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Abstract

We study multi-unit auctions where bidders have single-unit demand and

asymmetric information. For symmetric equilibria, we identify circumstances

where uniform-pricing is better for the auctioneer than pay-as-bid pricing. In

this case, the auctioneer also benefits from disclosing information before the

auction, including its traded volume. But an issue with the uniform-price

auction is that seemingly collusive equilibria can also exist. We show that

such outcomes are less likely if the traded volume is uncertain. If bidders are

asymmetric ex-ante, then both a price floor and a price cap are normally needed

to get a unique equilibrium, which is well behaved.
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1 INTRODUCTION

Commodities and financial instruments are often traded in multi-unit auctions. For

example, treasury auctions in the U.S. and wholesale electricity markets around the

world are cleared by a uniform-price auction. Most treasury auctions in Europe,

on the other hand, use pay-as-bid auctions. In electric-power systems, pay-as-bid

auctions are often used when procuring ancillary services.1 The traded volume is

uncertain in wholesale electricity markets and in some treasury auctions.2 In this

paper, we compare the two auction formats, taking into account that information can

be asymmetric and that the traded volume can be uncertain. Under our assumptions,

uniform-pricing is better for the auctioneer and the auctioneer benefits from disclosing

its information,3 including the volume that it will trade, as long as bidders select well-

behaved equilibria.

A concern with uniform-price auctions is that they can result in outcomes with

prices at the collusive level. This is known from theoretical studies of divisible-good

auctions, such as Wilson (1979), Klemperer & Meyer (1989), von der Fehr & Harbord

(1993), and Vives (2011). In practice, seemingly collusive equilibria in uniform-price

auctions have for example been observed in the procurement of electric-generation

capacity (Schwenen, 2015).4 Another of our contributions is that we identify cir-

cumstances for which well-behaved equilibria can be ensured in the uniform-price

auction.
1Ancillary services are for example used to control the frequency and voltage in the power system.
2In electricity markets, producers submit offers before the level of demand and amount of avail-

able production capacity are fully known. In this case, the traded volume of strategic producers

is uncertain due to demand shocks and intermittent output from non-strategic, renewable energy

sources. In Mexico, Finland and Italy, the treasury sometimes reduces the quantity of issued bonds

after the bids have been received (McAdams, 2007). Some treasury auctions in U.S. have an uncer-

tain amount of non-competitive bids from many small non-strategic investors (Wang and Zender,

2002).
3Disclosure of information is for example a topical issue for European electricity markets. EU

has improved transparency of these markets during the last years. In March 2023, EU proposed

that transparency of electricity markets should increase even further.
4The purpose of the capacity payment is to increase the production capacity in the market, which

lowers the risk of having blackouts. Several electricity markets in the U.S. have had problems with

seemingly collusive prices when procuring capacity (Aagaard & Kleit, 2022).
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We prove our results by extending the single-object settings studied by Milgrom

& Weber (1982) and Blume & Heidhues (2004), respectively, to a multi-unit setting,

where the traded volume of the auctioneer can be uncertain. Similar to them, we

consider a sales auction, but results are analogous for procurement auctions. We

make the simplification that bidders have single-unit demand, i.e. each bidder buys

at most one good.5 Hence, the market is competitive in the sense that strategic

demand reduction is not an issue. Similar simplifications of multi-unit auctions have

been made by Vickrey (1961), Milgrom (1981), Weber (1983) and Krishna (2010).

Each bidder receives private information in the form of a signal and it is used to

estimate the value of the traded good. In our setting a signal could be correlated

with the auctioneer’s supply. We allow the auctioneer to also receive a private signal,

which it can choose to disclose to all bidders. The auctioneer could also disclose

the number of units that it will sell. We study a single-shot game, but in practice

the auctioneer could disclose aggregated bid data and traded volumes for previous

auctions.

We start by studying symmetric equilibria for bidders that are symmetric ex ante,

before private information has been received. Values of bidders are interdependent.

This means that a bidder has an estimate of the good’s value, the bidder’s signal,

and that it would get a (weakly) better estimate if it could also observe the signals of

the competitors and the auctioneer. All of these signals are assumed to be affi liated6.

The information structure is similar to Milgrom & Weber (1982), but we allow the

number of sold units, Z, to be larger than one and uncertain, and make the additional

assumption that −Z is affi liated with the signals. This means that Z and signals

are required to be negatively correlated (or Z may be independent of the signals).

This would for example be the case if the auctioneer and other sellers (outside the

model) tend to have a shortage of the good at the same time, so that prices increase

in alternative markets, which increases the value of the good. We also make the

5Each bidder could have a limited storage capacity, be liquidity constrained or have preferences,

such that at most one unit would be bought. In an analogous procurement auction each bidder has

capacity to produce at most one unit of the good.
6Affi liation is a strong version of positive correlation. One implication of the affi liation property

is that if the observed signal of a bidder increases, then, conditional on this increase, the expected

value of the other signals will also increase.
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technical assumption that signals remain affi liated if we condition on the value of

Z.7 Many of the results in Milgrom & Weber (1982) can be generalized to multi-unit

auctions with single-unit demand and uncertain demand as long as our assumptions

are satisfied.

For the symmetric model, we show that there is a well-behaved, symmetric equi-

librium in the uniform-price auction. This equilibrium is effi cient and each of the

bids is continuous and monotonically increasing with respect to the signal. If Z is

fixed, we can show that it is the only symmetric equilibrium. But we also present

an example showing that if demand uncertainty does not satisfy the technical as-

sumption that signals remain affi liated if we condition on the value of Z, then it is

possible that symmetric, monotonic equilibria do not exist and that a non-monotonic

and discontinuous symmetric equilibrium exists instead.

For well-behaved symmetric equilibria, we show that an auctioneer will find it

beneficial (its expected revenue weakly increases) to ex ante disclose its own signal.

This is sometimes referred to as a publicity effect. Moreover, we find that uniform

pricing gives a (weakly) higher revenue for the auctioneer in comparison to pay-as-bid

pricing. The ranking result is proved by means of a linkage-principle argument that

we have generalized to a multi-unit auction with single-unit demand and uncertain

supply, which could be correlated with the signals. Related results have been proved

when the auctioneer’s volume is preannounced (Weber, 1983)8 or independent of

signals (Holmberg & Wolak, 2018).9 Perry & Reny (1999) show by an example that

the publicity effect does not always hold in a Vickrey-Clarke-Groves (VCG) auction

with multi-unit demand, even if signals are affi liated.

A new type of result in our study is that the auctioneer also benefits from disclosing

its traded volume, or other information that help bidders to predict sales of the

auctioneer. Pycia & Woodward (2021) find a somewhat similar result, but it is driven

7If Z were a continuous random variable this property would follow automatically when −Z (or
Z) is affi liated with the other signals. But this is not necessarily the case in our model where Z is

a discrete random variable.
8Weber (1983) ranks uniform and pay-as-bid auctions, but does not study the publicity effect.
9Holmberg & Wolak (2018) consider a divisible-good market with flat bids. This setting is more

complicated as a bid can be partly accepted. Hence, their study is restricted to duopoly markets

and a restrictive information structure.
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by effects related to strategic demand reduction and/or equilibrium selection. They

consider a uniform-price auction where values are common knowledge among bidders.

In our setting, disclosure of information, including the traded volume, would not

have any effect if each bidder knows its valuation of the good, as long as bids are in

accordance with a well-behaved symmetric equilibrium.

A problem with uniform-price auctions is that ill-behaved and ineffi cient equilibria

can exist. We study this issue in detail, and how such equilibria can be prevented. To

make progress, we simplify the information structure by assuming that each bidder

has full information of its valuation of the good, but is not informed of competi-

tors’valuations. Bidders can be asymmetric ex ante. We solve for all pure-strategy

Bayesian Nash equilibria, including asymmetric equilibria.10

For the asymmetric model, we show that ineffi cient equilibria with prices at the

collusive level can exist in uniform-price auctions, even if we assume single-unit de-

mand so that bidders have limited market power. We refer to them as high-low

equilibria, because some bidders always bid high and others always bid low.11 The

high bids are above the maximum valuation of the low bidders, and the low bids are

below the minimum valuation of the high bidders. The high bids are always accepted

and the low bids are always rejected. The highest bid among the low bids sets the

price. For the case with at least two objects and at least two more bidders than ob-

jects, we show that any uncertainty in the auctioneer’s supply will knock out high-low

equilibria in uniform-price auctions.

If all bidders have the same value range, then there is a unique equilibrium, which

is well-behaved, if there is any doubt what the auctioneer’s supply will be. If supply

is certain, then an effective price floor or price cap, which is binding with a positive

probability, will give a unique equilibrium. Hence, there are circumstances where

introducing a maximum price can actually increase the revenue of an auctioneer that

is selling goods, by eliminating the high-low equilibrium. Single-object, second-price

10Our methodology would allow us to also characterize all mixed-strategy equilibria. But this

would make the presentation more complicated and technical. Also, allowing for such equilibria

would not change our conclusions for the private-value model in any substantial way.
11Blume et al. (2009) refer to the high-low equilibrium as the second class of equilibria in Vickrey

auctions.

5



auctions are special.12 In this case, there is a range of partial high-low equilibria,

where bidders play the high-low strategy when observing signals below some threshold

(Blume & Heidhues, 2004).13 In this case, an effective price floor gives uniqueness

(Blume & Heidhues, 2004), but we find that a price cap does not ensure uniqueness.

Another special case is when there is exactly one more bidder than the number of

objects. In this case, it is the other way around. There exists a range of partial

high-low equilibria where bidders play the high-low strategy when observing signals

above some threshold. In this case, an effective price cap gives a unique equilibrium,

but not a price floor.

We also study a setting where bidders have different value ranges. In this case,

a range of partial high-low equilibria exist, even if there are at least two objects and

at least two more bidders than objects. For suffi ciently low bids, below the lower

value bound of Z − 1 bidders, where Z is the maximum supply, there is at most

one bid in the range that can be accepted. There are ineffi cient equilibria for which

the high-low strategy is played in that price range, which is somewhat similar to the

partial high-low equilibria in the single-object auction. Analogously, there is a range

of partial high-low equilibria where the high-low strategy is played at suffi ciently high

prices, where at most one bid in that range is rejected. This corresponds to the

ineffi cient equilibria that exist in the reflected version of the single-object auction.

If bidders have different bounds both at the top and bottom, then both an effective

price floor and an effective price cap are needed to get a unique equilibrium. When

unique equilibria occur they are well-behaved.

Existence of high-low equilibria in a one-shot game implies that a collusive agree-

ment is self enforcing once it has been established, so that a bidding ring would be

stable. Hence, our results imply that uncertainty in the auctioneer’s supply, an effec-

tive price cap, an effective price floor and less heterogenous bidders reduce the risk

of getting ineffi cient outcomes in a one-shot game and also reduce the risk of tacit

collusion in repeated uniform-price auctions.

Our analysis of uniform-price auctions shows that this auction format has an

12We consider a uniform-price auction with single-unit demand, where the price is set by the

highest rejected bid. In the single-object case this corresponds to a second-price auction.
13Blume et al. (2009) refer to this as the first-class of equilibria in Vickrey auctions.
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invariance/equivalence property. If there is an equilibrium in an auction with n

bidders and Z goods, then there is a corresponding equilibrium in a transformed

auction with n bidders and n−Z goods, if the signs of all values and bids are reversed.
We refer to the transformed auction as the reflected auction. As an example, the

reflected version of a single-object, sales auction with n bidders is a sales auction

with n bidders and n − 1 goods. This explains why a price floor is needed to get

uniqueness in the single-object auction and a price cap in the reflected auction.

The equivalence property of the reflected auction significantly simplified some of

our proofs, and improves the intuitive understanding of our asymmetric equilibrium

results. We have not seen similar results in the previous auction literature, but in

spirit this result is somewhat related to game transformations and strategic equiva-

lence in games studied by Thompson (1952) and Morris & Ui (2004).

The remainder of the article is organized as follows. Our symmetric, uniform-price

model with affi liated values is introduced in Section 2. In Section 3, we show that this

model has a well-behaved symmetric equilibrium, which we characterize. In Section

4, we extend the linkage principle to a multi-unit auction with single-unit demand

and uncertain supply. In Section 5 we study an auction with pay-as-bid pricing, and

how it compares with the uniform-price auction. Section 6 proves the equivalence

property of the reflected auction. In Section 7, we analyse the private-value model,

which allows for asymmetric bidders. The proofs of Propositions and Theorems are

in the Appendix. Proofs of some technical lemmas are in the on-line Appendix.

2 AFFILIATED-SIGNALS MODEL

Our assumptions for the symmetric model are similar to Milgrom & Weber (1982)

and Weber (1983). We assume that signals are affi liated, that bidders are symmetric

ex ante (before signals are received) and that they have single-unit demand and are

risk-neutral. Another similarity with Milgrom & Weber (1982) is that, in Sections

3-5, we focus on pure-strategy equilibria that are symmetric ex ante. Asymmetric

equilibria will be considered in Sections 6-7. Our analysis extends Milgrom & Weber

(1982) in that we allow bid functions to be non-monotonic with respect to signals.

Also, we allow the auctioneer to sell more than one unit and we allow the auctioneer’s

supply to be uncertain. We let Z be the number of items that are auctioned, with
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Z ≤ Z ≤ Z. In the case that Z < Z, Z may take more than one value, and Z is

unknown to the bidders. Moreover we assume that each value Z with Z ≤ Z ≤ Z

has a positive probability, irrespective of signals observed by bidders.

Each bidder i ∈ {1, . . . , n} receives a private signalXi which has information about

the value of an object. Similar to Milgrom & Weber (1982) one could think of the

signal as a value estimate. We allow the signal to be correlated with Z. Hence, it could

potentially be used to predict Z. LetX be a vector with all private signals and letX−i

be a vector with all private signals except for Xi. In addition, we let S = [S1, . . . , Sm]

be a vector with m signals, which are informative of the value of the good. Some

of these additional signals might be observed by the auctioneer, who might consider

disclosing this information to all bidders.14 Sometimes we find it convenient to write

X̃ for the set of affi liated signals, (excluding X1), X̃ = {S1, ..., Sm, X2, ...Xn}. The
value Vi = ui (S,X) of the object to bidder i will depend on all signals, including

signals that are not observed by the bidder. Note that the value does not directly

depend on Z. We make the following standing assumptions for the affi liated-values

model:

Assumption 1: There is a function u on Rm+n such that for all i, ui (S,X) =

u (S, Xi,X−i), where u is symmetric in its last n − 1 arguments. Hence, all of the

bidders’ valuations depend on S in the same manner, and bidders valuations are

symmetric with respect to the private signals of competitors.

Assumption 2: The function u is non-negative, is continuous and non-decreasing

in its variables, and is strictly increasing in Xi.15

Assumption 3: For each bidder i, the expected value E [Vi] conditioned on a

subset of signals S and X is defined (i.e. bounded) no matter what subset is chosen.16

In our model f (S,X,Z) denotes the joint probability density of the signals and

14Another purpose with these additional signals is to allow for shocks that neither bidders nor the

auctioneer has any prior knowledge of.
15Note that our Assumption 2 is slightly more restrictive compared to Milgrom and Weber (1982).

