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Motivation

▶ In the last twenty years we saw large economic downturns, such as the Great
Recession and the Covid-19 pandemic, leading to
▶ declines in labor income
▶ declines in asset prices

▶ Exposure to shocks is heterogeneous across households
▶ We focus on age heterogeneity

▶ portfolio composition varies over the lifecycle
▶ exposure of labor income to business cycle fluctuations varies with age
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This paper

▶ Question: what are the intergenerational consequences of rare but large disasters?
▶ how do the economic mechanisms contribute?
▶ what is the impact of change in social security?

▶ Approach: we build and calibrate a life-cycle model with rare disasters, three
assets: houses, equity, bonds, and equilibrium prices

▶ Equilibrium models with many assets, borrowing, and large shocks are
computationally challenging
▶ we introduce two complementary innovations to deep learning based solution

methods

▶ Finding:
▶ young and very old households suffer the most

▶ young: largest decline in labor income and borrowing constraint
▶ very old: decline in asset prices

▶ old households, shortly before retirement, suffer the least
▶ more stable income
▶ long in risk free assets
▶ still live long
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Literature

▶ Intergenerational consequences of the great recession:
Glover et al. (2020), Hur (2018)

→ study a general equilibrium model (relative to Hur (2018))
→ distinguish bonds, housing and equity (relative to Glover et al. (2020), Hur (2018))
→ have assets of different liquidity (relative to Glover et al. (2020))
→ model borrowing constraints (relative to Glover et al. (2020))

▶ Rare disasters:
Rietz (1988), Barro (2006), Barro and Ursúa (2008), Gourio (2012), Nakamura
et al. (2013)

→ we study the distributional consequences of rare disasters (relative to representative
agent studies)

▶ Deep learning based solution methods:
Azinovic et al. (2022); Maliar et al. (2021); Kase et al. (2023); Gu et al. (2023); Kahou
et al. (2021); Han et al. (2022); Valaitis and Villa (2024); Fernández-Villaverde et al.
(2023); Barnett et al. (2023); Gopalakrishna et al. (2024)

→ market clearing neural network architectures
→ step-wise solution procedure for model with multiple assets
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Model
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Model: Technology
Following Gourio (2012)

▶ Representative firm

Yt = Kα
t (ztL)

1−α

▶ Two regimes: normal and disaster.

▶ Productivity

log(zt) = log(zpt )︸ ︷︷ ︸
permanent

+ log(z rt )︸ ︷︷ ︸
transitory

log(zpt ) = log(zpt−1) + µ+ ϵt + θt︸︷︷︸
permanent

log(z rt ) = ρr log(z rt−1) + ϕt︸︷︷︸
transitory

−θt

▶ Shocks to capital depreciation: ξt := µ+ ϵt + θt

▶ Amount of capital after production: Kt(1− δk)eξt

▶ Probability of disaster in the next period:

▶ during disaster: 1− pexit

▶ during normal times: log(pt) = ρp log(pt−1) + (1− ρp) log(p̄) + ϵpt
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Model: Demographics and labor income

▶ Life-cycle model with H = 18 cohort, one period corresponds to 4 years

▶ One representative agent per cohort, age-group indexed by h ∈ {1, . . . ,H}
▶ Age-dependent household size eh, survival probability Γh, mass distribution µh

▶ Efficient labor units lht with age-dependent exposure to aggregate fluctuations ζh

log(lht ) = log(lh) + ζh log

(
Yt

Yt−1

)

︸ ︷︷ ︸
heterogeneous exposure

+ normalizationt︸ ︷︷ ︸
such that Lt=1

▶ Retirees receive defined benefit pay-as-you-go social security sht normalization

▶ Time separable preferences over consumption and housing following Huo and
Ŕıos-Rull (2016) preferences , warm-glow bequest utility
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Model: Asset markets
Households can invest in three assets
▶ Bonds:

