Automation and the Rise of Superstar Firms

Hamid Firooz¹ Zheng Liu² Yajie Wang³

¹University of Rochester ²San Francisco Fed ³University of Missouri

August 29, 2024 EEA

Firooz, Liu, Wang

Automation and the Rise of Superstar Firms

August 29, 2024 EEA

≡ •ી લ ભ 1 / 28

The rise of superstar firms

Source: Autor et al. (2020)

• Sales concentration rose, employment concentration flat

Firooz, Liu, Wang

August 29, 2024 EEA 2 / 28

Automation also rising

Robot density and robot price. Source: IFR and BLS

• Robot density rising while robot prices declining

Firooz, Liu, Wang

-

Automation highly skewed toward large firms

Share of firms using robotics, 2016-2018

Source: 2019 Annual Business Survey, Acemoglu, et al (2023)

- 2% of firms (economy-wide) adopted robots in 2016-18; those firms are large, employing 15.7% of all workers (2019 ABS)
- 8.7% of manufacturing firms adopted robots and those firms employed 45.1% of manufacturing workers

US not a leader in robot adoption

Robot Density by Country

Source: International Federation of Robotics, Bureau of Labor Statistics & OECD via Haver Analytics

August 29, 2024 EEA

- (日)

≡ •ી લ ભ 5 / 28

How is automation related to industry concentration?

- Industry evidence suggests automation has sizable effects on sales concentration, but smaller effects on employment concentration
- GE model with heterogeneous firms, automation, and variable markup \Rightarrow Rise in automation explains
 - 49% of rise in manufacturing sales concentration
 - $\bullet~25\%$ of divergence between sales and employment concentrations
- Calibrated model suggests that modest subsidy for automation improves welfare

- Fixed costs of operating automation technology \Rightarrow large, productive firms more likely to automate
 - Consistent with ABS evidence (Zolas et al., 2020; Acemoglu et al., 2022)
- Automation improves labor productivity, enabling large firms to become even larger
- Automation has smaller effects on employment share of top firms: labor-substituting technology

1 - nan

- Industry concentration: Autor et al. (2020), Furman and Orszag (2018), Akcigit and Ates (2019), Hsieh and Rossi-Hansberg (2019)
 - Importance of economy of scale: Hubmer and Restrepo (2022), Kwon et al. (2022), Aghion et al. (2019), Lashkari et al. (2022),
- Automation and labor market: Acemoglu and Restrepo (2018, 2020), Aghion et al. (2021), Leduc and Liu (2023)
- Automation and tax policy: Costinot and Werning (2022), Guerreiro et al. (2022), Beraja and Zorzi (2022)

ELE SQC

- Establish new evidence that automation contributes to rise of industry concentration
- Propose quantitative GE framework for studying the economic mechanism
- Use quantitative framework to evaluate macro and welfare effects of automation taxes/subsidies

- Industry concentration: sales (or employment) share of top 1% Compustat firms in 2-digit industries
- Robot density: operation stock of industrial robots per thousand manufacturing employees in 2-digit industries robot def.
 - Alternative measure: robots per million labor hours
 - Source: IFR, NBER-CES, EUKLEMS
- Sample: unbalanced panel of 13 industries, 2007-2018

summary statistics

1 - nan

Robot density corr. with sales concentration, not with employment concentration

	top 1% sl	nare of sales	top 1% sł	top 1% share of emp		
	(1)	(2)	(3)	(4)		
In(robot/thousand emp)	0.021**		0.002			
	(0.007)		(0.015)			
In(robot/million hours)		0.021**	· · · ·	0.002		
		(0.007)		(0.015)		
Observations	117	117	104	104		
Industry FE	\checkmark	\checkmark	\checkmark	\checkmark		
Year FÉ	\checkmark	\checkmark	\checkmark	\checkmark		

Note: Industry variables are weighed by sales shares in 2007. Standard errors clustered by industry. * p < 0.10, ** p < 0.05, *** p < 0.01.

Instrumental-variable (IV) approach

• Following Acemoglu and Restrepo (2020), use lagged robot density in Europe as IV for same-industry robot density in US

$$robot_{jt}^{EURO5} = rac{1}{5} \sum_{k \in EURO5} rac{robot \ \mathrm{stock}_{kjt}}{\mathrm{thousands \ of \ employees}_{kjt}}$$

- EURO5 countries: Denmark, Finland, France, Italy, and Sweden
- IV relevance: global advancement of automation technology and earlier robot adoptions in EURO5 than in US
- IV exclusion: lagged robot density in EURO5 does not have direct effects on US industry concentration except through advancement of automation technology

SIN NOR

	top 1% sł	nare of sales	top 1% sl	top 1% share of emp		
	(1)	(2)	(3)	(4)		
In(robot/thousand emp)	0.038**		0.012			
	(0.019)		(0.016)			
In(robot/million hours)	. ,	0.036*	. ,	0.014		
		(0.020)		(0.016)		
Observations	117	117	104	104		
Industry FE	\checkmark	\checkmark	\checkmark	\checkmark		
Year FÉ	\checkmark	\checkmark	\checkmark	\checkmark		
Anderson-Rubin <i>p</i> -value	0.000	0.001	0.474	0.401		

Note: Industry variables are weighed by sales shares in 2007. Standard errors clustered by industry. * p < 0.10, *** p < 0.05, *** p < 0.01.

