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Abstract

We characterize an efficient, budget-balanced, individually rational, and collusion-
proof mechanism in a dynamic environment with private values and independent types.
Agents observe private information, and public decisions are made over time. Each
agent guarantees himself an expected utility level by being truthful, and those guar-
anteed utility levels add up to the highest total ex-ante expected surplus. As a result,
all equilibria sustained by our mechanism are efficient and utility-equivalent and the
mechanism is robust to any reasonable collusive agreement. Our results remain in-
tact if agents choose private actions and observe true past types of other agents. The
properties of our mechanism stand in stark contrast to the Dynamic Pivot Mechanism
(Bergemann and Välimäki, 2010) and Balanced Team Mechanism (Athey and Segal,
2013), which, as we show, might admit only inefficient equilibria after the elimina-
tion of weakly dominated strategies. We also construct a modified mechanism that
approximately achieves the same property in environments without transfers.
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1 Introduction

Dynamic mechanism design addresses questions of information elicitation and resource al-
location in environments where agents’ private information evolves stochastically over time
and can be affected by allocation decisions (Bergemann and Välimäki, 2019). The frame-
work captures many important economic settings, such as dynamic public good provision
and nonlinear pricing.

In this paper, we are interested in dynamic mechanisms that achieve a socially efficient
allocation. Our main contribution is a new dynamic mechanism that is efficient, individually
rational, budget-balanced, and, crucially, collusion-proof. The main property of our mech-
anism is that every agent can obtain a guaranteed expected utility level even if all other
agents conspire to minimize his utility—these guaranteed utility levels exactly add up to
the expected efficient surplus. As a result, not only is every Bayes-Nash equilibrium of our
mechanism efficient, but it is resistant to any conceivable type of collusion.

The properties of our mechanism stand in stark contrast to two classic efficient mecha-
nisms that sustain truth-telling in a Perfect Bayesian Equilibrium: the Dynamic Pivot Mech-
anism (Bergemann and Välimäki, 2010) (which is, however, not budget-balanced) and the
Balanced Team Mechanism (Athey and Segal, 2013) (which, however, only satisfies weaker
participation constraints). It is not difficult to see that since these mechanisms are dynamic
versions of the Vickrey-Clarke-Groves (VCG) and the Arrow/d’Aspremont–Gérard–Varet
(AGV) mechanisms respectively, they might be susceptible to collusion. However, we show
that it is possible for none of the truth-telling Perfect Bayesian Equilibria of either mechanism
to survive iterated elimination of weakly dominated strategies. Our finding suggests that
efficient equilibria in these mechanisms are surprisingly fragile, and our mechanism offers a
more robust alternative without sacrificing any of the desirable properties of the Dynamic
Pivot and Balanced Team Mechanisms.

We consider a general dynamic environment à la Athey and Segal (2013). Every period,
agents observe their private types and a public state; after types are reported a public
decision is made. The type distribution of a private type can be affected by public decisions.
Otherwise, the agents’ types evolve independently. Agents’ utility functions are quasilinear
and can depend on private signals and public decisions arbitrarily.

Every period, each agent makes a public report of his private type. A mechanism consists
of a decision policy that determines a public decision and a payment rule that determines
transfers to the agents, both as a function of the reported types. The mechanism is efficient
if the decision policy maximizes the expected sum of all agents’ payoffs. The mechanism is
budget-balanced if, in every period, the sum of all transfers to all agents is zero.

2



We now describe our Guaranteed Utility Mechanism (GUM). The high-level idea is the
following. When multiple reports arrive, they jointly impose an externality on each agent
because they change the public decision. As usual, externality refers to the change in the
total “anticipated” (i.e., the expectation is calculated from believing the past reports and
assuming truthfulness in the future) payoffs of others. The key decision is how to calculate
the share of an individual report in this joint externality. In our mechanism, these shares are
additive. Namely, if multiple reports are made, the joint externality imposed by simultane-
ously updating these reports equals the sum of the calculated individual externalities. And
each agent i pays the transfer to j equal to this externality j imposed on i. If the externality
is additive, then members of a collusive cartel cannot exploit the difference between the sum
of their calculated individual externalities and the true joint effect of simultaneous updating
of their reports.

