Strategic Debt in a Monetary Economy

Markus Althanns^{1*} Hugo van Buggenum^{1†}

¹KOF Swiss Economic Institute at ETH Zurich

EEA-ESEM 2024 – Rotterdam August 29, 2024

*malthanns@ethz.ch [†]hvanbuggenum@ethz.ch

2 Model

- **3** Equilibrium
- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- 7 Appendix
- 8 References

Q1 Can producers **indebt** themselves to improve their **bargaining** position vis-à-vis their consumers?

Q1 Can producers **indebt** themselves to improve their **bargaining** position vis-à-vis their consumers? \rightarrow Yes!

- Q1 Can producers **indebt** themselves to improve their **bargaining** position vis-à-vis their consumers? \rightarrow Yes!
- Q2 Does debt affect only the **distribution of the match surplus** or also the **bargaining set itself**?

- Q1 Can producers **indebt** themselves to improve their **bargaining** position vis-à-vis their consumers? \rightarrow Yes!
- Q2 Does debt affect only the **distribution of the match surplus** or also the **bargaining set itself**? \rightarrow Yes!

- Q1 Can producers **indebt** themselves to improve their **bargaining** position vis-à-vis their consumers? \rightarrow Yes!
- Q2 Does debt affect only the **distribution of the match surplus** or also the **bargaining set itself**? \rightarrow Yes!
- Q3 Can fiscal and monetary policies curb debt issuance to improve welfare?

- Q1 Can producers **indebt** themselves to improve their **bargaining** position vis-à-vis their consumers? \rightarrow Yes!
- Q2 Does debt affect only the **distribution of the match surplus** or also the **bargaining set itself**? \rightarrow Yes!
- Q3 Can fiscal and monetary policies curb debt issuance to improve welfare? \rightarrow Yes!

What is the theory of strategic debt?

Standard Cake Bargaining

Agents A (\bullet) and B (\bullet) bargain over 1 cake with 8 slices, exerting equal bargaining power.

Agent C (•) owns 2 additional slices of cake.

Standard Cake Bargaining

Agents A (\bullet) and B (\bullet) bargain over 1 cake with 8 slices, exerting equal bargaining power.

Agent C (•) owns 2 additional slices of cake.

Figure: Cake consumption of agents A (•), B (•), and C (•) without strategic debt.

Cake Bargaining with Strategic Debt

Agents A (•) and C (•) write a contingent limited-liability **debt contract**:

Cake Bargaining with Strategic Debt

Agents A (•) and C (•) write a contingent limited-liability **debt contract**:

- *Ex ante*, agent C (•) transfers 2 slices to agent A (•).
- Ex post, agent A (•) transfers 2 slices to agent C (•) contingent on agents A (•) and B (•) having reached a bargaining agreement.

Cake Bargaining with Strategic Debt

Agents A (•) and C (•) write a contingent limited-liability **debt contract**:

- Ex ante, agent C (•) transfers 2 slices to agent A (•).
- Ex post, agent A (•) transfers 2 slices to agent C (•) contingent on agents A (•) and B (•) having reached a bargaining agreement.

Figure: Cake consumption of agents A (\bullet) , B (\bullet) , and C (\bullet) with strategic debt.

Empirical evidence for the role of debt in bargaining:

- Bronars and Deere (1991): firms protect their shareholders' surplus from extraction by **workers' unions** through debt.
- Kale and Shahrur (2007): a firm's leverage is positively related to the **concentration levels** in its supplier and customer industries.
- Towner (2020): **U.S. hospitals** with higher debt-to-equity ratios negotiate higher reimbursement rates from health insurers.
- etc.

