suppose that on all states θ ∈ Θ, either investing or not investing is a

dominant action, so u(0, θ) ≥ 0 or u(1, θ) ≤ 0 holds. Furthermore, if not investing is

dominant, so u(1, θ) ≤ 0, then agents do not benefit from higher aggregate investment,

so u(0, θ) = u(1, θ). This game generalizes the setting in Section 2. It is also a “one-

sided” counterpart to the investment game studied in Bergemann and Morris (2016,

2019) and Mathevet et al. (2020), the main difference being that there are only positive

complementarities on states in which investing is a dominant action.

I also impose the following two minor assumptions throughout.

Assumption 2. F is continuous with support Θ = [0, 1].

Assumption 3. There exists a θ0 ∈ [0, 1] such that if v(0, θ) = v(1, θ) and
∫ 1

0
u(i, θ)di <

0, then θ ≤ θ0.

Assumption 2 will imply the existence of a deterministic optimal introspective out-

come, that draws a unique mass of anchors and non-anchors on each state. As-

sumption 3 labels states so that the smallest states are those in which the designer

and non-anchors both prefer not to have any investment. Both help to simplify the

statement of the results, but are otherwise not necessary for the main insights to hold.

This section proceeds as follows. I begin by solving a relaxed version of the

designer’s problem. I then use the solution to the relaxed problem to construct a

selection of optimal introspective outcomes, one for each benchmark. Among these,

I characterize how changes in the benchmark affect three key quantities: the amount

of aggregate investment and mass of anchors induced across states, the designer’s

incentive to perfectly coordinate investments, and players’ payoffs. Finally, I discuss

how several of these results can be extended to non-threshold games.
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5.1 Relaxed Problem

Relaxed problem. To motivate the relaxed problem, I first discuss the notion of

perceived payoffs from investment. This is the payoff an agent believes he obtains

from investing, at the round of introspection in which the agent switches to investing.

For an anchor, this is u(b(θ), θ). For a non-anchor, this is
∫ IA+IN
IA

u(i, θ)di/IN . The

total perceived payoffs of IA anchors and IN non-anchors from investing on state θ is

U(IA, IN |θ) ≡ IAu(b(θ), θ) +

∫ IA+IN

IA

u(i, θ)di

A necessary condition for an introspective outcome to be upper b-obedient is for the

expectation of the total perceived payoffs of agents from investing to be non-negative.

That is, for the sum of the first anchor obedience constraint (6), which captures

anchors’ expected perceived payoffs from investment, and non-anchor obedience (8),

which captures non-anchors’ expected perceived payoffs from investment, to be non-

negative. This leads to following natural relaxation of the designer’s problem:

max
σ

∫
Θ

∫
I
v(IA, IN , θ)dσ(IA, IN |θ)dF (θ) (R)

s.t.

∫
Θ

∫
I
U(IA, IN |b, θ)dσ(IA, IN |θ)dF (θ) ≥ 0 (14)

I call any introspective outcome which satisfies (14) feasible.

Notice that the objective function and constraints are linear in the introspective

outcome. Thus, the relaxed problem (R) is a linear programming problem. This

motivates the use of a duality approach to solving (R), which I introduce next.

Dual problem. The dual problem to (R) involves choosing a multiplier λ ≥ 0 and

a measurable function ϕ : Θ → R to solve

min
λ,ϕ

∫
Θ

ϕ(θ)dF (θ)

s.t. ϕ(θ) ≥ L(IA, IN |λ, b, θ), ∀((IA, IN), θ) ∈ I ×Θ (15)

where L(·|λ, b, θ), defined below, is the state-wise Lagrangian

L(IA, IN |λ, b, θ) ≡ v(IA + IN , θ) + λU(IA, IN |b, θ), ∀((IA, IN), θ) ∈ I ×Θ
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By inspecting the constraint (15), it holds that if (λ, ϕ) solves the dual problem, then

so does (λ, ϕb(·|λ)), where

ϕb(θ|λ) ≡ max
(IA,IN )∈I

L(IA, IN |λ, b, θ), ∀θ ∈ Θ

Hence, the dual problem can be restated as solving

V D(b) ≡ min
λ≥0

∫
Θ

max
(IA,IN )∈I

L(IA, IN |λ, b, θ)dF (θ) (D)

Solving the relaxed problem. Let λb denote the smallest solution to (D). I will

use λb to solve the relaxed problem (R). To do so, I make use of two technical results.

The first, complementary slackness, provides a necessary and sufficient condition for

a feasible introspective outcome to solve the relaxed problem.

Lemma 3. A feasible introspective outcome σ solves (R) if and only if

supp(σ(·|θ)) ⊆ max
(IA,IN )∈I

L(IA, IN |λb, b, θ) for almost all θ ∈ Θ, and (C1)

λb

∫
Θ

∫
I
U(IA, IN |b, θ)dσ(IA, IN |θ)dF (θ) = 0 (C2)

The second result identifies a sufficient condition on the support of an introspective

outcome on each state for (C1) to hold. Notably, this condition varies depending on

whether the state is an agreement state, i.e., whether u(b(θ), θ) ≥ 0 holds. Denote

the set of b-agreement states by Θ
b
.

Lemma 4. Take an introspective outcome σ. If

1. For all θ ∈ Θ
b
, supp(σ(·|θ)) = {(b(θ), 1− b(θ))}, and

2. For all θ /∈ Θ
b
, supp(σ(·|θ)) ⊆ {(0, I) : I ∈ maxI′∈[0,1] L(0, I ′|λ, b, θ)},

then σ satisfies (C1).

I now use Lemma 3 and 4 to construct a solution to the relaxed problem (R). Denote25

Ib−(θ) ≡ min argmax
I∈[0,1]

L(0, I|λb, b, θ), Ib+(θ) ≡ max argmax
I∈[0,1]

L(0, I|λb, b, θ)

25These exist as v(I, θ) is upper semicontinuous in I, so argmaxI∈[0,1] L(0, I|λb, θ) is compact.
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Consider the class of introspective outcomes {σb
θ}θ∈[0,1] defined as follows:

σb
θ(·|θ) ≡


δ(b(θ),1−b(θ)), θ ∈ Θ

b

δ(0,Ib+(θ)), θ ≥ θ and θ /∈ Θ
b

δ(0,Ib−(θ)), θ < θ and θ /∈ Θ
b

Every σb
θ draws b(θ) anchors and 1 − b(θ) non-anchors on all b-agreement states,

and induces 0 anchors and smallest or largest number of non-anchors that maximizes

L(0, I|λ, b, θ) on all non b-agreement states. By Lemma 4, any σb
θ satisfies (C1).

Therefore, if σb
θ is also feasible and satisfies condition (C2), then Lemma 3 says it

solves the relaxed problem. The proof of Proposition 4 below shows that both of

these are satisfied under σb ≡ σb
θb

where

θb ≡ sup

{
θ ∈ [0, 1] :

∫
Θ

∫
I
U(IA, IN |b, θ)σb

θ(IA, IN |θ)dF (θ) ≥ 0

}
(16)

This yields the following.

Proposition 4. The introspective outcome σb solves the relaxed problem (R).

5.2 Optimal Introspective Outcome

I will now use σb to construct a solution to the designer’s problem. Denote the

aggregate investment induced on state θ under σb by Ib(θ) ≡
∫
I(IA+IN)dσ

b(IA, IN |θ).
Consider the class of introspective outcomes {σb

θ
}θ∈[0,1] defined by

σb
θ
(·|θ) ≡


δ(b(θ),1−b(θ)), θ ∈ Θ

b

δ(min{I(θ),Ib(θ)},max{0,Ib(θ)−I(θ)}), θ ≥ θ and θ /∈ Θ
b

δ(0,Ib(θ)), θ < θ and θ /∈ Θ
b

(17)

Each σb
θ
induces the same aggregate investment across states as σb, so the designer is

indifferent between σb
θ
and σb. However, each σb

θ
raises the mass of anchors and lowers

the mass of non-anchors on non b-agreement states [θ, 1]\Θb
. This lowers anchors’

perceived payoffs from investment, and raises non-anchors’ perceived payoffs from
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investment by, respectively,∫
[θ,1]\Θb

min{I(θ), Ib(θ)}u(b(θ), θ)dF (θ) =

∫
[θ,1]\Θb

min{I(θ), Ib(θ)}u(0, θ)dF (θ) ≤ 0 (18)

∫
[θ,1]\Θb

∫ min{I(θ),Ib(θ)}

0

u(i, θ)dF (θ) = −
∫
[θ,1]\Θb

min{I(θ), Ib(θ)}u(0, θ)dF (θ) ≥ 0 (19)

Importantly, the right-hand sides of (18) and (19) sum to zero.26 This means that

lowering the threshold state θ transfers the perceived “cost” of investment from non-

anchors to anchors. It also means that the total perceived payoffs of anchors and

non-anchors from investing under σb
θ
is the same as that under the relaxed problem

solution. σb, which is positive. Therefore, lowering θ as much as possible while

ensuring anchors’ perceived payoffs from investing are non-negative, i.e., until

θ
b ≡ min

{
θ ∈ [0, 1] :

∫
Θ

b
b(θ)u(b(θ), θ)dF (θ)+

∫
[θ,1]\Θb

min{I(θ), Ib(θ)}u(0, θ)dF (θ) ≥ 0

}
will also ensure non-anchors’ perceived payoffs from investing are non-negative. I

show in the Appendix that resulting introspective outcome σb ≡ σb

θ
b will also be

upper b-obedient. Thus, it solves the designer’s problem.

Proposition 5. σb is an optimal introspective outcome.

The main insight is that for any threshold game, an optimal introspective outcome

can be constructed via a simple two-step approach. First, solve the relaxed problem to

pin down agents’ aggregate investment on all states, and the mass of anchors induced

on agreement states. Second, transfer slack from anchors to non-anchors by raising

the mass of anchors on non agreement states. The next example shows how to use

this procedure to solve the designer’s problem in Section 2.

Example 3. First, solving the relaxed problem yields the introspective outcome σb

with σb((b, 1−b)|H) = 1, σb((0, 1)|L) = (3+b2)/4 and σb((0, 0)|L) = (1−b2)/4. Under

it, anchors’ and non-anchors’ perceived payoffs from investment are b(1 + b)/4 > 0

and −b(1 + b)/4 < 0 respectively. To fix this, replace the pair (0, 1) drawn on state

L with (2b(1 + b)/(3 + b2), (3 − b2 − 2b)/(3 + b2)), i.e., induce less non-anchors and

more anchors. This yields the optimal introspective outcome described by Figure 3.

26This holds as in a threshold game, u(b(θ), θ) = u(0, θ) on all non b-agreement states (so the
equality in (18) holds), while u(I, θ) = u(0, θ) for all I < I(θ) (so the equality in (19) holds).
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Moving forward, I refer to σb as “the” optimal introspective outcome. While there

can be others, Lemma 3 implies that under any optimal introspective outcome, on

almost all b-agreement states, any pair (IA, IN) drawn satisfies v(IA+ IN , θ) = v(1, θ)

and u(IA, θ) = u(b(θ), θ), while on almost all non b-agreement states, the aggregate

investment induced satisfies I ∈ [Ib−(θ), I
b
+(θ)]. As the next example shows, this means

that σb often captures agents’ behaviours under all optimal introspective outcomes.

Example 4. Consider again the example of Section 2, where I label the introspective

outcome in Figure 3 by σb. Since v(I, θ) and u(I, θ) are strictly increasing in I on the

agreement state θ = H, like σb, all optimal introspective outcomes must drawn b(θ)

anchors and 1− b(θ) non-anchors on H with probability one. Meanwhile, the mass of

anchors and non-anchors induced on L must ensure anchor and non-anchor obedience

bind. This implies all optimal introspective outcomes induce the same expected number

of anchors and non-anchors (and so aggregate investment) on state L as σb.