▶ price: pbt
▶ risk free payout of one
▶ liquid
▶ can be sold short, subject to posting housing as collateral more details

▶ Equity:
▶ modeled as leveraged capital
▶ price: pet = qt − λpbt
▶ risky payout: (1− δK )eξt+1qt+1 + rKt+1 + πK

t+1 − λ
▶ illiquid: subject to quadratic adjustment costs
▶ no short-selling

▶ Housing:
▶ price: pHt
▶ risky payout: (1− δH)pHt+1 + πH

t+1
▶ illiquid: subject to quadratic adjustment costs
▶ no short-selling

Capital and housing are produced by intermediary firms following Bayer et al. (2019) more details
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Model: Household problem

▶ t: time, a: age, Γa: survival probability

▶ ka
t , k

end,a
t / ba

t , b
end,a
t / ha

t , h
end,a
t : beginning and end of period capital / bond / housing

V a
t = max{

k
end,a
t ,h

end,a
t ,b

end,a
t

} u(ceff,at ) + ψhousingv(heff,a
t )︸ ︷︷ ︸

util. from cons. and housing

+βE

(1− Γa)ψbequest motiveu(w eff,a
t )︸ ︷︷ ︸

bequest

+Γa V a+1
t+1︸ ︷︷ ︸

cont. val.



subject to:

cat = lat (1− τt)wt + sat︸ ︷︷ ︸
labor and ret. inc.

+ ba
t + ka

t ((1− δ)eξtqt + πK ,inter
t + rt − λ) + ha

t ((1− δH)pH
t + πH,inter

t )︸ ︷︷ ︸
payout from assets

−ptb
end,a
t − (qt − λpb

t )k
end,h
t − pH

t h
end,a
t︸ ︷︷ ︸

expenses on new assets

− ψh

zp,t
(hend,a

t − ha
t )

2 − ψk

zp,t
(kend,a

t − ka
t )

2︸ ︷︷ ︸
expenses on adjustment costs

0 ≤ bend,a
t + X̃κ,a

t X̃PH ,a
t hend,a

t , ∀a ∈ {1, . . . , hretirement − 1}

0 ≤ bend,a
t , ∀a ∈ {hretirement, . . . ,H}

0 ≤ kend,a
t
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Equilibrium
▶ State of the economy

xt := [xt , z
p
t , z

r
t , pt ,Yt−1,X

C
t−1,X

κ
t−1,X

pH

t−1,ht , kt ,bt ] ∈ {0, 1} × R8+3×H . (1)

▶ Functional rational expectations equilibrium
▶ bond policies bend(xt) ∈ RH

▶ capital policies kend(xt) ∈ RH

▶ housing policies hend(xt) ∈ RH

▶ bond price pb(xt)

such that
▶ households optimize (3× H Karush Kuhn Tucker conditions)
▶ markets clear (for the household bond market)

▶ Challenges
▶ high-dimensional state space ⇒ challenging for grid based methods
▶ non-linear policy functions ⇒ need a flexible function approximator
▶ large shocks ⇒ global method
▶ many continuous shocks, many endogenous aggregate state variables and rich asset

distribution ⇒ Krusell and Smith (1998) very challenging
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Numerical method
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Starting point for the method

▶ Deep learning based solution methods: Azinovic et al. (2022) (DEQN), Kahou
et al. (2021); Maliar et al. (2021); Kase et al. (2023); Gu et al. (2023); Han et al.
(2022); Valaitis and Villa (2024); Fernández-Villaverde et al. (2023); Barnett
et al. (2023).
▶ deep neural networks as an approximator for equilibrium functions of the economy
▶ trained to minimize equilibrium conditions error on a simulated ergodic set

▶ DEQN can handle stochastic models with many state variables, however, two pain
points remain:
▶ portfolio choice
▶ market clearing

more details on DEQN
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Methodological contribution

▶ Two complementary innovations

1. market clearing layers
2. step-wise model transformations for portfolio choice and asset prices