The GUM has two key features that distinguish it from other mechanisms. First, when
calculating the externality induced by an agent’s report, we process all the reports sequen-
tially according to the ordering i = 1, ..., N .1 For an example with three agents, when we
process the report of agent 2 in round t, we calculate the anticipated total payoffs of the
agents given the round-t reported type of agent 1, and the round-(t − 1) reported types of
agents 2 and 3. Then we calculate how agents’ payoffs change by the update to the round-t
report of agent 2.

The second difference is that the externality payments are bilateral : every agent j receives
the transfer from i which compensates j by the externality imposed on j by i. In our example,
assume that the update increases the anticipated total payoff of agent 1 by 20 and decreases
the anticipated total payoff of agent 3 by 5. Then the transfers are (−20, 15, 5), namely,
agent 1 pays 20 to agent 2 and agent 2 pays 5 to agent 3. By construction, this ensures that
GUM is budget-balanced.

In a truth-telling equilibrium of the GUM, every agent obtains his maxmin utility and
agents’ maxmin utilities sum up to the maximum ex-ante surplus, so the mechanism is effi-
cient. As a consequence, all Bayes-Nash equilibria of GUM are efficient and utility-equivalent
(Proposition 1). Although truth-telling is not a dominant strategy2, there is essentially noth-
ing for the agents to gain from misreporting their type under the GUM. Indeed, we show
that the GUM is collusion-proof in a very strong sense, i.e., whenever the colluding agents

1In Section H, we show that the mechanism can be symmetrized so that it is independent of the ordering;
payments are then equal to the Shapley values where the externality plays the role of the value of the
coalition.

2Efficiency is incompatible with dominant-strategy implementation in dynamic settings (Bergemann and
Välimäki, 2019, Section 3.3).

3



can jointly coordinate their reports and exchange transfers within the coalition (Theorem 1).
Intuitively, GUM is collusion-proof because every honest agent obtains an expected utility
guarantee regardless of the strategies of other agents, and those guarantees add up to the
socially efficient surplus.

Having established the efficiency and collusion-proofness of the GUM, we turn to par-
ticipation constraints and other properties. First, we show that GUM can be enhanced to
satisfy a dynamic version of an interim participation constraint, explored by Athey and Segal
(2013), which allows agents to exit every round having learned their type and re-enter the
mechanism later (Section 6.1). While we used a standard dynamic mechanism design setup,
our results can be extended to a more general environment. For example, our results remain
intact if agents observe informative signals of the true past types of other agents (Section
6.2), and, more interestingly, even if agents can choose private actions (Section 6.3).3

The payment rule in GUM differs from the payment rules for two classic efficient dynamic
mechanisms: the Dynamic Pivot Mechanism (DPM) due to Bergemann and Välimäki (2010)
and the Balanced Team Mechanism (BTM) due to Athey and Segal (2013).

The DPM is the dynamic version of the VCG mechanism. In DPM, each agent gets a
reward equal to his flow marginal contribution. That is, the expected transfer from every
agent is equal to the dynamic externality he imposes on others. These pivot-like payments
satisfy ex-post participation constraints and period ex-post incentive constraints (i.e., ro-
bustness to observing same-period types which the GUM does not satisfy) are satisfied for
all histories, but are not budget-balanced and do not allow for private actions.

The BTM is the dynamic version of the AGV mechanism. Like the GUM, it is efficient,
budget-balanced, and even allows for private actions. However, there are two main differences
between the GUM and the BTM. First, the way the incentive term is calculated. In the BTM,
the externality on the agent j’s payoff is calculated by updating only the report of agent
i at period t while keeping the reports of all the other agents at the period-(t − 1) value.
In our mechanism, all the agents’ reports are updated sequentially at period t according to
the order i = 1, ..., N . Second, the way the transfers are paid. In the BTM, each agent i’s
incentive term is paid equally by all the other agents j ̸= i. In the GUM, every agent j is
compensated for the externality imposed on him by i’s updated report. As our payment rule
makes each agent accountable for the externality his report imposes on other agents, the
mechanism remains budget-balanced without distorting the truth-telling incentives.