5.3 Leveraging the Benchmark

I now discuss how the designer leverages an increase in the benchmark, i.e., by chang-

ing the optimal introspective outcome σb, to raise her payoff. The first result connects

the benchmark to the aggregate investment on each state under σb.

Proposition 6. Take any two benchmarks b, b̃. If b ≥ b̃, then for all θ ∈ Θ, Ib(θ) ≥
I b̃(θ). Hence, raising the benchmark raises aggregate investment on all states.

The intuition is as follows. Consider the benchmark b̃. Under the optimal intro-

spective outcome σb̃, agents’ total perceived payoffs from investing are positive on

all b̃-agreement states, and (often) negative on non b̃-agreement states. That is, the

designer “spends” the incentives generated for agents to invest on b̃-agreement states,

to induce investment on non b̃-agreement states. Raising the benchmark to b ≥ b̃

not only expands the set of b-agreement states, on which all agents invest, but also

raises agents’ total perceived benefit from investing on all such states. This gives the

designer more to “spend” on inducing investment on non b-agreement states. Because

the designer’s payoff and obedience constraints are additively separable across states,

the designer then optimally raises investment on all non b-agreement states.

The next result characterizes how the mass of anchors on each state under the op-

timal introspective outcome σb, IbA(θ) ≡
∫
I IAdσ

b(IA, IN |θ), varies in the benchmark.
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Here, recall by the discussion in Section 4.2 that the mass of anchors also captures

the amount of symmetric information provided to agents to induce investment.

Proposition 7. Take any two benchmarks b, b̃. If b ≥ b̃, then on all θ ∈ Θ
b
, IbA(θ) ≥

I b̃A(θ). Hence, raising the benchmark raises the amount of symmetric information the

designer uses to induce investment on all agreement states.

The economic intuition is simple. Under σb, the mass of anchors induced on each

state θ maximizes agents’ total perceived payoff from investment, holding fixed the

total investment at I b̃(θ), IAu(b̃(θ), θ) +
∫ I b̃(θ)

IA
u(i, θ)di. A higher benchmark raises

anchors’ perceived payoff from investing, and so raises the mass of anchors induced.

5.4 Perfect Coordination

Say that an introspective outcome σ induces perfect coordination on state θ if for

all (IA, IN) ∈ supp(σ(·|θ)), IA + IN ∈ {0, 1}. That is, on θ, either all agents invest

(as some mix of anchors and non-anchors) or all agents do not invest, so agents’

behaviours are ex-post symmetric. I will characterize when such an introspective

outcome is optimal, and shed light on where the benchmark plays a role.

Intuitively, for the designer to prefer perfect coordination on a state, either one of

two conditions should hold. First, the designer is able to raise total investment to one

while raising agents’ perceived payoffs from investing. This holds if the state to be

a b-agreement state. Second, the designer benefits from randomizing between having

all agents invest or not over always having a fraction of agents invest. I introduce

next a weak condition on the designer’s payoff to guarantee this holds.

Formally, say that the designer’s payoff is relatively convex on state θ if

∀I ∈ [0, 1],

∫ 1

I

u(i, θ)di < 0 ⇒
∫ I

0
u(i, θ)di∫ 1

0
u(i, θ)di

v(1, θ) ≥ v(I, θ)

Relative convexity is equivalent to stating that the upper right convex hull of

payoff pairs {(
∫ I

0
u(i, θ)di, v(I, θ))}I∈[0,1] is linear. This clearly holds if the designer’s

payoff is convex in I, as in Section 2. Meanwhile, as seen in Figure 6, relative convexity

can still hold if (a) the designer’s payoff is concave but not too concave in I, or (b)

the designer’s payoff has a threshold form: v(I, θ) = 1 if I ≥ I(θ), and v(I, θ) = 0 if

I ≥ I(θ). The latter often rises in the study of optimal information design in regime

change games (e.g., Li et al. (2023), Inostroza and Pavan (2023)).
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Agents’
Payoffs u

Designer’s
Payoff v

λb

∫ 1

0
u(i, θ)di

v(1, θ)

0

0

(a) v(I, θ) is concave in I

Agents’
Payoffs u

Designer’s
Payoff v

Payoff pairs on θ
Upper Convex hull

(b) v(I, θ) satisfies threshold form

Figure 6: In both figures, the designer’s payoff (also) satisfies relative convexity on the state. For
these, I further assume that on the state, agents’ payoffs take on the form in Example 1

Proposition 8 below states the main implication of relative convexity: the designer

prefers to perfectly coordinate investment on the state regardless of the benchmark.

Proposition 8. Suppose the designer’s payoff is relatively convex on θ. Then for all

benchmarks b, the optimal introspective outcome σb induces perfect coordination on θ.

The intuition follows from Figure 6. If θ is not a b-agreement state, then by Lemma

4, the amount of investment I induced on θ is either the largest or smallest max-

imizer of v(I, θ) + λb
∫ I

0
u(i, θ)di. That is, the pair (

∫ I

0
u(i, θ)di, v(I, θ)) induced is

either the largest or smallest intersection between the upper right convex hull and

the highest indifference curve (line) with slope λb. Under relative convexity, these

extreme intersections always correspond to having all agents invest or not.

As all agents invest under the optimal introspective outcome σb on all b-agreement

states, Proposition 8 implies the following result.

Corollary 1. Suppose the designer’s payoff is relatively convex on all non b-agreement

states θ /∈ Θ
b
. Then, the optimal introspective outcome σb induces perfect coordination

on all states.

Observe that raising the benchmark expands the set of agreement states. Thus, if

the conditions of Corollary 1 holds at some benchmark b, then the designer perfectly

coordinates investments not only at b, but for all higher benchmarks. Hence, raising

the benchmark maintains (or raises) the designer’s incentive to perfect coordinate.

Further observe that if relative convexity holds on all non 0-agreement states,

then Corollary 1 implies the designer prefers to perfectly coordinate regardless of the
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benchmark. This is notable as many environments have this property, e.g., those

described before Proposition 8. It is also notable as restricted convexity is a weaker

sufficient condition than many others provided in the literature for perfect coordi-

nation to be optimal under designer-preferred or adversarial selection.27 Corollary 1

generalizes these results, while showing that relative convexity is sufficient for perfect

coordination to be optimal under “intermediate” selection (benchmarks).

I now provide a sharper characterization of the optimal introspective outcome σb

when it perfectly coordinates investments. Assume that states are labelled so that28

θ > θ′ ⇒
−
∫ 1

0
u(i, θ)di

v(1, θ)
≤

−
∫ 1

0
u(i, θ′)di

v(1, θ′)

−
∫ 1

0
u(i, θ)di/v(1, θ) captures the “cost-to-benefit” ratio of inducing all agents to

invest over not on a non b-agreement state. Thus, the smaller the state, the less

efficient it is to induce investment on it. It follows that under σb, all agents invest on

all b-agreement states and large enough non b-agreement states θ ≥ θb, where29

θb ≡ inf

{
θ ∈ [0, 1] :

∫
Θ

b
U(b(θ̃), 1− b(θ̃)|b, θ̃)dF (θ̃) +

∫
[θ,1]\Θb

∫ 1

0

u(i, θ̃)didF (θ̃) ≥ 0

}
(20)

Furthermore, by (17), σb induces exactly b(θ) anchors on all agreement states, and

I(θ) anchors on all large enough non b-agreement states θ ≥ θ
b
, where

θ
b ≡ inf

{
θ ∈ [θ̂b, 1]\Θb

:

∫
Θ

b
b(θ̃)u(b(θ̃), θ̃)dF (θ̃) +

∫
[θ,1]\Θb

I(θ̃)u(I(θ̃), θ̃)dF (θ̃) ≥ 0

}
I summarize these observations in Corollary 2 below.

Corollary 2. Suppose the designer’s payoff is relatively convex on all non b-agreement

27For example, translated into my setting, Section 7.1 of Arieli and Babichenko (2019) shows that
under designer-preferred selection, perfectly coordination is optimal if v(I, θ) is convex in I. Likewise,
Theorem 2 of Morris et al. (2024) (also see Morris et al. (2022a)) show that under adversarial

selection, perfectly coordination is optimal if for all θ ∈ Θ and I ∈ [0, 1],
∫ 1

I
u(i, θ)di < 0 ⇒

Iv(1, θ) ≥ v(I, θ). Both imply that relative convexity holds on all non 0-agreement states.
28When v(1, θ) = 0, I let −

∫ 1

0
u(i, θ)di/v(1, θ) = ∞ if

∫ 1

0
u(i, θ)di < 0, −

∫ 1

0
u(i, θ)di/v(1, θ) =

−∞ if
∫ 1

0
u(i, θ)di > 0, and

∫ 1

0
u(i, θ)di/v(1, θ) = 0 if

∫ 1

0
u(i, θ)di = 0.

29When perfect coordination is optimal and states are ordered by the ratio −
∫ 1

0
u(i, θ)di/v(1, θ),

θb defined here coincides with the definition of θb in (16).
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states θ /∈ Θ
b
. Then, the optimal introspective outcome σb is given by

σb(·|θ) =



δ(b(θ),1−b(θ)), θ ∈ Θ
b

δ(I(θ),1−I(θ)), θ ∈ [θ
b
, 1]\Θb

δ(0,1), θ ∈ [θb, θ
b
)\Θb

δ(0,0), θ ∈ [0, θb)\Θb

(21)

Finally, I find that the mass of anchors under σb is now non-decreasing in the bench-

mark on all states. This strengthens the result of Proposition 7.

Corollary 3. Suppose the designer’s payoff is relatively convex on all non b̃-agreement

states θ /∈ Θ
b̃
. Then for all benchmarks b ≥ b̃ and all θ ∈ Θ, IbA(θ) ≥ I b̃A(θ). Hence,

raising the benchmark from b̃ raises the amount of symmetric information the designer

uses to induce investment on all states.

5.5 Welfare Implications

I now discuss the welfare impacts of raising the benchmark. To start, recall by

Proposition 6 that doing so raises the aggregate investment across all states. Since

the designer’s payoff is increasing in aggregate investment, the following holds.

Corollary 4. Take any two benchmarks b, b̃ ∈ B. If b ≥ b̃, then V ∗(b) ≥ V ∗(b̃).

Hence, the designer benefits from a higher benchmark.

The impact on agents’ (ex-ante) payoffs is more subtle, and is the focus on this section.

To simplify the exposition, I assume restricted convexity holds on all non 0-agreement

states, so the optimal introspective outcome σb is fully characterized by Corollary 2.

Combining Proposition 6 and Corollary 2, raising the benchmark from b̃ to b ≥
b̃ only raises the set of states on which (all) agents invest on under the optimal

introspective outcome σb. In fact, the additional set of states is ([θb, θb̃] ∪ Θ
b
)\Θb̃

.

Thus, the change in agents’ ex-ante payoffs is∫
([θb,θb̃]∪Θb

)\Θb̃
u(1, θ)dF (θ) (22)

By (22), if u(1, θ) ≥ 0 holds for all states in ([θb, θb̃] ∪ Θ
b
)\Θb̃

, then agents benefit
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from any increase in the benchmark. Likewise, if u(1, θ) ≤ 0 holds for all such states,

as in the example of Section 2, then raising the benchmark harms agents.

In general, neither of the preceding cases holds. The next result speaks to these

cases. It shows that raising the benchmark on specific states can (still) lead to mono-

tone changes in agents’ payoffs. To state the result, call a state θ costly for investment

at b if θ /∈ [θb, 1]∪Θ
b
. That is, state θ is both not a b-agreement state and has a high

cost-to-benefit ratio −
∫ 1

0
u(i, θ)di/v(1, θ), and so “costly” to induce investment on.

Proposition 9. Suppose the designer’s payoff is relatively convex on all non b-

agreement states θ /∈ Θ
b
. Take any two benchmarks b, b̃ ∈ B with b ≥ b̃.