▶ Market clearing layers: neural network predictions are consistent with market
clearing by design

▶ Step-wise model tranformations: robustly solve models with multiple assets

more details on MCL and step-wise algorithm
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Accuracy of the solution to the benchmark model
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Results
Calibration
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Aggregate consequences of an average rare disaster
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Intergenerational consequences of a rare disaster
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Intergenerational consequences of a rare disaster

We compute consumption equivalent compensating differentials.
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Experiment: equal exposure of labor income
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Experiment: constant social security tax
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Experiment: no borrowing constraints
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Experiment: 25% lower social security payments
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Conclusion
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Conclusion

▶ We analyze a quantitative life-cycle model with disaster risk, housing, equity and
bonds in general equilibrium

▶ Our results show that disasters hit young and very old households hardest.
Relative winners are households shortly before retirement.

▶ To solve our model, we develop a deep learning solution method tailored for
solving large stochastic models with portfolio choice

▶ Two key innovations
▶ market clearing layers, an economics-inspired neutral network architecture
▶ step-wise model transformation procedure to guide network training with many assets
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Thank you!
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Appendices



Details on production of housing and capital

▶ Households accumulate capital and housing

▶ Following Bayer et al. (2019), we model two intermediaries, one for housing and
one for capital

▶ Transform the consumption good into capital or housing subject to quadratic
adjustment costs

▶ Equilibrium price for capital qt , equilibrium supply Kt+1, supply elasticity
parameter ξK ,adj

▶ Equilibrium price for housing pHt , equilibrium supply Ht+1, supply elasticity
parameter ξH,adj

more details back



Details on the intermediaries

▶ Intermediaries can transform investment IKt into capital ∆Kt = Kt+1 −Kt and investment
IHt housing ∆Ht = Ht+1 − Ht subject to adjustment costs

∆Kt

Kt
=

IKt
Kt
− ξK ,adj

2

(
∆Kt

Kt

)2

,
∆Ht

Ht
=

IHt
Ht
− ξH,adj

2

(
∆Ht

Ht

)2

▶ maximize profits

ΠK ,inter
t = qt∆Kt − IKt , ΠH, inter

t = pHt ∆Ht − IHt

▶ in equilibrium prices are given by

qt = 1 + ξK ,adj∆Kt

Kt
, pHt = 1 + ξH,adj∆Ht

Ht

back



Details on preferences I

▶ Time separable expected utility preferences. Instantaneous utility

u(ceff,at ) + ψhousingv(heff,at ) + β (1− Γa)︸ ︷︷ ︸
prob. to die

ψbequestu(w eff,a
t )

over effective consumption ceff,at , housing heff,at , and bequeathing wealth w eff,a
t

▶ Effective values are normalized by household size and an exponential moving
average of aggregate consumption

▶ CRRA utility from consumption and bequests

▶ Utility from housing v(·) follows Huo and Ŕıos-Rull (2016) and is a combination
of two CRRA utility functions, such that the marginal utility from housing
decreases faster for heff,at > hcut

▶ Inheritance: bequests are inherited by the age-group 30 years younger

more details back



Details on preferences II

▶ preferences over effective consumption, housing, and bequests

ceff,at :=
cat

eaXC
t−1

, heff,a
t :=

ha
t

eaXC
t−1

.

▶ the economy is growing, XC
t is an aggregate consumption habit: XC

t = ρXCXC
t−1 + (1− ρXC )Ct .