It is not surprising that neither the DPM nor the BTM is collusion-proof. Crucially,
however, both in the DPM and the BTM, the externality is not additive. As a result, we

3In Appendix H, we also discuss how to make GUM symmetric and the connection to Shapley values.
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DPM BTM GUM
Efficiency and truth-telling

existence of an efficient PBE YES YES YES
existence of an efficient PBE that survives iterated NO NO YESelimination of weakly dominated strategies (Sec. 5.2) (Sec. 5.1)
all PBEs are efficient NO NO YES
all Bayesian Nash equilibria are efficient NO NO YES

(Prop. 1)
Collusion

collusion-proof (Sec. 4.2) NO NO YES
(Thm. 1)

Properties, robustness, extensions
balanced budget NO YES YES
exiting and re-entering are allowed (Sec. 6.1) YES NO YES
robustness to observing past true types (Sec. 6.2) YES NO YES
robustness to observing same-period types YES NO NO
private actions (Sec. 6.3) NO YES YES

Table 1: The properties of the Dynamic Pivot Mechanism (DPM, due to Bergemann and
Välimäki (2010), the Balanced Team Mechanism (BTM, due to Athey and Segal (2013), and
the Guaranteed Utility Mechanisms (GUM, this paper). PBE = Perfect Bayesian Equilib-
rium.

show that under both DPM and BTM, it is possible that none of the truth-telling equilibria
survive iterated elimination of weakly dominated strategies and therefore the only surviving
equilibria in these mechanisms are inefficient (Section 5). Such fragility sounds caution for
any designer who is interested in applying these mechanisms in practice. Table 1 summarizes
the differences between the DPM, the BTM, and the GUM.

Our mechanism points out a subtle link between dynamic collusion-proof mechanisms and
the approximately efficient Bayesian mechanisms with multiple allocation decisions without
transfers considered by Jackson and Sonnenschein (2007).4 Specifically, in Section 7, we
describe a transfer-free modification of GUM that achieves the same results as Jackson
and Sonnenschein (2007) but with tighter error bounds. In particular, the transfer-free
modification of GUM in which a truthful agent secures a payoff that converges to the ex-
ante target level under the efficient decision policy. The basic idea is as follows. We modify
GUM so that each agent is given a "budget." In every period, we calculate the sum of
externalities imposed by an agent from the beginning up to that period. We then "punish"

4Also see Escobar and Toikka (2013), Renou and Tomala (2015), and Ball et al. (2022).
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the agent if the sum exceeds his budget by replacing all his future reports with randomly
generated ones. Our implementation is equivalent to the linking mechanism if agents face
tight budget constraints but with higher error bounds.

The rest of the paper is organized as follows. In Section 2, we briefly discuss further
related literature. In Section 3, we describe the setup. The Guaranteed Utility Mechanism
and its key properties are in Section 4. In Section 5, we discuss the additive externality
property of the GUM and point out key weaknesses of the DPM and BTM. The additional
properties and extensions of the GUM are discussed in Section 6. In Section 7, we present a
modification of our base model without transfers. Section 8 is a conclusion.

2 Related Literature

In an independent paper, Safronov (2018) introduced the special case of our mechanism in a
static setting.5 He argued that the mechanism is “coalition-proof.” In his definition, colluding
agents can coordinate reports and transfer money within the coalition. The types of agents
within the coalition are commonly known. In Appendix C, we show that Safronov’s notion
of “coalition-proofness” is strictly weaker than our definition of collusion proofness even in a
static setting and is susceptible to uncertainty about formed collusive coalitions. Although
Safronov’s mechanism coincides with GUM in a static setting, maintaining the attractive
properties of GUM in a dynamic setting and achieving subgame perfection requires a far
more complex construction. The reason is that, in dynamic settings, the distribution of
future types used to calculate externalities evolves as a function of both agents’ reports and
public decisions. This distribution based on the reported types might differ from the true
(i.e., based on true types) distribution if some agents are not truthful in the past. This feature
is absent in a static environment. We overcome this challenge by exploiting a key martingale
property of the anticipated continuation payoffs. Specifically, if an agent is truthful, for
any period, the sum of his anticipated payoff and all the transfers up to that period is a
martingale. As reports are updated sequentially within each period, our mechanism can be
decomposed into a sequence of bilateral interactions. Our construction extends this insight
to dynamic environments with general transition dynamics. In particular, we illustrate that
it is insufficient for the agents to pay for the changes in the flow of expected utilities in each
period due to the intertemporal correlation of types. Thus, the guaranteed utility mechanism
requires that in each period, each agent pays the change in the continuation utilities of others
conditional on the reports in the previous period. As the proof shows, it calibrates the flow

5Antecedents of these ideas include Crémer and Riordan (1985).
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utility of an agent in every period to his ex-ante expected flow utility as long as he is always
truthful.

