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Disclaimer

▶ Disclaimer ⇒ The views expressed here are those of the
authors and not necessarily those of the Federal Reserve Bank
of Atlanta or the Federal Reserve System. Any errors are the
authors’ responsibility.
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Introduction

▶ Asset return predictability is a leading topic in empirical asset
pricing

▶ Out-of-sample tests are now routinely employed

▶ Most rigorous/informative tests in the era of big data and ML
(Nagel 2021, Martin & Nagel 2022)

▶ In addition to statistical accuracy, it is now routine to analyze
the economic value of return predictability via asset
allocation exercises

▶ Return forecasts based on a (large) set of predictors serve as
inputs for constructing a portfolio

▶ Portfolio performance metrics are computed over a forecast
evaluation period (and compared to a benchmark portfolio) to
measure the economic value of return predictability

https://doi.org/10.2307/j.ctv19fvx8r
https://doi.org/10.1016/j.jfineco.2021.10.006
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Introduction

▶ Spate of recent studies employs a multitude of firm
characteristics and ML to forecast out-of-sample
cross-sectional stock returns (eg, Freyberger et al 2020, Gu et
al 2020, Avramov et al 2023, Han et al 2024)

▶ Construct a long-short portfolio by sorting stocks according to
their return forecasts for the next month ⇒ go long (short)
stocks with the highest (lowest) return forecasts

▶ Long-short portfolios based on ML provide substantive
economic value to investors ⇒ strong evidence of
cross-sectional stock return predictability

▶ However, the existing literature does not provide a general
methodology for measuring how individual or groups of
predictors in fitted ML models contribute to economic value

https://doi.org/10.1093/rfs/hhz123
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1287/mnsc.2022.4449
https://dx.doi.org/10.2139/ssrn.3185335
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Introduction

▶ We fill this gap in the literature by developing a method based
on Shapley (1953) values to directly estimate the contributions
of individual or groups of predictors to portfolio performance

▶ Decompose portfolio performance in terms of the underlying
predictors ⇒ anatomize economic value

▶ Logic of Shapley values ⇒ fairly allocate the contributions of
the predictors in fitted prediction models with respect to
portfolio performance

▶ New measure ⇒ Shapley-based portfolio performance
contribution (SPPCp for predictor p)

▶ Can be viewed as an ML model interpretation tool for finance
to peer inside the “black box” and understand the roles of
individual or groups of predictors in determining the economic
value of return predictability

https://doi.org/10.1515/9781400881970-018
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Introduction

▶ We explain how we extend conventional Shapley values to
estimate the contributions of the predictors to the following:

▶ Out-of-sample return forecast

▶ Portfolio return

▶ Portfolio performance metric ⇒ resulting in the SPPCp

▶ SPPCp is very flexible

▶ Model agnostic (ie, it can be applied to any prediction model)

▶ Can be used for any strategy for mapping the return forecasts
to the portfolio weights

▶ Can be computed for any portfolio performance metric
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Introduction

▶ We illustrate the use of the SPPCp in an extensive empirical
application investigating the economic value of cross-sectional
stock return predictability

▶ Generate monthly forecasts of individual stock returns using
207 firm characteristics from Chen & Zimmermann (2022) and
the XGBoost ML algorithm (Chen & Guestrin 2016)

▶ Sort stocks into quintiles based on the XGBoost return
forecasts and go long (short) the fifth (first) quintile, where
each leg is value weighted

▶ Long-short portfolio performs impressively ⇒ ann Sharpe ratio
of 1.80 and large alphas in the context of leading multifactor
models

▶ Place individual firm characteristics into 20 groups and
estimate the contributions of the predictor groups to portfolio
performance using the SPPCp

http://dx.doi.org/10.1561/104.00000112
https://xgboost.readthedocs.io/en/stable/
https://dl.acm.org/doi/10.1145/2939672.2939785
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Shapley Values

▶ Shapley values exploit the analogy between players in a
cooperative game earning a payoff and the predictors in a
prediction model, where the payoff corresponds to the model’s
prediction

