Credible Numbers: A Procedure for Reporting Statistical Precision in Parameter Estimates

Nicolas Astier and Frank A. Wolak

EEA-ESEM Annual Congress

27 August 2024

A simple example

Standard problem:

- Consider an econometrician who want to recover the "impact" of an explanatory variable X₁ on an outcome variable y, while observing other variables X₂ and X₃.
- Assume the econometrician has retrieved a sample of T observations of $(y_t, X_{1t}, X_{2t}, X_{3t})$ (where t indexes observations).

A simple example

Standard problem:

- Consider an econometrician who want to recover the "impact" of an explanatory variable X₁ on an outcome variable y, while observing other variables X₂ and X₃.
- Assume the econometrician has retrieved a sample of T observations of $(y_t, X_{1t}, X_{2t}, X_{3t})$ (where t indexes observations).

Usually unknown information:

• The "true" relationship is:

$$y = 1 + 1.234X_1 + X_2 + X_3 + \epsilon$$

where $\boldsymbol{\epsilon}$ is a non-modelled error term.

• This sample has been generated by taking i.i.d. draws from the following distributions:

 $X_{1t} \sim \mathcal{N}(0,1)$, $X_{2t} \sim \mathcal{N}(0,5)$, $X_{3t} \sim \mathcal{N}(0,10)$, and $\epsilon_t \sim \mathcal{N}(0,5)$.

Significance 00000 Conclusion 00

Current practice

• The econometrician specifies a handful of models:

Significance

Conclusion 00

Current practice

• The econometrician specifies a handful of models:

• Results table for two different sample sizes:

	Model 1	Model 2	Model 3		Model 1	Model 2	Model 3
<i>X</i> ₁	1.174** (0.510)	1.176** (0.468)	1.104*** (0.250)	<i>X</i> ₁	1.237*** (0.004)	1.235*** (0.004)	1.234*** (0.002)
<i>X</i> ₂	. ,	0.864*** (0.196)	0.945*** (0.105)	<i>X</i> ₂	. ,	0.999*** (0.002)	1.000*** (0.001)
<i>X</i> ₃			1.074*** (0.069)	<i>X</i> ₃			1.000*** (0.001)
Constant	1.131** (0.459)	1.204*** (0.422)	1.118*** (0.225)	Constant	0.999*** (0.004)	0.999*** (0.004)	1.000*** (0.002)
Observations R ²	100 0.051	100 0.209	100 0.777	Observations R ²	1,000,000 0.071	1,000,000 0.303	1,000,000 0.768

$\mathsf{T}=100$

T = 1,000,000

Actual precision - Monte Carlo simulation

Distributions of the digits of the coefficient $\hat{\beta}_1$ across 1,000 draws of datasets (Model 3).

Econometrics
000000

Significance

Conclusion 00

A different approach?

	Model 1	Model 2	Model 3
<i>X</i> ₁	1.2	1.2	1.1
	(0.51)	(0.47)	(0.25)
X_2		0.9	0.9
		(0.20)	(0.10)
X ₃			1.07
			(0.069)
Constant	1.1	1.2	1.1
	(0.46)	(0.42)	(0.23)
Observations	100	100	100
R ²	0.051	0.209	0.777

	Model 1	Model 2	Model 3
$\overline{X_1}$	1.237	1.235	1.234
	(0.004)	(0.004)	(0.002)
X ₂		0.999	1.000
		(0.002)	(0.001)
X ₃			1.0000
			(0.001)
Constant	0.999	0.999	1.000
	(0.004)	(0.004)	(0.002)
Observations	1,000,000	1,000,000	1,000,000
R ²	0.071	0.303	0.768

T=100

T = 1,000,000

How can a researcher decide how many digits to report in coefficient estimates and standard error estimates?

How can a researcher decide how many digits to report in coefficient estimates and standard error estimates?

Would such a reporting rule be easy to implement?

How can a researcher decide how many digits to report in coefficient estimates and standard error estimates?

Would such a reporting rule be easy to implement?

Ooes current practice significantly depart from this reporting rule?

How can a researcher decide how many digits to report in coefficient estimates and standard error estimates?

 \Rightarrow We introduce a statistical concept of "significant digits" and propose to report estimates up to the first non-significant digit.

Would such a reporting rule be easy to implement?