A large literature, recently surveyed by Bergemann and Välimäki (2019), studies efficient
mechanisms in a dynamic environment. Earlier work assumed that the agents did not learn
any information relevant for the future after a mechanism they participate in has started
(see, e.g., Atkeson and Lucas (1992) and Fudenberg et al. (1994), Wang (1995) and Miller
(2011)).6 thereby avoiding explicitly addressing the problems of contingent deviations in a
dynamic setup. This assumption was then relaxed in several papers (Athey and Bagwell,
2008; Escobar and Toikka, 2013; Pavan et al., 2014; Golosov et al., 2014; Battaglini and
Lamba, 2019).

Our results relate to the repeated implementation literature that studies full implemen-
tation by general (i.e., non-direct) mechanisms in environments with changing preferences.
Lee and Sabourian (2011) and Mezzetti and Renou (2017) examine full implementation un-
der complete information, and Lee and Sabourian (2013) considers incomplete information
settings. Our collusion-proofness criterion can be viewed as full implementation in equilib-
rium utilities. The main difference is that we only consider direct mechanisms with monetary
transfers in an independent private value environment with general transitions of preferences.

Finally, this paper is related to the literature on collusion-proof static mechanisms but
with a different focus. Starting from Laffont and Martimort (1997) and Laffont and Marti-
mort (2000), and the subsequent important contributions by Che and Kim (2006) and Che
and Kim (2009), this literature studies whether and how the agents’ ability to sign collu-
sive agreements, usually modeled as side contracts among the agents, can undermine the
principal’s objective, such as revenue maximization, in static mechanism design problems.
In contrast, this paper studies collusion-proofness in dynamic settings, where agents may
collude by employing complex history-dependent strategies.

3 The Setup

There is a set I = {1, ..., N} of agents. Time is discrete, and the number of periods is finite.7

The time periods are indexed by t ∈ {0, 1, ..., T}. In each period t, all the agents observe the
6One can avoid the challenge of contingent deviations by either considering a single agent with private

information (e.g., Courty and Hao (2000), Battaglini (2005), Khalil et al. (2020), Rodivilov (2022), and
Khalil et al. (2024)), or by allowing only an information structure that is independent across periods.

7We use a setup similar to the one in Athey and Segal (2013). The main difference is that Athey and
Segal (2013) consider an infinite (countable) number of periods, whereas the number of periods is finite in our
model. In addition, we assume there is no discounting. All of our results remain intact in the infinite-horizon
environment.
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(verifiable) public state θ0t ∈ Θ0, and each agent i ∈ I privately observes his type θit ∈ Θi.
We denote the state space by Θ =

∏N
i=0Θ

i. The initial state θ0 ∈ Θ is fixed. After the state
θt ∈ Θ is realized, a public decision xt ∈ X is made, and each agent i collects a transfer
yit ∈ R. All the described sets are finite.8

We now describe the transition probabilities and the distribution of subsequent states.
The transition probability function is denoted by µ : Θ ×X → ∆(Θ). That is, given any
state θt ∈ Θ and a public decision xt ∈ X at period t, the (t + 1)-period state is a random
variable distributed according to the probability measure µ(θt, xt) ∈ ∆(Θ).9 In addition,
we assume that types are independent. That is, the transition probability measure µ can be
written as

µ(θ, x) = µ0(θ0, x)×
N∏
i=1

µi(θ0, θi, x), (1)

where µ0 : Θ0 ×X → ∆(Θ0) and µi : Θ0 ×Θi ×X → ∆(Θi).10 Intuitively, it implies that
conditional on public information, an agent’s private type does not affect the distribution
of the current and future types of other agents.11 The independent types assumption also
implies that the agents cannot observe the past types of other agents. In Section 6.2, we
consider a relaxation of this assumption and allow the agents to observe the true past types.