We assume that the function u is strictly increasing in Xi, whereas they assume that it is weakly

increasing. Our stricter assumption is useful when proving Lemma 1 and its implications.
16Milgrom & Weber (1982) assume that E [Vi] is bounded for each i. We need a stronger assump-

tion as we comnsider non-monotonic symmetric equilibria.
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Z. This function is common knowledge among bidders. We can condition on the

possible values of Z ∈ {1, 2, ..., n− 1} and we write fk (S,X), k = 1, 2, ..., n− 1, for

the joint probability density of the signals conditional on Z = k. We assume that

fk (S,X) is continuous with respect to X. We define the set KZ = {k|Z ≤ k ≤ Z}
as the set of Z values that occur with positive probability.

We further assume that each signal Xi has possible values given by the interval

QX = (aL, aU) where aL ∈ R ∪ {−∞} and aU ∈ R ∪ {+∞}. Similarly the signals S
have possible values QS, which may be unbounded. We will want to consider only

signals that occur with a positive density, so we assume that for every S ∈ QS, and

for each x ∈ QX , the density fk(S, x,X−1) > 0 for some X−1 and k.

Consider bidder 1 and let Yk denote the kth highest signal of its competitors, and

Y be a vector of those signals. Due to symmetry properties and Assumption 1, we

can write the value of bidder 1 as follows:

V1 = u (S, X1,Y ) .

Moreover, we make the following standing assumptions for the affi liated-signals

model.

Assumption 4: fk is symmetric in its last n arguments.

Assumption 5: The variables S1, . . . , Sm, X1, . . . , Xn,−Z are affi liated and S1, . . . , Sm, X1, . . . , Xn

remain affi liated if we condition on the value of Z.17

Assumptions 1 and 4 are similar to Milgrom & Weber (1982) and ensure that

the game is symmetric ex ante, before bidders observe any signals. Assumption 5

is consistent with Milgrom & Weber (1982) for the special case when Z = 1 with

certainty.

A strategy for bidder i is a function mapping its value estimate Xi into a bid b =

bi (Xi) ≥ 0.18 The auctioneer accepts the Z highest bids. In case of ties, acceptance is

determined randomly such that each bid at the clearing price has the same chance of

being accepted. We will solve for a pure-strategy Bayesian Nash Equilibrium (BNE),

where each bidder chooses an optimal bid conditional on the bidding strategies of

17In particular Assumption 5 will hold when the signals S1, . . . , Sm, X1, . . . , Xn are affi liated and

Z is certain or independent of these signals.
18Recall that values are assumed to be non-negative (Assumption 2).
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the competitors and conditional on the information that it observes. Without loss of

generality, we will focus on the bidding decision by bidder 1. We solve for Bayesian

Nash Equilibrium (BNE), where each bidder maximizes its expected profit for every

observed private signal.19

Affi liation and related concepts are formally defined in Milgrom & Weber (1982).

We repeat some of those definitions here. A subset L of Rk is a sublattice if u and v
in L imply that the vectors u∨v and u∧v are also in L (where (u∨v)i = max(ui, vi),

(u ∧ v)i = min(ui, vi), i = 1, ..., k). A subset A of Rk is increasing if its indicator
function IA is non-decreasing. In other words if x ∈ A and yi ≥ xi, i = 1, ..., k then

y ∈ A. Let X = (X1, ..., Xk) be a random vector. X1, ..., Xk are associated if for all

increasing sets A and B, Pr(A∩B) ≥ Pr(A) Pr(B), and X1, ..., Xk are affi liated if for

all increasing setsA andB, and every sublattice L, Pr(A∩B | L) ≥ Pr(A | L)P (B | L),

i.e., if the variables are associated conditional on any sublattice. In the case where

there are densities, Milgrom & Weber (1982) show that if variables X1, ..., Xk are

affi liated for any vectors x and x′ that are possible realisations of the Xi, then

f(x ∧ x′)f(x ∨ x′) ≥ f(x)f(x′) (1)

where f is the joint density of the variables X1, ..., Xk.

We define YZ to be the Zth highest signal of the competitors, a random variable

that is determined from the values taken by the random variablesX−i and Z. YZ plays

a central role in our analysis, similar to Y1 in Milgrom & Weber (1982), who assume

that Z = 1 with certainty. In Proposition 1 below we show that our assumptions are

suffi cient to ensure that YZ is affi liated with the other signals, which is important for

our analysis.

Proposition 1 Under our assumptions S1, ..., Sm,X1, Y1, ...Yn−1, YZ are affi liated.

19The standard definition of the BNE would allow players to act irrationally for a finite number of

events that occur with measure zero. Such events have no influence on payoffs or the best response

of competitors. Our simplification makes the analysis less technical and only changes equilibrium

outcomes for events that occur with measure zero.

10



3 CHARACTERISING SYMMETRIC EQUILIBRIUM

The highest rejected bid sets the clearing price, so it corresponds to a Vickrey auc-

tion. We will establish existence of an equilibrium that is symmetric, continuous and

monotonically increasing. This corresponds to the equilibria that Milgrom & We-

ber (1982) solve for in a second-price auction. But we also consider non-monotonic,

piece-wise continuous bid functions. We say that a bid function b(x) defined on QX

is regular if there are a finite number of break points a(1) < a(2) < ... < a(M+1) where

we take a(1) = aL ∈ R ∪ {−∞} and a(M+1) = aU ∈ R ∪ {+∞}, and b(x) is either (i)

continuous and strictly increasing; or (ii) continuous and strictly decreasing; or (iii)

constant; in each of the intervals (a(`), a(`+1)) for ` = 1, 2, ...,M . We assume that the

value of the bid functions at the points a(`), ` = 1, 2, ...,M , are defined by continuity

either on the right or left. We say that an equilibrium is regular if the bid functions

used are regular.

Lemma 1 below is useful when proving that bid functions are monotonic. It is a

slightly stronger version of Theorem 5 in Milgrom & Weber (1982) who show that

a bidder’s expected value is non-decreasing with respect to its own signal. We are

able to prove this result as our Assumption 2 is slightly stronger than in Milgrom &

Weber (1982).

Lemma 1 For any sublattice L, the functions E[V1|X1 = x, X̃ ∈ L] and E[V1|X1 =

x, YZ = y, X̃ ∈ L] are strictly increasing in x for x ∈ QX , and non-decreasing in YZ.

Without loss of generality, we focus on bidder 1 and write WZ for the Zth highest

bid amongst the other bidders (whereas YZ is the Zth highest signal). A marginal

change in the bid only matters when the bid is on the margin of being accepted,

i.e. when the bid b equals WZ . Hence, this is the event that bidder 1 will condition

on when it optimizes its bid. In the proof of Theorem 1, we show that a necessary

condition for a symmetric equilibrium is that b (x) = vW (x, b (x)), where

vW (x, b) = E [V1|X1 = x,WZ = b] .

For strictly increasing, continuous bid functions it can be shown that

vW (x, b (y)) = E [V1|X1 = x, b (y) = WZ ] = E [V1|X1 = x, YZ = y]

= v (x, y) . (2)
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Theorem 1 There is a symmetric equilibrium with a strictly increasing bid function

b∗(x) = v(x, x) and, except possibly at isolated points, this is the only symmetric

equilibrium with regular, strictly increasing bid functions. If Z is fixed at k, then bid

functions are continuous and b∗(x) = v(x, x) is the only symmetric equilibrium with

regular bid functions.

3.1 Example 1

In this example we demonstrate that when YZ is not affi liated then we may have sym-

metric non-monotonic equilibria (and no symmetric monotonic equilibria). Moreover

we show that having −Z affi liated with the signals is not enough to ensure that the
signals are affi liated if we condition on Z, 20 which is why Assumption 5 fails here

and we cannot rely on Theorem 1.

There are three bidders, each receives a private signal Xi ∈ (0, 2). The common

value of the object is determined from the signals and is given by V =
∑
Xi .

Signals are uniformly distributed on (0, 2) and are independent. The number of items

auctioned, Z, is also determined by the signals. If two or three of the signals are

in the range (0, 1) then Z = 2, and otherwise Z = 1. It can be shown that −Z is

affi liated with the signals.21 However the signals are not affi liated if we condition

on Z = 2, since taking x = (0.5, 1.5, 0.5) and x′ = (1.5, 0.5, 0.5) and writing f2

for the density conditional on Z = 2 shows that f2(x) and f2(x′) are positive but

f2(x ∨ x′) = f(1.5, 1.5, 0.5) = 0 thus contradicting the affi liation condition (1).

If there were a symmetric monotonic equilibrium we get a contradiction by showing

that the value of E[V | X1 = x, YZ = x] jumps down at x = 1. Details are in the

on-line appendix. But there is a symmetric non-monotonic equilibrium given by

b∗(x) = 1 + 5x
2
, for x ∈ (0, 1

2
), b∗(x) = h−1

1 (x) for x ∈ (1
2
, 1), b∗(x) = h−1

2 (x) for

x ∈ (1, 3
2
) and b∗(x) = 5x

2
for x ∈ (3

2
, 2). Here the functions h1(b) and h2(b) are

20If Z were a continuous variable this would be true automatically as is shown by an argument in

Milgrom & Weber(1982).
21This is proved in Anderson & Holmberg (2023).
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Figure 1: A symmetric non-monotonic equilibrium for Example 1.

determined from the two simultaneous equations:

b =
1

2 (2− h1(b))

(
2h2(b)2 − 2h1(b)h2(b)− 2h2(b)− 5h1(b)2 + 10h1(b) + 4

)
, (3)

b = h1(b) +
5

2
h2(b) +

h1(b)

h2(b)
− h1(b)2

h2(b)
− 1, (4)

which are easy to solve for any given b. If h1 and h2 satisfy (3) and (4) then we show

in the online Appendix that the corresponding bid function b∗ (shown in Figure 1)

is an equilibrium. For bids that are in the range (2.25, 3.75) there is an overlap with

two different signals giving the same bid (one signal less than 1, the other more than

1).

The non-monotonic equilibrium can be explained as follows. For a symmetric equi-

librium it is optimal for a bidder to bid E [V1|X1 = x,WZ = b]. If a bidder observes a

signal below 1, then there is a high probability that Z = 2. In this case, conditioning

on WZ = b means that one competitor bids at b and the other competitor bids above

b, which is positive for the expected common value. But this changes when a bidder

observes a signal above 1, so that Z = 1 occurs with a high probability. In this case

conditioning on WZ = b means that the other competitor bids below b, which is bad

for the expected common value. Hence, E [V1|X1 = x,WZ = b] and the bid drops at

x = 1.
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3.2 Publicity effect

Now, assume that the seller, the auctioneer, has a signal X0 that it might want to

disclose to all bidders. We assume that it is one of the S signals, and make the

additional assumption that it is a continuous random variable. Similar to Milgrom

& Weber (1982), we use the superscript N for markets where X0 is not disclosed and

the superscript I when the auctioneer’s information is made public.

Proposition 2 For strictly increasing, symmetric equilibria in the uniform-price

auction, the expected price and the expected revenue of the auctioneer weakly increases

when it discloses its signal X0, and do not change in the case when X0 is independent

of X1, . . . , Xn and Z. Similarly, the auctioneer benefits from disclosing Z.

It can also be shown (see Anderson & Holmberg, 2023) that it is optimal for

an auctioneer to always and fully disclose its information before the auction starts,

instead of disclosing it partly or sometimes.

4 THE LINKAGE PRINCIPLE

The linkage principle essentially says the following: The more closely the winning

bidder’s payment is linked to its signal, the greater the expected revenue will be for

the auctioneer. The linkage principle was first introduced by Milgrom &Weber (1982)

and was further developed by Holmberg & Wolak (2018) for divisible-good markets

with flat bids when the traded volume is independent of signals. Here we make an

additional extension, so that the linkage principle can be used for multiple bidders

and when the number of traded units is correlated with the signals X.

Consider a symmetric equilibrium, where competitors submit strictly increasing

bids b (x). We allow the considered bidder (bidder 1) to deviate and act as if observing

a signal x̃, i.e. it can make an offer b (x̃), although it actually observes the signal x.

Conditional on having the bid accepted, let J (x̃, x) ≥ 0 be the expected payment

when bidder 1 observes x ∈ QX = (aL, aU) and bids as if observing x̃ ∈ QX . Bidder

1 needs to act as if having a higher signal than YZ to have its bid accepted. Thus the

expected payment to the auctioneer from bidder 1 and bidder 1’s expected utility of
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the good are given by :

K (x̃, x) = J (x̃, x) Pr (YZ ≤ x̃|x) (5)

U (x̃, x) = E [V1|YZ ≤ x̃;x] Pr (YZ ≤ x̃|x) . (6)

From (5) we have that

lim
x̃↘aL

K (x̃, x) = 0, for x ∈ QX . (7)

For the moment, we assume that J (x̃, x), U (x̃, x) and K (x̃, x) are bounded and

differentiable functions with respect to both arguments, and we use subscripts x̃ and

x for these partial derivatives.22

Lemma 2 If for two auction designs A and B limx↘aL J
A (x, x) ≥ limx↘aL J

B (x, x)

and JAx (x, x) ≥ JBx (x, x) for x ∈ QX , then JA (x, x) ≥ JB (x, x) and KA (x, x) ≥
KB (x, x) for x ∈ QX .

Hence, an auction design that increases the linkage between a bidder’s private sig-

nal and its expected payment to the auctioneer, conditional on acceptance, increases

the expected revenue of the auctioneer.

5 PAY AS BID AUCTION

In this section, we will consider a well-behaved symmetric equilibrium in a pay-as-bid

auction and use the linkage principle to make comparisons with the uniform-price

auction. In addition to Assumption 1-5, the following simplifying assumption is used

in this section.

Assumption 6: fk (S,X) and V1 = u (S, X1,X−1) = u (S, X1,Y ) are both

differentiable with respect to X and fk (S,X) > 0 if Xi ∈ QX for i = 1, . . . , n and

k ∈ KZ .

Assume that each competitor i 6= 1 observes a signal xi and bids in accordance

with the strategy b∗ (xi), which is a strictly increasing (and invertible) function. The

22Unlike Milgrom & Weber (1982), we assume that signals are in open sets. This simplifies the

equilibrium analysis, but we need to use limits when stating the linkage principle result.
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expected payoff for bidder 1 observing signal x and bidding b in a pay-as-bid auction

is then:

Π (b, x) = E [ (V1 − b) 1WZ<b|X1 = x] =

∫ b∗−1(b)

aL

(v (x, α)− b) fYZ (α|x) dα, (8)

where fYZ ( ·|x) is the probability density of YZ (and FYZ ( ·|x) is the corresponding

cdf) conditional on bidder 1 observing x.

Proposition 3 In a pay-as-bid auction, there is a symmetric equilibrium with the

bid function

b∗ (x) = v (x, x)−
∫ x

aL

exp

(
−
∫ x

α

fYZ (s| s)
FYZ (s| s)ds

)
dt (α) (9)

t (α) = v (α, α) ,

which is continuous and strictly increasing for x ∈ QX .