▶ time separable expected utility, utility from consumption u(ceff,ht ), CRRA

▶ time separable expected utility, utility from housing following Huo and Ŕıos-Rull (2016)

v(heff,a
t ) := w1(h

eff,a
t )v 1(heff,a

t ) +
(
1− w1(h

eff,a
t )

)
v 2(heff,a

t )

w1(h
eff,a
t ) := smooth step function from 0 to 1, = 0.5 at heff,a

t = hcut

marginal utility from housing decreases faster for v 2 than for v 1

⇒ marginal utility from housing decreases faster for heff,a
t > hcut
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Model: Collateral requirement

▶ Housing can serve as collateral to short-sell the bond

▶ Simplest form with LTV requirement κt ∈ {κnormal, κdisaster}:

bend,jt + κtP
H
t hend,jt ≥ 0,

▶ But most mortgages have long duration, hence roll-over risk is limited

→ apply collateral requirement bend,jt + κtP
H
t hend,jt ≥ 0 to the share of newly purchased

houses
→ apply the collateral constraint with an exponential moving average the house price

XPH

t and the LTV ratio Xκ
t : b

end,j
t + Xκ

t X
PH

t hend,jt ≥ 0 on previously purchased
houses

more details back



Details on the collateral requirement
▶ housing can serve as collateral to borrow in the bond

▶ simplest form with LTV requirement κt ∈ {κnormal, κdisaster}:

bend,j
t + κtP

H
t h

end,j
t ≥ 0,

▶ but most mortgages have long duration, hence roll-over risk is limited

▶ we want to apply this constraint only on new housing and new debt, hence

bend,j
t + X̃κ,j

t X̃PH ,j
t hend,j

t ≥ 0,

where

wnew, j
t := max

{
0,

hend,j
t − hj

t

hend,j
t

}
X̃κ,j

t := wnew, j
t κt + (1− wnew, j

t )Xκ
t

X̃ pH ,j
t := wnew, j

t pH
t + (1− wnew, j

t )X pH

t

Xκ
t = ρX

κ

Xκ
t−1 + (1− ρX

κ

)κt

X pH

t = ρX
pH

X pH

t−1 + (1− ρX
pH

)pH
t

back



Calibration Results



Lifecycle
based on the SCF (2007)
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Exposure to aggregate fluctuations
Based on real earnings data by age and income percentile, provided by Guvenen et al.
(2014). Specify

∆lh,q,t = αh,q + βh,q∆Yt + ϵh,q,t .
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Exogenously chosen

Parameter Value Meaning

Preferences

σC 6 risk aversion consumption
σH 6 risk aversion housing

ρX
PH 0.8 pers. of the exp. moving average for the house price relevant in the LTV constraint (half life time of roughly 12 years)

Technology and policy

α 0.3 capital share in production
δK 0.344 depreciation of capital (10% yearly)
δH 0.252 maintenance costs for housing (7% yearly)
κnormal 0.5 LTV ratio in normal times
κdisaster 0.4 LTV ratio in disasters
λfirm 0.5 leverage of capital
ρXC 0.95 pers. of the aggregate consumption habit (half life time of roughly 50 years)
ρX

κ
0.8 pers. of the exp. moving average for the LTV requirement (half life time of roughly 12 years)

Shocks

µ 0.08 trend growth (as in Gourio (2012))
σϵ 0.04 std. dev. of growth shocks during all times (as in Gourio (2012))
pexit

2
3 prob. to remain in the disaster state (estimated by Nakamura et al. (2013))

ρp 0.185 persistence of the disaster probability during normal times (match average prob. estimated by Nakamura et al. (2013))
σp 2.75 std. dev. of shocks to the disaster probability during normal times (match average prob. estimated by Nakamura et al. (2013))
p̄ 0.025 probability of disaster in the absence of disaster probability shocks (match average prob. estimated by Nakamura et al. (2013))
µθ -0.10 mean permanent shock during dis. (estimated by Nakamura et al. (2013))
σθ 0.06 std. dev. of disaster-specific permanent shocks
σϕ 0.08 std dev. of disaster-specific transitory shocks



Calibrated parameters and moments

Parameter Value Meaning Associated model moments

Preferences

β 1.07 patience wealth to income ratio
ψhousing 0.35 preference for housing housing share in networth
ψbequest 10 bequest motive share of net-worth held by old households
heff, cut 1 start of quicker utility decrease life-cycle profile of home ownership