▶ Logic of Shapley values ⇒ fairly allocate the payoffs to the
players in a game

▶ In the context of prediction, interested in fairly allocating the
contributions of the predictors to a model’s prediction

▶ Nontrivial task, especially for models with interactions,
nonlinearities, and correlated predictors

▶ Štrumbelj & Kononenko (2010, 2014) and Lundberg & Lee
(2017) show how Shapley values can be used to allocate the
contributions of the predictors to a model’s prediction

▶ We adapt Štrumbelj & Kononenko (2014) to a panel setting
where a model generates individual stock return predictions
based on a set of firm characteristics

https://doi.org/10.1007/s10115-013-0679-x
https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230
https://doi.org/10.1007/s10115-013-0679-x
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Shapley Values

▶ Notation

▶ Index set of predictors ⇒ S = {1, . . . ,P}

▶ Index cross-sectional units by i

▶ Index set of cross-sectional units ⇒ C = {1, . . . ,N}

▶ P-vector of predictors for stock i in period t ⇒
xi ,t =

[
x1,i ,t · · · xP,i ,t

]′
▶ Return on stock i in period t ⇒ ri ,t

▶ Prediction model ⇒ ri ,t+1 = f (xi ,t) + εi ,t+1

▶ Fitted model ⇒ f̂

▶ Window of panel data observations used to train the model ⇒
Wj = {tj ,start, . . . , tj ,end − 1}

▶ Fitted prediction function evaluated at instance xi ,t trained
using window Wj ⇒ f̂ (xi ,t ;Wj)



Section 1 Section 2 Section 3 Section 4

Shapley Values

▶ Shapley value measures the marginal contribution of xp,i ,t to

f̂ (xi ,t ;Wj) given S \ {p} ⇒
ϕp(xi ,t ;Wj) =∑

Q⊆S\{p}

|Q |!(P − |Q |− 1)!

P!

[
ξQ ∪ {p}(xi ,t ;Wj) − ξQ(xi ,t ;Wj)

]
▶ Q ⇒ subset of predictors (ie, coalition)

▶ Q ⊆ S \ {p} ⇒ set of all possible coalitions of P − 1 predictors
in S that exclude p

▶ |Q | ⇒ cardinality of Q

▶ ξQ(xi ,t ;Wj) = E
[
f̂
∣∣Xk,i ,t = xk,i ,t ∀ k ∈ Q ;Wj

]
▶ Local accuracy ⇒

∑
p∈S ϕp(xi ,t ;Wj) = f̂ (xi ,t ;Wj) − E

[
f̂ ;Wj

]
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Shapley Values

▶ Infeasible to exactly compute the Shapley value for more than
a small number of predictors

▶ Štrumbelj & Kononenko (2014) propose an algorithm using
the sampling-based approach of Castro et al (2009)

▶ We develop a refined version of their algorithm and then
extend it to estimate the contributions of individual predictors
to portfolio performance

▶ Express the Shapley value in an equivalent form ⇒
ϕp(xi ,t ;Wj) =

1

P!

∑
O∈π(P)

[
ξPrep(O)∪ {p}(xi ,t ;Wj) − ξPrep(O)(xi ,t ;Wj)

]
▶ O ⇒ ordered permutation for the predictor indices in S

▶ π(P) ⇒ set of all ordered permutations for S

▶ Prep(O) ⇒ set of indices that precede p in O

https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1016/j.cor.2008.04.004
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Shapley Values

▶ Make a random draw m with replacement from π(P), denoted
by Om, and compute

θ̂p,m(xi ,t ;Wj) =

1

|C ||Wj |

∑
u∈C

∑
s ∈Wj[

f̂ (xk,i ,t : k ∈ Prep(Om) ∪ {p}, xl ,u,s : l ∈ Postp(Om) ;Wj)−

f̂ (xk,i ,t : k ∈ Prep(Om), xl ,u,s : l ∈ Postp(Om) ∪ {p} ;Wj)
]