A working paper version of this paper (Anderson & Holmberg, 2023) shows that

under Assumption 6 and under the assumption that bidders play the equilibrium in

Proposition 3 (or a symmetric, well-behaved equilibrium in the uniform-price auction),

then J (x̃, x), U (x̃, x) and K (x̃, x) are differentiable functions with respect to both

arguments. Hence, the linkage principle can be applied to rank auctions. The result

below extends Milgrom & Weber’s (1982) ranking of first- and second-price auctions,

and generalizes the ranking result in Weber (1983) for an auctioneer with a fixed

supply.

Proposition 4 The expected revenue of the auctioneer in a uniform-price auction

is at least as large as for the pay-as-bid auction. The expected revenue is the same in

the two auctions if X1, . . . , Xn and Z are all independent.

Holmberg & Wolak (2018) prove a similar result for a divisible-good auction with

two bidders, a traded volume that is independent of signals and a restrictive informa-

tion structure. Previous work (Ausubel et al., 2014; Baisa & Burkett, 2018; Fabra et

al., 2006; Holmberg, 2009; Pycia & Woodward, 2021) show that ranking of uniform-

price and pay-as bid auctions can be different if there is strategic demand reduction

or if bidders select less well-behaved equilibria.

In Anderson & Holmberg (2023), we use the linkage principle to verify that the

publicity effect also holds for the pay-as-bid auction.
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6 THE REFLECTED AUCTION

In this section, we prove the equivalence property of a reflected uniform-price auction.

This property will simplify the analysis in the next section, where we study asym-

metric equilibria in the uniform-price auction. The equivalence property is general.

It does not rely on Assumptions 1-6, and in particular, bidders can be asymmetric

ex-ante, and have different value ranges. Values could be interdependent. Signals

could be correlated, and are not necessarily affi liated.

Definition 1 Given an auction A with realisation of signals X and S and quantity

Z, and with values Vi = ui (S,X), realisations in the reflected auction B are obtained
using the same realisation of signals X and S, with the quantity n − Z, and with

values Vi = −ui (S,X).

Proposition 5 Suppose that bidder i, i = 1, 2, ...n, makes a bid given by the function

bi(x) for signal Xi = x in a uniform-price auction. This is an equilibrium in auction

A if and only if there is an equilibrium in the reflected auction B in which bidder i
with with signal Xi = x, makes the bid −bi(x), i = 1, 2, ...n.

In essence this result shows that uniform-price auctions in which all values are

negated, and where the supply Z is replaced by n − Z have the same equilibrium

as before, we simply negate all the previous bids. If a bid was accepted in the first

auction it will be rejected in the reflected auction for the corresponding realisation,

and vice versa. The intuition is as follows. In auction A, the competitor with the
Zth highest bid will be the marginal competitor of bidder 1. If the bid by bidder

1 is accepted it will pay the bid of the marginal competitor, which we can call WA.

Transforming the number of goods to n−Z makes sure that the marginal competitor
in auction A will also be the marginal competitor in auction B, where the sign of all
bids have been reversed. If the bid of bidder 1 is above WA in auction A, bidder 1
will bid below −WA in auction B. In this case, the payoff of bidder 1 is V1 −WA in

auction A and 0 in auction B. If the bid of bidder 1 is below WA in auction A, it will
be above the bid of the marginal competitor in auction B. In this case, the payoff of
bidder 1 is 0 in auction A and −V1 +WA in auction B, where also the sign of values
have been reversed. Hence, the difference in the payoff between auction A and B is
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always V1 −WA for bidder 1, irrespective of which bid bidder 1 made in auction A.
This implies that if a bid of bidder 1 is optimal in auction A, then the negative of
that bid will be optimal in auction B. The argument can be repeated for any bidder.
In case the original auction has a price floor then it will be transformed into a price

cap in the reflected auction, and vice versa.

It is well-known from the previous literature that equilibria in an auction can be

transformed to equilibria in a new auction by a positive affi ne map. So if a bidder

had a previous value of v it has a new value of αv + β, for some constants α > 0

and β (with the same constants for each bidder), then an equilibrium amongst bids

in the old auction, is transformed into an equilibrium in the new auction when an

old bid of y in auction is translated into a new bid of αy + β. Proposition 5 makes

it possible to transform equilibria in uniform-price auctions also for negative affi ne

transformations, where α < 0.

7 PRIVATE VALUE MODEL

In Sections 3-5, we studied symmetric BNE, and we showed that such equilibria are

well behaved. In particular we showed that all symmetric equilibria are well behaved if

Z is preannounced. But from practice we know that uniform-price auctions can have

prices at the collusive level. In this section, we will solve for all pure-strategy equilibria

in the uniform-price auction with private values, including asymmetric equilibria. We

will show that ineffi cient asymmetric equilibria with prices at the collusive level may

exist, but we also show how they can be avoided.

7.1 Partial high-low equilibria in the single-object auction and its reflection

Before studying asymmetric equilibria of multi-unit auctions in detail, we will sum-

marize results that Blume & Heidhues (2004) have found for single-object auctions

and, by means of Proposition 5, show what the equilibria looks like in the reflected

version of a single-object auction.

Blume & Heidhues (2004) solve for all equilibria in a second-price auction, which

corresponds to a uniform-price auction with Z = 1, under the following assumption.

Assumption B&H: N ≥ 3 bidders have single-unit demand and independent

private values. Distributions Fi, i = 1, . . . , N , of valuations have positive densities fi
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on the common support [0, vh].

The result in Blume & Heidhues (2004) can be summarized as follows: there is

an equilibrium where for low values [0, b̂) ⊂ [0, vh], a single bidder bids high (at the

threshold b̂) and the rest low (at 0). The high bid is accepted and the low bids set the

price, if all bidders have values below the threshold b̂. All bid their value above b̂. We

refer to this as a high-low equilibrium at the bottom. We refer to the degenerate case

where b̂ = vh as a high-low equilibrium. In this case, one bid is high and the others

low for the whole range of values, so that the price is always zero (at the collusive

level). The other degenerate case where b̂ = 0 implies that all bid their value for the

whole range of values. This corresponds to the well-behaved equilibrium. Blume &

Heidhues (2004) show that other equilibria can be ruled out for their setting.

Applying Proposition 5 to their result (and adding vh to all bids and values)

immediately gives us a reflected version of the single-object auction, which, as far as

we know, has not been studied in the previous literature.

Corollary 1 Under Assumption B&H, in a uniform-price auction with N−1 objects

a strategy profile is a Nash equilibrium if there is a b̂ such that:

1. any bidder with valuation v < b̂ bids his valuation,

2. if b̂ > 0, then there is one bidder who bids at b̂ whenever his valuation v satisfies

v > b̂, and if b̂ ≤ 0 then there is one bidder who bids at or below 0 for any

valuation v,

3. all other bidders bid vh whenever their valuation v is in (b̂, vh].

Again all other equilibria can be ruled out for the setting in Corollary 1. The

high-low equilibrium at the bottom in the single-object auction becomes a high-low

equilibrium at the top in the reflected auction. The degenerate cases, the well-behaved

equilibrium and the high-low equilibrium, remain in the reflected auction. We refer

to high-low equilibria at the top and bottom as partial high-low equilibria.

One might wonder why a high-low equilibrium at the bottom only occurs in the

single-object auction and a high-low equilibrium at the top only occurs in the reflected

19



version of the single-object auction.23 The reason is that two or more bidders can

only bid at the same price with a positive probability if those bids are either accepted

with certainty or rejected with certainty. Otherwise one of those bidders would find

it profitable to deviate and bid slightly higher. Hence, if, with a positive probability,

there are bids at the threshold b̂ in the middle of the range of equilibrium bids, then

those bids must come from the same bidder. This is the case in a single-object auction,

where there is a single high bidder at the threshold, and in the reflected version, where

there is a single low bidder at the threshold. Hence, these two auctions are special

cases. Our analysis below will focus on multi-unit auctions where there might be

high-low equilibrium, but not partial high-low equilibria, at least not if bidders have

the same value ranges. We will also show that partial high-low equilibria can exist in

such auctions if bidders have different value ranges.

7.2 Assumptions for the private-value model

Now we will drop Assumption B&H. The signal of a bidder is allowed to be correlated

with signals of competitors, but we will assume that the value of a bidder, conditional

on its signal, is independent of competitor’s signals. This corresponds to the private-

value case. It does not matter whether a bidder directly observes its valuation of

the object or works with an expected valuation ui (S, Xi), as long as the latter is

independent of competitors’signals. This also means that we can drop the vector of

unobserved signals S from the analysis. As before we assume that the value function

is increasing and continuous. Hence, signals and values are equivalent and we assume

that each bidder observes a signal equal to its private value.

We suppose that the values for bidder i are in the open interval (V i, V i) with a

positive probability density throughout this range, without any single points where

there is a positive probability mass. These open intervals can vary between bid-

ders. We allow Z and signals to be drawn from a general probability distribution.

Signals could for example be positively correlated or negatively correlated, so there

is no assumption of affi liated signals or ex-ante symmetry in this section. Hence,

23In case of a single-object auction with two bidders, the reflected auction would also be a single-

object auction with two bidders. In this special case, high-low equilibria at the top and bottom can

occur in the same auction.
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Assumptions 1-6 are also dropped.

Moreover, we assume that the range of possible values and positivity of densities

remain unchanged no matter the value of Z, or what signals are observed by competi-

tors, and that these ranges are common knowledge, even though the joint distribution

of signals may not be common knowledge. The bidders might have different beliefs

about the joint distribution. We restrict bids to regular bids, as for the affi liated case.

We will introduce some new notation and some additional restrictions on the

number of bidders and the value ranges. The following notation will be useful in

our analysis. Choose a set ΩU having size Z and containing the bidders with the

highest values of V i. Note that the set ΩU may not be uniquely defined when there

are common values of V i. We identify VU as max{V i : i /∈ ΩU} so that V i ≥ VU for

i ∈ ΩU and V i ≤ VU for i /∈ ΩU . We define Ω′U = ΩU ∪ {jU} where jU /∈ ΩU is a

bidder with V jU = VU . We also define V ′U = max{V i : i /∈ Ω′U}, so that V ′U ≤ VU .

Similarly we choose a subset ΩL having size Z and containing the bidders with

the highest values of V i. Then we identify VL as min{V i : i ∈ ΩL} so that V i ≥ VL

for i ∈ ΩL and V i ≤ VL for i /∈ ΩL. We also define Ω′L = ΩL\{jL}, where jL ∈ ΩL is

a bidder with V jL
= VL, and V ′L = min{V i : i ∈ Ω′L}. Thus V ′L ≥ VL and they may

be the same.

Note that even if the sets ΩU etc. are not uniquely defined, due to common upper

or lower bounds of value ranges, the values of VU , V ′U , VL, V
′
L are still fixed. These

values are illustrated in Figure 2. This shows a set of bids (on the vertical axis) for

four bidders with different ranges of values (on the horizontal axis). We will show

later that this is an equilibrium set of bids if v0 ∈ [VL, V
′
L], v1 ∈ [V ′U , VU ], and any

price cap or price floor is non-restrictive.

Blume & Heidhues (2004) consider the case with at least three bidders in a single-

object auction. In our setting this corresponds to the case where at least two bids

are rejected in every auction. We also make the reflected version of this assumption.

Assumption A: n ≥ Z + 2 and Z ≥ 2.

We allow bidders to have different value ranges, and therefore need to make sure that

all of these n bidders are relevant, i.e. that they have the possibility to compete

at relevant prices. Hence, we also make assumptions on the value ranges of the n
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Figure 2: Example where bidders have asymmetric value ranges. A possible equilib-

rium is shown for the case Z = Z = 2.

bidders. We let V ′′L = min{V i} and V ′′U = max{V i}, and we assume:

Assumption B: V ′′L > V ′L and V
′′
U < V ′U .

By definition V ′′L ≤ V ′U and V ′′U ≥ V ′L so Assumption B establishes the ordering

VL ≤ V ′L < V ′U ≤ VU . Note that a bidder with V i ≤ VL would not take part in

the auction. Also a bidder with V i ≥ VU will always have a value high enough to

be accepted, and could be allocated a unit before the auction starts. Assumption B

rules out such outcomes.

We write Xx for the set of bidders which can have a signal x, i.e. Xx = {i : x ∈(
V i, V i

)
}, and we will assume

Assumption C: The setXx contains at least three bidders for any value x ∈ (VL, VU),

with potentially different bidders for different x values.

Ex-post optimality

In the private value model, optimality of bids would not be changed even if other

player’s bids are known (i.e. ex-post optimality). The only outcomes that would

make a bid not ex-post optimal involve ties that occur with measure zero.24

24The result is true also for single-object auctions and for the reflected version of single-object

auctions.
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Lemma 3 With private values, each bid is almost surely ex-post optimal in an equi-

librium.

Ex-post optimal equilibria are robust. They do not depend on the probability

distribution of signals nor on risk aversion of the bidders.

High-low equilibrium

If the auctioneer’s supply is certain, then there is a high-low equilibrium.

Proposition 6 If the auctioneer’s supply is certain so that Z = Z = Z, and a set Ω

of exactly Z high bidding bidders have bids at least as high as max{V i : i /∈ Ω} and the
remaining low bidding bidders all have bids that are no larger than min{V i : i ∈ Ω},
then this is a BNE (the high-low equilibrium).

Under our assumptions, it can be shown that there is no other equilibrium where

the bid of a bidder is rejected with probability 1 for its highest signal or where the

bid of a bidder is accepted with probability 1 for its lowest signal. Moreover, high-low

equilibria only occur when the auctioneer’s supply is certain.

Lemma 4 If the equilibrium bid of a bidder is rejected with probability 1 for the

highest signals, then supply must be certain and the equilibrium must be of the high-

low type. If the equilibrium bid of a bidder is accepted with probability 1 for the lowest

signals, then supply must be certain and the equilibrium must be of the high-low type.

Partial high-low equilibria

We will show that equilibria that are different from a high-low equilibrium are well-

behaved or partly well-behaved. For these equilibria, all bidders will bid their value for

some mid-range of signals (v0, v1). But bidding might be ill behaved near the edges,

in the intervals [VL, V
′
L] and [V ′U , VU ], where partial high-low bidding can occur.

Theorem 2 If an equilibrium is not of high-low type, then it must have the following

properties: (a) There are points v0 ∈ [VL, V
′
L] and v1 ∈ [V ′U , VU ] such that for all

signals in (v0, v1) all the bidders bid at their values. (b) When v0 = VL then all

bidders bid at v0 or lower for signals strictly less than v0. (c) When v0 > VL there is
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a single bidder, iX , which bids at v0 for signals less than v0, while the other bidders

bid at a value V iX
or lower for signals strictly less than v0. (d) When v1 = VU then all

bidders bid at any value at v1 or higher for signals greater than v1. (e) When v1 < VU ,

then one bidder iY with V iY > v1 bids at v1 for almost all signals in (v1, V iY ) while

the other bidders bid at any value at V iY or higher for signals strictly greater than

v1. Moreover, a set of bid functions that satisfies properties (a) - (e) constitutes an

equilibrium.