- 1 std \uparrow robot density raises top 1% sales share by 10 pp (from 30% to 40%)
 - $\bullet\,$ Estimates significant at 5% level and robust to weak instruments
- Effects on top 1% employment share small and insignificant

= 900

Potential challenges for identification

- Unobserved shocks common to EU and US markets could violate IV exclusion
 - EU robot adoptions uncorrelated with other major global trends, such as offshoring, declines of routine jobs, and capital deepening (Acemoglu and Restrepo, 2022)
- IV exclusion could also be violated if EU robot adoption raised US concentration by increasing global sales of US multinationals
 - Sales of U.S. affiliates in EU are small relative to US parents' total sales (e.g., 3.4% in 2020)
 - Results are robust to using domestic sales details

Oncentration might be rising before robot adoptions (pre-trends)

• Placebo IV regressions using lags of concentration as dependent variable \rightarrow no effects from robot adoptions details

EL SQA

• Final goods a Kimball aggregate of differentiated intermediate goods

$$\int_0^1 \Lambda(q(j)) dj = 1$$

- Monopolistic competition in intermediate goods market and perfect competition in final goods market
- With Klenow-Willis (2016) specification, demand elasticity and markup given by

$$\sigma(q(j)) = \sigma q(j)^{-\frac{\varepsilon}{\sigma}} \quad \mu(j) = \frac{\sigma(q(j))}{\sigma(q(j)) - 1}$$

• Super-elasticity $\varepsilon \neq 0 \rightarrow$ firm's markup depends on its relative output

Intermediate Goods Producers (Firms)

- Face monopolistic competition in product markets and perfect competition in input markets
- Production function

$$y = \phi \left[\alpha_{a} \mathcal{A}^{\prime \frac{\eta-1}{\eta}} + (1 - \alpha_{a}) \mathcal{N}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

where $\phi =$ persistent idiosyncratic productivity; A' = robot input; and N = labor input.

A firm chooses from one of the two technologies
Automation technology: incurs i.i.d., per-period fixed cost s ~ F(s)

2 Labor-only technology
$$(A' = 0)$$
: no fixed costs

• Bellman equation for firm

$$V(\phi, A; s) = \max_{p, y, N, I_a \ge (\delta_a - 1)A} \left[py - WN - Q_a I_a - s\phi \mathbb{I}\{A' > 0\} \right]$$

+ $\beta E_{\phi'|\phi} \int_{s'} V(\phi', A'; s') dF(s') ,$

subject to

$$A' = (1 - \delta_a)A + I_a$$

taking as given competitive wages W and exogenous robot price Q_a

= 900

• Firm's Bellman equation can be written as

$$\mathcal{W}(\phi, A; s) = Q_{a}(1-\delta_{a})A + \max\{\mathcal{V}^{a}(\phi) - s\phi, \mathcal{V}^{n}(\phi)\},$$

where

$$V^{a}(\phi) = \max_{p,y,N,A'>0} \left[py - WN - Q_{a}A' + \beta E_{\phi'|\phi} \int_{s'} V(\phi',A';s')dF(s') \right],$$
$$V^{n}(\phi) = \max_{p,y,N} \left[py - WN + \beta E_{\phi'|\phi} \int_{s'} V(\phi',0;s')dF(s') \right].$$

• Firm automates iff fixed cost below the threshold

$$s^*(\phi)\equiv rac{V^a(\phi)-V^n(\phi)}{\phi}$$

Firooz, Liu, Wang

August 29, 2024 EEA 18 / 28

Automation Decision

Productivity (φ)

- Automation incurs fixed cost but reduces marginal cost
- Firm automates iff fixed cost is below threshold $s^*(\phi)$
- Economy-of-scale effect: At given fixed cost s, larger firms (with higher ϕ) more likely to automate
- Declines in Q_a shifts indifference line upward:
 - More firms choose to automate (extensive margin): reducing concentration
 - Existing automating firms use more robots (intensive margin): increasing concentration

Stationary Equilibrium

- Rep household chooses C and N to maximize utility
- Final goods market clears

$$C + Q_a I_a + \int_{\phi} \int_0^{s^*(\phi)} s\phi \ dF(s) \ dG(\phi) = Y$$

Labor market clears

$${\sf N}=\int_{\phi}{\sf N}(\phi){\sf d}{\sf G}(\phi)$$

Robot market clears

$$A' = \int_{\phi} A'(\phi) F(s^*(\phi)) dG(\phi)$$

• In stationary equilibrium, A' = A

Calibration

- Calibrate 4 non-standard parameters:
 - **1** Q_a : relative price of robots
 - 2 σ_a : std of fixed cost of operating automation tech
 - 3 α_a : robot input weight
 - η : sub elasticity b/n robots and workers
- Match 4 moments in data:
 - Share of automating firms in manufacturing: 8.7% (2019 ABS)
 - Employment share of automating firms in manufacturing: 45.1% (ABS)
 - Solution of the second seco
 - Cumulative increase in A/N from 2002 to 2016 of 300% (IFR and NBER-CES)
- Calibrated values: $Q_a = 49.39$, $\sigma_a = 3.38$, $\alpha_a = 0.37$, and $\eta = 2.03$