Theoretical Linking Points

New Monetarist models:

- money search: (Lagos and Rocheteau, 2005; Lagos and Wright, 2005; Rocheteau and Wright, 2005);
- the accelerating effect of inflation on decentralized trade:
 - 1 endogenous matching probabilities of buyers (Lagos and Rocheteau, 2005);
 - worse ability of buyers to reshuffle money balances as compared to sellers (Ennis, 2009);
 - 3 match-specific preference shocks (Dong and Jiang, 2014; Liu, Wang and Wright, 2011; Nosal, 2011)

2 Model

3 Equilibrium

- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- 7 Appendix

Agents & Goods

Three types of agents:

- **1** There is a unit mass of infinitely-lived *consumers*. At the beginning of period t, each consumer incurs preference shock $\epsilon_t \sim G$, $\epsilon_t \in [0, \overline{\epsilon}]$.
- 2 In period t, a unit mass of **one-period-lived** identical *producers* is born who dies at the end of period t + 1.
- **3** There is a unit mass of infinitely-lived identical *financiers*.

Agents & Goods

Three types of agents:

- **1** There is a unit mass of infinitely-lived *consumers*. At the beginning of period t, each consumer incurs preference shock $\epsilon_t \sim G$, $\epsilon_t \in [0, \overline{\epsilon}]$.
- 2 In period t, a unit mass of **one-period-lived** identical *producers* is born who dies at the end of period t + 1.
- **3** There is a unit mass of infinitely-lived identical *financiers*.

Two types of **non-storable** consumption goods:

- **1** General goods can be produced and consumed by all agents.
- Search goods are exclusively produced (by producers) and consumed (by consumers) in bilateral matches.

Goods Markets

	Decentralized market (DM)	ralized market (DM) Competitive market (CM)		
Traders	$consumer \leftrightarrow producer$	consumers, producers, financiers		
Goods	search goods	general goods		
Trading protocol	Kalai bargaining	Walrasian		

Market Alternation

 DM_t and CM_t alternate:

Market Alternation

DM_t and CM_t alternate:

Market Alternation

DM_t and CM_t alternate:

The anonymity in bilateral matches in the DM necessitates money.

Financiers write one-period limited-liability **debt contracts** with borrowers. \rightarrow Commitment between borrowers and financiers is feasible.

Financiers write one-period limited-liability **debt contracts** with borrowers. \rightarrow Commitment between borrowers and financiers is feasible.

A **debt contract**, written in CM_t , specifies:

- Financiers write one-period limited-liability **debt contracts** with borrowers. \rightarrow Commitment between borrowers and financiers is feasible.
- A **debt contract**, written in CM_t , specifies:
 - Loan repayment b_{t+1} due in CM_{t+1} , subject to limited liability.

Financiers write one-period limited-liability **debt contracts** with borrowers.

 \rightarrow Commitment between borrowers and financiers is feasible.

A **debt contract**, written in CM_t , specifies:

- Loan repayment b_{t+1} due in CM_{t+1} , subject to limited liability.
- Transfer $b_{t+1}/R_t(b_{t+1})$ to borrower in CM_t, given competitive pricing kernel

 $R_t: \mathbb{R}_+ \to \mathbb{R}_+ \cup \{\infty\}, \qquad b \mapsto R_t(b).$

2 Model

3 Equilibrium

- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- 7 Appendix
- 8 References

Bargaining

Consider a match of a consumer with real money holdings $m \ge 0$ and preference shock $\epsilon \in [0, \overline{\epsilon}]$, and a producer with limited-liability debt b.

Bargaining

Consider a match of a consumer with real money holdings $m \ge 0$ and preference shock $\epsilon \in [0, \overline{\epsilon}]$, and a producer with limited-liability debt b.

Search-good quantity q and payment p are determined through proportional Kalai (1977) bargaining:

Bargaining

Consider a match of a consumer with real money holdings $m \ge 0$ and preference shock $\epsilon \in [0, \overline{\epsilon}]$, and a producer with limited-liability debt b.