1. If u(b(θ), θ) > u(b̃(θ), θ) holds only on states which are costly for investment

under b̃, then agents are weakly better off under σb than σb̃. If, in addition,∫
([θb,θb̃]∪Θb

)\Θb̃
(u(1, θ)− U(IbA(θ), 1− IbA(θ)|b, θ))dF (θ) > 0 (23)

holds, then agents are strictly better off under σb than σb̃.

2. If u(b̃(θ), θ) = u(1, θ) holds on all states costly for investment under b̃, then

agents are weakly worse off under σb than σb̃. If, in addition, agents invest on

strictly more states, so ([θb, θb̃] ∪ Θ
b
)\Θb̃

is of strictly positive measure, then

agents are strictly worse off under σb than σb̃.

Part 1 says that raising the benchmark (from b̃) only on states costly for investment

never leaves agents worse off. The intuition is as follows. First, I show that the

total change in agents’ total perceived payoffs from investment under the optimal

introspective outcome must be non-negative. Then, I observe that this change comes

from two sources: the change on states where the designer continues to induce all

agents to invest on, and the change on the additional set of states where agents now

invest on. The first source is zero, because those states are the states not costly for

investment under b̃. The second source, which must then be non-negative, is∫
([θb,θb̃]∪Θb

)\Θb̃
U(IbA(θ), 1− IbA(θ))|b, θ)dF (θ) (24)

where U(IbA(θ), 1− IbA(θ))|b, θ) is agents’ perceived payoffs from investment under the

mass of anchors and non-anchors induced on state θ under the optimal introspective
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outcome σb. Since u(1, θ) ≥ U(IbA(θ), 1 − IbA(θ))|b, θ), the change in agents’ ex-ante

payoffs in (22) is weakly greater than (24), and strictly so if (23) holds.

Part 2 says that if raising the benchmark from b̃ on states costly for investment no

longer raises’ agents’ perceived payoffs from investment, so u(b̃(θ), θ) = u(1, θ) holds,

then further raising the benchmark never leaves agents better off. This is because all

states costly for investment cannot be b̃-agreement states, which means u(1, θ) < 0

holds. As such, the change agents’ ex-ante payoffs in (22) must be weakly negative,

and strictly so if they invest on strictly more states.

Parts 1 and 2 have a sequential interpretation: one can first raise the benchmark

as in Part 1 to raise agents’ payoffs, and then decreases it as in Part 2 to lower payoffs.

This suggests that moderate increases in the benchmark benefit agents, but excessive

ones do not. I illustrate this with an example.

Example 5. Suppose there are three states θ ∈ {L,M,H}, where Pr(θ = L) = 1/4,

Pr(θ = M) = 1/4 and Pr(θ = H) = 1/2. Furthermore, v(I, θ) = I and

u(I,H) = 1/32, u(I,M) =

−10, I < 1/2

1+I
2
, I ≥ 1/2

, u(I, L) = −1

First, consider the lowest benchmark b = 0. Here, the optimal introspective outcome

σb satisfies σb(·|H) = δ(0,1), σ
b(·|M) = δ(0,0) and σb(·|L) = 1/64×δ(0,1)+63/64×δ(0,0).

That is, the designer always induces investment on state H, never on state M , and

sometimes on state L. Thus, agents’ ex-ante payoffs under it is zero.

Now raise the benchmark to b ≥ 0 where b(H) = b(L) = 0 but b(M) = 1/2. Here,

the benchmark only rises on state M , which is costly for investment under 0, so Part

1 of Proposition 9 applies. The optimal introspective outcome is σb(·|H) = δ(0,1),

σb(·|M) = δ(1/2,1/2) and σb(·|L) = 27/64× δ(0,1) +37/64× δ(0,0). That is, the designer

now induces all agents to invest on state M , and more frequently on state L. This

increases agents’ ex-ante payoffs to 1/32×1/4+1×1/4+−1×1/2×27/64 = 3/64 > 0.

Finally, raise the benchmark to 1. Here, u(b(θ), θ) = u(1, θ) = −1 on state

θ = L, the only state costly for investment under b, so Part 2 of Proposition 9

applies. The optimal introspective outcome is σb(·|H) = δ(0,1), σb(·|M) = δ(1/2,1/2)

and σb(·|L) = 33/64× δ(0,1) + 31/64× δ(0,0). That is, the designer induces all agents

to invest more frequently on state L. This decreases agents’ ex-ante payoffs to 0.
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5.6 Non-Threshold Games

In the supplementary appendix, I extend several key results from the previous sections

to the case where Assumption 1 does not hold. I briefly discuss these next.

First, given benchmark b, I show that there exists an optimal introspective out-

come which has all agents invest on all b-agreement states. Furthermore, their total

perceived payoffs from investing on such states is positive. Thus, raising the bench-

mark to b weakly raises aggregate investment on at least all b-agreement states, and

generates additional incentives for agents to invest, which the designer can “spend”

to raise investment on other states. This is the general counterpart of Proposition 6.

Second, I show that under any optimal introspective outcome, if IA < 1 anchors are

drawn on a b-agreement state θ, and I ′A < 1 anchors are drawn on a non b-agreement

state θ′, then u(IA, θ) ≥ 0 and

u(IA, θ)

u(b(θ), θ)
≤ u(I ′A, θ

′)

u(b(θ′), θ′)

This condition imposes a lower bound on the mass of anchors induced on both states,

which itself depends on the benchmark. In particular, fixing IA and I ′A a large enough

increase in b(θ) and b(θ′) will cause the inequality to be violated. Thus, provided the

designer continues to induce investment on states θ and θ′, raising the benchmark by

enough increases the mass of anchors induced on at least one of the two states. This

is the general counterpart of Propositions 7 and Corollary 3.

Finally, say that the designer’s payoff satisfies weak convexity if for all I ∈ [0, 1],

v(I, θ) ≤ Iv(1, θ), which is a stronger condition than relative convexity. I show that

if the designer’s payoff satisfies weak convexity on all non b-agreement states, then

there exists an optimal introspective outcome that perfectly coordinates investments

across all states. This is the general counterpart of Corollary 1.

6 On Public Information Design

This section explores the consequences of restrcting the designer to public informa-

tion structures, where all agents always observe the same signal.30 There are many

environments where this is relevant. For example, an entrepreneur may raise invest-

30Formally, S is a public information structure if for all θ ∈ Θ, supp(π(·|θ)) ⊆ {δs}s∈S .
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ment via an IPO, where all information about the project must be publicly available.

Likewise, banking stress test results must often be public. Finally, agents may com-

municate amongst each other prior to investment.

To simplify the analysis, I impose Assumption 2 and the following three assump-

tions. Together, these define a generalization of Section 2’s setting.

Assumption 4. There exists a state θ ∈ (0, 1) such that

1. For all θ ≥ θ, u(0, θ) ≥ 0 and u(I, θ) is strictly increasing in I.

2. For all θ < θ, u(1, θ) = u(0, θ) ≡ u(θ) < 0. Additionally, for all θ, θ̃ < θ, θ > θ̃

implies −u(θ)/v(1, θ) ≤ −u(θ̃)/v(1, θ̃).

Assumption 5. For all θ ∈ Θ, v(I, θ) is strictly increasing in I. Furthermore,∫
Θ
u(1, θ)dF (θ) ≤ 0.

Assumption 6. The designer’s payoff satisfies relative convexity on all θ /∈ Θ
0
.

Assumption 4 is a special case of a threshold game where agents have a dominant

action on each state. Assumption 5 implies the designer strictly prefers to have all

agents invest on all states, but may not be able to achieve it as investing is on average

weakly dominated for agents. Finally, Assumption 6 implies the designer prefers to

perfectly coordinate investments. Thus, the optimal introspective outcome σb, which

solves the unconstrained information design problem, is characterized by Corollary 2.

The public information design problem is simpler than the general problem. This

is as under public information, whether (all) agents invest depends solely on whether

they invest against the benchmark. In turn, the designer’s problem reduces to per-

suading a representative agent to invest, where the agent has payoffs of u(b(θ), θ)

and 0 from investing and not investing on state θ, and the designer has a payoff of

v(1, θ) and 0 when the agent invests and not invests respectively. I show in Appendix

C that the optimal public information structure then has a simple form: all agents

invest if and only if the state θ exceeds a threshold θ̃b. Furthermore, the threshold is

non-increasing in the benchmark b, so the designer benefits from a higher benchmark.

Given the above, it is important to understand when public information is optimal.

Note that a b-obedient introspective outcome can be implemented by public infor-

mation if and only if perfectly coordinates investments and never draws non-anchors.

By Corollary 2, this holds under the optimal introspective outcome σb for b = 1, so
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public information is optimal at the highest benchmark. Meanwhile, the next result

shows that for most other benchmarks, public information is strictly suboptimal.

Proposition 10. Suppose there exists a measurable set of states Θ̃ ⊆ [0, θ] with (i)

F (Θ̃) > 0, and (ii) b(θ) < 1 for all θ ∈ Θ̃. Then, every public information structure

is strictly suboptimal for the designer.

The intuition is similar to Section 2. When the benchmark is strictly lower than

one on a non-trivial set of agreement states, so (i) and (ii) hold, then the designer

cannot induce all agents to invest on all states under any public information structure.

Meanwhile, under any such information structure, agents’ payoffs from investing at

higher rounds of introspection is strictly positive. The designer can leverage this slack

via private information to induce agents to invest on a strictly larger set of states.

Let V Pub(b) denote the designer’s payoff under an optimal public information

structure given benchmark b. The next result says that the loss from being restricted

to public information, V ∗(b)− V Pub(b), is smaller under a higher benchmark.

Proposition 11. Take any two benchmarks b, b̃ ∈ B. If b ≥ b̃, then V ∗(b)−V Pub(b) ≤
V ∗(b̃)− V Pub(b̃).

The intuition is as follows. Under a low benchmark, the designer benefits from substi-

tuting some anchors for non-anchors via using private information. Hence, an optimal

public information structure induces more anchors than under the optimal introspec-

tive outcome. Thus, raising the benchmark, which raises only anchors’ incentives to

invest, allows the designer to raise agents’ investment by far more on other states

when the designer is constrained to public information than when she is not.

Given benchmarks b ≥ b̃, Proposition 11 also implies V ∗(b)− V ∗(b̃) ≤ V Pub(b)−
V Pub(b̃). That is, the designer’s marginal gain from a higher benchmark is higher

when restricted to public information. Going back to the entrepreneur example, this

suggests that benchmarks have a greater impact on investment outcomes when funds

are raised via an IPO than when privately engaging with investors.

7 Conclusion

In this paper, I develop a framework for studying the impact of benchmarks, which

affect agents’ reasoning about others’ behaviours, on optimal information disclosure
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in binary action supermodular games. I show that the approach is general enough

to nest prior analysis, and tractable by characterizing the possible outcomes that

arise. For a large class of games, I construct an optimal information structure, and

discuss how it varies in the benchmark and its consequences on the outcome. Finally,

I demonstrate the interaction between the benchmark and informational constraints.

The key assumption of my model is that benchmarks are fixed. A natural ex-

tension is to allow the designer to influence agents’ benchmarks. For instance, an

entrepreneur can choose to raise funding from investors with different benchmarks.

In the supplementary appendix, I allow the designer to choose the agent’s benchmark

under a given signal observed, subject to an upper bound on the aggregate bench-

mark induced across agents. There, I show how the designer’s problem can also be

reformulated into optimizing over implementable generalized introspective outcomes,

characterized by obedience constraints. I also find that whether the designer opti-

mally induces different benchmarks depends critically on the marginal returns from

investment. For example, in the setting of Section 6, the designer optimally gives

all anchors the same benchmark when agents’ payoffs from investment u(I, θ) are

concave in I and submodular in (I, θ).