▶ Postp(O) ⇒ set of indices that follow p in O

▶ Use “background data” from the training sample to integrate
out the predictors not in the coalition
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Shapley Values

▶ Estimate of the Shapley value ϕp(xi ,t ;Wj) ⇒

ϕ̂p(xi ,t ;Wj) =
1

2M

2M∑
m=1

θ̂p,m(xi ,t ;Wj)

▶ M ⇒ number of draws

▶ Increase computational efficiency

▶ Compute the Shapley value for each predictor p ∈ S for each
random draw m (Castro et al 2009)

▶ Antithetic sampling ⇒ compute θ̂p,m(xi ,t ;Wj) for the original
order of randomly drawn ordered permutation and when the
order is reversed (Mitchell et al 2022)

▶ Local accuracy holds for the Shapley value estimates ⇒∑
p∈S

ϕ̂p(xi ,t ;Wj) = f̂ (xi ,t ;Wj) − ϕ̂∅(Wj)

https://doi.org/10.1016/j.cor.2008.04.004
http://jmlr.org/papers/v23/21-0439.html
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Shapley Values

▶ To this point, we have followed the convention of computing
Shapley values for in-sample model predictions corresponding
to the training sample observations

▶ To develop the SPPCp, it is helpful to define the Shapley value
corresponding to an out-of-sample observation

▶ Suppose that we train a model using window Wj and generate
an out-of-sample return forecast for stock i and period
tj ,end + 1 based on the fitted model ⇒

r̂i ,tj ,end+1 = f̂
(
xi ,tj ,end ;Wj

)
▶ Define the Shapley value corresponding to the forecast ⇒

ϕp

(
xi ,tj ,end ;Wj

)
=

1

P!

∑
O∈π(P)

[
ξPrep(O)∪ {p}

(
xi ,tj ,end ;Wj

)
− ξPrep(O)

(
xi ,tj ,end ;Wj

)]
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Shapley Values

▶ Make a random draw m ⇒
θ̂p,m

(
xi ,tj ,end ;Wj

)
=

r̂i ,tj ,end+1,m,p

(
xi ,tj ,end+1 ;Wj

)
− r̂i ,tj ,end+1,m,\p

(
xi ,tj ,end+1 ;Wj

)
▶ First term on RHS ⇒

1

|C ||Wj |

∑
u∈C

∑
s ∈Wj

f̂
(
xk,i ,tj ,end : k ∈ Prep(Om) ∪ {p}, xl ,u,s : l ∈ Postp(Om) ;Wj

)
▶ Second term on RHS ⇒

1

|C ||Wj |

∑
u∈C

∑
s ∈Wj

f̂
(
xk,i ,tj ,end : k ∈ Prep(Om), xl ,u,s : l ∈ Postp(Om) ∪ {p} ;Wj

)
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Shapley Values

▶ Estimate of ϕp

(
xi ,tj ,end ;Wj

)
⇒

ϕ̂p

(
xi ,tj ,end ;Wj

)
=

1

2M

2M∑
m=1

θ̂p,m
(
xi ,tj ,end ;Wj

)
▶ We continue to use background data from the training sample

to integrate out the predictors not in a coalition so that we
remain true to the model that generates the out-of-sample
forecast

▶ Local accuracy continues to hold ⇒∑
p∈S

ϕ̂p

(
xi ,tj ,end ;Wj

)
= f̂

(
xi ,tj ,end ;Wj

)︸ ︷︷ ︸
r̂i ,tj ,end+1

− ϕ̂∅(Wj)
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Decomposing Portfolio Performance

▶ Consider an investor who decides on their allocations across
the N stocks for period tj ,end + 1 based on the set of return
forecasts formed using data through period tj ,end