Ooes current practice significantly depart from this reporting rule?

This paper

How can a researcher decide how many digits to report in coefficient estimates and standard error estimates?

 \Rightarrow We introduce a statistical concept of "significant digits" and propose to report estimates up to the first non-significant digit.

Would such a reporting rule be easy to implement?

 \Rightarrow Yes. It is for example embedded into the R package modelsummary.

Ooes current practice significantly depart from this reporting rule?

This paper

How can a researcher decide how many digits to report in coefficient estimates and standard error estimates?

 \Rightarrow We introduce a statistical concept of "significant digits" and propose to report estimates up to the first non-significant digit.

Would such a reporting rule be easy to implement?

 \Rightarrow Yes. It is for example embedded into the R package modelsummary.

Object of the digits printed in the AER between 2000 and 2022 are not significant.

Significance 00000 Conclusion 00

Outline

Proposed reporting rule

Framework

- Let $\hat{\theta}$ be a scalar estimated from observed data by a researcher (e.g. a coefficient estimate).
- Being a finite real number, $\hat{\theta}$ can be decomposed as a series of digits $\{\hat{d}_i\}_{i=-\infty...D}$:

$$\hat{ heta} \equiv \sum_{i=-\infty}^{D} \hat{d}_i 10^i$$

Framework

- Let $\hat{\theta}$ be a scalar estimated from observed data by a researcher (e.g. a coefficient estimate).
- Being a finite real number, $\hat{\theta}$ can be decomposed as a series of digits $\{\hat{d}_i\}_{i=-\infty...D}$:

$$\hat{ heta} \equiv \sum_{i=-\infty}^{D} \hat{d}_i 10^i$$

• In practice however, researchers only report a limited number of decimal digits. In other words, the "published" or "printed" value of $\hat{\theta}$, which we denote with $\hat{\theta}_{p}$, is:

$$\hat{\theta}_{p} = \sum_{i=i_{0}}^{D} \hat{d}_{i} 10^{i}$$

Framework

- Let $\hat{\theta}$ be a scalar estimated from observed data by a researcher (e.g. a coefficient estimate).
- Being a finite real number, $\hat{\theta}$ can be decomposed as a series of digits $\{\hat{d}_i\}_{i=-\infty...D}$:

$$\hat{ heta} \equiv \sum_{i=-\infty}^{D} \hat{d}_i 10^i$$

• In practice however, researchers only report a limited number of decimal digits. In other words, the "published" or "printed" value of $\hat{\theta}$, which we denote with $\hat{\theta}_{p}$, is:

$$\hat{\theta}_{p} = \sum_{i=i_{0}}^{D} \hat{d}_{i} 10^{i}$$

• Current practice: pick a default value for i_0 , usually -3.

Framework

- Let $\hat{\theta}$ be a scalar estimated from observed data by a researcher (e.g. a coefficient estimate).
- Being a finite real number, $\hat{\theta}$ can be decomposed as a series of digits $\{\hat{d}_i\}_{i=-\infty...D}$:

$$\hat{ heta} \equiv \sum_{i=-\infty}^{D} \hat{d}_i 10^i$$

 In practice however, researchers only report a limited number of decimal digits. In other words, the "published" or "printed" value of θ̂, which we denote with θ̂_ρ, is:

$$\hat{\theta}_{p} = \sum_{i=i_{0}}^{D} \hat{d}_{i} 10^{i}$$

- Current practice: pick a default value for i_0 , usually -3.
- **Our proposal:** choose *i*₀ endogenously to somehow reflect the level of precision of the estimate.

N. Astier (PSE & ENPC)

Significant digits - Concept

- We propose to build on the literature on "equivalence testing" (Wellek, 2010).
- The objective of an equivalence test is to compare the following hypotheses:

H: $\theta < a$ or $\theta > b$ versus *K*: $\theta \in]a, b[$ where θ is an unknown underlying parameter of a distribution from

which i.i.d. observations are sampled.

Significant digits - Concept

- We propose to build on the literature on "equivalence testing" (Wellek, 2010).
- The objective of an equivalence test is to compare the following hypotheses:

 $H: \ \theta \leq a \ \text{or} \ \theta \geq b \qquad \text{versus} \qquad K: \ \theta \in \]a, \ b[$ where θ is an unknown underlying parameter of a distribution from

which i.i.d. observations are sampled.