Utilities. We denote by yit ∈ R a transfer to agent i ∈ I at period t. For a given sequences
of types θi = {θit}Tt=0, public decisions x = {xt}Tt=0, and transfers yi = {yit}Tt=1, the utility of
each agent i ∈ I is given by

U i(θi, x, yi) =
T∑
t=0

[
ui(θit, xt) + yit

]
. (2)

That is, we have an environment with private values since the per-period payoff function
ui(θit, xt) of each agent directly depends only on his private type and public decisions. In-
tuitively, this means that each agent can calculate his utility by only observing the public
decision and his type, even if he is uncertain about other agents’ types. Note that although
the agents’ utilities are quasilinear, we assume they can depend on private signals and public

8Our results can be extended to a setup with compact measurable spaces and upper semi-continuous
payoff functions.

9See Bergemann and Välimäki (2019) for a discussion of Markovian transition functions.
10This Markov formulation is without loss of generality. It is well-known that any dynamic model can be

described using Markov notation by defining large enough private states (see, e.g., Athey and Segal (2013)
for a discussion).

11This, however, does not prevent one agent’s reports from affecting future types of other agents, as well
as the future public state through the public decisions.
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decisions in a general way. In Section 6, we discuss extensions of the model with private
actions.

Timing. At period t = 0, all the agents observe the initial state θ0 = θ̂0 ∈ Θ, and a
decision x0 ∈ X is made. Then, in each period t ⩾ 1, every agent i ∈ I makes a (public)
announcement θ̂it ∈ Θi of his private type, and all the agents observe the verifiable public
state θ0t ∈ Θ0. Given the announced types and the public state, transfers yit to each agent
are calculated, and a decision xt ∈ X is made.

Strategy. Let θ̂t =
(
θ̂0t , θ̂

1
t , ..., θ̂

N
t

)
denote the vector of reported types in period t including

the public signal θ̂0t = θ0t . The public history ht = (θ̂0, θ̂1, . . . , θ̂t, x0, x1, . . . , xt) contains all
reports and public decisions12 up to the period t, and we denote by Ht the set of all these
public histories. A pure strategy of agent i is given by si = {sit}Tt=1, where

sit :
(
Θi

)t ×Ht−1 → Θi (3)

maps agent i’s private types up to period t and public histories before period t to a report in
period t. We denote the set of all mixed strategies for player i by S i. We say that an agent
follows a truth-telling strategy if sit ≡ θit for every period t ⩾ 1.

Mechanism. A mechanism consists of the following.

1. For our results, it will be sufficient to define a decision policy13 as a function

x : {0, 1, ..., T} ×Θ → X, (4)

that determines the public decision xt = xt(θ̂t) at every time period t.

2. A transfer rule yit = yit(ht) for every agent i ∈ I, and every time period t, as a
function of the public history.

We say that a mechanism is budget-balanced if the sum of all transfers to all agents in
every period t is zero: ∑

i∈I

yit ≡ 0 ∀t. (5)

12The mechanism will use a deterministic decision policy, a deterministic function of the reports. Therefore,
for simplicity, the public decisions will be omitted from the history.

13More general decision policies considering past reports (and randomization) are possible, see Bergemann
and Välimäki (2019, Section 2.1). Due to the Markovian nature of the model, these cannot yield any higher
social surplus.
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4 Guaranteed Utility Mechanism (GUM)

To formally define a decision policy and a transfer rule in our mechanism, we introduce the
following notation. We fix an ordering of the agents {0, 1, ..., N} including “0” indicating the
public signal. The intuition behind the following definition is that we consider the progress
of the game as if the types were reported sequentially in this order in every period. We
define the history of public reports up to i ∈ {0, 1, ..., N} at period t as follows.

ht,i =
(
θ̂0, θ̂1, ..., θ̂t−1, (θ̂

0
t , θ̂

1
t , ..., θ̂

i
t)
)

(6)

For a history h = ht,i let θ̃ ∼ µ(h, x) denote the probabilistic continuation of the game
θ̃ = (θ̃0, θ̃1, ..., θ̃T ).14 When we take expectation on a random variable θ̃ from µ(h, x), we will
use the simplified notation Eµ(h,x)

[
f(θ̃)

]
= Eθ̃∼µ(h,x)

[
f(θ̃)

]
.