For equilibria with v0 > VL, a single bidder iX bids high, at v0, for signals less

than v0. Other bidders bid low, at or below V iX
, for signals less than v0. Hence, for

signals less than v0, bidding is similar to the high-low equilibrium at the bottom. If

v1 < VU then there is a high-low equilibrium at the top. In this case, a single bidder

iy bids low, at v1, for signals higher than v1. Other bidders bid high, at or above V iY ,

for signals higher than v1. Figure 2 illustrates the partial high-low equilibria at the

top and bottom. Partial high-low equilibria have outcomes where a bid is accepted

and another bid is rejected even if the latter bidder has a higher valuation, which is

ineffi cient. But ineffi ciencies only occur for values in the ranges [VL, v0] and [v1, VU ],

where bidders do not bid their value.

In case bidders have the same value range, as assumed in Blume & Heidhues

(2004), we get v0 = VL = V ′L = V and v1 = V ′U = VU = V , so that we can conclude

the following from Theorem 2 and Proposition 6:

Corollary 2 If all bidders have the same range of private values
(
V , V

)
, then there

is an effi cient equilibrium where every bidder bids at its value for each signal. This is

the unique equilibrium if Z can take more than one value. But in the case when Z is

fixed, then high-low equilibria also exist.

Extension: Price floor and price cap

There is no price cap and no price floor (reservation price) in the model analysed

above. In this extension we will argue that they can be used to give a unique equilib-

rium, when supply is certain or if bidders have heterogeneous value ranges. We omit

formal proofs, but arguments below could be formalized using minor variations of the

proofs of results in Section 7.2.
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We will first consider the case where all bidders have the same range of private

values
(
V , V

)
. According to Corollary 2 the equilibrium is unique, unless supply is

certain, in which case high-low equilibria exist. It can be shown that any price floor p

in the range
(
V , V

)
would give uniqueness. The reason is that the market price is at

least p, so it is no longer profitable for high bidders to bid high, and get accepted with

certainty, for signals in the range
(
V , p

)
. This also means that low bidders, which

have zero profit in a high-low equilibrium, will be accepted with a positive probability

and make a positive profit if they deviate and bid their value for signals in the range(
p, V

)
.

An effective price cap would also give uniqueness if all bidders have the same

range of private values
(
V , V

)
. Any price cap p in the range

(
V , V

)
would knock

out high-low equilibria, also when the volume Z is certain. The reason is that if high

bidders bid at p (or lower), then it would be profitable for low bidders to deviate, and

bid at p, when observing signals in the range (p, V ). Such a bid would be accepted

with a positive probability and give a positive payoff in case of acceptance. Knocking

out the high-low equilibrium implies that there are circumstances where introducing

a maximum price would actually increase the revenue of the auctioneer.

The discussion above and the analysis in Section 7.2 is based on Assumption A,

which rules out single-object auctions and its reflected version. In a single-object

auction a price cap is not suffi cient to get uniqueness. The problem is that there

exists a range of partial high-low equilibria where all bidders bid their value above the

threshold b̂, and such equilibria will not be knocked out by a price cap just below V .

But an effective price floor gives uniqueness, as proved by Blume & Heidhues (2004).

It is the other way around for the reflected version of the single-object auction. It

has a range of partial high-low equilibria at the top that will not be knocked out

by a price floor just above V . In this case an effective price cap is needed to get

uniqueness.

It gets more complicated when bidders have different value ranges. As shown in

Theorem 2, high-low equilibria can occur at the bottom if bidders have different lower

bounds on their values. One needs a price floor to knock out this partial high-low

equilibrium. Any price floor p in the range (VL, V
′
L) would prevent iX from bidding

high, at v0, for signals less than p, and the partial high-low equilibrium falls apart.

25



Such a price floor would also knock out any high-low equilibrium.

If bidders have different upper bounds on their values, then it follows from Theo-

rem 2 that partial high-low equilibria can occur at high prices. Such an equilibrium

can be knocked out by a price cap. Any price cap in the range (V ′U , VU) would prevent

bidders from bidding high, at or above V iY , for signals above p. Such a price cap

would also knock out any high-low equilibrium. If bidders have both different upper

and lower bounds on their values, then both a price floor and a price cap are needed

to get uniqueness.

In Anderson & Holmberg (2023), we make a similar argument showing that re-

ducing the supply by one unit at high and low prices has an effect that is similar to

a price cap and price floor, respectively.

APPENDIX

Proof. (Proposition 1) We write T for the m+ n-tuple S1, ..., Sm, X1, Y1, ...Yn−1,

then from Milgrom & Weber Theorem 2 (and Assumption 5) the variables in T are

affi liated. We want to show that T, YZ is affi liated. To do this we will consider

arbitrary increasing sets A and B in Rm+n+1, as well as an arbitrary sublattice L in

Rm+n+1.

We define the maps ηi : Rm+n → Rm+n+1 for i = 1, ..., n−1 by ηi(u) = (u, um+i+1),

so that when u = (S1, ..., Sm, X1, Y1, ...Yn−1) then

ηi(u) = (S1, ..., Sm, X1, Y1, ...Yn−1, Yi).

We define for any set U in Rm+n+1

U ′i = {u ∈ Rm+n : ηi(u) ∈ U}.

for i = 1, ..., n−1. Note that with this definition we have that A′i and B
′
i are increasing

sets in Rm+n and also L′i = {u ∈ Rm+n : ηi(u) ∈ L} is a sublattice in Rm+n.

Now (T, Yi) ∈ A if and only if T ∈ A′i. Thus we can use the affi liation property
for T conditional on Z to show that

Pr((T, Yi) ∈ A ∩B | L,Z = i) = Pr(T ∈ A′i ∩B′i | L′i, Z = i)

≥ Pr(T ∈ A′i | L′i, Z = i) Pr(T ∈ B′i | L′i, Z = i) (10)

= Pr((T, Yi) ∈ A | L,Z = i) Pr((T, Yi) ∈ B | L,Z = i).
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In this inequality we have both left and right hand sides equal to zero in the case that

L′i = ∅. Now

Pr((T, YZ) ∈ A ∩B | L) =

n−1∑
i=1

Pr(Z = i|L) Pr((T, Yi) ∈ A ∩B | L,Z = i).

Thus using (10), we deduce

Pr((T, YZ) ∈ A∩B | L) ≥
n−1∑
i=1

Pr(Z = i|L) Pr((T, Yi) ∈ A | L,Z = i) Pr((T, Yi) ∈ B | L,Z = i).

(11)

In order to use Lemma 8 on this sum, we require Pr((T, Yi) ∈ A | L,Z = i) decreasing

in i. To show this note that if (T, Yi+1) ∈ A then (T, Yi) ∈ A, because Yi ≥ Yi+1, and

A is increasing. Similarly, the indicator function IA is increasing on T, Yi+1. Hence,

it follows from M&W Theorem 5 that

Pr((T, Yi+1) ∈ A | L,Z = i) = E[IA | L,Z = i] ≥ E[IA | L,Z = i+ 1],

since T, Yi+1,−Z are affi liated (M&W Theorem 2 and Assumption 5). Hence

Pr((T, Yi) ∈ A | L,Z = i) ≥ Pr((T, Yi+1) ∈ A | L,Z = i) ≥ Pr((T, Yi+1) ∈ A | L,Z = i+1).

Similarly Pr((T, Yi) ∈ B | L,Z = i) ≥ Pr((T, Yi+1) ∈ B | L,Z = i + 1). Then we

apply Lemma 8 and obtain from (11):

Pr((T, YZ) ∈ A ∩B | L) ≥
n−1∑
i=1

Pr(Z = i|L)︸ ︷︷ ︸
qi

Pr((T, Yi) ∈ A | L,Z = i)︸ ︷︷ ︸
ai

Pr((T, Yi) ∈ B | L,Z = i)︸ ︷︷ ︸
bi

≥
(
n−1∑
i=1

Pr(Z = i|L) Pr((T, Yi) ∈ A | L,Z = i)

)(
n−1∑
i=1

Pr(Z = i|L) Pr((T, Yi) ∈ B | L,Z = i)

)
= Pr((T, YZ) ∈ A | L) Pr((T, YZ) ∈ B | L).

Since A and B are arbitrary increasing sets in Rm+n+2, this demonstrates the in-

equality we need to show that the variables S1, ..., Sm, X1, Y1, ...Yn−1, YZ are affi liated.

Proof. (Theorem 1) For the first part we begin by noting that Lemma 1 implies

that v (x, y) = E[V1|X1 = x, YZ = y] is strictly increasing in x and non-decreasing in

y. Hence if we define the bid function b∗(x) = v(x, x) it will be strictly increasing.
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Next we show that b∗ (x) = v (x, x) is an equilibrium. The proof corresponds to

the proof of Theorem 6 in Milgrom & Weber (1982). We will show that b∗(x) is an

optimal response when all other players use the strategy b∗ (x). Using that the bid

function is strictly monotonic, it follows that bidder 1’s conditional expected profit

when it bids b is:

E
[
(V1 − b∗ (YZ)) 1b∗(YZ)<b

∣∣X1 = x
]

= E
[
(v (X1, YZ)− v (YZ , YZ)) 1b∗(YZ)<b

∣∣X1 = x
]
.

Due to the monotonicity properties of v, the difference v (X1, YZ)− v (YZ , YZ) is non-

negative for X1 ≥ YZ and non-positive for X1 ≤ YZ . Hence, it follows that the

expression above is maximized when the indicator function is one for X1 ≥ YZ , and

zero for X1 < YZ . This is the case when bidder 1 bids b∗ (X1).

For the remainder of the proof we consider an arbitrary symmetric regular equi-

librium and make deductions about its form for the special case where Z is fixed at

k. Suppose that there is a symmetric equilibrium with bid functions b̃, where b̃ is

a regular function having break points a(1), a(2), ...a(M+1). We will need to use the

fact that for every x ∈ QX and δ > 0 there is a positive probability of every bidder

receiving a signal in (x − δ, x + δ). This is established in Lemma 7 in the online

appendix. The proof proceeds in several stages, where each stage proves a property

of the equilibrium when Z is fixed at k, (though this assumption is not needed for

step 4).

Step 1. vW (x, b) = E[V1|X1 = x,WZ = b] is strictly increasing in x. When

WZ = b, then we may, by symmetry with respect to competitors, suppose that bidder

2 has the kth highest bid amongst the bidders, and hence is the bidder with bid b.

Thus

E[V1|X1 = x,WZ = b] = E [V1|X1 = x,X−1 ∈ Hk(b)] , (12)

where

Hk(b) = {(x2, ..., xn) : b̃(x2) = b, b̃(xi) ≥ b, i = 3, ..., k+1, b̃(xj) ≤ b, j = k+2, ..., n},

and we also use symmetry in assuming that bidders 3, .., k+ 1 have bids greater than

b. Since Hk(b) is a sublattice we can use Lemma 1, to show E[V1|X1 = x,WZ = b] is

strictly increasing in x.
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Step 2. There cannot be an interval in which b̃ is constant. Suppose otherwise and

b̃ = b0 on the interval (q0− δ, q0 + δ). From Step 1 we know that E[V1| q0− δ ≤ X1 <

q0,WZ = b0] < E[V1| q0 < X1 ≤ q0 + δ,WZ = b0]. Since bids are at b0 throughout

this region, we must either have (A) a positive expected payoff on the right hand part

of the range, i.e. E[V1| q0 < X1 ≤ q0 + δ,WZ = b0] > b0 or (B) a negative expected

payoff in the left hand part of the range i.e. E[V1| q0 − δ ≤ X1 < q0,WZ = b0] < b0.

In case (A) we get an improvement by increasing the bid from b0 to b0 + ε for signals

in the range (q0, q0 + δ). First note from our earlier observation there is a non-zero

probability of all the bidders having signals in (q0 − δ, q0 + δ) and making the same

bid b0. Thus if X1 ∈ (q0, q0 + δ), there is a positive probability that enough players

bid at b0 for WZ to remain at b0 after the marginal increase. Since the old bid is

accepted only some of the time while the new bid is always accepted, there will be

an improvement in payoff. For small enough ε this will guarantee an improvement in

expected payoff, contradicting the fact that b̃ is an optimal bid for bidder 1. The same

type of argument also applies in case (B) where player 1 receives negative expected

payoff for signals in the range [q0− δ, q0) when WZ = b0. In this case we can show an

improvement by changing the bid function to b0−ε for signals in the range [q0−δ, q0).

Step 3. vW (x, b) = E[V1|X1 = x,WZ = b] is continuous in b, except for prices

in the set G, which is the set of bid values at possible break points. Thus G = {y :

limδ→0 b̃(a
(k) + δ) = y or limδ→0 b̃(a

(k) − δ) = y, for some k = 1, 2, ...,M + 1}. We
define A(b) = {x : b̃(x) ≥ b}, B(b) = {x : b̃(x) ≤ b} so that these are collections of
intervals defined by the bid function b̃. Then we see that we can write

Hk(b) = {(x2, x3, ...xn) : b̃(x2) = b, x3, ..., xk+1 ∈ A(b), xk+2, ...xn ∈ B(b)}.

Moreover because b is not in G, and because the segments of b̃ are either continuous

increasing or continuous decreasing (segments where b̃ is constant were ruled out in

step 2), a small change in b implies a small change in the end points of the intervals

that make up A(b) and B(b). From this it follows that E[V1|X1 = x,WZ = b], defined

from (12), is continuous in b.

Step 4. In the interior of an interval where b̃ is continuous, we have b̃(x) =

vW (x, b̃(x)). Since from Step 2 there are no segments of constant value in b̃, the
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probability that WZ = b is zero. Thus the expected profit to bidder 1 from a bid b

given a signal x is Π1(b, x) = E [ (V1 −WZ) 1WZ<b|X1 = x]. Write b̃x = b̃(x). Since

b̃(x) is optimal, Π1(̃bx, x) ≥ Π1(̃bx − δ, x) so

E
[

(V1 −WZ) 1WZ<b̃x
− (V1 −WZ) 1WZ<b̃x−δ

∣∣∣X1 = x
]

= E
[

(V1 −WZ) 1b̃x−δ≤WZ<b̃x

∣∣∣X1 = x
]
≥ 0.

From our observations above there is a non-zero probability of all signals being in a

range where bids are in the interval (̃bx − δ, b̃x). Hence Pr(̃bx − δ < WZ < b̃x) > 0.

Since

E
[(
V1 − b̃x + δ

)
1b̃x−δ≤WZ<b̃x

∣∣∣X1 = x
]

= Pr(̃bx − δ < WZ < b̃x)E
[(
V1 − b̃x + δ

)∣∣∣X1 = x, b̃x − δ ≤ WZ < b̃x

]
,

we can deduce that

E
[(
V1 − b̃x + δ

)∣∣∣X1 = x, b̃x − δ ≤ WZ < b̃x

]
≥ 0. (13)

Similarly we can deduce that

E
[(
V1 − b̃x − δ

)∣∣∣X1 = x, b̃x ≤ WZ < b̃x + δ
]
≤ 0. (14)

Now E
[
V1|X1 = x, b̃x − δ ≤ WZ < b̃x

]
approaches vW

(
x, b̃x

)
as δ → 0, since vW is

continuous with respect to b (Step 3). Thus the left hand side of (13) approaches

vW

(
x, b̃x

)
− b̃x as δ → 0 . But the left hand side of (14) approaches the same limit

as δ → 0, and this implies that vW (x, b̃x)− b̃x = 0, as required.