• Assume a given parameter estimate is:

 $\hat{\theta} = 1.234$

Significant digits - Concept

- We propose to build on the literature on "equivalence testing" (Wellek, 2010).
- The objective of an equivalence test is to compare the following hypotheses:

H: $\theta \leq a$ or $\theta \geq b$ versus *K*: $\theta \in]a, b[$ where θ is an unknown underlying parameter of a distribution from which i.i.d. observations are sampled.

• Assume a given parameter estimate is:

$$\hat{\theta} = 1.234$$

• To assess whether digit i = 0 is significant, we test: $H^{i=0}$: $|\theta - 1.234| > 1$ versus $K^{i=0}$: $\theta \in]0.234, 2.234[$

Significant digits - Concept

- We propose to build on the literature on "equivalence testing" (Wellek, 2010).
- The objective of an equivalence test is to compare the following hypotheses:

H: $\theta \leq a$ or $\theta \geq b$ versus *K*: $\theta \in]a, b[$ where θ is an unknown underlying parameter of a distribution from which i.i.d. observations are sampled.

• Assume a given parameter estimate is:

$$\hat{\theta} = 1.234$$

- To assess whether digit i = 0 is significant, we test: $H^{i=0}$: $|\theta - 1.234| > 1$ versus $K^{i=0}$: $\theta \in]0.234, 2.234[$
- To assess whether digit i = -1 is significant, we test: $H^{i=-1}$: $|\theta - 1.234| > 0.1$ versus $K^{i=-1}$: $\theta \in]1.134, 1.334[$

Significance 00000 Conclusion 00

Last significant digit

Definition (Last significant digit)

We define the rank $i^*(\alpha)$ of the "last significant digit" as the smallest value of *i* such that digit \hat{d}_i is significant at level α :

$$i^*(\alpha) \equiv \min\{i \mid \hat{d}_i \text{ is a significant digit at level } \alpha\}$$

Number of sizable digits

Significance

Conclusion 00

Equivalence testing

- Our definition of significant digits does not specify which equivalence test should be run.
- We propose to adopt the widely used "two one-sided test" (TOST).

Significance

Conclusion 00

Equivalence testing

- Our definition of significant digits does not specify which equivalence test should be run.
- We propose to adopt the widely used "two one-sided test" (TOST).
- This test rejects the null hypothesis Hⁱ₀ at the level α if, and only if, the two following standard one-sided tests reject their null hypothesis at the level α:

$$\begin{array}{ll} H_a^i: \ \theta = \hat{\theta} - 10^i & \text{versus} & K_a^i: \ \theta > \hat{\theta} - 10^i \ (\psi_{ia}) \\ & \text{and} \\ H_b^i: \ \theta = \hat{\theta} + 10^i & \text{versus} & K_b^i: \ \theta < \hat{\theta} + 10^i \ (\psi_{ib}) \end{array}$$

Application to standard OLS - Coefficient estimates

• Consider the standard normal linear conditional mean model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1}$$

where the conditional distribution of ϵ given the matrix X is a multivariate normal $T \times 1$ vector with mean zero and covariance matrix $\sigma^2 I_T$.

Application to standard OLS - Coefficient estimates

• Consider the standard normal linear conditional mean model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1}$$

where the conditional distribution of ϵ given the matrix X is a multivariate normal $T \times 1$ vector with mean zero and covariance matrix $\sigma^2 I_T$.

• The level α rank of the last significant digit for b_k is:

$$i^{*}(\alpha) = \lceil \frac{\ln(SE(b_{k})) + \ln(t_{1-\alpha}(T-K))}{\ln(10)} \rceil$$
(2)

where $\lceil x \rceil$ denotes the ceiling of *x*.

• More generally, a widely applicable asymptotic approximation for the size α rank of the last significant digit is:

$$i_{\infty}^{*}(\alpha) = \lceil \frac{\ln(SE(b_{k})) + \ln(Z_{1-\alpha})}{\ln(10)} \rceil$$
(3)

where Z_{1-lpha} , the 1-lpha percentile of a $\mathcal{N}(0,1)$ random variable.