ELE SQC

Parameter	Notation	Value	Sources/Matched Moments				
Panel A: Assigned Parameters							
Discount factor Inverse Frisch elasticity Utility weight on leisure Robot depreciation rate Productivity persistence Productivity standard dev. Demand elasticity parameter Super-elasticity	$\beta \\ \xi \\ \chi \\ \delta_a \\ \gamma \\ \sigma_\phi \\ \sigma \\ \epsilon / \sigma$	$\begin{array}{c} 0.99\\ 0.5\\ 1\\ 0.02\\ 0.95\\ 0.1\\ 10.86\\ 0.16\end{array}$	4% annual interest rate Rogerson and Wallenius (2009) Normalization 8% annual depreciation rate Khan and Thomas (2008) Bloom et al. (2018) Edmond et al. (2021) Edmond et al. (2021)				
Panel B: Parameters from Moment Matching							
Relative price of robots SD of log automation fixed costs Elasticity of substitution Robot input weight	$egin{array}{c} {\cal Q}_{a} & \ \sigma_{a} & \ \eta & \ lpha_{a} & \ lpha_{a} & \ \end{array}$	49.39 3.38 2.03 0.37	Fraction of automating firms Employment share of automating firms Growth rate of robot density Robot density				

August 29, 2024 EEA

Macro effects of changes in robot price

24 / 28

ъ.

Automation and Industry Concentration

- Increased automation explains about 49% of the observed increase in sales concentration (1.48 pp out of 3 pp)
- Automation also explains about 25% of observed divergence between sales and employment concentration (0.46 pp out of 1.8 pp)
- Non-monotonic effect of automation on concentration
 - At high Q_a , only top firms automate ightarrow more automation raises concentration
 - At sufficiently low Q_a , automation is widespread \rightarrow more automation reduces concentration
- Automation differs from general-purpose equipment

• Source of inefficiency: market power

• Trade-off for taxing automation: markups vs. productivity

• Is taxing robots a good idea?

Effects of taxing robots

• Optimal subsidy for robots of 1.4%: raises welfare by 4.07% of CE relative to benchmark

Firooz, Liu, Wang

August 29, 2024 EEA 27 / 28

- Empirical evidence: automation raises manufacturing sales concentration, but not employment concentration
- A quantitative GE framework of automation helps explain these facts
 - Key channels: Economy-of-scale and labor-substituting technology
 - Rise of automation explains 50% of the observed rise in sales concentration and 25% of the gap b/w sales and employment concentration
 - Calibrated model implies a modest subsidy for robots improves welfare
 - Policy faces tradeoff between productivity and markup

28 / 28

Additional Slides

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

Industrial robots are automatically controlled, reprogrammable, and multipurpose manipulators with several axes.

	#obs	mean	min	p25	p50	p75	max	s.d.
robots/thousand employees	156	30.42	0.00	0.24	2.26	10.90	419.92	87.96
robots/million nours	120	19.58	0.00	0.18	1.72	0.36	243.54	52.42 0.13
top 1% share of employment	106	0.27	0.11	0.21	0.28	0.32	0.46	0.08

Source: Authors' calculations using IFR, Compustat, and NBER-CES.

- Large variations of robot density
- Sales concentration is higher and more variable than employment concentration

back

I DOC

	top 1% share of domestic sales						
	0	LS	IV				
	(1)	(2)	(3)	(4)			
In(robot/thousand emp)	0.021**		0.038**				
	(0.007)		(0.020)				
In(robot/million hours)		0.021**		0.037*			
		(0.007)		(0.020)			
Observations	117	117	117	117			
Industry FE	\checkmark	\checkmark	\checkmark	\checkmark			
Year FE	\checkmark	\checkmark	\checkmark	\checkmark			
Anderson-Rubin <i>p</i> -value			0.000	0.000			

- (日)

= 990

	five-year lagged top 1% share							
	sales		domest	ic sales	emplo	employment		
	(1)	(2)	(3)	(4)	(5)	(6)		
		Panel A: OLS regressions						
In(robot/thousand emp)	0.006 (0.011)		0.007 (0.010)		0.002 (0.008)			
ln(robot/million hours)	()	0.005 (0.011)	· · · ·	0.006 (0.010)	~ ,	0.002 (0.008)		
		Panel B: IV regressions						
In(robot/thousand emp)	-0.024 (0.041)		-0.016 (0.034)		-0.010 (0.002)			
In(robot/million hours)	()	-0.025 (0.045)	~ /	-0.017 (0.037)	~ ,	-0.013 (0.021)		
Observations Industry, Year FE	122 √	122 √	122 √	122 √	102 √	102 √		

back