Step 5. The bid function b̃ is strictly increasing for x ∈ QX . Consider a potential

bid b0 made when the signal is x0 and compare the profit made if the bid is increased

by δ. Then

Π1(b0 + δ, x0)− Π1(b0, x0) = E [ (V1 −WZ) 1WZ<b0+δ − (V1 −WZ) 1WZ<b0|X1 = x0]

= E [ (V1 −WZ) 1b0<WZ<b0+δ|X1 = x0]

≥ E [ (V1 − b0 − δ) 1b0<WZ<b0+δ|X1 = x0]

= Pr(b0 < WZ < b0 + δ)|X1 = x0))E [V1 − b0 − δ|X1 = x0, b0 < WZ < b0 + δ] .
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Now, provided b0 6∈ G, then vW (x0, b0) is continuous in b0 from Step 3, and hence as δ

approaches zero E[ V1 − b0 − δ|X1 = x0, b0 < WZ < b0+δ] approaches vW (x0, b0)−b0.

Thus the change in profit for a small increase in b0 has the same sign as vW (x0, b0)−b0.

Thus the optimal choice b̃(x0) is greater than b0 if vW (x0, b0) > b0.

Consider two signals xB and xA with xB > xA. If xA is in the interior of an

interval where b̃ is continuous, and with xB > xA then from Step 1 and Step 4

vW (xB, b̃(xA)) > vW (xA, b̃(xA)) = b̃(xA). Applying the observation above shows that

b̃(xB) > b̃(xA). The argument can be easily extended to show that b̃ cannot jump

down at the end of a segment, using continuity of b̃ within segments.

Step 6. The bid function b̃ is continuous for x ∈ QX . Define the set

Jk(x) = {(x2, x3, ...xn) : x2 = x, x3, x4, ..., xk+1 > x, xk+2, xk+3, ...xn < x}. (15)

From Step 5 we know that b̃ is strictly increasing. This (and symmetry of the equi-

librium) means that WZ = b̃(x) is equivalent to having k signals greater than x and

one signal exactly equal to x. Thus

vW (x, b̃(x)) = E
[
V1|X1 = x,WZ = b̃(x)

]
= E [V1|X1 = x,X−1 ∈ Jk(x)]

where symmetry allows us to specify exactly which signals are above or below x. But

E [V1|X1 = x,X−1 ∈ Jk(x)] is a continuous function of x (see Lemma 9 in the on-

line Appendix), and hence vW (x, b̃(x)) is continuous and thus, from Step 4, we have

continuity of b̃.

Thus we have established, in the case that Z is fixed at k, that a regular symmetric

equilibria b̃ must be continuous and strictly increasing and have b̃(x) = vW (x, b̃(x)).

Hence from (2) b∗(x) = v(x, x) is the only such equilibria.

For the case with uncertain Z and strictly increasing symmetric regular bid func-

tions, it follows from step 4 and (2) that b̃(x) = vW (x, b̃(x)) = v (x, x) wherever the

bid function is continuous.

Proof. (Proposition 2) If X0 is disclosed to all bidders, then private signals

will be drawn from a new probability density that is conditional on X0. It can be

shown that the remaining signals (i.e. signals except for X0) are still affi liated after

conditioning on X0 (Milgrom &Weber, 1982). Thus results in Section 3 will also hold
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for the new conditional distribution. For example, there will be a symmetric BNE

where each bidder i ∈ {1, . . . , n} has a strictly increasing bid function b̂∗ (x;x0) =

v̂ (x, x;x0), where

v̂ (x, y;x0) = E [V1|X1 = x, YZ = y,X0 = x0] . (16)

It follows from Theorem 5 in Milgrom & Weber (1982) that v̂ is non-decreasing in its

arguments. Let

P I (X1) = E [ v̂ (YZ , YZ ;X0)|X1 > YZ ]

PN (X1) = E [v (YZ , YZ)|X1 > YZ ]

be the expected payment from bidder 1 when it observes X1 and gets the offer ac-

cepted. The ranking of revenues is more relevant for an auctioneer selling multiple

items. Hence, we also define the following expected payment to the auctioneer from

bidder 1, or any bidder, observing the signal x:

R (x) = E [P (x) 1YZ<x|X1 = x] . (17)

We have25

R (x) = E [P (x) 1YZ<x|X1 = x] = P (x) Pr (YZ < x|X1 = x) (18)

for both I and N cases and we have dropped the superscript. The probability

Pr (YZ < x|x) is the same irrespective of whether X0 is disclosed or not. Hence,

it is suffi cient to rank the expected payment P (x) from bidder 1 when it observes

X1 and gets the bid accepted. It follows from Lemma 10 in the on-line Appendix

that P I (x) ≥ PN (x). The proof of the lemma is inspired by the proof of Theorem

8 in Milgrom & Weber (1982). One difference is that we replace Y1 by YZ . Another

difference is that we prove the inequality for each realization of X1, as we need this

25Note that this expression is also valid when X0 is disclosed.

RI (x) = E [ v̂ (Yz, Yz, X0) 1Yz<x|X1 = x] = E [ v̂ (Yz, Yz, X0)|X1 = x, Yz < x] Pr (Yz < x|X1 = x)

= P I (x) Pr (Yz < x|X1 = x)
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property to rank revenues of an auctioneer selling multiple units.

To prove the result for Z, which is a discrete random variable, we need Assumption

5, so that signals are affi liated also when conditioning on Z. Apart from this, the

argument proving the publicity effect for Z is the same as the argument made for X0.

Proof. (Proposition 3) Let τ (b) = b∗−1 (b). Bidder 1 will choose its bid op-

timally. Thus we differentiate Π (b, x) in (8) with respect to b. Leibniz’rule gives

us:

∂Π (b, x)

∂b
= τ ′ (b) (v (x, τ (b))− b) fYZ (τ (b)|x) (19)

−FYZ (τ (b)|x) .

Hence, the symmetric equilibrium candidate b∗ (x), where τ (b) = x and b = b∗ (x),

can be found from the following differential equation

0 =
1

b∗′ (x)
(v (x, x)− b∗ (x)) fYZ (x|x)− FYZ (x|x) , (20)

which can be simplified to the differential equation:

b∗′ (x) = (v (x, x)− b∗ (x))
fYZ (x|x)

FYZ (x|x)
. (21)

The solution to this type of Ordinary Differential Equation (ODE) can be found in

Milgrom & Weber (1982), and is given in (9). The solution implies that v (x, x) >

b∗ (x). We have that FYZ (x|x) > 0 for x ∈ QX . Hence, it follows from (21) that

b∗′ (x) > 0 and finite. Moreover, it follows that b∗ (x) is continuous for a given x ∈ QX .

Next, we want to verify that b∗ (x) is the best response of bidder 1. It follows from

(19) that:

∂Π (b, x)

∂b
= fYZ (τ (b)|x) τ ′ (b)

(
v (x, τ (b))− b− 1

τ ′ (b)

FYZ (τ (b)|x)

fYZ (τ (b)|x)

)
. (22)

We have from Proposition 1 that YZ is affi liated. It follows (see Lemma 1 in Mil-

grom & Weber (1982)) that
FYZ ( τ(b)|x)

fYZ ( τ(b)|x)
is non-increasing with respect to x. Moreover,

v (x, τ (b)) is non-decreasing with respect to x. We have ∂Π(b,x)
∂b

= 0 for x = τ (b).

Thus, it follows from (22) that ∂Π(b,x)
∂b
≥ 0 for x ≥ τ (b) and ∂Π(b,x)

∂b
≤ 0 for x ≤ τ (b).

Equivalently, ∂Π(b,x)
∂b

≥ 0 for b∗ (x) ≥ b and ∂Π(b,x)
∂b

≤ 0 for b∗ (x) ≤ b. Thus we can

conclude that b∗ (x) is the best response of bidder 1.
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Proof. (Proposition 4) We use the superscripts U and P to denote a uniform-
price and pay-as-bid auction, respectively. Conditional on acceptance, J (x̃, x) is the

expected payment when the bidder observes x ∈ QX and bids as if observing x̃ ∈ QX .

In the uniform-price auction the price is set by the bid bU (YZ) if bidder 1’s bid is

accepted. Hence, it follows from Theorem 1 that

JU (x̃, x) = E [b (YZ)|X1 = x, YZ ≤ x̃] = E [v (YZ , YZ)|X1 = x, YZ ≤ x̃] . (23)

We know that v is non-decreasing in its arguments. Hence, it follows from Theorem

5 in Milgrom & Weber (1982) that JUx ≥ 0. In the special case where X1, . . . , Xn, Z

are all independent it follows that JUx = 0. Moreover, we have

lim
x↘aL

JU (x, x) = lim
x↘aL

E [v (YZ , YZ)|X1 = x, YZ = x] = lim
x↘aL

v (x, x) .

For the pay-as-bid auction, we have JP (x̃, x) = bP (x̃), so JPx = 0. Moreover, we

have from Proposition 3 that limx↘aL J
P (x, x) = limx↘aL v(x, x). The statement now

follows from the above and Lemma 2.

Proof. (Proposition 5) Because applying reflection twice brings us back to the

original auction we only need to prove this implication in one direction. Suppose

that the bids bi(x) are an equilibrium in auction A. Consider a realisation in auction
A with signals {S1, ..., Sm, X1, ...Xn} and with quantity ZA. Consider bidder 1 with

value V1. LetWA be the ZAth highest bid amongst the other bids bi(Xi), i = 2, 3, ..., n.

Then the profit for bidder 1 in this realisation is V1 −WA when WA < b1(X1) and

pA(V1 −WA) when b1(X1) = WA (where pA < 1 is the probability of being accepted

in case of multiple bids at the clearing price) and zero otherwise. Recall that in case

of ties, we have assumed that acceptance is determined randomly, such that each bid

at the clearing price has the same chance of being accepted.

Now we consider the profit made by bidder 1 in the reflected auction at this

realisation. Firm 1 has value −V1 in the reflected auction and bids −b1(X1). Let

WB be the ZBth highest bid amongst bidders j 6= 1 in the reflected auction, where

ZB = n− ZA. Because the order of bids is reversed, if bidder j bids at WA (and has

the ZAth highest bid) in auction A, this bidder will bid at WB and have the ZBth

highest bid in the reflected auction. Hence WB = −WA. A bid strictly above WA
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in auction A is accepted, but after reversing the order, the bid is strictly below WB

(and rejected) in auction B, and vice versa. If bidder 1 bids at WA it will also bid

at WB in the reflected auction. We will show that the acceptance probability for

a rationed bid at WA in auction A becomes the rejection probability for a rationed
bid at WB in auction B. Suppose b1(X1) = WA in auction A and that there are k
bids at WA of which ` are accepted, so that pA = `/k. Then in the reflected auction

there will be k − ` accepted from this set, meaning that there will be a probability

of acceptance for bidder 1 of (k − `)/k = 1 − pA. Hence in the reflected auction the
profit for bidder 1 with signal X1 is: −V1 −WB = −V1 + WA when WB < −b1(X1)

and (1− pA)(−V1 −WB) when −b1(X1) = WB and zero otherwise.

The expected profit for bidder 1 in auction A conditional on the signal X1 = x is

E[Π1 |X1 = x] = E[(u1 (S,X)−WA)IWA<b1(x)+pA(u1 (S,X)−WA)IWA=b1(x) |X1 = x].

At an equilibrium this is maximized by the bid b1(x).

The expected profit for bidder 1 in the reflected auction observing the same signal

is

= E[(−u1 (S,X)−WB)IWB<−b1(x) + (1− pA)(−u1 (S,X)−WB)IWB=−b1(x) | X1 = x]

= E[(−u1 (S,X) +WA)IWA>b1(x) + (1− pA)(−u1 (S,X) +WA)IWA=b1(x) | X1 = x]

= E[Π1 | X1 = x]− E[u1 (S,X)−WA | X1 = x].

The term E[u1 (S,X) −WA | X1 = x] is conditional on the signal X1 but is inde-

pendent of bidder 1’s bid. Hence, the payoff of bidder 1 is maximized in the reflected

auction if (and only if) its profit is maximized in the original auction. Thus the

reflected bids in the reflected auction must be an equilibrium.

Proof. (Proposition 6) First we note that max{V i : i /∈ Ω} > min{V i : i ∈ Ω},
because Assumption B and our definitions imply thatmin{V i} > V ′L ≥ VL ≥ min{V i :

i ∈ Ω}. Hence, bids from high-bidding bidders are always accepted and bids from

the low-bidding bidders are always rejected. Low bidding bidders not in Ω have zero

profit, but cannot improve unless they are accepted with a positive probability. This

would require them to bid at a higher value than max{V i : i /∈ Ω}. Doing so would
imply Z + 1 bidders with bids above max{V i : i /∈ Ω} so the price paid would be at
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least this value leading to a loss. On the other hand a high bidding bidder is surely

accepted at a price that is lower than min{V i : i ∈ Ω} and hence always lower than
its value. This price is unaltered by its actions (unless its bid is rejected), and thus

the bidder cannot improve. So we have established that high-low bidding will be a

BNE.

Before proving Theorem 2, we need some additional notation. We write Bi for

the set of bids for bidder i. There is a distribution of bid values on Bi and because

of our assumptions on the structure of bids this will consist of some intervals with a

positive density and some points where there is a positive probability mass (occurring

where the bid function is constant on an interval). From our assumption on the

characteristics of the distribution of signals, the intervals with positive density and

the points of positive probability mass on Bi remain the same no matter what signals

are received by other bidders, or the value of Z.

In an equilibrium, a bid y made by bidder i is called active if it is accepted and

rejected with positive probabilities. This property is determined by the characteristics

of the probability distribution of the other bidders’bids. Hence from our assumptions

the activity status of a bid at some price y is independent of the bidder’s signal x. If

there are more than one signal leading to a bid at y, then all of those bids will have

the same activity status.

A bid at y by bidder i is not active if there are guaranteed to be at least Z bidders

with bids strictly higher than y, since then the bid y is always rejected. We say bidder

j strictly dominates y if there is a probability of 1 of bids by bidder j above y. So the

condition for almost surely rejection of the bid y is that there are Z or more bidders

other than i, which strictly dominate y. Similarly a bid at y by bidder i is not active

if there are guaranteed to be at least n − Z bidders with bids strictly lower than y,

since then the bid y is always accepted. We say that y strictly dominates bidder j

if there is a probability of 1 of bids below y by bidder j. So the condition for almost

surely acceptance of the bid y is that y strictly dominates n−Z or more bidders other
than i. Thus a bid of y by bidder i is active if there are strictly less than Z bidders

j (with j 6= i) which strictly dominate y, and strictly less than n−Z bidders j (with
j 6= i) that y strictly dominates. In the on-line Appendix, we prove the following

result that is related to ex-post optimality.
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Lemma 5 If a bid differs from the bidder’s valuation, there cannot be a positive

probability of a bid from a competitor that is either equal to this bid or strictly between

this bid and the bidder’s valuation if either the bidder’s bid or the competitor’s bid is

active.