Shocks

µϕ -0.40 mean of transitory shock during disasters impact response of agg. cons. to an average disaster shock
ρz 0.35 persistence of the transitory shock response of agg. cons. in the second subsequent disaster period

Technology and policy

Rss 2.6 level of social security income of old relative to middle aged households
ψk 0.10 hh. level adjustment costs on equity none, chosen as 2

3 × ψh

ψh 0.15 hh. level adjustment costs on housing 0.5% of adjusted value on average
ξK ,adj 8 agg. adjustment costs on capital rel. volatility of aggregate consumption growth
ξH,adj 12 agg. adjustment costs on housing none, chosen as 3

2 × ξK ,adj
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Figure: Model implied impulse response of aggregate consumption (solid blue line) and impulse
response estimated by Nakamura et al. (2013). The impulse response corresponds to a disaster
realizing at t = 1 and lasting for two periods, corresponding to 8 calendar years.



Wealth Distribution

net-worth to inc. ratio housing share equity share bond share

Model (normal times) 1.78 67% 33% 0%
Data (2007) 1.77 66% 31% 3%
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Illustrative Model Back



Illustrative OLG model with capital and bond
▶ Representative firm produces with

F (zt ,Kt , L) = ztK
α
t L1−α

wt = αztK
α−1
t L1−α

rt = zt(1− α)Kαt Lα

▶ Uncertainty in TFP zt , and depreciation of
capital δt

log(zt+1) = ρz log(zt) + σzϵt

ϵt ∼ N(0, 1)

δt = δ
2

1 + z

▶ Assets
▶ one period bond with price pt in aggregate

supply B
▶ risky capital Kt
▶ borrowing constraints on both assets

bht ≥ 0

kh
t ≥ 0

▶ Households
▶ H = 32 age-groups, indexed with

h ∈ H := {1, . . . , 32}
▶ supply labor units lht inelastically
▶ adjustment costs on capital

∆h
k,t := kh+1

t+1 − kh
t

adj. costs = ψ
(
∆h

k,t

)2

▶ budget constraint

cht = lhwt + bh−1
t−1 + kh−1

t−1 (1− δt + rt)

− pbt b
h
t + kh

t − ψ
(
∆h

k,t

)2

▶ maximize

E

[
H∑
i=h

βi−hu(ch+i
t+i )

]

u(c) :=
c1−γ − 1

1− γ



Equilibrium conditions
▶ Market clearing:

Kt :=
∑

h∈H

kh
t

B =
∑

h∈H

bht ⇔ ϵBt := B −
∑

h∈H

bht = 0

▶ Firms optimize:

wt := αztK
α−1
t L1−α

rt := zt(1− α)Kα
t L

α

▶ Households optimize:
▶ H sets of Karush Kuhn Tucker conditions for bond
⇒ single equation using the Fisher-Burmeister equation
⇒ H errors ϵk,it

▶ H sets of Karush Kuhn Tucker conditions for capital
⇒ single equation using the Fisher-Burmeister equation
⇒ H errors ϵh,it

details



Approximation with standard DEQN
▶ State of the economy

xt = [ zt︸︷︷︸
ex. shock

, k1t , . . . , k
32
t︸ ︷︷ ︸

dist. of cap.

, b1t , . . . , b
32
t︸ ︷︷ ︸

dist. of bonds

]

▶ Equilibrium policies

f(xt) = [k1t+1, . . . , k
32
t+1︸ ︷︷ ︸

capital policy

, b1t+1, . . . , b
32
t+1︸ ︷︷ ︸

bond policy

, pbt︸︷︷︸
bond price

]

▶ Neural network approximates

Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1︸ ︷︷ ︸

capital policy

, b̂1t+1, . . . , b̂
32
t+1︸ ︷︷ ︸

bond policy

, p̂bt︸︷︷︸
bond price

] ≈ f(xt)

▶ Loss function

ℓρ(xt) := whh,k︸ ︷︷ ︸
weight

(
H−1∑

h=1

(
ϵk,ht

)2
)

︸ ︷︷ ︸
opt. cond. cap.