▶ Allocation to i generally depends on the entire set of forecasts
for tj ,end + 1 ⇒

wi ,tj ,end+1

({
f̂
(
xi ,tj ,end ;Wj

)}
i ∈C

)
▶ Our methodology is general, so it applies to any strategy for

mapping the return forecasts to the portfolio weights

▶ Portfolio return for tj ,end + 1 ⇒

rPorttj ,end+1 =
∑
i ∈C

wi ,tj ,end+1

({
f̂
(
xi ,tj ,end ;Wj

)}
i ∈C

)
ri ,tj ,end+1
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Decomposing Portfolio Performance

▶ We use the logic of Shapley values to decompose the
portfolio return by modifying the algorithm ⇒

θ̂p,m

({
xi ,tj ,end

}
i ∈C

;Wj

)
=∑

i ∈C

[
wi ,tj ,end+1

({
r̂i ,tj ,end+1,m,p

(
xi ,tj ,end ;Wj

)}
i ∈C

)
ri ,tj ,end+1

]
−

∑
i ∈C

[
wi ,tj ,end+1

({
r̂i ,tj ,end+1,m,\p

(
xi ,tj ,end ;Wj

)}
i ∈C

)
ri ,tj ,end+1

]
▶ We again use background data from the training sample Wj so

that we remain true to the model that generates the set of
return forecasts that determines the portfolio weights

▶ Estimate of the Shapley-based contribution of predictor p to
the portfolio return ⇒

ϕ̂p

({
xi ,tj ,end

}
i ∈C

;Wj

)
=

1

2M

2M∑
m=1

θ̂p,m

({
xi ,tj ,end

}
i ∈C

;Wj

)
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Decomposing Portfolio Performance

▶ Need to decide on the baseline portfolio return (rBasetj ,end+1)

corresponding to the empty coalition set

▶ Sensible to ask ⇒ “If I had an empty set of predictors—and so
no predictor information—how would I form a portfolio?”

▶ Relevant baseline depends on the context (eg, the CRSP
value-weighted market portfolio for a portfolio that broadly
invests in equities)

▶ Local accuracy continues to hold ⇒∑
p∈S

ϕ̂p

({
xi ,tj ,end

}
i ∈C

;Wj

)
= rPorttj ,end+1 − rBasetj ,end+1

▶ Can exactly decompose rPorttj ,end+1 (in terms of the deviation from

the baseline portfolio return) into the contributions made by
each of the P predictors



Section 1 Section 2 Section 3 Section 4

Decomposing Portfolio Performance

▶ To compute the SPPCp, we need to take into account the
entire series of out-of-sample return forecasts and
corresponding portfolio returns over the forecast evaluation
period

▶ Sample of panel data spans T periods

▶ Initial in-sample period ends in Tin

▶ Generate return forecasts for Tin+1 through T

▶ D = T − Tin sets of return forecasts

▶ Index set of training windows used to fit the sequence of
prediction models ⇒ W = {1, . . . ,D}

▶ tj ,end corresponds to Tin,Tin + 1, . . . ,T − 1 for j = 1, 2, . . . ,D
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Decomposing Portfolio Performance

▶ Wrap a function corresponding to the performance around the
portfolio returns ⇒
θ̂p,m

({
xi ,tj ,end

}
i ∈C

;W ,M
)
=

M

{∑
i ∈C

[
wi ,tj ,end+1

({
r̂i ,tj ,end+1,m,p

(
xi ,tj ,end ;Wj

)}
i ∈C

)
ri ,tj ,end+1

]}
j ∈W

−

M

{∑
i ∈C

[
wi ,tj ,end+1

({
r̂i ,tj ,end+1,m,\p

(
xi ,tj ,end ;Wj

)}
i ∈C

)
ri ,tj ,end+1

]}
j ∈W


▶ M(·) ⇒ performance metric function

▶ Estimate of the SPPCp ⇒

ϕ̂p

({
xi ,tj ,end

}
i ∈C

;W ,M
)

︸ ︷︷ ︸
SPPCp

=
1

2M

2M∑
m=1

θ̂p,m

({
xi ,tj ,end

}
i ∈C

;W ,M
)
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Decomposing Portfolio Performance