It is helpful to define critical values a− and a+ which determine which bids are

active in an equilibrium. We let p[j] = inf{Bj} and let a− be the Zth element p[j]

if these are put in non-increasing order. Similarly we let p[j] = sup{Bj} and let a+

be the n − Z element p[j] if these are put in non-decreasing order. The following

properties of active bids are proved in the on-line Appendix.

Lemma 6 If the inequality a− ≤ a+ holds, then any bid y with a− < y < a+ is active.

Moreover a bid at a− < a+ by bidder i is active if there are less than Z bidders j

(with j 6= i), either with p[j] > a−, or with p[j] = a− and not having an accumulation

of bids at a−. Also a bid at a+ > a−by bidder i is active if there are less than n− Z
bidders j (with j 6= i), either with p[j] < a+, or with p[j] = a+ and not having an

accumulation of bids at a+. If a− = a+ then a bid by bidder i at this common price

is active if the conditions for both a− and a+ hold. A bid of y with y < a− is rejected

with certainty, and is not active. A bid of y with y > a+ is accepted with certainty,

and is not active.

Proof. (Theorem 2) We start by establishing some inequalities: (i) a− < a+;

(ii) VL < a+; and (iii) VU > a−.

(i) a− < a+. Since the equilibrium is not of high-low type, then from Lemma 4

for any bidder the bid is accepted with positive probability for the highest signals,

and rejected with positive probability for the lowest signals. If a− > a+ then since

there are always Z bids above or at a− the n−Z bidders bidding at or below a+ have

bids rejected with certainty even for the highest signal, and we get a contradiction.

Hence a− ≤ a+.

Suppose that a− = a+, and write a0 for this common price. Then since all bidders

have bids rejected with positive probability for the lowest signal, the Z bidders bidding

above or at a0 must all have bids at a0 with positive probability. Similarly, since the

n−Z bidders bidding below or at a0 have bids accepted with positive probability for
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the highest signal, these bidders must all bid at a0 with positive probability. Thus

every bidder has positive probability of bidding at a0 and all these bids are active.

To avoid a contradiction from Lemma 5 bidders with values strictly above a0 must

bid strictly above a0 and bidders with values strictly below a0 must bid strictly below

a0. Thus the Z bidders bidding at a0 or above have values at a0 or above, and the

n−Z bidders bidding at or below a0 have values at a0 or below. But this contradicts

VL < VU which is an implication of Assumption B. Thus we have a− < a+.

(ii) VL < a+. Suppose otherwise and VL ≥ a+. Then there are Z bidders, for

which all values are at a+ or above. Since Z ≥ Z ≥ 2 (Assumption A), there are

at least two such bidders. Since each of these two have bids rejected with positive

probability, then the two bidders have ranges of values, (say [vx, vy] for the first with

a+ < vx < vy, and [ux, uy] for the second with a+ < ux < uy ) for which these

bidders bid at a+ or below (according to Lemma 6) and are rejected with a positive

probability. But if any bid of the first bidder has a positive probability of being

accepted for signals in [vx, vy] then this bid is active and we obtain a contradiction

from Lemma 5 which can be applied both when the second bidder has bids from

[ux, uy] at or below the active bid of the first bidder and also when these bids are in

between the active bid of the first bidder and a+. Thus for signals in [vx, vy] the first

bidder bids low enough (at or below a−) to have zero probability of acceptance. It

follows from the definition of a− that there are always Z bids at or above a−, and that

at most Z−1 bidders always bid above a−+ε for any ε > 0. This implies that, with a

positive probability, the clearing price is at a− or below. We have a− < a+ < vx < vy,

so this gives a contradiction to Lemma 3 and ex-post optimality for the first bidder

for values in the range [vx, vy].

(iii) VU > a−. This is established using a similar argument. If this does not

hold and VU ≤ a− then there are at least n − Z bidders with all values less than or
equal to a−. We have n − Z ≥ n − Z, so Assumption A implies that there are at

least two such bidders. Since each of these two have bids accepted with a positive

probability for their high bids, then the two bidders have ranges of values (say [vx, vy]

for the first with vx < vy < a−, and [ux, uy] for the second with ux < uy < a− ) for

which these bidders bid at a− or above (according to Lemma 6) and are accepted with
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positive probability. But if any bid of the first bidder has a positive probability of

being rejected for signals in [vx, vy] then this bid is active and we have a contradiction

from Lemma 5 which can be applied both when the second bidder has bids from

[ux, uy] at or below the active bid of the first bidder and also when these bids are

above the active bid of the first bidder. Thus for signals [vx, vy] the first bidder bids

high enough (at or above a+) to have zero probability of being rejected. It follows

from the definition of a+ that there are n − Z bidders that always bid at or below

a+, and that at most n− Z − 1 bidders always bid below a+ − ε for any ε > 0. This

implies that, with a positive probability, the clearing price is at a+ or above. Since

vx < vy < a− < a+ this gives a contradiction to Lemma 3 and ex-post optimality for

the first bidder for values in the range [vx, vy].

We begin by proving part (a) which we accomplish in a number of steps. Define

v0 = max(a−, VL) and v1 = min(a+, VU). We have established that a− < VU and it

follows from Assumption B that VL < VU , so we have v0 < VU . But we also have

VL < a+ and a− < a+, so v0 < a+ and we deduce v0 < v1.

Step 1. We show there are bids in the intervals just above a− and just below a+.

We will prove this for a− (the proof is analogous for a+). Recall that by definition,

a− is the infimum of bids made by bidder [Z]. If this bidder has no accumulation of

bids at a−, then it follows from the construction of regular bids that bidder [Z] must

have bids in the intervals just above a−, and we are done. The same argument can

be made for any other bidder that has a− as the lower bound on its bids. Hence,

if there are no bids in the interval just above a−, then bidder [Z], and any other

bidder that has a− as its lower bound on bids, must have an accumulation of bids

at a−. From the ordering of the bidders, it follows that at most Z − 1 bidders bid

strictly above a− with certainty, so the accumulated bids at a− are accepted with a

positive probability. Moreover, we have assumed that all bidders have bids accepted

with positive probability for the highest signals. Hence, all bidders bid at or above

a− with a positive probability. Thus bids at a− are active since they are rejected

and accepted with positive probabilities. A similar argument can be made for a+. If

there is an accumulation of bids at a+, then those bids must be active.

Let g1 be the infimum of the bids in (a−, a+) and take g1 = a+ if there are no
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such bids. We want to show that g1 = a−. Suppose this fails and g1 > a−, so there

is an interval (a−, g1) without bids. If g1 < a+ then it follows from Lemma 6 that

there are active bids at g1 or just above. The definition of a+ implies that there is

an accumulation of bids at a+ or bids just below a+. Hence, if g1 = a+ then there

must be an accumulation of bids at a+, which (according to our result above) are

active. From assumption A and the definition of a− there are (at least) two bidders

j1 and j2 (indexed by Z + 1, and Z + 2 when p[j] are put in non-increasing order)

with inf{Bj1} ≤ a− and inf{Bj2} ≤ a−. Because their high bids are accepted with

positive probability, these two bidders both have bids greater than or equal to a−

with positive probability. Thus they each have a range of values for which they bid

at a− or above. If for either bidder this range of values includes values strictly less

than a− then since there are active bids at a− from bidder [Z], we get a contradiction

from Lemma 5. Thus the range of values for each bidder j1 and j2 has a supremum

strictly greater than a−.Consider the bids for these two bidders for values in the range

(a−, g1). Since there are active bids at a− from bidder [Z], we get a contradiction

from Lemma 5 if either of these bidders bid at a− or below for some subinterval of

values in this range. We know that there is a positive probability of active bids in

the range [g1, g1 + δ). Hence, there would be a contradiction from Lemma 5 if both

j1 and j2 bid at or above g1 for subintervals of values (which could differ between the

two bidders) in the range (a−, g1). Hence we have established that g1 = a−.

Step 2. We show that there are bids throughout (v0, v1).

We suppose there is a gap (g3, g4) with no bid in this interval, with a− ≤ g3 <

g4 ≤ a+. We choose g3 as small as possible and g4 as large as possible subject to

there being no bid in the interval (g3, g4) (so there are bids at g3 or just below, and

at g4 or just above). The result of step 1 implies that this definition has a− < g3

and g4 < a+. Suppose that there is an intersection between (g3, g4) and the range

(v0, v1) ⊆ (VL, VU). Then from Assumption C there are at least three bidders with

values in a subinterval XA of (g3, g4). These bidders cannot bid in (g3, g4) for values

in XA, so either at least two of them bid at g3 or below, or at least two of them bid at

g4 or above for values in XA. Suppose two bid at g3 or below. We know that there is a

bid at g3 or just below, which may be a bid from one of these bidders. Moreover this

bid is active since a− < g3 < a+. This gives a contradiction from Lemma 5 both in

40



the case of bids at g3 and also when the bids are strictly less than g3. In the same way

if two bidders bid at g4 or above for some values in XA, we get a contradiction since

there is an active bid at g4 or just above (possibly from one of these two bidders).

Thus we have shown that any gap (g3, g4) is outside the interval (v0, v1).

Step 3. We show that each bidder bids at value for values in the range (v0, v1) and

bids at or below v0 for values below v0 and at or above v1 for values above v1.

The bids throughout (v0, v1) are all active. If a bidder with value at say y ∈ (v0, v1)

makes a bid that is not equal to y there will be active bids either just below y or just

above y between the bid and the bidder’s value. This gives a contradiction to Lemma

5. For similar reasons, a bidder cannot bid above v0 for values below v0 and a bidder

cannot bid below v1 for values above v1.

Step 4. We show that VL ≤ a− so that v0 = a−

Suppose that VL > a− and we will obtain a contradiction. Let pL be the infimum

of bids made by bidders in the set ΩL, which has size Z, and let iL ∈ ΩL have

inf{BiL} = pL. We have Z − 1 other bidders j in ΩL with inf{Bj} ≥ pL and so from

the definition of a− we can deduce pL ≤ a−. It follows from the definition of VL that

the bidder iL has values greater than or equal to VL and so from our assumption on

the regularity of bids, there is a range of values (aL, bL), where aL > VL, for which

bids are below VL. But VL > a− implies that v0 = VL, so we get a contradiction from

the result in step 3 (and we are done).

Step 5. We show that a− ≤ V ′L

We suppose that a− > V ′L and obtain a contradiction. The definition of V
′
L means

that any set of Z bidders contains at least two with V j ≤ V ′L. We consider the Z

bidders with the highest values of p[j]. Amongst this set of bidders, which by definition

have p[j] ≥ a−, there are at least two with V j ≤ V ′L < a−. Both these bidders bid

above their values for a range of signals below a−. If either of them bid strictly above

a− for signals in this range then there is a contradiction from Lemma 5, since we know

(Step 1) that there are active bids just above a−. Thus both have an accumulation

of bids at a− which are active from our observation earlier. But this also gives a

contradiction from Lemma 5. Note that this upper bound on a− is stronger than the

bound we proved above in (iii) that a− < VU since, from Assumption B, V ′L < VU .
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Step 6 We complete the proof of part (a)

At this point we have shown that VL ≤ a− ≤ V ′L. We can use this to establish

that V ′U ≤ a+ ≤ VU . We consider the reflected equilibrium. The value of a− in the

reflected equilibrium is −a+, and the values of VL and V ′L in the reflected equilibrium

are −VU and −V ′U respectively. Hence we can apply what we have shown to the
reflected equilibrium to establish that −VU ≤ −a+ ≤ −V ′U and v1 = a+ Thus we

have established that it is necessary for an equilibrium that is not of the high-low

type to satisfy the properties described in part (a).

Now we turn to part (b). When v0 = VL then a− = VL. It follows from Step 3

that all bidders bid at v0 or lower for signals strictly less than v0.

For part (c) We suppose v0 > VL and hence v0 = a− > VL. We consider the

Z bidders with the highest values of p[j], and hence with all bids at or above a−.

From the definition of VL we see that there is at least one bidder iX in this set with

V iX
≤ VL, which bids above value for values in the range (V iX

, a−). It follows from

Step 3 that bidder iX must bid at a− for values in the range (V iX
, a−). The condition

a− > VL implies that at most Z − 1 bidders have all values above a−. It follows from

Step 3 that other bidders bid at a− or lower with a positive probability. This means

that bids at a− are active. But to avoid a contradiction from Lemma 5 no competitor

of bidder iX can bid in the range
(
V iX

, a−
]
with a positive probability. Hence, except

for bidder iX , all bidders must bid at V iX
or lower for values below a−.

It is straightforward to show that parts (d) and (e) follow from parts (b) and (c)

applied to the reflected auction (in the same way that we did for Step 6 of part (a)).

Finally we show that a set of bids satisfying these conditions must be an equilib-

rium, since bids are all ex-post optimal. Suppose that a bidder has a signal between

v0 and v1 and bids its value, then these bids are always ex-post optimal, and thus

we only need to consider bids not at value outside this range. Consider the case that

v0 = VL and suppose that a bidder observes a signal less than v0 then, since all bids

between v0 and v1 are made at value, with probability 1 there are Z bids strictly

above v0. Thus every bid at or below v0 is rejected with certainty, and so bidding

at y ≤ v0 for a signal less than v0 is ex-post optimal. Suppose that VL < v0 ≤ V ′L

and we consider bidder iX bidding at v0 for values below v0. This is the only bidder
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with an accumulation of bids at this price. If the bid is rejected, the price will be at

v0 or above. If the bid is accepted then the clearing price is with probability 1 set

by one of the bidders with values below v0 all of whom bid below V iX
, so that the

clearing price cannot be higher than the value for iX and we have ex-post optimality

for bidder iX . Now consider bidders bidding below V iX
for the case VL < v0 ≤ V ′L.

Since there are Z − 1 bidders who bid above V ′L with probability 1 and bidder ix bids

at v0 or above, bidders bidding below V iX
have their bids rejected. Since the last

accepted bid is at v0 or above, which is higher than their value, then these bids are

also ex-post optimal. We can use the reflected equilibrium to show that there is also

no improvement possible at the top of the bidding range, where v1 takes the place of

v0.
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ON-LINE APPENDIX

Analysis of Example 1

There are three bidders, each receives a private signal Xi ∈ (0, 2). Each bidder has a

value for the object determined from the signals and given by V =
∑
Xi. Signals are

uniformly distributed on (0, 2) and are independent. The number of items auctioned,

Z, is also determined by the signals. If two or three of the signals are in the range

(0, 1) then Z = 2, and otherwise Z = 1. It can be shown that −Z is affi liated with

the signals (Anderson & Holmberg, 2023).

First we show that there cannot be an increasing equilibrium. Assume that bids

are increasing. We evaluate E[V | X1 = x, YZ = x] at x = 1 + δ, δ > 0 and small.