+whh,b︸ ︷︷ ︸
weight

(
H−1∑

h=1

(
ϵb,ht

)2
)

︸ ︷︷ ︸
opt. cond. bond

+wmc,B︸ ︷︷ ︸
weight

(
ϵBt

)2

︸ ︷︷ ︸
market clearing



Innovation 1: Market clearing layers
▶ Neural network first predicts

N pre
ρ (xt) = [k̂1

t+1, . . . , k̂
32
t+1, b̃

1
t+1, . . . , b̃

32
t+1, p̂

b
t ]

▶ Apply transformation m(. . . , ·)

[b̂1
t+1, . . . , b̂

32
t+1] = m

(
N pre

ρ (xt),B
)
such that B =

32∑
h=1

b̂h
t+1

▶ Put together

Nρ(xt) := [k̂1
t+1, . . . , k̂

32
t+1, b̂

1
t+1, . . . , b̂

32
t+1, p̂

b
t ]

▶ Loss function now

ℓρ(xt) := whh,k︸ ︷︷ ︸
weight

(
H−1∑
h=1

(
ϵk,ht

)2)
︸ ︷︷ ︸

opt. cond. cap.

+whh,b︸ ︷︷ ︸
weight

(
H−1∑
h=1

(
ϵb,ht

)2)
︸ ︷︷ ︸

opt. cond. bond

+

�
���

���*= 0

wmc,B︸ ︷︷ ︸
weight

(
ϵBt

)2
︸ ︷︷ ︸

market clearing

1. no need to learn economics we already know ex-ante
2. remaining loss easier to interpret
3. states simulated from the policy are always consistent with market clearing details

4. see Gopalakrishna et al. (2024) on how to ensure market clearing in continuous time
models
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Innovation 2: Stabilizing step-wise model
transformations

▶ Single asset models are easy

▶ Many asset models are hard
▶ Why?

▶ portfolio choice only pinned down at low errors in equilibrium conditions
▶ but how do we get there?

▶ Step-wise model transformations
1. N − 1 asset models are nested in N asset models
2. start with single asset model

N 1
ρ(xt) = [k̂1

t+1, . . . , k̂
32
t+1, 0×b̂1t+1, . . . , 0×b̂32t+1, p̂

b
t ],B

1 = 0

3. solve the model
4. train the neural network to predict the bond price (supervised, from zero liquidity

limit)
5. slowly introduce the second asset (such that the error remains low)
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Application to our illustrative model



Step 1: Solve single asset model

▶ Borrowing constraint b = 0, net-supply B = 0

▶ Neural network predicts

N pre
ρ (xt) = [k̂1t+1, . . . , k̂

32
t+1, 0×b̃1t+1, . . . , 0×b̃32t+1, p̂

b
t ]

⇒ Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, 0, . . . , 0, p̂

b
t ]

▶ Loss function

ℓρ(xt) := 1×
(

H−1∑

h=1

(
ϵk,ht

)2
)

︸ ︷︷ ︸
opt. cond. cap.

+0×
(

H−1∑

h=1

(
ϵb,ht

)2
)

︸ ︷︷ ︸
opt. cond. bond︸ ︷︷ ︸

=0
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Step 2: Pre-train bond price in the capital only model
▶ Keep borrowing constraint b = 0, net-supply B = 0, and neural network masks

Nρ(xt) = [k̂1
t+1, . . . , k̂

32
t+1, 0, . . . , 0, p̂

b
t ]

▶ In equilibrium we know that

pb
t ≥

βE
[
u′(ch+1

t+1 )
]

u′(cht )

with equality for unconstrained agents.