▶ Local accuracy property of Shapley values applies ⇒∑
p∈S

SPPCp = M

({
rPorttj ,end+1

}
j ∈W

)
−M

({
rBasetj ,end+1

}
j ∈W

)

▶ SPPCp allows a researcher to estimate how an individual
predictor contributes to portfolio performance

▶ Local accuracy ⇒ sum of the SPPCp estimates provides an
exact decomposition of portfolio performance (relative to the
baseline portfolio)

▶ Emphasize that the SPPCp is very general

▶ Model agnostic (ie, it applies to any fitted prediction model)

▶ Accommodates any rule for mapping the return forecasts to
the portfolio weights

▶ Accommodates any performance metric
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Computation

▶ Estimating the SPPCp can be computationally costly

▶ Empirical exercise

▶ Analyze the contributions of 20 groups of predictors (formed
form 207 individual predictors)

▶ 1973:01–2021:12 out-of-sample period (588 months)

▶ Average of approximately 2,000 firms each month

▶ Average of approximately 750,000 firm-month observations for
the sequence of panel training datasets

▶ 2 dimensions along which to limit the computational cost

▶ Number of randomly drawn ordered permutations (M)

▶ Proportion of the training sample observations to use when
integrating out predictors

▶ Use M = 50 and 10% of the training sample observations
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Computation

▶ In the computationally intensive first step, we evaluate the
fitted prediction functions many times ⇒

20× 588× 2,000× 0.10× 750,000× 50× 2 =

176,400,000,000,000 (176.4 trillion)

▶ Resource use

▶ 306 core-months of Intel Xeon Platinum 8260 processor
(AVX-512 enabled)

▶ 274 core-months of Intel Xeon Gold 6148 processor (AVX-512
enabled)

▶ Thanks to Calcul Québec and the Digital Research Alliance of
Canada
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Data

▶ 207 firm characteristics from Chen & Zimmermann (2022)

▶ Available at the Open Source Asset Pricing website

▶ Transform each characteristic each month by cross-sectionally
ranking the characteristics and mapping the ranks into the
[−1, 1] interval (Freyberger et al 2020, Gu et al 2020)

▶ Monthly firm-level stock return data from CRSP

▶ All firms listed on the NYSE/AMEX/NASDAQ with a market
value on CRSP at the end of the previous month and a
non-missing value for common equity in the firm’s annual
financial statement

▶ Compute the excess return for each stock in a given month
using the CRSP risk-free return

▶ Total sample ⇒ 1960:01–2021:12 (744 months)

http://dx.doi.org/10.1561/104.00000112
https://www.openassetpricing.com/
https://doi.org/10.1093/rfs/hhz123
https://doi.org/10.1093/rfs/hhaa009
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Data

Predictor groups

Group Group

Earnings (9) Profitability (14)

Earnings forecast (10) R&D (8)

Financing (10) Reversal (7)

Financing alt (7) Risk (12)

Investment (14) Risk alt (12)

Investment alt (12) Sales (10)

Lead lag (9) Seasonal momentum (10)

Liquidity (11) Valuation (12)

Momentum (11) Valuation ratio (11)

Ownership (11) Volume (6)
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Portfolio Construction and Prediction Models

▶ Construct a zero-investment long-short portfolio that goes
long (short) stocks with the highest (lowest) return forecasts

▶ Initial in-sample period ⇒ 1960:01–1972:12 (156 months)

▶ Out-of-sample period ⇒ 1973:01–2021:12 (588 months)

▶ Retrain the prediction model each month as additional data
become available using a rolling window

▶ Consider regression and classification predictions models ⇒
focus on the classification results

▶ 5 classes ⇒ bottom 20% to the top 20% of stocks in terms of
their predicted returns



Section 1 Section 2 Section 3 Section 4

Portfolio Construction and Prediction Models

▶ We take long (short) positions in those stocks predicted to be
in the top (bottom) class