Assume without loss of generality that X2 < X3. If both X2, X3 ∈ (0, 1) then Z = 2,

and YZ < X1. Otherwise Z = 1 and YZ = x implies X3 = x and X2 < x. This gives

an expected value where X2 is uniform on (0, 1 + δ), so

E[V | X1 = x, YZ = x] = 2(1 + δ) + (1 + δ)/2 =
5

2
+

5

2
δ.

Next we evaluate E[V | X1 = x, YZ = x] at x = 1 − δ, δ > 0 and small. In the cases

where Z = 1, we have X2 and X3 ∈ (1, 2) so we do not have YZ = X3 = X1. So

consider cases where X2 ∈ (0, 1) and X3 ∈ (X2, 2) and Z = 2, and YZ = X2. Thus

YZ = X1 = 1− δ implies X3 ∈ (1− δ, 2) and is equally likely to take any value in this

range. So

E[V | X1 = x, YZ = x] = 2(1− δ) +
3− δ

2
=

7

2
− 5

2
δ.

Hence the value of E[V | X1 = x, YZ = x] jumps down at x = 1. This gives rise to

two different signals that can have the same bid value.

The equilibrium bids are given by b∗(x) = 1 + 5x
2
, for x ∈ (0, 1

2
), b∗(x) = h−1

1 (x)

for x ∈ (1
2
, 1), b∗(x) = h−1

2 (x) for x ∈ (1, 3
2
) and b∗(x) = 5x

2
for x ∈ (3

2
, 2). Here the

functions h1(b) and h2(b) are determined from the two simultaneous equations:

b =
1

2 (2− h1(b))

(
2h2(b)2 − 2h1(b)h2(b)− 2h2(b)− 5h1(b)2 + 10h1(b) + 4

)
,(24)

b = h1(b) +
5

2
h2(b) +

h1(b)

h2(b)
− h1(b)2

h2(b)
− 1. (25)

Our aim is to show that the first order conditions hold for this solution i.e. that

b∗(x) = E[V | X1 = x,WZ = b∗(x)]. We will continue to assume that X2 < X3.
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First consider X1 = x ≤ 0.5. Then ifWZ = b∗(x) at least two signals are less than

1 and we have Z = 2. Hence we have X2 = x and X3 is equally likely to have any

value in (x, 2). Thus

E[V | X1 = x,WZ = b∗(x)] = 2x+
2 + x

2
= 1 +

5

2
x

as required.

Second consider X1 = x ≥ 1.5. Then if WZ = b∗(x) there are at least two signals

greater than 1 and Z = 1. Thus X3 = x and X2 is equally likely to have any value

in (0, x). Thus

E[V | X1 = x,WZ = b∗(x)] = 2x+
x

2
=

5

2
x

as required.

For the overlapping solution we define the function g(x) = h2(h−1
1 (x)) for x ∈

(0.5, 1). Thus b∗(g(x)) = b∗(x), and g(x) > 1. Now consider X1 = x ∈ (0.5, 1).

Then WZ = b∗(x) if either X2 = x and X3 ∈ (x, 1) ∪ (g(x), 2) (implying Z = 2) or

X3 = g(x) and X2 ∈ (1, g(x)) (implying Z = 1). The probabilities of these events are

proportional to the lengths of the sets involved: 3− x− g(x) and g(x)− 1. Also the

average signal value over (x, 1) ∪ (g(x), 2) is

(1− x)(1 + x) + (2− g(x))(2 + g(x))

2(3− x− g(x))
=

5− x2 − g(x)2

2(3− x− g(x))
,

so

E[V | X1 = x,WZ = b∗(x)]

=
3− x− g(x)

2− x (2x+
5− x2 − g(x)2

2(3− x− g(x))
) +

g(x)− 1

2− x (x+ g(x) +
1 + g(x)

2
)

=
1

2 (2− x)

(
2g(x)2 − 2xg(x)− 2g(x)− 5x2 + 10x+ 4

)
.

For a given value of b we have x = h1(b) and g(x) = h2(b) so we deduce from (24)

that E[V | X1 = x,WZ = b∗(x)] = b∗(x) as required.

For X1 = x ∈ (1, 1.5), we have WZ = b∗(x) if either X2 = g−1(x) and X3 ∈
(g−1(x), 1) (implying Z = 2) or X3 = x and X2 ∈ (0, g−1(x)) ∪ (1, x) (implying

Z = 1). The probabilities of these events are proportional to the lengths of the sets
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involved: 1− g−1(x) and g−1(x) + x− 1. So

E[V | X1 = x,WZ = b∗(x)]

=
1− g−1(x)

x
(x+ g−1(x) +

1 + g−1(x)

2
)

+
(x− 1 + g−1(x))

x
(2x+

(x+ 1)(x− 1) + g−1(x)2

2(x− 1 + g−1(x))
)

= g−1(x) +
5

2
x+

g−1(x)

x
− g−1(x)2

x
− 1.

For a given value of WZ = b we have x = h2(b) and g−1(x) = h1(b) so we deduce

from (25) that E[V | X1 = x,WZ = b∗(x)] = b∗(x) as required. Finally we can show

that the choice b∗(x) is optimal given that the other players use this bidding strategy.

When making this argument, we allow bidder 1 to choose a bid b 6= b∗(x) when

observing signal x. For b < 3.75 we define h̃1(b) = b∗−1(b) restricted to x ∈ (0, 1), so

that h̃1(b) = h1(b) for b ≥ 2.25. Then for x ∈ (0, 1),

E[V −WZ | X1 = x,WZ = b]

= x− b+ E[X2 +X3 | X1 = h̃1(b),WZ = b]

= x− b− h̃1(b) + E[V | X1 = h̃1(b),WZ = b] = x− h̃1(b).

Here the first equality follows because conditioning on different values of X1 that

are both less than 1, makes no difference to the values of Z,X2 and X3. The third

equality follows from the fact that the first-order condition implies that E[V | X1 =

h̃1(b),WZ = b] = b. The optimal choice of b arises from maximising the profit:

Π1(b, x) = E [ (V −WZ) 1WZ<b|X1 = x] =

∫ b

−∞
E[V −WZ | X1 = x,WZ = s]fW (s)ds

=

∫ b

−∞
(x− h̃1(s))fW (s)ds

where fW is the density for the distribution of WZ given that other bidders are using

b∗ bids. Now since x − h1(s) changes from positive to negative at s = b∗(x) this is

maximised at b = b∗(x). We can use a similar argument for x ∈ (1, 2) to establish the

optimality of bidding at b∗(x) throughout the range (0, 2).

Technical proofs of Section 2

The following lemma shows a diagonal property of the density function which will be

useful in some of our proofs.
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Lemma 7 If fk(S, q0, x2, x3, ...., xn) > 0 for some values x2, x3, ...., xn and S, then

fk(S, q0, q0, ...., q0) > 0. Moreover for every S ∈ QS and x ∈ QX there is a k such

that fk(S, x, x, ...., x) > 0.

Proof. Given fk(S, q0, x2, x3, ...., xn) > 0 then by symmetry of fk in Assumption

4, we deduce that fk(S, x2, q0, x3, ...., xn) > 0 and hence from the affi liation property

(1), fk(S, q0, q0, x3, ...., xn) > 0. Then by symmetry fk(S, q0, x3, q0, x4, ...., xn) > 0 and

again the affi liation property shows that fk(S, q0, q0, q0, x4, ...., xn) > 0. Continuing

in this way we can establish that fk(S, q0, q0, ...., q0) > 0. The final statement follows

from this and our assumption that for every S ∈ QS and x ∈ QX , the density

fk(S, x,X−1) > 0 for some X−1 and k.

Lemma 8 is a technical result, which will be useful when proving Proposition 1.

Lemma 8 If a1 ≥ a2 ≥ ...ak and b1 ≥ b2 ≥ ...bk then for any set of probabilities qj,

j = 1, ..., k with qj ≥ 0 and
∑k

j=1 qj = 1,

k∑
j=1

qjajbj ≥
(

k∑
j=1

qjaj

)(
k∑
j=1

qjbj

)
.

Proof. Let a =
∑k

j=1 qjaj and choose h such that ah ≥ a ≥ ah+1. Then for j = h,

(aj − a) (bj − bh) = 0, while for j < h, both aj − a and bj − bh are positive, and for
j > h both aj − a and bj − b are negative. Thus we deduce that

k∑
j=1

qj (aj − a) (bj − bh) ≥ 0

Hence
k∑
j=1

qjajbj − bh
k∑
j=1

qjaj − a
(

k∑
j=1

qjbj

)
+ bha

(
k∑
j=1

qj

)
≥ 0.

Two of the terms are equal to bha and −bha, respectively. They cancel out, which
gives the inequality we require.

Technical proofs of Section 3

Lemma 9 Suppose we have sets Ci, i = 1, 2, ..., n where Ci is a collection of hi

disjoint intervals in QX each of which is either (a
(i)
j , b

(i)
j ), [a

(i)
j , b

(i)
j ), (a

(i)
j , b

(i)
j ] or
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[a
(i)
j , b

(i)
j ] with a

(i)
j ≤ b

(i)
j < a

(i)
j+1 for j = 1, 2, ..., hi and where a

(i)
1 ∈ R ∪ {−∞}

and b(i)
hi
∈ R∪{+∞}, and we let C = C1×C2...×Cn. Suppose that for signal S there

is x0 ∈ C, with fk(S,x0) > 0 for some k. Then, E[ V1|S,X ∈ C] is continuous in

each of the arguments a(i)
j , b

(i)
j , j = 1, 2, ..., hi, i = 1, 2, ..., n, if a(i)

j < b
(i)
j , and contin-

uous in a(i)
j if a(i)

j = b
(i)
j = a

(i)
j . Moreover the limit of E[V1|S,X ∈ C] as a(i)

j → b
(i)
j

is equal to its value when a(i)
j = b

(i)
j . These results also hold when conditioning on

Z = k0 provided that there is x0 ∈ C, with fk0(S,x0) > 0.

Proof. First consider the case where Pr(S,X ∈ C) > 0. Then

E[ V1|S,X ∈ C] =

∑
k∈KZ

Pr(Z = k)
∫
X∈C u (S, X1,X−1) dfk (S,X)∑

k∈KZ
Pr(Z = k)

∫
X∈C dfk (S,X)

.

We have continuity of E[ V1|S,X ∈ C] when considered as a function of a(i)
j

and b(i)
j since both

∫
X∈C u (S, X1,X−1) dfk (S,X) and

∫
X∈C dfk (S,X) are contin-

uous functions of these parameters. In the case that Pr(S,X ∈ C) = 0, and so∫
X∈C dfk (S,X) = 0 for each k, then we must have either zero probability of a signal

with x0
i ∈ [a

(i)
j , b

(i)
j ] or a(i)

j = b
(i)
j = a

(i)
j for all j = 1, 2, ..., hi for i in some set I0. In

this case we replace integrals with sums for Xi when i ∈ I0 in the definition of E[ V1|
S,X ∈ C]. For example when n = 2 and a(1)

j = b
(1)
j = a

(1)
j for all j = 1, 2, ..., h1 we

have

E[ V1|S,X ∈ C] =

∑
k∈KZ

Pr(Z = k)
∑h1

j=1

∫
(a
(1)
j ,X2)∈C u

(
S, a

(1)
j , X2

)
dfk

(
S, a

(1)
j , X2

)
∑

k∈KZ
Pr(Z = k)

∑h1
j=1

∫
(a
(1)
j ,X2)∈C dfk

(
S, a

(1)
j , X2

) .

Note that the integrals here are with respect to X2 with a
(1)
j fixed. Thus from our

assumption that there is x0 ∈ C, with fk(S,x0) > 0 for some k we know that at least

one of these integrals has non-zero value. When I0 = {1, 2, . . . , N} then there are no
integrals in the expression and the denominator becomes the sum over the non-zero

fk(S,x) values for x ∈ C. The conclusion on continuity still holds in this case. Also
the result on the limit of E[V1|S,X ∈ C] as a(i)

j → b
(i)
j follows directly from the

continuity of fk and u.

The argument is exactly the same in the case that we consider E[V1|S,X ∈ C, Z =

k0].
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Proof. (Lemma 1) Theorem 5 in Milgrom and Weber (1982) establishes that

for V1 a non-decreasing function of a set of affi liated variables, its expected value

conditioning on any subset of the affi liated variables is nondecreasing in the condi-

tioning variables. This result can be straightforwardly extended to include condition-

ing on a sublattice (see Anderson & Holmberg, 2023). Thus, for any sublattice L,

E[V1|X1 = x, X̃ ∈ L] is non-decreasing in x.

To establish strictly increasing in x, take any two possible signals xL < xU and

both in QX . Define V L
1 from V1 by setting V L

1 (S, X) = V1 (S, xL, X2, ..., Xn) for

X1 ∈ [xL, xU ] and V L
1 = V1 otherwise. Thus using the fact that u is strictly increasing,

we have V L
1 < V1 for X1 = xU . Then

E
[
V1|X1 = xL, X̃ ∈ L

]
= E

[
V L

1

∣∣X1 = xL, X̃ ∈ L
]

≤ E
[
V L

1

∣∣X1 = xU , X̃ ∈ L
]

< E
[
V1|X1 = xU , X̃ ∈ L

]
which proves the result for E[V1|X1 = x, X̃ ∈ L]. Since YZ is also an affi liated

variable, the argument for E[V1|X1 = x, YZ = y, X̃ ∈ L] is similar.

Lemma 10 For the uniform-price auction we have P I (x) ≥ PN (x), for strictly in-

creasing symmetric equilibria. We have P I (x) = PN (x) if X0 is independent of

X1, . . . , Xn and Z.

Proof. First, note that

v (x, y) = E [v̂ (x, y;X0)] .

Moreover, it follows from Theorem 5 in Milgrom & Weber (1982) that:

v (u, u) = E [ v̂ (u, u;X0)|X1 = u, YZ = u] ≤ E [ v̂ (u, u;X0)|X1 = x, YZ = u] , (26)

if x ≥ u. The inequality arises because if the expected value is conditioned on a higher

X1 signal, then this tends to give a higher X0 signal, which in its turn increases the

value of v̂. This effect disappears if X0 is independent of X1, . . . , Xn and Z. In
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this special case, the inequality above becomes an equality. This is also true for the

inequalities in the rest of the proof.

If we let u be a random variable, which we set equal to YZ , and if we condition

both sides of (26) on X1 = x, and u < x then we get (in expectation):

E [v (YZ , YZ)|X1 = x, YZ < x] ≤ E [ v̂ (YZ , YZ ;X0)|X1 = x, YZ < x] . (27)

Now, using Theorem 1 and the inequality above, we get:

PN (x) = E [b (YZ)|X1 = x, YZ < x]

= E [v (YZ , YZ)|X1 = x, YZ < x]

≤ E [ v̂ (YZ , YZ ;X0)|X1 = x, YZ < x]

= E
[
b̂∗ (YZ ;X0)

∣∣∣X1 = x, YZ < x
]

= P I (x) .

Technical proofs of Section 4

Our next lemma is a technical result which shows what the ranking of Jx implies for

the ranking of J . Related results have been proved by Milgrom & Weber (1982) for

single-object auctions. The argument is slightly more involved for multi-unit auctions.