Decision policy. GUM chooses an efficient decision policy χ that maximizes the expected
sum of all the agents’ payoffs for the initial state h0,N = θ̂0 = θ0 ∈ Θ:

χ ∈ argmax
χ′

Eµ(θ0,χ′)

[ ∑
i∈I

T∑
t=0

ui
(
θ̃it, χ

′(θ̃t)
) ]

. (7)

Transfers. We define the anticipated payoff of agent j as

Υj
t,i = Eµ(ht,i,χ)

[ T∑
t′=0

uj
(
θ̃jt′ , χ(θ̃t′)

)]
. (8)

Now we define the externality agent i’s report θ̂it imposes on agent j as its total change in
the anticipated payoff of j.

γi→j
t = Υj

t,i −Υj
t,i−1 =

T∑
t′=0

(
Eµ(ht,i,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,i−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)])
, (9)

14Formally, we define it as follows. If t′ < t or (t′ = t and j ≤ i), then θ̃jt′ = θ̂jt′ . Otherwise θ̃jt′ is recursively
defined by the stochastic type transition rule µ(θ̃jt′−1, x(θ̃t′−1)).
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and agent i pays a compensation −γi→j
t for his externality to j. To sum up, the transfer

to agent i at period t is defined as

yit =
∑
j ̸=i

(
γi→j
t − γj→i

t

)
=

∑
j ̸=i

γi→j
t︸ ︷︷ ︸

i’s externalities on other agents

−
∑
j ̸=i

γj→i
t︸ ︷︷ ︸

other agents’ externalities on i

.
(10)

The externality γi→j
t reflects the change in the anticipated payoff of agent j as a result

of updating agent i’s report at period t. The payments in GUM are defined so that for each
report θ̂it, each other agent j has to pay γi→j

t to agent i. When calculating the externalities
caused by a report θ̂it, we use the updated period-t reports for agents 1, ..., i − 1, whereas
we keep period-(t− 1) reports for agents i+1, ..., N . We then calculate how the anticipated
payoff of each other agent j changed. In other words, when calculating the effect of an
agent’s report, we update the newly reported types sequentially according to the order of
the agents 0, 1, ..., N , where 0 indicates the public signal.

In our mechanism, only an agent j who is affected positively (negatively) by a new report
of agent i pays (gets) a corresponding transfer. For example, if agent i’s report changes the
expected total payoff of agent j by 15 and of agent k by −5, then j transfers 15 to i and
k is paid 5 by i. Consequently, agent i collects 15 − 5 = 10. The transfers in (10) are
budget-balanced because every payment is from one agent to another.

We define the Guaranteed Utility Mechanism (GUM) to be a mechanism with
an efficient decision policy, together with the balanced transfers defined in (10) that are
constructed from the payments in (9). The name reflects the fact that it satisfies the following
property.

4.1 The Guaranteed Utility Property (GUP)

We say that a mechanism satisfies the Guaranteed Utility Property (GUP) if there exists a
strategy profile s∗ ∈ SI and a vector C ∈ RN such that:

∀i ∈ I, ∀s−i ∈ S−i : E
[
U i(si∗, s

−i)
]
⩾ Ci; (11)

sup
s∈SI

∑
i∈I

E
[
U i(s)

]
=

∑
i∈I

Ci. (12)

Intuitively, GUP requires that every agent i obtains an expected utility guarantee Ci by
following the strategy si∗ regardless of the other agents’ strategies. In addition, GUP requires
that the sum of all the utility guarantees equals the highest total expected surplus.
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Equivalently, a mechanism satisfies the GUP property if and only if∑
i∈I

max
si∈Si

min
s−i∈S−i

E
[
U i(si, s−i)

]
= max

s∈SI

∑
i∈I

E
[
U i(s)

]
. (13)

In other words, the mechanism satisfies GUP if it induces a game in which the sum of all
the agents’ maximin expected utilities equals the highest total expected surplus.