Search-good quantity q and payment p are determined through proportional Kalai (1977) bargaining:

$$\begin{split} (q,p) &= \arg\max_{q,p\geq 0}\{\epsilon u(q)-p\},\\ \text{s.t.} \quad p\leq m \quad \text{and} \quad \theta\underbrace{[\epsilon u(q)-p]}_{\text{consumer's}} = (1-\theta)\underbrace{[-c(q)+\underbrace{\max\{p-b,0\}}_{\text{producer's surplus}}]}_{\text{producer's surplus}}, \end{split}$$

where we use the following notation:

- $\theta \in [0,1]$: producer's bargaining power
- u(q) and c(q): consumer's utility function and producer's cost function

Successful Matches

We write $q(m, b, \epsilon)$ and $p(m, b, \epsilon)$ for the bargaining outcome.

We write $q(m, b, \epsilon)$ and $p(m, b, \epsilon)$ for the bargaining outcome.

A match is called *successful* if $q(m, b, \epsilon) > 0$.

We write $q(m, b, \epsilon)$ and $p(m, b, \epsilon)$ for the bargaining outcome.

A match is called *successful* if $q(m, b, \epsilon) > 0$.

 \rightarrow A successful match has full debt repayment.

Extensive Margin I

Definition We define

$$\hat{\epsilon}(b,m) \equiv \inf\{\epsilon \in [0,\bar{\epsilon}] : q(m,b,\epsilon) > 0\}$$

as the smallest preference shock ϵ for which a match is successful, given b and m.

Definition We define

$$\hat{\epsilon}(b,m) \equiv \inf\{\epsilon \in [0,\bar{\epsilon}] : q(m,b,\epsilon) > 0\}$$

as the smallest preference shock ϵ for which a match is successful, given b and m.

Why should a match be unsuccessful?

 \rightarrow Preference shock ϵ is too small to make the consumer willing to pay for the producer's debt repayment.

Extensive Margin II

Lemma It holds that

$$\frac{\partial \hat{\epsilon}(m,b)}{\partial b} > 0.$$

\Rightarrow The probability $1 - G(\hat{\epsilon})$ of a successful match **decreases** in b!

Consumers' Optimal Money Holdings

The consumer's money demand is determined through

$$\iota_{t+1} = \int_{\hat{\epsilon}(m_{t+1}, b_{t+1})}^{\bar{\epsilon}} \mathcal{L}(\epsilon', m_{t+1}, b_{t+1}) G(\mathrm{d}\epsilon'),$$

where ι_{t+1} denotes the **Fisher rate**, and where $\mathcal{L}(\epsilon, m, b)$ denotes the **liquidity** premium in match (ϵ, m, b) .

Consumers' value functions

Producers' Optimal Debt

The producer's optimal debt b_{t+1} is determined through

$$0 \geq \underbrace{(1-\theta)[1-G(\hat{\epsilon}_{t+1})]}_{\text{surplus extraction}} \underbrace{-\theta \int_{\hat{\epsilon}_{t+1}}^{\bar{\epsilon}} \mathcal{L}(\epsilon, m_{t+1}, b_{t+1})G(\mathrm{d}\epsilon)}_{\text{reduction of bargaining set}} \underbrace{-b_{t+1}g(\hat{\epsilon}_{t+1})\frac{\partial \hat{\epsilon}}{\partial b}}_{\text{extensive}}_{\text{margin effect}}$$

with "=" if $b_{t+1} > 0$.

Producers' Optimal Debt

The producer's optimal debt b_{t+1} is determined through

with "=" if $b_{t+1} > 0$.

Producers **complement** their bargaining power with their ability to commit in financial contracts:

- Producers make take-it-or-leave-it (TIOLI) offers ($\theta = 1$): no debt issuance.
- Consumers make TIOLI offers ($\theta = 0$): much debt issuance.

Producers' value functions

2 Model

3 Equilibrium

- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- 7 Appendix

Welfare

Welfare is defined as

$$\mathcal{W} \equiv \sum_{t=1}^{\infty} \beta^t \int_{\hat{\epsilon}_t}^{\bar{\epsilon}} \underbrace{[\epsilon_t u(q) - c(q)]_{q=q(\epsilon_t, m_t, b_t)}}_{\text{gross surplus in DM}_t} G(\mathrm{d}\epsilon_t),$$

where β denotes the agents' time-discount factor.