We compare two auction designs indicated by superscripts A and B.

Lemma 11 For two auction designs we have JA (x, x) ≥ JB (x, x) for x ∈ QX if

JAx (x, x) ≥ JBx (x, x) for x ∈ QX and limx↘aL J
A (x, x) ≥ limx↘aL J

B (x, x).

Proof. (Lemma 11) If the considered bidder observes the private signal x and

acts as if observing x̃, then its expected payoff is given by:

U (x̃, x)−K (x̃, x) .

In equilibrium, we have that it is optimal for the bidder to choose x̃ = x, so

Kx̃ (x, x) = Ux̃ (x, x) , (28)
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where Ux̃ (x, x), and consequently also Kx̃ (x, x), is independent of the auction design.

We have from (5) and (28) that:

Ux̃ (x, x) = Kx̃ (x, x) = Jx̃ (x, x) Pr (YZ ≤ x|x) + J (x, x)
dPr (YZ ≤ x̃|x)

dx̃

∣∣∣∣
x̃=x

(29)

Jx̃ (x, x) =
Ux̃ (x, x)− J (x, x) dPr(YZ≤x̃|x)

dx̃

∣∣∣
x̃=x

Pr (YZ ≤ x|x)
, (30)

where Pr (YZ ≤ x|x) > 0 for all x ∈ QX . Moreover, we have

dJ (x, x)

dx
= Jx̃ (x, x) + Jx (x, x) . (31)

From the inequality JAx (x, x) ≥ JBx (x, x) we now get

d
(
JA (x, x)− JB (x, x)

)
dx

= JAx̃ (x, x) + JAx (x, x)− JBx̃ (x, x)− JBx (x, x) .

≥

(
JB (x, x)− JA (x, x)

) dPr(YZ≤x̃|x)
dx̃

∣∣∣
x̃=x

Pr (YZ ≤ x|x)
.

Hence,

d
(
JB (x, x)− JA (x, x)

)
dx

≤ −

(
JB (x, x)− JA (x, x)

) dPr(YZ≤x̃|x)
dx̃

∣∣∣
x̃=x

Pr (YZ ≤ x|x)
.

Thus, it follows from Grönwall’s lemma that:

JB (x, x)− JA (x, x) ≤
(
JB (a, a)− JA (a, a)

)
exp

−∫ x

a

dPr(YZ≤x̃|v)
dx̃

∣∣∣
x̃=v

Pr (YZ ≤ v| v)
dv

 , (32)

for a, x ∈ QX . Note that

0 ≤ exp

−∫ x

a

dPr(YZ≤x̃|v)
dx̃

∣∣∣
x̃=v

Pr (YZ ≤ v| v)
dv

 ≤ 1 (33)

for a, x ∈ QX . This follows from observing that dPr(YZ≤x̃|v)
dx̃

∣∣∣
x̃=v
≥ 0, and hence the

integrand, is non-negative. Moreover, we have by assumption that limx↘aL J
B (x, x) ≤

limx↘aL J
A (x, x). Hence, by choosing an a value suffi ciently close to aL, we can use

(32) and (33) to find a contradiction for any x ∈ QX such that JB (x, x) > JA (x, x).

Thus we can conclude that JA (x, x) ≥ JB (x, x) for x ∈ QX .
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Proof. (Lemma 2) It follows directly from Lemma 11 that JA (x, x) ≥ JB (x, x)

for x ∈ QX . Next, we want to show that this implies that KA (x, x) ≥ KB (x, x).

From (5) we can deduce that

Kx (x, x) = Jx (x, x) Pr (YZ ≤ x|x) + J (x, x)
dPr (YZ ≤ x̃|x)

dx

∣∣∣∣
x̃=x

(34)

= Jx (x, x) Pr (YZ ≤ x|x) +
K (x, x)

Pr (YZ ≤ x|x)

dPr (YZ ≤ x̃|x)

dx

∣∣∣∣
x̃=x

.

Moreover, we have from (28)

dK (x, x)

dx
= Kx̃ (x, x) +Kx (x, x) = Ux̃ (x, x) +Kx (x, x) . (35)

Hence we have from (34) and the assumption JAx (x, x) − JBx (x, x) ≥ 0 for x ∈ QX

that,

d
(
KA (x, x)−KB (x, x)

)
dx

=
(
JAx (x, x)− JBx (x, x)

)
Pr (YZ ≤ x|x) +

(
KA (x, x)−KB (x, x)

) dPr(YZ≤x̃|x)
dx

∣∣∣
x̃=x

Pr (YZ ≤ x|x)

≥
(
KA (x, x)−KB (x, x)

) dPr(YZ≤x̃|x)
dx

∣∣∣
x̃=x

Pr (YZ ≤ x|x)
.

The inequality can be written as follows:

d
(
KB (x, x)−KA (x, x)

)
dx

≤
(
KB (x, x)−KA (x, x)

) dPr(YZ≤x̃|x)
dx

∣∣∣
x̃=x

Pr (YZ ≤ x|x)
.

It follows from Proposition 1 that YZ is affi liated with the signals, so
dPr(YZ≤x̃|v)

dv

∣∣∣ is
non-positive. Moreover, we have from (7) that limx↘aL K

A (x, x) = limx↘aL K
B (x, x) =

0. Using a similar argument as in the proof of Lemma 11, it can be shown that

KA (x, x) ≥ KB (x, x) for x ∈ QX .

Technical proofs of Section 7

Proof. (Lemma 3) Ex-post optimality implies that a bid is not accepted at a price

above the bidder’s value or rejected when the lowest accepted bid is below its value.

Hence, a bid at value is always ex-post optimal. First consider the case where a
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bidder’s equilibrium bid is accepted at a price above its value. Hence, the bid is

above the bidder’s private value and one or more competitor’s bids are price setting

and strictly between these values or equal to this bid. It follows from our assumption

on regular bids that this occurs with a positive probability, with a possible exception

for ties.26 The bidder can avoid unprofitable outcomes by reducing its bid to its

valuation. The bid is never price setting when it is accepted in a uniform-price

auction. Hence, such a change will not influence the payoff from profitable outcomes

where the original bid was accepted at a price below the valuation. The expected

profit would be improved by such a change, contradicting the assumption that this is

an equilibrium.

Next consider the case where the bidder’s equilibrium bid is rejected when the

lowest accepted bid is below its value with a positive probability. Hence, the bid

is below the value of the bidder and a set of competitor’s bids are accepted either

strictly between this bid and the bidder’s value or at this bid. Hence, the bidder can

increase its payoff by increasing its bid to its valuation.

Proof. (Lemma 4) If the bid of bidder i is rejected with probability 1 for a range

of signals (xi, V i) then there must be a set Ω of at least Z competitors that always bid

V i or higher. Otherwise there is some bid value V i− ε that is accepted with positive
probability and a range of signals close enough to V i where the bidder’s value is above

V i− ε and so the bidder would find it profitable to bid at V i− ε, as these bids would
be accepted with a positive probability and generate a positive expected payoff. A

competitor bidder j ∈ Ω bidding at or above V i for all signals is only possible if the

clearing price is V j, or lower, with probability 1, also for the lowest realization of Z,

Z. Otherwise there is a positive probability of the clearing price being at level V j + ε

or higher and the competitor would find it profitable to deviate and lower the bid for

the signals in some range (V j, V j + ε) to avoid that the bid is accepted at a clearing

price above the value. Hence, at least n−Z bidders in a set Ω0 must, with probability

1, bid at min{V j : j ∈ Ω}, or lower. Moreover since Assumption B and our definitions
imply that V i > VL and VL = min{V j : j ∈ ΩL} ≥ min{V j : j ∈ Ω}, we deduce that
the bids in Ω are strictly higher than any bids in Ω0. Thus the two sets do not overlap

26It cannot be ruled out that the firm’s bid is accepted, that the clearing price is set by a com-

petitor’s bid at the same price, and that such an event occurs with measure zero.
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giving a minimum of n−Z+Z bidders and hence Z = Z and Ω0 is the set complement

of Ω. Since all the bidders in Ω0 have bids that are rejected with probability 1, we

deduce that the bids for bidders in set Ω must bid at max{V i : i ∈ Ω0} or higher.
Thus we have established all the features of the high-low equilibrium.

We can use a reflected-auction argument to show that supply must be certain and

that the equilibrium must be a high-low equilibrium if the bid of bidder i is accepted

with probability 1 for a range of signals (V i, xi).

Lemma 12 An active bid is price setting (the highest rejected bid) with a positive

probability and the lowest bid that is accepted with a positive probability.

Proof. (Lemma 12) Consider an active bid by bidder i at a price y. Thus there

are k1 bidders j (with j 6= i) which strictly dominate y, and k2 bidders j (with j 6= i)

that y strictly dominates, and k1 < Z, k2 < n− Z. To show this bid is price setting
we want a Z so that with a positive probability there are exactly Z other bidders

bidding above or at y. There are n− 1−k2 other bidders that may bid at or above y,

and k1 that bid above y with probability 1. Thus we may choose any Z value between

k1 and n − 1 − k2, and find a positive probability of exactly that number of bids at

or above y. Note that n − 1 − k2 is at least as large as k1 since n − 1 ≥ k1 + k2 as

bidders cannot be both strictly dominated by y and strictly dominate y. But k1 < Z,

and n− 1− k2 ≥ Z and so this range includes values in the range Z to Z, and hence

a value of Z that occurs with positive probability. It follows from our assumptions

that this probability is positive independent of the signals that the bidders observe.

Also we can show that the bid at y is the lowest bid that is accepted with a positive

probability. This is the case if there are exactly Z − 1 other bidders bidding above or

at y with a positive probability. For any Z value between k1 + 1 and n− k2 we will

have exactly that number of bids at or above y with a positive probability. We have

k1 + 1 ≤ Z and n− k2 > Z, so as before this range of values must include a value of

Z that occurs with positive probability.

The result in Lemma 5, below, may perhaps seem obvious, given our ex-post

optimality result in Lemma 3. But there is a subtlety that complicates the argument.

Properties of a competitor’s active bid could change once we condition on a bidder
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making a bid at a specific price, such as y. In this case, a competitor’s active bid

below y may not be accepted with a positive probability and a competitor’s active

bid above y may not be rejected with a positive probability.

Proof. (Lemma 5) Below we prove two properties of active bids. If we condition

on a bidder making a bid at y, then 1) a competitor’s active bid below y is price setting

with a positive probability and 2) a competitor’s active bid above y is the lowest bid

that is accepted with a positive probability. These two properties are suffi cient for the

case when the bid from the competitor is active. As explained below, the result for

the case when the bid of the bidder is active follows straightforwardly from Lemma

12.

We start by considering the case where bidder i observes the value x and makes

an equilibrium bid at y > x. Suppose that bidder j has, with positive probability, an

active bid between x and y, or at y. Thus we consider the event that some bidder

j 6= i bids at a with x < a ≤ y and there are k1 bidders k (with k 6= j) which strictly

dominate a, and k2 bidders k (with k 6= j) that a strictly dominates, where k1 < Z

and k2 < n− Z (because the bid is active).
When y > a and there are exactly Z bidders bidding above a (including the bid

by bidder i), a will be the clearing price, bidder i’s bid is accepted and we get a

contradiction from ex-post optimality. If bidder i strictly dominates a then such a

contradictory outcome is possible if n − 1 − k2 ≥ Z ≥ k1. Since n − 1 − k2 ≥ Z

and k1 < Z, this range must intersect with a possible value of Z occurring with a

positive probability. In the case that bidder i does not strictly dominate a then we

get a contradiction if there are exactly Z−1 other bidders, in addition to bidder i (we

condition on x), bidding above a. Excluding bidder i there is a positive probability

of a bid greater than a by exactly ` bidders for any ` ≥ k1 and ` ≤ n − 2 − k2. We

get a contradiction with a positive probability for n − 2 − k2 ≥ Z − 1 ≥ k1. Again

these inequalities must be satisfied for a possible value of Z between Z and Z. Thus

in either case we have a contradiction.

When y = a, if we cannot use the argument above for y > a then there is a

positive probability of a competitor’s bid being at a = y . We want to show that,

conditioning on bidder i’s bid at y, there is a positive probability of bidder i’s bid

being accepted with a clearing price at a, which would not be ex-post optimal. This
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will happen if amongst bidders not i or j there are at least Z−1 bidders which bid at

a or above (i.e. no more than n− Z − 1 bidding strictly below a) and no more than

Z − 1 bidders bidding strictly above a. Notice that bidders i and j do not strictly

dominate a and are not strictly dominated by a, so that we know k1 + k2 ≤ n − 2.

We require k2 ≤ n − Z − 1 and k1 ≤ Z − 1, i.e. n − 1 − k2 ≥ Z ≥ k1 + 1. Since

n− 1− k2 ≥ Z and k1 + 1 ≤ Z, this range must intersect with a possible value of Z

occurring with a positive probability, which gives the contradiction we require.

A similar argument applies when the bidder bids below its value. Ex-post opti-

mality shows that there cannot be a positive probability of the lowest accepted bid

being between the bid and its value, and the argument proceeds similarly.

Now consider the case where the bid itself is active. We start with the case where

the bid at y is above the bidder’s value and the competitor’s bid is between this

bid and the bidder’s value. From Lemma 12, there is a positive probability that

the bidder’s bid is the lowest accepted bid, then (with a positive probability) the

price is at the competitor’s bid or above and is above the bidder’s value. Thus an

improvement is possible. Similarly if the bid is below the bidder’s value and is active

then there is a positive probability that this bid is the highest rejected bid. This will

lead to an improvement from raising this bid to the bidder’s value.

Proof. (Lemma 6) Consider a bid at y by bidder i. If y < a− then the bids from

all the bidders with p[j] ≥ a− are always higher than y. There are at least Z such

bidders and hence the bid y is certain to be rejected and is therefore not active. The

situation with y = a− is more complicated since we may have more than one bidder

with p[j] = a− (including bidder i itself). A bid at a− is rejected with probability 1 if

there are at least Z bidders other than i, either with p[j] > a− or with p[j] = a− and

not having an accumulation of bids at a−. When y = a− the bid is accepted with

positive probability if there are less than Z bidders other than i, either with p[j] > a−

or with p[j] = a− and not having an accumulation of bids at a−. If y > a− then the

bid is accepted with positive probability.

If y > a+ then the bids from all the bidders with p[j] ≤ a+ are always lower

than y. There are at least n − Z such bidders and hence the bid y is certain to be

accepted, and is not active. A bid at a+ is accepted with probability 1 if there are

at least n − Z bidders other than i, either with p[j] < a+ or with p[j] = a+ and not
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having an accumulation of bids at a+. When y = a+ the bid is rejected with positive

probability if there are less than n− Z bidders other than i, either with p[j] < a+ or

with p[j] = a+ and not having an accumulation of bids at a+. If y < a+ then there is

a positive probability that the bid is rejected. Together with the earlier observation

on y > a− implying a positive probability of acceptance, we have shown a bid y with

a− < y < a+ must be active. Combining all these implications gives the statement of

the Lemma.
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