Other possible extensions involve giving less control over the benchmark to the

designer. For example, the benchmark may vary directly in the designer’s choice of

information structure. For instance, public disclosure may act as a focal point for

investors (Morris and Shin, 2002), leading to high benchmarks. In the spirit of global

games (Carlsson and van Damme, 1993), agents’ benchmarks can also be determined

by an exogenous signal that is informative about the state. For example, by research-

ing into the entrepreneur, an investor both develops a benchmark and learns about

the entrepreneur’s project quality. I leave these avenues for future research.
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Appendix A: Proofs for Implementation

This section contains the proofs of Theorems 1 and 2. Throughout, I let πS denote

the marginal distribution over signals s ∈ S induced by an information structure S.

A1: Proof of Theorem 1

Take a b-implementable introspective outcome σ and any information structure S
that implements it. I will show that it satisfies b-obedience.

First, let S1 ≡ {s ∈ S : αS,b,1(s) = 1} denote the set of signals on which agents

are anchors. Then,∫
Θ

∫
I
IAu(b(θ), θ)dσ(IA, IN |θ)dF (θ) =

∫
Θ

∫
∆(S)

IS,bA (µ)u(b(θ), θ)dπ(µ|θ)dF (θ)

=

∫
Θ

∫
∆(S)

∫
S1

u(b(θ), θ)dπ(s, µ, θ)

=

∫
S1

∫
∆(S)×Θ

u(b(θ), θ)dπ(µ, θ|s)︸ ︷︷ ︸
≥0 by equation (1)

dπS(s) ≥ 0
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where the first equality holds as σ(·|θ) is the pushforward of π(·|θ) through IS,b(·),
and the second equality uses IS,bA (µ)u(b(θ), θ) =

∫
S1 u(b(θ), θ)dµ(s). Likewise,∫

Θ

∫
I
IAu(IA, θ)dσ(IA, IN |θ)dF (θ) =

∫
Θ

∫
∆(S)

IS,bA (µ)u(IS,bA (µ), θ)dπ(µ|θ)dF (θ)

=

∫
Θ

∫
∆(S)

∫
S1

u(IS,bA (µ), θ)dπ(s, µ, θ)

=

∫
S1

∫
∆(S)×Θ

u(IS,bA (µ), θ)dπ(µ, θ|s)︸ ︷︷ ︸
≥0 by equation (2)

dπS(s) ≥ 0

Hence, anchor obedience holds.

Next, for each k > 1, let Sk ≡ {s ∈ S : αS,b,k(s) = 1 > 0 = αS,b,k−1(s)} denote

the set of signals on which an agent switches to invest at round k of introspection.

By aggregating such agents’ payoffs from switching, notice that

∞∑
k=2

∫
Sk

u(I(µ|αS,b,k−1), θ)dµ(s) ≤
∞∑
k=2

∫ I(µ|αS,b,k)

I(µ|αS,b,k−1)

u(i, θ)di =

∫ IS,b
A (µ)+IS,b

N (µ)

IS,b
A (µ)

u(i, θ)di =

where the inequality holds as u(I, θ) is non-decreasing in I and I(µ|αS,b,k)−I(µ|αS,b,k−1) =∫
Sk dµ(s), and the equality holds as I(µ|αS,b,1) = IS,bA (µ) while limk→∞ I(µ|αS,b,k) =

IS,bA (µ) + IS,bN (µ). Therefore,

∫
Θ

∫
I

(∫ IA+IN

IA

u(i, θ)di

)
dσ(IA, IN |θ)dF (θ) =

∫
Θ

∫
∆(S)

∫ IS,b
A (µ)+IS,b

N (µ)

IS,b
A (µ)

u(i, θ)didπ(µ|θ)dF (θ)

≥
∫
Θ

∫
∆(S)

∞∑
k=2

∫
Sk

u(I(µ|αS,b,k−1), θ)dµ(s)dπ(µ|θ)dF (θ)

=

∞∑
k=2

(∫
Θ

∫
∆(S)

∫
Sk

u(I(µ|αS,b,k−1), θ)dπ(s, µ, θ)

)

=

∞∑
k=2

∫
Sk

(∫
∆(S)×Θ

u(I(µ|αS,b,k−1), θ)dπ(µ, θ|s)︸ ︷︷ ︸
≥0 by equation (2)

)
dπS(s) ≥ 0

where the order of summation and integration in the second equality can be switched

by the Fubini-Tonelli Theorem. Therefore, non-anchor obedience holds.
It remains to show downwards obedience. First, let SNA ≡ ∪k≥2S

k. Then,∫
Θ

∫
I
INu(b(θ), θ)dσ(IA, IN |θ)dF (θ) =

∫
Θ

∫
∆(S)

IS,b
N (µ)u(b(θ), θ)dπ(µ|θ)dF (θ)
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=

∫
Θ

∫
∆(S)

∫
SNA

u(b(θ), θ)dµ(s)dπ(µ|θ)dF (θ)

=

∫
Θ

∫
∆(S)

∫
SNA

u(b(θ), θ)dπ(s, µ, θ)

=

∫
SNA

∫
∆(S)×Θ

u(b(θ), θ)dπ(µ, θ|s)︸ ︷︷ ︸
<0 by equation (1)

dπS(s) ≤ 0

where the second equality holds as IS,bN (µ)u(b(θ), θ) =
∫
SNA u(b(θ), θ)dµ(s), and the

last inequality is strict if π(SNA) > 0, i.e.,
∫
Θ

∫
I INdσ(IA, IN |θ)dF (θ) > 0. Hence, (9)

holds.

Next, applying a similar logic to the above but replacing SNA with SNI ≡ {s :

αS,b(s) = 0}, IS,bN (µ) with 1 − IS,bA (µ) − IS,bN (µ), and IN with 1 − IA − IN whenever

they arise, one finds that (10) holds.

Finally, to see (11) holds, take any signal s ∈ S under which αS,b(s) = 0. Then,

αS,b,k(s) = 0 for all k ≥ 1. Furthermore, as u(I, θ) is non-decreasing in I for each

θ, and since IkA(µ) + IkN(µ) ≡
∫
S
αS,b,k(s)dµ(s) is non-decreasing in k for each µ,

(u(IkA(µ) + IkN(µ), θ))k≥2 is a sequence of measurable functions on ∆(S) × Θ that

converges monotonically point-wise to u(IS,bA (µ) + IS,bN (µ), θ), and is bounded above

and below by the integrable functions u(1, θ) and u(0, θ) respectively. Hence, by the

Dominated Convergence Theorem,∫
∆(S)×Θ

u(IS,bA (µ) + IS,bN (µ), θ)dπ(µ, θ|s) = lim
k→∞

∫
∆(S)×Θ

u(IkA(µ) + IkN(µ), θ)dπ(µ, θ|s)︸ ︷︷ ︸
≤0 as αS,b,k(s)=0 for all k

≤ 0

Therefore,∫
Θ

∫
I
(1− IA − IN )u(IA + IN , θ)dσ(IA, IN |θ)dF (θ) =

∫
Θ

∫
∆(S)

∫
S3

u(IS,b
A (µ) + IS,b

N (µ), θ)dµ(s)dπ(µ|θ)dF (θ)

=

∫
SNI

(∫
∆(S)×Θ

u(IS,b
A (µ) + IS,b

N (µ), θ)dπ(µ, θ|s)
)
dπS(s) ≤ 0

Hence, downwards obedience holds.

A2: Proof of Theorem 2

Take any b-obedient introspective outcome σ. The goal is to prove that σ is approxi-

mately implementable. Section A2.1 proves that this is true under certain restrictions
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on σ. Section A2.2 then extends the proof to the general case.

Before proceeding, observe that if
∫
Θ
INdσ̃(IA, IN |θ)dF (θ) = 0 holds, then there

exists an introspective outcome σ̃ equivalent to σ, i.e., ∥σ − σ̃∥ = 0, in which for

all (IA, IN) ∈ supp(σ̃(·|θ)), IN = 0. That is, it suffices to assume that under σ,∫
Θ
INdσ̃(IA, IN |θ)dF (θ) = 0 implies non-anchors are never drawn across states. Like-

wise, I assume that if
∫
Θ
INdσ̃(IA, IN |θ)dF (θ) = 0, then non-investors are never drawn

on all states. I will also make use of the following auxilliary result, which will be used

to verify when an information structure has a b-MIE.

Lemma 5. An information structure S has a b-MIE if and only if for all s ∈ S, if

αS,b,1(s) = 1, then αS,b,2(s) = 1.

Proof. The only if part is immediate. To prove the if part, it suffices to prove that for

all k ≥ 2, αS,b,k−1(s) = 1 implies αS,b,k(s) = 1. I will do so via induction on k. The

base case for k = 2 holds by assumption. Hence, suppose the induction hypothesis

holds at k − 1 for some k > 2. Take any s ∈ S in which αS,b,k−1(s) = 1. Then, since

αS,b,k−1(s) ≥ αS,b,k−2(s) = 1 by the induction hypothesis,∫
∆(S)×Θ

u(I(µ|αS,b,k−1), θ)dπ(µ, θ|s) ≥
∫
∆(S)×Θ

u(I(µ|αS,b,k−2), θ)dπ(µ, θ|s) ≥ 0

and so αS,b,k(s) = 1.

A2.1. Strict version of Theorem 2

I first prove Theorem 2 holds when σ also (i) satisfies anchor obedience strictly, (ii)

satisfies non-anchor obedience strictly (if
∫
Θ
INdσ̃(IA, IN |θ)dF (θ) > 0), (iii) satisfies

downwards obedience in (11) strictly (if
∫
Θ
(1− IA − IN)dσ̃(IA, IN |θ)dF (θ) > 0) and

(iv) for all θ ∈ Θ, σ({(1, 0)}|θ) ≥ ϵ for some ϵ > 0.

The structure of the proof is as follows. Step 1 begins by proving three preliminary

properties of σ. Step 2 uses these properties to construct a candidate information

structure and proves that it has a b-MIE. Step 3 proves that the introspective outcome

implemented by the information structure approximates σ.

Step 1:

Lemma 6. Take any ϵ̃ ∈ (0, ϵ) and define the introspective outcome σ̃ as follows:
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1. For all θ ∈ Θ, σ̃(·|θ) = σ(·|θ)−ϵ̃δ(1,0)
1−ϵ̃

2. For all θ /∈ Θ, σ̃(·|θ) = σ(·|θ)

Then, for ϵ̃ sufficiently small, σ̃ is (i) an introspective outcome, and (ii) satisfies

b-obedience.

Proof. (i) holds because σ has the property that for all θ ∈ Θ, σ({(1, 0)}|θ) ≥ ϵ. (ii)

holds because σ is assumed to satisfy b-obedience strictly.

Lemma 7. Suppose
∫
Θ
INdσ̃(IA, IN |θ)dF (θ) > 0. For each n > 1, define

ũn((IA, IN), θ) ≡
1

2n

2n∑
i=1

u(IA +
(i− 1)

2n
IN , θ)

Then, there exists sufficiently large n such that∫
Θ

∫
I
ũn((IA, IN), θ)dσ(IA, IN |θ)dF (θ) > 0 (25)

Proof. For each n ∈ N, ũn is the finite sum of integrable functions and is therefore in-

tegrable. Furthermore, since u(I, θ) is Riemann integrable, limn→∞ ũn((IA, IN), θ) =∫ IN
0

u(IA + i, θ)di for all (IA, IN , θ). Finally, each ũn is dominated by the integrable

function u defined pointwise by u((IA, IN), θ) ≡ max{|maxθ∈Θ u(1, θ)|, | infθ∈Θ u(0, θ)|}.
Thus, applying the Dominated Convergence Theorem,

lim
n→∞

∫
Θ

∫
I
ũn((IA, IN), θ)dσ(IA, IN |θ)dF (θ) =

∫
Θ

∫
I

∫ IN

0

u(IA+i, θ)didσ(IA, IN |θ)dF (θ)

Finally, as (8) is strictly positive by assumption, (25) holds for large enough n.

Now let N = n, where n is obtained from Lemma 7 above.