▶ Drop stocks with market capitalization below the NYSE 20th
percentile

▶ Long/short legs are value weighted

▶ Scale the weights in the long (short) leg to sum to 1 (−1)

▶ Generate classification forecasts using the powerful XGBoost
algorithm (Chen & Guestrin 2016)

▶ Decision tree based on stochastic gradient boosting (Friedman
2002)

▶ Tune the hyperparameters each month using a walk-forward
procedure that respects the time-series dimension of the panel
data

▶ Select the vector of hyperparameter values that produces the
largest Sharpe ratio over the validation sample

https://dl.acm.org/doi/10.1145/2939672.2939785
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
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Decomposing Portfolio Performance

Portfolio performance (1973:01–2021:12)

Ann Ann Ann
Ann Ann Sharpe FF6 Q5

Model mean vol ratio alpha alpha

XGBoost 22.58% 12.53% 1.80 19.45%∗∗∗ 16.29%∗∗∗

Market 7.44% 15.86% 0.47 − −

FF6 ⇒ Fama & French (2015) 5-factor model + momentum

Q5 ⇒ Hou et al (2021) augmented q-factor model

https://doi.org/10.1016/j.jfineco.2014.10.010
https://doi.org/10.1093/rof/rfaa004


Section 1 Section 2 Section 3 Section 4

Decomposing Portfolio Performance

Portfolio performance contributions based on SPPCp

Ann Ann Ann
Predictor Ann Ann Sharpe FF6 Q5
group mean vol ratio alpha alpha

Baseline 7.44% 15.86% 0.47 0% 0%

Risk 4.82 −0.16 0.35 4.34 4.29

Earnings 2.50 −0.29 0.20 2.72 2.02

Seas momentum 1.58 −0.85 0.16 2.38 2.49

Momentum 4.50 2.34 0.15 3.25 2.16

Lead lag 1.13 −0.52 0.10 0.95 0.57

Investment 1.13 −0.26 0.10 1.70 0.95

Valuation ratio 0.28 −1.24 0.09 0.38 0.58

Risk alt 0.48 −0.63 0.09 1.27 0.76

Profitability 0.97 −0.35 0.06 0.61 −0.88

Earnings forecast 0.89 0.26 0.05 0.85 0.92
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Decomposing Portfolio Performance

Portfolio performance contributions (cont’d)

Ann Ann Ann
Predictor Ann Ann Sharpe FF6 Q5
group mean vol ratio alpha alpha

Valuation 0.04 −1.06 0.05 0.77 0.48

Financing 0.21 0.02 0.02 0.14 0.29

Financing alt 0.25 −0.09 0.02 0.70 0.29

Volume −0.70 −1.18 0.02 −0.43 0.17

Liquidity 0.18 1.26 0.02 −0.19 0.35

Investment alt −0.06 0.06 0.00 0.15 0.08

R&D 0.06 0.07 0.00 0.42 −0.03

Reversal −1.66 −0.38 −0.03 −0.32 1.46

Sales −0.50 0.00 −0.04 −0.18 −0.65

Ownership −0.96 −0.32 −0.06 −0.09 −0.01

Total 22.58% 12.53% 1.80 19.45% 16.29%
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Decomposing Portfolio Performance

Alpha long- and short-leg contributions

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%

Risk
Momentum

Earnings
Seasonal momentum

Investment
Risk alt

Lead lag
Earnings forecast

Valuation
Financing alt

Profitability
Volume

R&D
Valuation ratio

Reversal
Liquidity

Sales
Investment alt

Financing
Ownership

Total

4.34%
3.26%

2.72%
2.38%

1.70%
1.27%

0.95%
0.85%

0.77%
0.71%

0.61%
(0.43%)

0.42%
0.38%

(0.32%)
(0.18%)

(0.18%)
0.15%
0.14%
(0.09%)

19.46%

Panel A: FF6 multifactor model
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Decomposing Portfolio Performance

Alpha long- and short-leg contributions (cont’d)