▶ With market clearing policies, we have a closed form expression for the bond price and can define
pre-train price and error

pb,pre-train
t := max

h∈H

{
βE
[
u′(ch+1

t+1 )
]

u′(cht )

}
ϵpre-traint := pb,pre-train

t − p̂b
t

▶ Loss function

ℓρ(xt) := 1×

(
H−1∑
h=1

(
ϵk,ht

)2)
︸ ︷︷ ︸

opt. cond. cap.

+0×

(
H−1∑
h=1

(
ϵb,ht

)2)
︸ ︷︷ ︸

opt. cond. bond︸ ︷︷ ︸
=0

+1×
(
ϵpre-traint

)2
︸ ︷︷ ︸

price pre-train error
train supervised
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Step 3: Slowly increase bond supply

▶ Borrowing constraint b = 0, increase net-supply from B = 0.1 to B = 10

▶ Neural network predicts

N pre
ρ (xt) = [k̂1t+1, . . . , k̂

32
t+1, 0.01×b̃1t+1, . . . , 0.01×b̃32t+1︸ ︷︷ ︸

bond policies active

, p̂bt ]

⇒ Nρ(xt) = [k̂1t+1, . . . , k̂
32
t+1, b̂

1
t+1, . . . , b̂

32
t+1︸ ︷︷ ︸

always add up the B

, p̂bt ]

▶ Loss function

ℓρ(xt) := 1×
(

H−1∑

h=1

(
ϵk,ht

)2
)

︸ ︷︷ ︸
opt. cond. cap.

+ 1×︸︷︷︸
bond equ. cond. active

(
H−1∑

h=1

(
ϵb,ht

)2
)

︸ ︷︷ ︸
opt. cond. bond
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Deep Equilibrium Nets



Violations of equilibrium conditions as loss function
Basic idea in Azinovic et al. (2022): write equilibrium conditions as

G(x, f) = 0 ∀x
G : equilibrium conditions: FOC’s, market clearing, Bellman equations, . . .

x : state of the economy

f : equilibrium functions.

Approximate f by neural network Nρ

Nρ(x)≈f(x)

Given network parameters ρ, we define a loss function

ℓρ :=
1

Npath length

∑

xi on sim. path

(G(xi ,Nρ))
2

If ℓρ ≈ 0, then Nρ(x) gives us a good approximation of f(x).
What are Neural Nets? Why use Neural Nets?



Training DEQNs

1. Simulate a sequence of states Di
train ← {xi1, xi2, . . . , xiT} from the policy encoded

by the network parameters ρi .

2. Evaluate the errors of the equilibrium conditions on the newly generated set Dtrain.

3. If the error statistics are not low enough:

3.1 update the parameters of the neural network with a gradient descent step (or a
variant):

ρi+1
k = ρik − αlearn

∂ℓDi
train

(ρi )

∂ρik
.

3.2 set new starting states for simulation: xi+1
0 = xiT .

3.3 increase i by one and go back to step 1.

back



Deep Neural Networks



What is a deep neural net?

Consider:

input := x→W 1
ρx+ b1ρ =: hidden 1

→ hidden 1→W 2
ρ (hidden 1) + b2ρ =: hidden 2

→ hidden 2→W 3
ρ (hidden 2) + b3ρ =: output

The parameters ρ of this procedure are the entries of the matrices (W 1
ρ , W

2
ρ , W

3
ρ )

and vectors (b1ρ, b
2
ρ, b

3
ρ).
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What is a deep neural net? (cont.)

So far we have a concatenation of affine maps and therefore an afffine map.

Next ingredient: activation functions ϕ1, ϕ2, ϕ3. Activation functions could be any
function, but popular are:
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What is a deep neural net? (cont.)

Now we get:

input := x→ ϕ1(W 1
ρx+ b1ρ) =: hidden 1

→ hidden 1→ ϕ2(W 2
ρ (hidden 1) + b2ρ) =: hidden 2

→ hidden 2→ ϕ3(W 3
ρ (hidden 2) + b3ρ) =: output

The neural net is then given by the choice of activation functions and the parameters ρ.
back



Why neural networks?