Lemma 8. Given ϵ̃ > 0, there exists η(ϵ̃) ∈ (0, 1) such that (i) limϵ̃→0 η(ϵ̃) = 0, (ii)

ϵ̃

N − 1

∫
Θ

u(0, θ)dF (θ) + η(ϵ̃)

∫
Θ\Θ

u(0, θ)dF (θ) ≥ 0 (26)

and, (iii) if
∫
Θ
INdσ̃(IA, IN |θ)dF (θ) > 0, then

∫
Θ

∫
I

1

N

N∑
i=1

(1− η(ϵ̃))−i+1u(IA + IN
(i− 1)

N
, θ)dσ(IA, IN |θ)dF (θ) ≥ 0 (27)
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and ∫
Θ

∫
I

1

N

N∑
i=1

(1− η(ϵ̃))−i+1u(b(θ), θ)dσ(IA, IN |θ)dF (θ) < 0 (28)

Proof. η(ϵ̃) ≡ min{1
2
,

ϵ̃
N−1

∫
Θ u(0,θ)dF (θ)

−
∫
Θ\Θ u(0,θ)dF (θ)

} > 0 is decreasing in ϵ̃ and converges to zero.

Thus, if
∫
Θ
INdσ̃(IA, IN |θ)dF (θ) = 0, then setting η(ϵ̃) = η(ϵ̃) yields the claim. Mean-

while, if
∫
Θ
INdσ̃(IA, IN |θ)dF (θ) > 0, then since (25) holds, there exists η > 0

such that η < η implies (27) holds under η, while since (9) holds strictly under

σ, there exists η̃ > 0 such that η < η̃ implies (28) holds under η. Then, letting

η(ϵ̃) ≡ min{η(ϵ̃), η, η̃} yields the claim.

Step 2: Take ϵ̃ ∈ (0, ϵ) sufficiently small so Lemma 6 is satisfied. For each θ ∈ Θ,

consider the joint measure π̃ϵ̃(·|θ) ∈ ∆(I × Z+ ×∆(Z+ ∪ {∞})) defined as follows:

1. Step 1: Draw (IA, IN) according to σ(·|θ)

2. Step 2: Independently, draw a z ∈ Z+ with probability η(ϵ̃)(1− η(ϵ̃))z.

3. Step 3a: If θ ∈ Θ and (IA, IN) = (1, 0) then draw µ1 ∈ ∆(Z+ ∪ {∞}) with

probability one, where

µ1(s) ≡


ϵ̃

N−1
, s ∈ {1, ..., N − 1}

1− ϵ̃, s = 0

0, otherwise

4. Step 3b: If θ /∈ Θ or (IA, IN) ̸= (1, 0), then draw µ(z,IA,IN ) ∈ ∆(Z+ ∪ {∞})
with probability one, where

µ(z,IA,IN )(s) ≡



IA, s = 0

IN
N
, s ∈ {z, ...., z +N − 1}

1− IA − IN , s = ∞

0, otherwise

Let πϵ̃(·|θ) denote the marginal distribution over Z+∪{∞} induced by π̃ϵ̃(·|θ). Further
let πϵ̃ denote the joint measure induced by (πϵ̃(·|θ))θ∈Θ and F over (Z+ ∪ {∞}) ×
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∆(Z+ ∪ {∞}) × Θ, i.e., so πϵ̃(X × Y × Z) ≡
∫
Z

∫
Y

∫
X
dµ(s)dπϵ̃(·|θ)dF (θ) for all

X ∈ B(Z+ ∪ {∞}), Y ∈ B(∆(Z+ ∪ {∞})) and Z ∈ B(Θ), πϵ̃
s(·) denote the marginal

distribution over Z+ ∪ {∞}, and S ≡ supp(πϵ̃
s(·)). Finally, let S ϵ̃ ≡ (S, (πϵ̃(·|θ))θ∈Θ).

I will prove that (i) for all s ≤ N − 1, αS,b,1(s) = αS,b,2(s) = 1, (ii) for all

N ≤ s < ∞, αS,b,1(s) = 0 but αS,b,k(s) = 1 for k = s, and (iii) for s = ∞,

αS,b,1(s) = αS,b(s) = 0. If so, then applying Lemma 5, every agent who invests under

a signal s = S at k = 1 also invests at k = 2, so S has a b-MIE. Furthermore, in

this b-MIE (i) all agents observing s ≤ N − 1 are anchors, (ii) all agents observing

N ≤ s < ∞ are non-anchors, and (iii) all agents observing s = ∞ do not invest.

I split the proof into four parts.

Part 1: Signal s = 0

Proof. First, take any (IA, IN) drawn on state θ. An agent observes s = 0 with

probability (1− ϵ̃)IA if θ ∈ Θ and (IA, IN) = (1, 0), and probability IA if θ /∈ Θ. Thus,

the expected payoff of the agent from investing against the benchmark is proporitional

to the left-hand side of (6) under σ̃ defined in Lemma 6. By Lemma 6, this is

positive, so αS,b,1(s) = 1. Next, provided that (at least) a measure of IA other agents

are investing against the benchmark whenever an agent observes a signal of 0, the

unconditional payoff of the agent from investing is at least (7) under σ̃. By a similar

argument to the above, this is positive, so αS,b,2(s) = 1.

Part 2: Signal s = ∞

Proof. Throughout, suppose
∫
Θ
(1− IA − IN)dσ̃(IA, IN |θ)dF (θ) > 0, for otherwise no

such signal will be drawn. First consider k = 1. Fix (IA, IN) drawn on state θ. The

probability that the agent observes s = ∞ is exactly (1− ϵ̃)(1− IA− IN) if θ ∈ Θ and

(IA, IN) = (1, 0), and (1 − IA − IN) if θ /∈ Θ. Therefore, the agent’s unconditional

payoff from investing against the benchmark is a scalar multiple of (10) under σ̃,

which by Lemma 6 is strictly negative. Thus, αS,b,1(s) = 0. Now take any k > 1.

When (IA, IN) is drawn, the upper bound on the measure of agents who invest at

k − 1, i.e., with αk−1(s) = 1, is 1− IA − IN . Consequently, the agent’s unconditional

payoff from investing is at most a scalar multiple of the LHS of (11) under σ̃, which

by Lemma 6 is strictly negative. Thus, αS,b,k(s) = 0.
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Part 3: Signals s ∈ {1, ..., N − 1}

Proof. Take any k ≥ 1. Fix (IA, IN) drawn on state θ. If θ ∈ Θ, the agent observes

signal s ∈ {1, ..., N − 1} with probability of at least ϵ̃
N−1

. If θ /∈ Θ, the probability

that signal s is observed is at most η(ϵ̃). Aggregating over all (IA, IN , θ) implies that

regardless of other agents’ behaviours, the agent’s payoff from investing is at least

(26), which is positive. Hence, αS,b,1(s) = αS,b,2(s) = 1.

Part 4: Signals N ≤ s < ∞

Proof. Throughout, suppose
∫
Θ
INdσ(IA, IN |θ)dF (θ) > 0, i.e., non-anchors are drawn

with strictly positive probability, for otherwise no such signal will be drawn.

I first prove that for all such s, αS,b,k(s) = 1 for k = s. Suppose k is observed

by an agent when ((IA, IN), θ) and z ∈ Z+ is drawn. This occurs if and only if

z ∈ {k − (N − 1), k}. Furthermore, by the induction hypothesis, the mass of other

agents who invest are those who observes a k′ < k, which is IA + IN
k−z
N

. Hence, the

agent’s payoff from investing is u(IA + IN
k−z
N

, θ). Since z is drawn with probability

η(ϵ̃)(1−η(ϵ̃))z, aggregating over all relevant z and ((IA, IN), θ) yields an unconditional

expected payoff for the agent from investing of

∫
Θ

∫
I
η(ϵ̃)

k∑
z=k−(N−1)

u(IA + IN
k − z

N
, θ)(1− η(ϵ̃))zdσ(IA, IN |θ)dF (θ)

= η(ϵ̃)(1− η(ϵ̃))k
∫
Θ

∫
I

1

N

N∑
i=1

(1− η(ϵ̃))−i+1u(IA +
(i− 1)

N
, θ)dσ(IA, IN |θ)dF (θ) ≥ 0

which implies (2) holds for k = s. Thus, αS,b,k(s) = 1.

From here, a similar argument to the above implies an agent’s expected payoff

from investing against the benchmark under such an s is proportional to (28), which

is strictly negative. Thus, αS,b,1(s) = 0.

Step 3: I now construct a b-implementable sequence (σn)n≥1 which converges to σ.

This implies σ is approximately b-implementable.

Take ϵ̃ > 0 which satisfies Lemma 6. Then, S ϵ̃ defined in Step 2 is an introspective

outcome with a b-MIE. Denote the introspective outcome implemented by it by σϵ̃.
I start by bounding the difference |σϵ̃(·|θ) − σ(·|θ)|. By Step 2, an agent who

observes s is an anchor if and only if s ≤ N − 1, and a non-anchor if and only if

49



N ≤ s < ∞. Hence, for all W ∈ B(I),

σϵ̃(W |θ) = πϵ̃

({
µ :

µ({s ≤ N − 1}) = IA, and

µ({N ≤ s < ∞}) = IN

}∣∣∣∣θ)

=


Pr(z < N)

∫
W

π̃ϵ̃

({
µ :

µ({s ≤ N − 1}) = IA, and

µ({N ≤ s < ∞}) = IN

}∣∣∣∣z < N, (IA, IN ), θ

)
dσ(IA, IN |θ)

+Pr(z ≥ N)
∫
W

π̃ϵ̃

({
µ :

µ({s ≤ N − 1}) = IA, and

µ({N ≤ s < ∞}) = IN

}∣∣∣∣z ≥ N, (IA, IN ), θ

)
dσ(IA, IN |θ)


=

 Pr(z < N)
∫
W

π̃ϵ̃

({
µ :

µ({s ≤ N − 1}) = IA, and

µ({N ≤ s < ∞}) = IN

}∣∣∣∣z < N, (IA, IN ), θ

)
dσ(IA, IN |θ)

+Pr(z ≥ N)σ(W |θ)


where the second to third inequality holds as conditional on drawing z ≥ N and

a pair (IA, IN), IA agents observe s = 0 and IN agents observe N ≤ s < ∞ with

probability one. Therefore, as Pr(z < N) = 1− (1− η(ϵ̃))N+1, the above implies

|σϵ̃(W |θ)− σ(W |θ)| ≤ 2(1− (1− η(ϵ̃))N+1), ∀W ∈ B(I)

Given the above, observe that

∥∥σϵ̃ − σ
∥∥ = sup

Θ̃∈B(Θ),W∈B(I)

∣∣∣∣ ∫
Θ̃

(σϵ̃(W |θ)− σ(W |θ))dF (θ)

∣∣∣∣
≤ sup

Θ̃∈B(Θ)

sup
θ∈Θ̃,W∈B(I)

|σϵ̃(W |θ)− σ(W |θ)|F (Θ̃) ≤ 2(1− (1− η(ϵ̃))N+1)

Finally, Step 1 implies that η(ϵ̃) → 0 when ϵ̃ → 0. Thus, (σϵ̃/n)n≥1 is a sequence of

b-implementable introspective outcomes that converges to σ.

A2.2. Weaker version of Theorem 2

I now prove Theorem 2 holds in general. First, suppose
∫
Θ

∫
I INu(b(θ), θ)dσ(IA, IN |θ)dF (θ) >

0. Define σ as follows.

σ(·|θ) =


δ(1/2,1/2), u(0, θ) > 0

δ(1,0), u(0, θ) ≤ 0 ≤ u(b(θ), θ)

δ(0,0), u(b(θ), θ) < 0 and θ /∈ Θ

, ∀θ ∈ Θ (29)
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For all n ∈ N, let σn ≡ ϵ̃
2n
σ + (1 − ϵ̃

2n
)σ, where ϵ̃ > 0 is chosen sufficiently small

so (9) holds strictly. By construction, ∥σ − σn∥ ≤ ϵ̃
2n
. Furthermore, σn satisfies the

conditions of Appendix A2.1 strictly, so for each n ∈ N, there exists a σ̃n which is b-

implementable and satisfies ∥σ̃n − σn∥ < ϵ̃/(2n). Combining these yields ∥σ − σ̃n∥ ≤
∥σ − σn∥+ ∥σn − σ̃n∥ < ϵ̃/n, which implies the sequence (σ̃n)n≥1 converges to σ.