Conclusion 00

• Let's go back to our simple example where the true relationship is:

$$y = 1 + 1.234X_1 + X_2 + X_3 + \epsilon$$

- Let's go back to our simple example where the true relationship is: $v = 1 + 1.234X_1 + X_2 + X_3 + \epsilon$
- We assume the researcher observes a sample of *T* = 60 observations of (*y_t*, *X*_{1t}, *X*_{2t}, *X*_{3t}) (where *t* indexes observations) that has been generated by taking i.i.d. draws from the following distributions:
 *X*_{1t} ~ *N*(0,1), *X*_{2t} ~ *N*(0,5), *X*_{3t} ~ *N*(0,10), and ε_t ~ *N*(0,5).

• Let's go back to our simple example where the true relationship is: 1 + 1 + 224X + X + X + x

$$y = 1 + 1.234\lambda_1 + \lambda_2 + \lambda_3 + \epsilon$$

- We assume the researcher observes a sample of *T* = 60 observations of (*y_t*, *X*_{1t}, *X*_{2t}, *X*_{3t}) (where *t* indexes observations) that has been generated by taking i.i.d. draws from the following distributions:
 *X*_{1t} ~ *N*(0,1), *X*_{2t} ~ *N*(0,5), *X*_{3t} ~ *N*(0,10), and ε_t ~ *N*(0,5).
- We assume the researcher estimates and reports three models:

Conclusion 00

Estimation results

Current approach to report estimation results:

		OLS results	
	Model 1	Model 2	Model 3
X1	0.923	1.018	0.947
	(0.678)	(0.623)	(0.366)
X2		0.899	1.005
		(0.260)	(0.153)
X3			1.010
			(0.097)
Constant	0.945	0.710	0.840
	(0.579)	(0.536)	(0.315)
Observations	60	60	60
R ²	0.031	0.198	0.728

Econometrics
000000

Significance 00000 Conclusion 00

Estimation results

Current approach to report estimation results:

Reporting significant digits only $(\alpha = 0.1)$:

		OLS results				OLS res
	Model 1	Model 2	Model 3		Model 1	Model
X1	0.923	1.018	0.947	X1	0	1
	(0.678)	(0.623)	(0.366)		(0.6)	(0.6)
X ₂		0.899	1.005	X_2		+0
		(0.260)	(0.153)			(0.2)
X ₃			1.010	X3		
			(0.097)	-		
Constant	0.945	0.710	0.840	Constant	0	0
	(0.579)	(0.536)	(0.315)		(0.5)	(0.5)
Observations	60	60	60	Observations	60	60
R ²	0.031	0.198	0.728	R ²	0.031	0.198

Econometrics
000000

Significance

Conclusion

Estimation results

Current approach to report estimation results:

Reporting significant digits only $(\alpha = 0.1)$:

Reporting up to first non-significant digit $(\alpha = 0.1)$:

		OLS results				OLS res
	Model 1	Model 2	Model 3		Model 1	Model
X1	0.923	1.018	0.947	X.	0	1
	(0.678)	(0.623)	(0.366)		(0.6)	(0.6)
X2		0.899	1.005	X2	()	+0
		(0.260)	(0.153)	-		(0.2)
X ₃			1.010	X3		(.)
			(0.097)			
Constant	0.945	0.710	0.840	Constant	0	0
	(0.579)	(0.536)	(0.315)		(0.5)	(0.5)
Observations	60	60	60	Observations	60	60
R ²	0.031	0.198	0.728	R ²	0.031	0.198

	Model 1	OLS results Model 2	Model 3
X1	0.9	1.0	0.9
X2	(0.00)	0.9	1.0
X ₃		(0.26)	(0.15) 1.0
Constant	0.9 (0.58)	0.7 (0.54)	(0.10) 0.8 (0.32)
Observations R ²	60 0.031	60 0.198	60 0.728

Econometrics
000000

Significance

Conclusion 00

Estimation results

Current approach to report estimation results:

Reporting significant digits only $(\alpha = 0.1)$:

Reporting up to first non-significant digit $(\alpha = 0.1)$:

	OLS results			OLS results						OLS results		
	Model 1	Model 2	Model 3		Model 1	Model 2	Model 3			Model 1	Model 2	Model 3
<i>X</i> ₁	0.923 (0.678)	1.018 (0.623)	0.947 (0.366)	<i>X</i> ₁	0 (0.6)	1 (0.6)	+0 (0.3)	$\overline{X_1}$		0.9 (0.68)	1.0 (0.62)	0.9 (0.37)
X2		0.899 (0.260)	1.005 (0.153)	X_2		+0 (0.2)	1 (0.1)	X2			0.9 (0.26)	1.0 (0.15)
<i>X</i> ₃			1.010 (0.097)	<i>X</i> ₃		(, ,	1 (0.0)	X_3				1.0 (0.10)
Constant	0.945 (0.579)	0.710 (0.536)	0.840 (0.315)	Constant	0 (0.5)	0 (0.5)	+0 (0.3)	Cons	tant	0.9 (0.58)	0.7 (0.54)	0.8 (0.32)
Observations R ²	60 0.031	60 0.198	60 0.728	Observation R ²	s 60 0.031	60 0.198	60 0.728	Obse R ²	rvations	60 0.031	60 0.198	60 0.728

Removing non-significant digits:

- generally simplifies the presentation of results tables.
- attracts more attention to the magnitude of the estimates.
- makes statistical precision a salient attribute of estimates.

Scientific notations

Econometrics
000000

Significance 00000 Conclusion 00

Which digits are significant?

	Model 1	Model 2	Model 3
<i>X</i> ₁	1.2	1.2	1.1
	(0.51)	(0.47)	(0.25)
X ₂		0.9	0.9
		(0.20)	(0.10)
X ₃			1.07
			(0.069)
Constant	1.1	1.2	1.1
	(0.46)	(0.42)	(0.23)
Observations	100	100	100
R ²	0.051	0.209	0.777

	Model 1	Model 2	Model 3
<i>X</i> ₁	1.237	1.235	1.234
	(0.004)	(0.004)	(0.002)
X ₂		0.999	1.000
		(0.002)	(0.001)
X ₃			1.0000
			(0.001)
Constant	0.999	0.999	1.000
	(0.004)	(0.004)	(0.002)
Observations	1,000,000	1,000,000	1,000,000
R ²	0.071	0.303	0.768

$$T = 100$$

T = 1,000,000

Significance 00000 Conclusion 00

Which digits are significant?

Significance 00000 Conclusion 00

Which digits are significant?

 \Rightarrow We propose that researchers should consider reporting digits only up to the first non-significant one.

N. Astier (PSE & ENPC)

Some econometrics even I understand

Proposed reporting rule

Data collection

• We retrieve all estimated coefficients and their associated standard error from articles published in the American Economic Review between 2000 and 2022.

Data collection

- We retrieve all estimated coefficients and their associated standard error from articles published in the American Economic Review between 2000 and 2022.
- We obtain a dataset of over 90,000 pairs (coefficient, standard error), as reported in the published articles.

Data collection

- We retrieve all estimated coefficients and their associated standard error from articles published in the American Economic Review between 2000 and 2022.
- We obtain a dataset of over 90,000 pairs (coefficient, standard error), as reported in the published articles.
- We focus on coefficient estimates, for which a lower bound of the last significant digit can be built from the sole knowledge of the estimated standard error (asymptotic bound).

Significance

Conclusion 00

Number of reported decimal digits

Figure: Number of decimal digits displayed for estimated coefficients.

Econometrics

Proposed rule

Significance

Conclusion 00

Main result (1/2)

Figure: Fraction of the printed digits of estimated coefficients that are not significant digits at different levels of statistical significance.

Econometrics 000000 Proposed rule

Significance

Conclusion 00

Main result (2/2)

Figure: Fraction of the printed digits of estimated coefficients that are not significant digits at different levels of statistical significance.

Significance 00000

Wrapping up

How can a researcher decide how many digits to report in coefficient estimates and standard error estimates?

 \Rightarrow We introduce a statistical concept of "significant digits" and propose to report estimates up to the first non-significant digit.

Would such a reporting rule be easy to implement?

 \Rightarrow Yes. It is for example embedded into the R package modelsummary.

Does current practice significantly depart from this reporting rule?
 > Yes: about 60% of the digits printed in the AER between 2000 and 2022 are not significant.