Distortions

Lemma

Debt is distortionary at the intensive and extensive margin of decentralized trade.

The economics behind the distortionary nature of debt is a **pecuniary externality**: debt is too cheap.

Distortions

Lemma

Debt is distortionary at the intensive and extensive margin of decentralized trade.

The economics behind the distortionary nature of debt is a **pecuniary externality**: debt is too cheap.

Optimal fiscal policy: a **Pigouvian tax** that makes debt prohibitively expensive.

Monetary Policy I

What can monetary policy do in the absence of Pigouvian taxation?

Proposition

A deviation from the Friedman rule ($\iota = 0$) increases the mass of successful matches and welfare:

$$\left. \frac{\mathrm{d}\hat{\epsilon}}{\mathrm{d}\iota} \right|_{\iota=0} < 0 \qquad \text{and} \qquad \left. \frac{\mathrm{d}\mathcal{W}}{\mathrm{d}\iota} \right|_{\iota=0} > 0.$$

Monetary Policy II

Corollary

At the Friedman rule, it holds that

$$\frac{\mathrm{d}W^{p,0}}{\mathrm{d}\iota}\Big|_{\iota=0} = 0 \qquad \text{and} \qquad \frac{\mathrm{d}W^c}{\mathrm{d}\iota}\Big|_{\iota=0} = \frac{\mathrm{d}\mathcal{W}}{\mathrm{d}\iota}\Big|_{\iota=0} > 0.$$

2 Model

- **3** Equilibrium
- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- Appendix
- 8 References

Money, Debt, and Mass of Successful Matches

Figure: Money, debt, and extensive margin for $\theta = 0.45, 0.55$.

Gross Surpluses

Figure: Surpluses for $\theta = 0.45, 0.55$.

2 Model

- **3** Equilibrium
- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- Appendix
- 8 References

Conclusion

We write a Lagos and Wright (2005) model in which producers issue debt to lever up their bargaining power.

Conclusion

We write a Lagos and Wright (2005) model in which producers issue debt to lever up their bargaining power.

Financiers exert a **pecuniary externality**.

Conclusion

We write a Lagos and Wright (2005) model in which producers issue debt to lever up their bargaining power.

Financiers exert a **pecuniary externality**.

Optimal policies:

- Fiscal: a **Pigouvian tax** that drives debt out of existence.
- Monetary: a **deviation from the Friedman rule** that stimulates decentralized trade at the extensive margin and improves welfare.

2 Model

- **3** Equilibrium
- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- Appendix

Consumers' Preferences

A consumer has periodic utility

$$U_t^c = \epsilon_t u(q_t) + x_t,$$

where

- q_t : DM-good consumption;
- x_t : CM-good net consumption ($x_t < 0$ if CM-good is produced);
- $\epsilon_t \stackrel{\text{i.i.d.}}{\sim} G$: idiosyncratic preference shock;
- G has support $[0, \overline{\epsilon}] \subset [0, \infty);$
- u: u' > 0 and u'' < 0.

Lifetime utility: $\sum_{t=0}^{\infty} \beta^t U_t^c$ with time-discount factor $\beta \in (0, 1)$.

agents & goods

Producers' Preferences

A producer born in CM_t has utility

$$U_t^p = x_t + \beta [-c(q_{t+1}) + x_{t+1}],$$

where

- q_{t+1} : DM-good production in DM_{t+1};
- *x_t*: CM-good net consumption in CM_t;
- x_{t+1} : CM-good net consumption in CM_{t+1};
- c: c' > 0 and $c'' \ge 0$.

agents & goods

Consumers' CM Value Function

A consumer's value of entering CM_t with real balances m and LBSs a reads

$$\begin{split} W_t^c(m, a) &= \max_{m', a' \ge 0} \{ x + \beta \mathbb{E}_G[V_{t+1}^c(m', a' | \epsilon')] \}, \\ \text{s.t.} \qquad x = m + a - \left[\frac{\phi_t m'}{\phi_{t+1}} + \frac{a'}{R_t^f} \right], \end{split}$$

where $V_{t+1}^c(m', a'|\epsilon')$ is the value of entering DM_{t+1} with real balances m' and LBSs a', having preference shock ϵ' .