Next, suppose
∫
Θ

∫
I INu(b(θ), θ)dσ(IA, IN |θ)dF (θ) = 0. Define σ2 by setting

σ2(·|θ) ≡ δ(1,0) if u(b(θ), θ) ≥ 0, and σ2(·|θ) ≡ δ(0,0) otherwise. Then, by a similar ar-

gument to the above with σ2 in place of σ, one obtains a sequence of b-implementable

introspective outcomes that converges to σ.

Appendix B: Other Proofs

Proof of Lemma 1 As the proof of Part 2 is simple, I only prove Part 1 here.

Take any information structure S with a b-MIE αS,b. I will show that for all s ∈ S,

αS,b(s) is a best-response for an agent against all other agents playing αS,b. I focus

on the case where αS,b(s) = 1, i.e., the agent invests in the b-MIE under s, noting

that the case with αS,b(s) = 0 is proven similarly.

As αS,b(s) = 1, there exists a k ≥ 2 such that for all k ≥ k, αS,b,k(s) = 1. That is,∫
∆(S)×Θ

u(I(αS,b,k−1|µ), θ)dπ(µ, θ|s) ≥ 0 (30)

Meanwhile, notice that (u(I(αS,b,k−1|µ), θ))k≥k is a sequence of measurable functions

which converges monotonically point-wise to u(I(αS,b|µ), θ), and is bounded above

and below by the integrable functions u(1, θ) and u(0, θ) respectively. Thus, by the

Dominated Convergence Theorem,∫
∆(S)×Θ

u(I(αS,b|µ), θ)dπ(µ, θ|s) = lim
k→∞

∫
∆(S)×Θ

u(I(αS,b,k−1|µ), θ)dπ(µ, θ|s) (31)

Combining (30) and (31) implies
∫
∆(S)×Θ

u(I(αS,b|µ), θ)dπ(µ, θ|s) ≥ 0, so αS,b(s) = 1

is a best-response to other agents playing αS,b.

Proof of Proposition 1. Take any upper b-obedient introspective outcome σ. For

each θ ∈ Θ, define the transport map T̃θ : I → I as follows:
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1. If u(IA + IN , θ) ≥ 0, then T̃θ(IA, IN) ≡ (IA, 1− IA). That is, it raises the mass

of non-anchors drawn to 1− IA.

2. If u(IA, IN , θ) < 0 ≤ u(b(θ), θ), then T̃θ(IA, IN) ≡ (1, 0). That is, it raises the

mass of anchors drawn to one, and reduces the mass of non-anchors to zero.

3. Otherwise, T̃θ(IA, IN) ≡ (IA, IN).

Let the introspective outcome σ̃ be defined such that σ̃(·|θ) is the push-forward of

σ(·|θ) through T̃θ for all θ ∈ Θ. I first show that σ̃ is a candidate for an introspective

outcome that satisfies the requirements of Corollary 1. That is, it investment and

anchor-dominates σ, and satisfies all b-obedience constraints except possibly (9).

First, the maps {T̃θ}θ∈Θ weakly raise the aggregate investment and mass of anchors

on each pair drawn under σ, so σ̃ investment and anchor dominates σ. Next,

∫
Θ

∫
I
IAu(b(θ), θ)dσ̃(IA, IN |θ)dF (θ) =

[ ∫
Θ

∫
I IAu(b(θ), θ)dσ(IA, IN |θ)dF (θ)

+
∫
Θ

∫
(IA,IN ):u(b(θ),θ)≥0(1− IA)u(b(θ), θ)dσ(IA, IN |θ)dF (θ)

]
≥
∫
Θ

∫
I
IAu(b(θ), θ)dσ(IA, IN |θ)dF (θ) ≥ 0

and∫
Θ

∫
I
IAu(IA, θ)dσ̃(IA, IN |θ)dF (θ) =

[ ∫
Θ

∫
I IAu(IA, θ)dσ(IA, IN |θ)dF (θ)

+
∫
Θ

∫
(IA,IN ):u(b(θ),θ)≥0(u(1, θ)− IAu(IA, θ))dσ(IA, IN |θ)dF (θ)

]
≥
∫
Θ

∫
I
IAu(IA, θ)dσ(IA, IN |θ)dF (θ) ≥ 0

where the inequality holds as if u(b(θ), θ) ≥ 0, then since u(1, θ) ≥ u(b(θ), θ),

u(1, θ) ≥ IAu(IA, θ) holds. Thus, σ̃ satisfies anchor-obedience. Then,∫
Θ

∫
I

∫ IN

0
u(IA + i, θ)didσ̃(IA, IN |θ)dF (θ)

=


∫
Θ

∫
I
∫ IN
0 u(IA + i, θ)didσ(IA, IN |θ)dF (θ)

+
∫
Θ

∫
(IA,IN ):u(IA+IN ,θ)≥0

∫ 1−IA
IN

u(IA + i, θ)didσ(IA, IN |θ)dF (θ)

−
∫
Θ

∫
(IA,IN ):u(IA+IN ,θ)<0≤u(b(θ),θ)

∫ IN
0 u(IA + i, θ)didσ(IA, IN |θ)dF (θ)


≥
∫
Θ

∫
I

∫ IN

0
u(IA + i, θ)didσ(IA, IN |θ)dF (θ) ≥ 0
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so σ̃ satisfies non-anchor obedience. Finally,∫
Θ

∫
I
(1− IA − IN)u(b(θ), θ)dσ̃(IA, IN |θ)dF (θ)

=

∫
Θ

∫
(IA,IN ):u(IA,IN )<0 and u(b(θ),θ)<0

(1− IA − IN)u(b(θ), θ)dσ(IA, IN |θ)dF (θ) ≤ 0

while ∫
Θ

∫
I
(1− IA − IN)u(IA + IN , θ)dσ̃(IA, IN |θ)dF (θ)

=

∫
Θ

∫
(IA,IN ):u(IA,IN )<0 and u(b(θ),θ)<0

(1− IA − IN)u(IA + IN , θ)dσ(IA, IN |θ)dF (θ) ≤ 0

so σ̃ satisfies (10) and (11) in downwards obedience.

Now, if (9) holds under σ̃, then σ̃ satisfies b-obedience and so satisfies the require-

ments of Corollary 1. If (9) does not hold, then let σ̃2 be defined such that σ̃2(·|θ) is the
pushforward of σ̃(·|θ) through the map T̃2 : I → I defined by T̃2(IA, IN) = (IA+IN , 0),

i.e., σ̃2 pools all non-anchors onto anchors. Clearly, σ̃2 investment and anchor dom-

inates σ, and it satisfies the first anchor, non-anchor and downwards obedience. As

for the second anchor obedience constraint,∫
Θ

∫
I
IAu(IA, θ)dσ̃2(IA, IN |θ)dF (θ) =

∫
Θ

∫
I
(IA + IN )u(IA + IN , θ)dσ̃(IA, IN |θ)dF (θ)

≥

( ∫
Θ

∫
I IAu(IA, θ)dσ̃(IA, IN |θ)dF (θ)

+
∫
Θ

∫
I
∫ IA+IN
IA

u(i, θ)didσ̃(IA, IN |θ)dF (θ)

)
≥ 0

Thus, σ̃2 is b-obedient, and so satisfies the requirements of Corollary 1

Proof of Lemma 2. Consider the following alternative problem (P ′)

max
σ̃∈∆(I×Θ)

∫
I×Θ

v(IA + IN , θ)dσ̃(IA, IN , θ) (32)

s.t.


∫
I×Θ

IAu(b(θ), θ)dσ̃(IA, IN , θ)∫
I×Θ

IAu(IA, θ)dσ̃(IA, IN , θ)∫
I×Θ

∫ IA+IN
IA

u(i, θ)didσ̃(IA, IN , θ)

 ≥ 0 (33)

and

∫
I×Θ̃

dσ̃(IA, IN , θ) =

∫
Θ̃

dF (θ), ∀Θ̃ ∈ B(Θ) (34)
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Any solution to (P), say σ, defines a joint measure that is feasible for (P ′) via σ̃(W ×
Θ̃) ≡

∫
Θ̃

∫
W
dσ(IA, IN |θ)dF (θ) for all W ∈ B(I) and Θ̃ ∈ B(Θ). Likewise, because

I ×Θ is Polish, one can disintegrate any solution to (P ′) into the marginal F and an

introspective outcome σ feasible for (P). Thus, any solution to (P ′) “solves” (P).

I now prove one solution to (P ′) exists, which proves Lemma 2. Throughout,

I equip ∆(I × Θ) with the weak∗ topology. I first prove the feasible set for (P ′)

is compact. First, ∆(I × Θ) is compact by Prokhorov’s Theorem. Now take a

sequence (σ̃n)n≥1 in ∆(I × Θ) satisfying (33) and (34) that converges weakly to

some σ̃ ∈ ∆(I × Θ). Since u(I, θ) is upper semicontinuous in (I, θ), the constraint

function in (33) is upper semicontinuous, so σ̃ satisfies (33). Likewise, the constraint

function in (34) is continuous, so σ̃ satisfies (34). Hence, the feasible set is compact.

From here, v(I, θ) is upper semicontinuous, so the objective function in (32) is upper

semicontinuous in σ̃. Hence, there exists a solution to (P ′).

Proof of Lemma 3. Take any feasible σ, so
∫
Θ

∫
I U(IA, IN |λ, b, θ)dσ(IA, IN |θ)dF (θ) ≥

0 holds. Then,

V D(λb, b) =

∫
Θ

max
(IA,IN )

L(IA, IN |λb, b, θ)dF (θ)

≥
∫
Θ

∫
I
L(IA, IN |λb, b, θ)dσ(IA, IN |θ)dF (θ)

=

∫
Θ

∫
I
(v(IA + IN , θ) + λbU(IA, IN |b, θ))dσ(IA, IN |θ)dF (θ)

≥
∫
Θ

∫
I
v(IA + IN , θ)dσ(IA, IN |θ)dF (θ) = V (σ)

Hence, V D(λb, b) is an upper bound on the designer’s payoff in the relaxed problem.

Notice then that the first inequality holds, if and only if (C1) holds, and the last

inequality holds if and only if (C2) hold. This proves the claim.

Proof of Lemma 4. First, take any θ ∈ Θ
b
and (IA, IN) ∈ I. Because u(b(θ), θ)

is non-negative and IA ≤ 1− IN , IAu(b(θ), θ) ≤ (1− IN)u(b(θ), θ). Because u(I, θ) is

non-decreasing in I, u(i, θ) ≤ u(i+ (1− IA − IN), θ). Therefore,

L(IA, IN |λb, b, θ) = v(IA + IN , θ) + λb

(
IAu(b(θ), θ) +

∫ IA+IN

IA

u(i, θ)di

)
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≤ v(1, θ) + λb

(
(1− IN)u(b(θ), θ) +

∫ IA+IN

IA

u(i+ (1− IA − IN), θ)di

)
= v(1, θ) + λb

(
(1− IN)u(b(θ), θ) +

∫ 1

1−IN

u(i, θ)di

)
= L(1− IN , IN |λb, b, θ)

Lastly, a standard first-order approach shows L(1 − IN , IN |λb, b, θ) is maximized at

IN = 1−b(θ). Hence, (b(θ), 1−b(θ)) ∈ argmax(IA,IN )∈I L(1−IN , IN |λb, b, θ). In turn,

Condition 1 implies (C1) holds for all θ ∈ Θ
b
under σ.