Thank you!

nicolas.astier@psemail.eu

N. Astier (PSE & ENPC)

Credible Numbersx - August 2024

Scientific notations

- The rank of the last significant digit may be a positive power of ten (e.g. i^{*}(α) = 2).
- In such cases, the use of scientific notations would be warranted to avoid reporting non-significant zeros.
- Example: divide the units of X_1 , X_2 and X_3 by 1,000

		OLS results	
	Model 1	Model 2	Model 3
<i>X</i> ₁	9e+02	1.0e+03	9e+02
X_2	(0.8e+02)	(6.2e+02) 9e+02	(3.7e+02) 1.0e+03
V		(2.6e+02)	(1.5e+02)
A3			1.0e+03 (1e+02)
Constant	0.9	0.7	0.8
	(0.58)	(0.54)	(0.32)
Observations	60	60	60
R ²	0.031	0.198	0.728

• Only occurs in a minority of cases in practice. Back

Distribution of coefficients

Figure: Box plots of the magnitude of estimated coefficients (absolute value in log_{10} scale). Boxes locate the first, second and third quartiles of the distributions. Top whiskers (resp. bottom whiskers) are drawn at a distance of 1.5 times the interquartile range above the third quartile (resp. below the first quartile).

Distribution of standard errors

Figure: Box plots of the magnitude of estimated standard errors (absolute value in log_{10} scale). Boxes locate the first, second and third quartiles of the distributions. Top whiskers (resp. bottom whiskers) are drawn at a distance of 1.5 times the interquartile range above the third quartile (resp. below the first quartile).

Back

Robustness checks - Main concerns

In the AER may not be representative of other econ outlets.

Robustness checks - Main concerns

In the AER may not be representative of other econ outlets.

Main coefficient estimates may be more precisely estimated that the coefficients on control variables.

Robustness checks - Approach

• We make use of the public dataset by Askarov et al. (JEEA, 2023).

Robustness checks - Approach

- We make use of the public dataset by Askarov et al. (JEEA, 2023).
- The authors retrieved the estimated main effect and corresponding standard error from over 300 meta-analysis studies.

Robustness checks - Approach

- We make use of the public dataset by Askarov et al. (JEEA, 2023).
- The authors retrieved the estimated main effect and corresponding standard error from over 300 meta-analysis studies.
- We restrict the sample to general interest and field journals in economics.

Robustness checks - Approach

- We make use of the public dataset by Askarov et al. (JEEA, 2023).
- The authors retrieved the estimated main effect and corresponding standard error from over 300 meta-analysis studies.
- We restrict the sample to general interest and field journals in economics.
- The resulting dataset consists of 18,000+ pairs of coefficient and their associated standard error estimates

Robustness checks - Results

Figure: Histograms of the number of sizable significant digits for the different journals.

Back

Number of sizable significant digits

• The rank of the last significant digit may not be sufficient to capture all the possible interpretations of the concept of "precision".

Number of sizable significant digits

- The rank of the last significant digit may not be sufficient to capture all the possible interpretations of the concept of "precision".
- For example, for $i^*(\alpha) = 0$, one may argue that:
 - $\hat{\theta} = 937.1...$ is a precise estimate.
 - $\hat{\theta} = 0.1 \dots$ is not.

Number of sizable significant digits

- The rank of the last significant digit may not be sufficient to capture all the possible interpretations of the concept of "precision".
- For example, for $i^*(\alpha) = 0$, one may argue that:

•
$$\hat{\theta} = 937.1...$$
 is a precise estimate.

• $\hat{\theta} = 0.1 \dots$ is not.

Definition (Number of sizable significant digits)

Let $\hat{\theta} \equiv \sum_{i=-\infty}^{\infty} \hat{d}_i 10^i$ be an estimate of the scalar population parameter θ . Let $D(\hat{\theta})$ equal the largest rank of its non-zero digits:

$$D(\hat{\theta}) \equiv \max_{i} i \mathbf{1} \left[\hat{d}_{i} \neq 0 \right]$$
(4)

Let $i^*(\alpha)$ equal the rank of the last significant digit of $\hat{\theta}$. We define the "number of sizable significant digits", $\nu(\alpha)$ as:

$$u(\alpha) \equiv \max(D(\hat{\theta}) - i^*(\alpha) + 1, 0)$$

Main result - Other

Figure: Distribution of the number of sizable significant digits.

Back

Prevalence of empirical work

Figure: Evolution of the ratio of the number of reported empirical estimates in each year over the number of printed pages for that year.