Approximation method
High-dimensional

input

Can resolve
local features
accurately

Irregularly
shaped
domain

Large amount
of data

Polynomials ✓ ✗ ✓ ✓

Splines ✗ ✓ ✗ ✓

Adaptive (sparse) grids ✓ ✓ ✗ ✓

Gaussian processes ✓ ✓ ✓ ✗

Deep neural networks ✓ ✓ ✓ ✓

Table: Taken from Azinovic et al. (2022).

back



Innovation 1: Details on the market clearing
transformation function

▶ Simple market clearing layer: subtract excess demand EDt from initial predictions

EDt :=
∑
h∈H

b̃h
t+1 − B

b̂h
t+1 := b̃h

t+1 −
1

H
EDt

▶ Why this adjustment?

→ we try to minimize the modification to the initial predictions {b̃h
t+1}h∈H.

▶ Final predictions {b̂h
t+1}h∈H solve

argmin
{xht+1}h∈H

∑
h∈H

(
xh
t+1 − b̃h

t+1

)2
subject to∑
h∈H

xh
t+1 = B

▶ In the paper: enforcing market clearing & borrowing constraints using implicit layer

back
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Parameters
Parameters H β γ ψ ρ σ α

Values 32 0.912 4 0.1 0.693 0.052 0.333

Meaning num. age groups patience RRA adj. costs pers. tfp std. innov. tfp cap. share
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Households’ optimality conditions

1 =
βE

[
u′(ch+1

t+1 )(1−δt+1+rt+1+2ψk∆h+1
k,t+1

]
+µh

t

(1+2ψk∆h
k,t

)u′(cht )

kh
t ≥ 0
µht ≥ 0

kh
t µ

h
t = 0

 ⇔ ϵk,ht := ψFB

u′−1
(
βE

[
u′(ch+1

t+1 )
(1−δt+1+rt+1+2ψk∆h+1

k,t+1

(1+2ψk∆h
k,t

)

])
cht

− 1,
kh
t

cht



1 =
βE

[
u′(ch+1

t+1 )
]
+λh

t

pbt u
′(cht )

bht − b ≥ 0
λht ≥ 0

(bht − bh)λht = 0

 ⇔ ϵb,ht := ψFB

u′−1
(
βE

[
1
pbt

u′(ch+1
t+1 )

])
cht

− 1,
bht − b

cht


where

ψFB(a, b) := a+ b −
√

a2 + b2
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Pure depreciation disasters



Depreciation disaster: aggregate response

▶ So far we considered TFP disaster in the spirit of Barro (2006)

▶ Now we consider a disaster, in which the depreciation of capital increases by 50%
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Depreciation disaster: intergenerational impact

20 40 60 80
age-group

0.30

0.25

0.20

0.15

0.10

0.05

0.00

lo
g 

di
f.,

 d
is

as
te

r 
- n

or
m

al
, o

n 
im

pa
ct

consumption
income
networth

20 40 60 80
age-group

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

di
f.,

 d
is

as
te

r 
- n

or
m

al
, o

n 
im

pa
ct

consumption
income
networth, b. o. p.



Depreciation disaster: welfare
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Details on the normalization

We assume

lht =




lhss

(
Yt+1
Yt

)ζh
∑

h µhl
h
ss

(
Yt+1
Yt

)ζh for h < hretirement

0 for h ≥ hretirement,

where ζh captures the age-dependent exposure of labor income to aggregate
fluctuations.
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Details on the data by Guvenen et al. (2014)
▶ Guvenen et al. (2014) provide publicly available data on real earnings by age and

income percentile constructed from the U.S. Social Security Administration’s
Master Earnings file

▶ We look at annual real earnings growth between 1979 and 2010
▶ We look at age-groups 25, 35, 45, and 55
▶ We look at income percentiles 25, 50, and 75
▶ Data for real output per capita is obtained from the FRED database
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Inspecting the mechanism back
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