Next, take any θ /∈ Θ
b
. Then, Assumption 1 implies u(b(θ), θ) = u(0, θ). Hence,

for all (IA, IN),

L(IA, IN |λb, b, θ) = v(IA + IN , θ) + λb

(
IAu(0, θ) +

∫ IA+IN

IA

u(i, θ)di

)
≤ v(1, θ) + λb

∫ IA+IN

0

u(i, θ)di = L(0, IA + IN |λb, b, θ)

The above implies {(0, I) : I ∈ argmaxI′∈[0,1] L(0, I ′|λb, b, θ)} ⊆ argmax(IA,IN )∈I L(1−
IN , IN |λb, b, θ). In turn, Condition 2 implies (C1) holds for all θ /∈ Θ

b
under σ.

Proof of Proposition 4. Let U b
θ ≡

∫
Θ

∫
I U(IA, IN |λ, b, θ)dσb

θ(IA, IN |θ)dF (θ) de-

note agents’ total expected perceived payoffs from investing under σb
θ. By the conti-

nuity of F , U b
θ is continuous in θ.

By the in-text discussion, to prove Proposition 4, one must show that σb is feasible

and satisfies (C2). There are two cases to consider, depending on λb.

First, suppose λb = 0. Then, any σb
θ satisfies (C2). Meanwhile, by Theorem 3 of

Milgrom and Segal (2002) (henceforth “Envelope Theorem”), the right derivative of

V D(·, b) with respect to b evaluated at λ = 0 is

(V D)′+(0, b) =

∫
Θ

b
U(b(θ), 1− b(θ)|λ, b, θ)dF (θ) +

∫
Θ\Θb

sup

{∫ I

0
u(i, θ)di : v(1, θ) = v(I, θ)

}
dF (θ)

=

∫
Θ

b
U(b(θ), 1− b(θ)|λ, b, θ)dF (θ) +

∫
θ∈Θ\Θb

:θ≥θ0

∫ 1

0
u(i, θ)didF (θ) = Ub

θ0

Since the above must be non-negative for λ = 0 to minimize V D(·, b), U b
θ0
≥ 0. Hence,

σb
θ0

is feasible. In turn, σb is feasible.

Next, suppose λb > 0. Observe then that for all θ ∈ Θ, v(Ib−(θ)θ) ≤ v(Ib+(θ), θ).

Therefore, U(0, Ib−(θ)|b, θ) ≥ U(0, Ib+(θ)|b, θ) must hold. In turn, U b
θ is non-decreasing
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in θ. Furthermore, the Envelope Theorem implies the left derivative of V D(λ, b) at

λ = λb satisfies (V D)′−(λ
b, b) = U b

0 ≤ 0, while (V D)′+(λ
b, b) = U b

1 ≥ 0. Together, these

imply U b
θb
= 0, so σb is both feasible and satisfies (C2).

Proof of Proposition 5. I first show that under σb, anchor obedience holds. The

first constraint holds by the definition of θ
b
. The second constraint holds as

∫
Θ

∫
I
IAu(IA, θ)dσ

b(IA, IN |θ)dF (θ) =

( ∫
Θ

b b(θ)u(b(θ), θ)dF (θ)∫
[θ

b
,1]\Θb min{I(θ), Ib(θ)}u(min{I(θ), Ib(θ)}, θ)dF (θ)

)

≥
( ∫

Θ
b b(θ)u(b(θ), θ)dF (θ)∫

[θ
b
,1]\Θb min{I(θ), Ib(θ)}u(0, θ)dF (θ)

)
≥ 0

I now show that non-anchor obedience (8) holds. There are two cases to consider.

First, suppose anchors’ perceived payoffs from investing under σb is strictly posi-

tive. Then θ
b
= 0, so σb = σb

0. In turn, the left-hand side of (8) under σb is

∫
Θ

b

∫ 1

b(θ)

u(i, θ)didF (θ) +

∫
Θ\Θb

∫ Ib(θ)

min{Ib(θ),I(θ)}
u(i, θ)dF (θ)

Because u(b(θ), θ) ≥ 0 on all θ ∈ Θ
b
, and u(i, θ) ≥ 0 for all i ≥ I(θ), the term above

is positive. Thus, non-anchor obedience holds.

Next, suppose anchors’ perceived payoffs from investing under σb is zero. Then,

the left-hand side of (8) under σb is equal to the total perceived payoffs from invest-

ment under σb, which is U b
θb
≥ 0. Thus, non-anchor obedience holds.

Proof of Propositions 6 and 7. I prove these results through a series of claims.

Claim 1. For all θ ∈ Θ
b
, (i) Ib(θ) ≥ I b̃(θ) and (ii) IbA(θ) ≥ I b̃A(θ)

Proof. (i) holds as Ib(θ) = 1. For (ii), there are two cases to consider. First, suppose

θ ∈ Θ
b̃
. Then, IbA(θ) = b(θ) and I b̃A(θ) = b̃(θ). Since b ≥ b̃, IbA(θ) ≥ I b̃A(θ). Next,

suppose θ ∈ Θ
b\Θb̃

. Then, IbA(θ) = b(θ) and I b̃A(θ) ≤ I(θ). Since u(b(θ), θ) ≥ 0,

b(θ) ≥ I(θ) holds. Hence, IbA(θ) ≥ I b̃A(θ).

Claim 2. For any θ ∈ Θ
b\Θb̃

, (i) U(b̃(θ), 1 − b̃(θ)|b̃, θ) ≤ U(b(θ), 1 − b(θ)|b, θ) and

(ii)
∫ I b̃(θ)

0
u(i, θ)di ≤ U(b(θ), 1− b(θ)|b, θ).
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Proof. Part (i) is easy to verify. As for Part (ii),

∫ I b̃(θ)

0

u(i, θ)di = min{I(θ), I b̃(θ)}u(0, θ) +
∫ Ib(θ)

min{I(θ),I b̃(θ)}
u(i, θ)di

≤ min{I(θ), I b̃(θ)}u(b(θ), θ) +
∫ Ib(θ)

min{I(θ),I b̃(θ)}
u(i, θ)di

≤ min{I(θ), I b̃(θ)}u(b(θ), θ) +
∫ 1

min{I(θ),I b̃(θ)}
u(i, θ)di

≤ b(θ)u(b(θ), θ) +

∫ 1

b(θ)

u(i, θ)di = U(b(θ), 1− b(θ)|b, θ)

where the last two inequalities follow from similar arguments to Lemma 4’s proof.

Claim 3. If λb̃ = 0, then for all θ /∈ Θ
b
, Ib(θ) ≥ Ib(θ̃).

Proof. I first show that θb ≤ θb̃. To start, applying the Envelope Theorem,

(V D)′+(0, b) =

∫
Θ

b
U(b(θ), 1− b(θ)|λ, b, θ)dF (θ) +

∫
θ∈Θ\Θb

:θ≥θ0

∫ 1

0

u(i, θ)didF (θ)

≥
∫
Θ

b̃
U(b̃(θ), 1− b̃(θ)|λ, b̃, θ)dF (θ) +

∫
θ∈Θ\Θb̃

:θ≥θ0

∫ 1

0

u(i, θ)didF (θ)

= (V D)′+(0, b̃) ≥ 0

where the inequality holds because of Claim 2. Hence, λ = 0 also minimizes V D(λ, b),

so λb = 0. This implies that for all θ /∈ Θ
b
, Ib−(θ) = I b̃−(θ) and Ib+(θ) = I b̃+(θ).

Therefore, under the threshold θ = θb̃,

U b

θb̃
=

( ∫
Θ

b̃ U(b(θ), 1− b(θ)|b, θ)dF (θ) +
∫
Θ

b\Θ̃b U(b(θ), 1− b(θ)|b, θ)dF (θ)

+
∫
θ∈Θ\Θb

:θ≥θb̃

∫ Ib+(θ)

0
u(i, θ)didF (θ) +

∫
θ∈Θ\Θb

:θ<θb̃

∫ Ib−(θ)

0
u(i, θ)didF (θ)

)

≥
( ∫

Θ
b̃ U(b̃(θ), 1− b̃(θ)|b̃, θ)dF (θ) +

∫
Θ

b\Θ̃b

∫ I b̃

0
u(i, θ)didF (θ)

+
∫
θ∈Θ\Θb

:θ≥θb̃

∫ I b̃+(θ)

0
u(i, θ)didF (θ) +

∫
θ∈Θ\Θb

:θ<θb̃

∫ I b̃−(θ)

0
u(i, θ)didF (θ)

)
= U b̃

θb̃
≥ 0

where the first inequality follows from Claim 2. This means θb ≤ θb̃.

Now take any θ ∈ Θ\Θb
. If I b̃(θ) = I b̃−(θ), then Ib(θ) ≥ Ib−(θ) = I b̃−(θ) = I b̃(θ).

If I b̃(θ) = I b̃+(θ), then θ ≥ θb̃. Since θb ≤ θb̃, this means θ ≥ θb. Therefore, Ib(θ) =
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Ib+(θ) = I b̃+(θ) = I b̃(θ).

Claim 4. If λb̃ > 0, then for all θ /∈ Θ
b
, Ib(θ) ≥ Ib(θ̃).

Proof. First, notice

(V D)′−(λ
b̃, b) =

( ∫
Θ

b̃ U(b(θ), 1− b(θ)|b, θ)dF (θ) +
∫
Θ

b\Θ̃b U(b(θ), 1− b(θ)|b, θ)dF (θ)

+
∫
θ∈Θ\Θb

∫ I b̃−(θ)

0
u(i, θ)didF (θ)

)

≥
( ∫

Θ
b̃ U(b̃(θ), 1− b̃(θ)|b̃, θ)dF (θ) +

∫
Θ

b\Θ̃b

∫ I b̃

0
u(i, θ)didF (θ)

+
∫
θ∈Θ\Θb

∫ I b̃−(θ)

0
u(i, θ)didF (θ)

)
= (V D)′−(λ

b̃, b̃)

where the inequality follows from Claim 2. Applying a similar argument establishes

(V D)′+(λ
b̃, b) ≥ (V D)′+(λ

b̃, b̃). Hence, λb ≤ λb̃.

Now if λb = λb̃, then an identical argument to Claim 3 proves Claim 4 holds.

Meanwhile, if λb < λb̃, then for all θ /∈ Θ
b
, Ib−(θ) ≥ I b̃+(θ). That Ib(θ) ≥ Ib−(θ) and

I b̃+(θ) ≥ I b̃(θ) holds on all such states then implies Claim 4 holds.

Proof of Proposition 8 I will prove that Ib(θ) ∈ {0, 1} on all non b-agreement

states θ /∈ Θ
b
. Since Ib(θ) = 1 on all b-agreement states, this then implies σb perfectly

coordinates investments on all states.

Take any non b-agreement state θ. Restricted convexity implies that for all

λ ≥ 0, either L(0, I|λ, b) ≤ L(0, 1|λ, b) if
∫ I

0
u(i, θ)di ≤

∫ 1

0
u(i, θ)di, or L(0, I|λ, b) ≤∫ I

0 u(i,θ)di∫ 1
0 u(i,θ)di

L(0, 1|λ, b)+(1−
∫ I
0 u(i,θ)di∫ 1
0 u(i,θ)di

)L(0, 0|λ, b) if
∫ I

0
u(i, θ)di >

∫ 1

0
u(i, θ)di. These im-

ply either (i) L(0, 0|λb, θ) = L(0, 1|λb, θ), so Ib−(θ) = 0 and Ib+(θ) = 1, (ii) L(0, 0|λb, θ) >

L(0, 1|λb, θ), so Ib−(θ) = Ib+(θ) = 0 or (iii) L(0, 0|λb, θ) < L(0, 1|λb, θ), so Ib−(θ) =

Ib+(θ) = 1. Since Ib(θ) ∈ {Ib−(θ), Ib+(θ)} by definition, Ib(θ) ∈ {0, 1} holds.

Proof of Corollary 2. Follows from in-text discussion.