Consumer's optimal money holdings

Producers' CM Value Functions

A producer's value of being born in CM_t reads

$$W_t^{p,0} = \max_{b' \ge 0} \left\{ \frac{b'}{R_t(b')} + \beta \mathbb{E}_G[V_{t+1}^p(b'|\epsilon')] \right\},\$$

where $V_{t+1}^p(b'|\epsilon')$ is the value of entering DM_{t+1} with debt b' and being matched with a consumer with preference shock ϵ' .

The producer's value of entering CM_{t+1} with real balances m and limited-liability debt b reads

$$W_{t+1}^{p,1}(m,b) = \max\{m-b,0\}.$$

Producer's optimal debt

Bargaining with Value Functions

The terms of trade in a match of a consumer with preference shock ϵ are determined through proportional Kalai (1977) bargaining:

$$\begin{split} (q,p) &= \arg \max_{q,p \geq 0} \{ \epsilon u(q) + W_t^c(m-p,a) - W_t^c(m,a) \}, \\ \text{s.t.} \quad p \leq m, \\ & \theta \left[\epsilon u(q) + W_t^c(m-p,a) - W_t^c(m,a) \right] \\ &= (1-\theta) \left[-c(q) + W_t^{p,1}(p,b) - W_t^{p,1}(0,b) \right], \end{split}$$

where $\theta \in [0, 1]$ denotes the producer's bargaining power.

Bargaining

2 Model

- **3** Equilibrium
- **4** Welfare and Policy
- **5** Simulations
- 6 Conclusion
- Appendix

References I

BRONARS, S. G. and DEERE, D. R. (1991). The threat of unionization, the use of debt, and the preservation of shareholder wealth. *Quarterly Journal of Economics*, **106** (1), 231–254.

- DONG, M. and JIANG, J. H. (2014). Money and price posting under private information. *Journal of Economic Theory*, **150** (C), 740–777.
- ENNIS, H. M. (2009). Avoiding the inflation tax. *International Economic Review*, **50** (2), 607–625.
- KALAI, E. (1977). Proportional solutions to bargaining situations: Interpersonal utility comparisons. *Econometrica*, **45** (7), 1623–1630.
- KALE, J. R. and SHAHRUR, H. (2007). Corporate capital structure and the characteristics of suppliers and customers. *Journal of Financial Economics*, 83 (2), 321–365.
- LAGOS, R. and ROCHETEAU, G. (2005). Inflation, output, and welfare. International Economic Review, **46** (2), 495–522.

References II

- and WRIGHT, R. (2005). A unified framework for monetary theory and policy analysis. *Journal of Political Economy*, **113** (3), 463–484.
- LIU, L. Q., WANG, L. and WRIGHT, R. (2011). On the "hot potato" effect of inflation: Intensive versus extensive margins. *Macroeconomic Dynamics*, **15** (S2), 191–216.
- NOSAL, E. (2011). Search, welfare, and the "hot potato" effect of inflation. *Macroeconomic Dynamics*, **15** (S2), 313–326.
- ROCHETEAU, G. and WRIGHT, R. (2005). Money in search equilibrium, in competitive equilibrium, and in competitive search equilibrium. *Econometrica*, **73** (1), 175–202.
- TOWNER, M. (2020). Debt and bargaining outcomes: Evidence from U.S. hospitals. *Management Science*, **66** (5), 2083–2098.

Toy Calibration

	u(q)	c(q)	$(1-\theta)$	β	$[0, \bar{\epsilon}]$	G
Values	$1.4\sqrt{q}$	$q^2/2$	0.5	0.96	[0,1]	$U(0, \bar{\epsilon})$