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%

Risk
Momentum

Earnings
Seasonal momentum

Investment
Risk alt

Lead lag
Earnings forecast

Valuation
Financing alt

Profitability
Volume

R&D
Valuation ratio

Reversal
Liquidity

Sales
Investment alt

Financing
Ownership

Total

4.29%
2.16%

2.02%
2.49%

0.95%
0.76%

0.57%
0.92%

0.48%
0.29%
(0.88%)

0.17%
(0.03%)

0.58%
1.46%

0.35%
(0.65%)

0.08%
0.29%
(0.01%)

16.29%

Panel B: Q5 multifactor model
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Decomposing Portfolio Performance

Cumulative log return

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

0

2

4

6

8

10

XGBoost(c) Market
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Decomposing Portfolio Performance

Portfolio performance for subsamples

Ann Ann Ann
Ann Ann Sharpe FF6 Q5

Model mean vol ratio alpha alpha

Panel A: 1973:01–2002:12 subsample

XGBoost 29.74% 12.51% 2.38 24.54%∗∗∗ 22.25%∗∗∗

Market 5.04% 16.56% 0.30 − −

Panel B: 2003:01–2021:12 subsample

XGBoost 11.29% 11.86% 0.95 9.68%∗∗∗ 8.53%∗∗∗

Market 11.23% 14.63% 0.77 − −
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Sharpe ratio contributions for subsamples

0.0 0.5 1.0 1.5 2.0 2.5

Baseline
Risk

Earnings
Momentum

Seasonal momentum
Lead lag

Investment
Valuation ratio

Risk alt
Earnings forecast

Profitability
Valuation
Liquidity
Reversal

Volume
Financing

R&D
Investment alt
Financing alt

Ownership
Sales

Total

0.30
0.60

0.28
0.27

0.21
0.18

0.09
0.08

0.08
0.08

0.07
0.06

0.05
0.03
0.03
0.03
0.01
0.01
0.01
(0.04)

(0.05)

2.38

Panel A: 1973:01-2002:12 subsample
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Sharpe ratio contributions for subsamples (cont’d)

0.0 0.5 1.0 1.5 2.0 2.5

Baseline
Risk

Earnings
Momentum

Seasonal momentum
Lead lag

Investment
Valuation ratio

Risk alt
Earnings forecast

Profitability
Valuation
Liquidity
Reversal

Volume
Financing

R&D
Investment alt
Financing alt

Ownership
Sales

Total

0.77
0.04

0.09
(0.08)
0.08
(0.01)

0.11
0.09

0.11
(0.00)
0.02

0.04
(0.05)

(0.13)
(0.01)
(0.01)
(0.01)
(0.02)

0.06
(0.11)

(0.03)

0.95

Panel B: 2003:01-2021:12 subsample
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FF6 alpha long- and short-leg contributions for subsamples

0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

Risk
Momentum

Earnings
Seasonal momentum

Reversal
Investment

Lead lag
Risk alt

Earnings forecast
Volume

Sales
Profitability

R&D
Valuation

Financing alt
Valuation ratio

Ownership
Liquidity

Investment alt
Financing

Total

6.54%
4.22%

3.22%
2.98%

1.93%
1.62%

1.30%
1.08%

0.93%
(0.89%)

(0.68%)
0.68%

0.65%
0.46%

0.40%
0.11%
0.09%

(0.07%)
(0.06%)

0.03%

24.54%

Panel A: 1973:01-2002:12 subsample
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FF6 alpha long- and short-leg contributions for subsamples (cont’d)

0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

Risk
Momentum

Earnings
Seasonal momentum

Reversal
Investment

Lead lag
Risk alt

Earnings forecast
Volume

Sales
Profitability

R&D
Valuation

Financing alt
Valuation ratio

Ownership
Liquidity

Investment alt
Financing

Total

1.35%
1.03%

2.16%
1.34%
(1.76%)

1.56%
0.03%

1.46%
0.45%
(0.22%)