Proof of Corollary 3. Proposition 7 has already shown that IbA(θ) ≥ I b̃A(θ) for all

θ ∈ Θ
b
. Meanwhile, by definition, θ

b
is non-increasing in b. Hence, if θ ∈ [θ

b
, 1]\Θb

,

then IbA(θ) = I(θ) ≥ I b̃(θ). Meanwhile, if θ ∈ [0, θ
b
)\Θb

, then IbA(θ) = I b̃A(θ) = 0.

Proof of Corollary 4. Follows from in-text discussion.

58



Proof of Proposition 9. As Part 2 follows from the in-text discussion, I only

prove Part 1. The change in agents’ expected perceived payoffs under the optimal

introspective outcome from raising the benchmark from b̃ to b is∫
[θb̃,1]∪Θb

[U(b(θ), 1− b(θ)|b, θ)− U(b̃(θ), 1− b̃(θ)|b̃, θ)]dF (θ)

+

∫
([θb,θb̃]∪Θb

)\Θb̃
U(IbA(θ), 1− IbA(θ)|b̃, θ)dF (θ)

Using the definition of θb in (20), the sum is weakly positive. Meanwhile, for all

θ ∈ [θb̃, 1]∪Θ
b
, u(b(θ), θ) = u(b̃(θ), θ), so U(b(θ), 1− b(θ)|b, θ) = U(b̃(θ), 1− b̃(θ)|b̃, θ).

Hence, the first term is zero. Following the in-text argument then proves Part 1.

Appendix C: Public Information Design

Optimal Public Information Structure. I begin by characterizing the optimal

public information structure. As a first step, the next result characterize the unique

b-MIE under any public information structure.

Lemma 9. For all b ∈ B, every public information structure has a unique b-MIE. In

it, an agent invests under a signal if and only if he invests against the benchmark.

Proof. Take a public information structure S and b ∈ B. To prove the claim, it

suffices to show that for all s ∈ S, (i) αS,b,1(s) = 1 ⇒ αS,b,k(s) = 1 for all k ≥ 1, and

(ii) αS,b,1(s) = 0 ⇒ αS,b,k(s) = 0 for all k ≥ 1. For (i), note that if αS,b,1(s) = 1, then∫
∆(S)×Θ

u(I(µ|αS,b,1), θ)dπ(µ, θ|s) =
∫
Θ
u(1, θ)dπ(θ|s) ≥

∫
Θ
u(b(θ), θ)dπ(θ|s) ≥ 0

so αS,b,2(s) = 1. Repeating the argument inductively implies αk(s) = 1 for all k ≥ 2.

For (ii), if α1(s) = 0, then∫
∆(S)×Θ

u(I(µ|αS,b,1), θ)dπ(µ, θ|s) =
∫
Θ
u(0, θ)dπ(θ|s) ≤

∫
Θ
u(b(θ), θ)dπ(θ|s) < 0 (35)

so αS,b,2(s) = 0. Repeating the argument implies αk(s) = 0 for all k ≥ 2.

Lemma 9 implies under any signal observed, agents’ behaviours are identical, and

whether any agent invests depends on whether investing is optimal against the bench-
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mark. That is, the public information design problem reduces to the problem of per-

suading all agents to invest, where these agents invest if and only if the payoff from

investing against the benchmark is non-negative. Denoting the probability all agents

invest on each state by σ̃ : Θ → [0, 1], this problem is:

max
σ̃

∫
Θ

v(1, θ)σ̃(θ)dF (θ) s.t.

∫
Θ

u(b(θ), θ)σ̃(θ)dF (θ) ≥ 0 (Pub)

Intuitively, the designer finds it optimal to induces investment on all agreement states

[θ, 1]. Meanwhile, because non-agreement states θ < θ are ranked by the “cost-to-

benefit” ratio R(θ) ≡ −u(b(θ), θ)/v(1, θ) = −u(θ)/v(1, θ), the designer optimally

induces investment on the highest non agreement states. Formally,

Theorem 3. Let

θ̃b ≡ inf

{
θ ∈ [0, θ] :

∫
[θ,1]

u(b(θ̂), θ̂)dF (θ̂) +

∫
[θ,θ]

u(θ̂)dF (θ̂) ≥ 0

}
Then, σ̃b defined below solves the public information design problem:

σ̃b(θ) ≡

1, θ ≥ θ̃b

0, θ < θ̃b

Proof. Without loss, I assume that θ̃b > 0, for otherwise the claim immediately holds.

This implies Rb ≡ R(θ̃b) > 0 and
∫
[θ,1]

u(b(θ̂), θ̂)dF (θ̂) +
∫
[θ̃b,θ]

u(θ̂)dF (θ̂) = 0. Now

observe that (Pub), which is a linear programming problem, admits the following dual

problem: choose a λ ≥ 0 and a measurable function ϕ : Θ → R+ to solve

min
λ,ϕ

∫
Θ

ϕ(θ)dF (θ) s.t. v(1, θ) + λu(b(θ), θ) ≤ ϕ(θ), ∀θ ∈ Θ

Given this, let λ∗ ≡ 1/Rb and ϕ∗(θ) ≡ max{0, v(1, θ) + λ∗u(b(θ), θ)}. Clearly,

(λ∗, ϕ∗) is feasible for the dual problem. Furthermore, observe that ϕ∗(θ) = v(1, θ) +

λ∗u(b(θ), θ) if θ ≥ θ̃b, and ϕ∗(θ) = 0 otherwise. Hence,∫
Θ

ϕ∗(θ)dF (θ)︸ ︷︷ ︸
Value of dual objective under (λ∗, ϕ∗)

=

∫
[θ̃b,1]

v(1, θ)dF (θ)︸ ︷︷ ︸
Value of primal objective under σ̃b
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+ λ∗
∫
[θ,1]

u(b(θ̂), θ̂)dF (θ̂) +

∫
[θ̃b,θ]

u(θ̂)dF (θ̂)︸ ︷︷ ︸
=0

A standard Weak Duality argument then implies σ̃b solves the designer’s problem.

Proofs for Section 6. I start with three observations. First, under Assumptions 2,

4, 5 and 6, the optimal introspective outcome σb, which is characterized by Corollary

2, has all agents invest only on states θ ∈ [θb, 1], where

θb ≡ min

{
θ ∈ [0, θ] :

∫
[θ,1]

U(b(θ̂), 1− b(θ̂)|b, θ̂)dF (θ̂) +

∫
[θ,θ]

u(θ̂)dF (θ̂) ≥ 0

}
Second, because the designer is always weakly worse off under public information,

θ̃b ≥ θb holds. Finally, both θ̃b and θb are non-increasing in the benchmark b.

Proof of Proposition 10. It suffices to show that under the stated conditions,

θ̃b > θb. First, since u(b(θ), θ) < u(1, θ) for all θ ∈ Θ̃ and F (Θ̃) > 0,∫
[θ,1]

u(b(θ), θ)dF (θ) +

∫
[

[0, θ]]u(θ)dF (θ) <

∫
Θ

u(1, θ)dF (θ) ≤ 0

Hence, θ̃b > 0 and
∫
[θ,1]

u(b(θ), θ)dF (θ) +
∫
[θ̃b,θ]

u(θ)dF (θ) = 0. Meanwhile,

u(b(θ), θ) < b(θ)u(b(θ), θ) +

∫ 1

b(θ)

u(i, θ)di = U(b(θ), 1− b(θ)|b, θ), ∀θ ∈ Θ̃

And so∫
[θ,1]

U(b(θ), 1− b(θ)|b, θ)dF (θ)

+
∫
[θ̃b,θ]

u(θ)dF (θ)
>

∫
[θ,1]

U(b(θ), 1− b(θ)|b, θ)dF (θ)

+
∫
[θ̃b,θ]

u(θ)dF (θ)
= 0

Therefore, θb < θ̃b.

Proof of Proposition 11. I focus on when (i) θ̃b > 0 and (ii) θb < θb̃, otherwise

Proposition 11 immediately holds. (i) implies
∫
[θ,1]

u(b̃(θ̂), θ̂)dF (θ̂)+
∫
[θ̃b,θ]

u(θ̂)dF (θ̂) =
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0 and
∫
[θ,1]

u(b(θ̂), θ̂)dF (θ̂) +
∫
[θ̃b,θ]

u(θ̂)dF (θ̂) = 0. Combining these yield

∫ 1

θ̃b̃
[u(b(θ), θ)− u(b̃(θ), θ)]dF (θ) +

∫ θ̃b̃

θ̃b
u(θ)dF (θ) = 0 (36)

Meanwhile (ii) implies that
∫
[θ,1]

U(b̃(θ), 1− b̃(θ)|b̃, θ)dF (θ)+
∫
[θb̃,θ]

u(θ)dF (θ) = 0 and∫
[θ,1]

U(b(θ), 1− b(θ)|b, θ)dF (θ) +
∫
[θb,θ]

u(θ)dF (θ) ≥ 0, which combined yields

∫
[θ,1]

[U(b(θ), 1− b(θ)|b, θ)− U(b̃(θ), 1− b̃(θ)|b, θ)]dF (θ) +

∫ θb̃

θb
u(θ)dF (θ) ≥ 0 (37)

Further notice that∫
[θ,1]

[U(b(θ), 1− b(θ)|b, θ)− U(b̃(θ), 1− b̃(θ)|b, θ)]dF (θ)

=

∫
[θ,1]

(
b(θ)u(b(θ), θ)− b̃(θ)u(b̃(θ), θ)−

∫ b(θ)

b̃(θ)
u(i, θ)di

)
dF (θ)

≤
∫
[θ,1]

[u(b(θ), θ)− u(b̃(θ), θ)]dF (θ)

Combining the above with (36) and (37) yields −
∫ θb̃

θb
u(θ)dF (θ)+

∫ θ̃b̃

θ̃b
u(θ)dF (θ) ≤ 0.

As such, if θb̃ ≥ θ̃b

(V ∗(b)− V ∗(b̃))− (V Pub(b)− V Pub(b̃)) =

∫ θb̃

θb

v(1, θ)dF (θ)−
∫ θ̃b̃

θ̃b

v(1, θ)dF (θ)

=

∫ θb̃

θb

−u(θ)
−v(1, θ)

u(θ)
dF (θ)−

(∫ θ̃b̃

θ̃b

−u(θ)
−v(1, θ)

u(θ)
dF (θ)

)

≤ −v(1, θb̃)

u(θb̃)

∫ θb̃

θb

−u(θ)dF (θ)−
(
−v(1, θ̃b)

u(θ̃b)

∫ θ̃b̃

θ̃b

−u(θ)dF (θ)

)

≤ −v(1, θ̃b)

u(θ̃b)

(
−
∫ θb̃

θb

u(θ)dF (θ) +

∫ θ̃b̃

θ̃b

u(θ)dF (θ)

)
≤ 0

whereas if θb̃ ≤ θ̃b,

(V ∗(b)− V ∗(b̃))− (V Pub(b)− V Pub(b̃)) = (V ∗(b)− V Pub(b))− (V ∗(b̃)− V Pub(b̃))

=

∫ θ̃b

θb

v(1, θ)dF (θ)−
∫ θ̃b̃

θb̃

v(1, θ)dF (θ)
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=

∫ θ̃b

θb

−u(θ)
−v(1, θ)

u(θ)
dF (θ)−

(∫ θ̃b̃

θb̃

−u(θ)
−v(1, θ)

u(θ)
dF (θ)

)

≤ −v(1, θ̃b)

u(θb̃)

∫ θ̃b

θb

−u(θ)dF (θ)−
(
−v(1, θb̃)

u(θ̃b)

∫ θ̃b̃

θb̃

−u(θ)dF (θ)

)

≤ −v(1, θ̃b)

u(θ̃b)

(
−
∫ θ̃b

θb

u(θ)dF (θ) +

∫ θ̃b̃

θb̃

u(θ)dF (θ)

)

=
−v(1, θ̃b)

u(θ̃b)

(
−
∫ θb̃

θb

u(θ)dF (θ) +

∫ θ̃b̃

θ̃b

u(θ)dF (θ)

)
≤ 0

This proves the claim.
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