0.70%
0.69%
0.18%

0.96%
0.50%

(0.10%)
(0.26%)

(0.65%)
0.01%
0.24%

9.68%

Panel B: 2003:01-2021:12 subsample
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Q5 alpha long- and short-leg contributions for subsamples

0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

Risk
Seasonal momentum

Reversal
Earnings

Profitability
Momentum
Investment

Liquidity
Lead lag

Earnings forecast
Valuation ratio

Sales
Financing alt

Valuation
Ownership

R&D
Risk alt
Volume

Investment alt
Financing

Total

6.07%
3.88%

3.85%
2.67%
(2.27%)
2.26%

1.36%
1.14%

0.96%
0.90%

0.82%
(0.77%)

0.57%
0.37%

0.27%
0.23%

0.19%
(0.17%)

(0.10%)
0.04%

22.25%

Panel A: 1973:01-2002:12 subsample
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Q5 alpha long- and short-leg contributions for subsamples (cont’d)

0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

Risk
Seasonal momentum

Reversal
Earnings

Profitability
Momentum
Investment

Liquidity
Lead lag

Earnings forecast
Valuation ratio

Sales
Financing alt

Valuation
Ownership

R&D
Risk alt
Volume

Investment alt
Financing

Total

1.42%
0.99%

(1.68%)
1.74%

0.63%
1.85%

0.57%
(0.44%)

0.21%
0.75%

0.02%
(0.09%)
0.15%

0.45%
(0.26%)

(0.23%)
1.32%

0.50%
0.22%

0.42%

8.53%

Panel B: 2003:01-2021:12 subsample
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Portfolio performance for 60-month rolling windows
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Sharpe ratio contributions for 60-month rolling windows
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FF6 alpha contributions for 60-month rolling windows
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Q5 alpha contributions for 60-month rolling windows
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Conclusion

▶ Information in the underlying predictors in fitted ML models is
the ultimate source of return predictability and its associated
economic value

▶ Existing literature does not provide a general procedure for
decomposing economic value as measured by a portfolio
performance metric into the contributions of the underlying
predictors

▶ We fill this gap in the literature by developing the SPPCp, a
new model interpretation tool founded on Shapley values that
directly estimates the contributions of individual or groups of
predictors in fitted prediction models to portfolio performance

▶ SPPCp ⇒ flexible and powerful tool for deepening our
understanding of the sources of the economic value produced
by return predictability
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Conclusion

▶ Illustrate the SPPCp via an empirical example using 207 firm
characteristics to forecast individual stock returns with the
XGBoost ML algorithm and construct a long-short portfolio
that goes long (short) stocks with the highest (lowest) return
forecasts

▶ Portfolio generates a sizable Sharpe ratio as well as large
alphas in the context of leading multifactor models

▶ Organize the predictors into 20 groups based on economic
concepts

▶ Full 1973:01–2021:12 forecast evaluation period

▶ Risk, Earnings, Seasonal momentum, and Momentum make
the largest positive contributions to portfolio performance

▶ Sales and Ownership make negative contributions
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Conclusion

▶ Earnings, Seasonal momentum, and Investment make
positive/sizable contributions on a consistent basis over time

▶ Overall, the SPPCp sheds considerable light on how the
predictor groups contribute to portfolio performance

▶ As such, the SPPCp is a valuable tool for identifying key
determinants of cross-sectional expected returns

▶ SPPCp can also be used to measure the contributions of
predictors to portfolio performance when ML approaches are
used to directly estimate optimal portfolio weights (eg, Kozak
et al 2020, Cong et al 2022, Chen et al 2024, Jensen et al
2024)

https://doi.org/10.1016/j.jfineco.2019.06.008
https://doi.org/10.1016/j.jfineco.2019.06.008
https://dx.doi.org/10.2139/ssrn.3554486
https://doi.org/10.1287/mnsc.2023.4695
https://dx.doi.org/10.2139/ssrn.4187217
https://dx.doi.org/10.2139/ssrn.4187217
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