GUM satisfies GUP. In GUM, each agent i guarantees an expected utility equal to his
initial anticipated payoff Ci = Υi

0,N = Eµ(θ0,χ)
[∑T

k=0 u
i
(
θ̃ik, χ(θ̃k)

)]
by being truthful. This

outcome holds even if some other agents deviate from truth-telling.
Consider an arbitrary period t, and suppose that reports of all the agents k < i in the

order {1, ..., N} have been updated. Then, the updated report θ̂it of an agent i changes the
anticipated payoff of agent j by Υj

t,i − Υj
t,i−1, and i compensates j the amount of −γi→j

t =

Υj
t,i−1 − Υj

t,i. For the martingale property, it is sufficient to prove that, in this bilateral
interaction between i and j, if either agent is truthful, then he is unaffected by the dishonesty
of the other agent in expectation. Consider agent j. If j is truthful, then the transfer from
i to j compensates for the change in the anticipated expected total payoff of j, regardless
of the true types of i and the other agents, −γi→j

t = Υj
t,i−1 − Υj

t,i. Consider agent i. If i is
truthful, then the report θ̂it is distributed according to the µ

(
θ̂it−1, χ(θ̂t−1)

)
. Thus, regardless

of j being truthful or not, the law of iterated expectations implies that the expected change
in the anticipated payoff on j must be zero, E[γi→j

t ] = E[Υj
t,i] − E[Υj

t,i−1] = 0.15 Therefore,
the expected compensation paid by a truthful agent i is zero.

Given the martingale property, the final anticipated payoff of every honest agent i equals
his payoff Υi

T,N =
∑T

k=0 u
i
(
θ̃ik, χ(θ̃k)

)
. As a result, the final value of this martingale equals

i’s total utility, E[Υi
T,N ] = E[U i], which implies (11) with Ci = Υi

0,N . If every agent is
truthful, then the mechanism implements an efficient decision policy. As a result, the sum
of all the utility guarantees equals the highest total expected surplus,

∑
i∈I E

[
U i(s∗)

]
=∑

i∈I Eµ(θ0,χ)
[∑T

k=0 u
i
(
θ̃ik, χ(θ̃k)

)]
=

∑
i∈I Υ

i
0,N =

∑
i∈I C

i, which implies (12).

A direct consequence of GUM satisfying GUP is that GUM sustains truth-telling strate-
gies as a Bayesian Nash equilibrium. Moreover, in every BNE sustained by GUM, every agent

15Formally, E[Υj
t,i | ht,i−1; θ̂it = θit] = Eθ̂i

t∼µ(θ̂i
t−1,χ(θ̂t−1))

[∑T
t′=0 Eθ̃∼µ((ht,i−1,θ̂

i
t),χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]]

=

T∑
t′=0

Eµ(ht,i−1,χ)
[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
= E

[
Υj

t,i−1

]
.
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obtains the same expected utility equal to his initial anticipated payoff assuming truthful
reports and an efficient decision policy. For instance, suppose a strategy profile s ∈ SI is a
Bayesian Nash equilibrium and si∗ is the truthful strategy. On the one hand, the expected
utility of agent i is bounded from below by the utility guarantee of Υi

0,N :

E
[
U i(s)

] BNE

⩾ E
[
U i(si∗, s

−i)
] GUP

⩾ Υi
0,N , (14)

where the first inequality follows from the definition of BNE, and the second inequality
follows from the lower bound on the agent’s utility being the utility guarantee of Υi

0,N . On
the other hand, the expected utility of agent i is bounded from above by Υi

0,N :

E
[
U i(s)

]
= E

[∑
j

U j(s)

]
−

∑
j ̸=i

E
[
U j(s)

]
⩽
∑
j∈I

Υj
0,N −

∑
j ̸=i

E
[
U j(s)

] (14)
⩽

∑
j

Υj
0,N −

∑
j ̸=i

Υj
0,N = Υi

0,N ,

(15)

where the first inequality holds because
∑

j∈I Υ
j
0,N is the highest possible total expected

utility, and the second follows from (14) since
∑

j ̸=i E
[
U j(s)

]
⩾

∑
j ̸=iΥ

j
0,N . Therefore, in

every Bayesian Nash equilibrium, agent i’s expected utility is given by Υi
0,N . We summarize

the results below:16

Proposition 1. All BNE sustained by GUM are efficient and utility-equivalent.

4.2 Collusion-Proofness

We introduce a collusive environment that allows the agents to jointly coordinate their
reported types and to make balanced transfers within the colluding coalition. We assume
that the reports and the transfers are enforced by a (benevolent) coordinator who has all
the information the agents in the coalition have.17 Specifically, for a set of agents L ⊆ I, a
side contract is determined by s̄L = {s̄Lt }Tt=1, where

s̄Lt :
(
ΘL

)t ×Ht → ΘL × R|L|. (16)

A pure collusive strategy s̄L maps the joint information of the agents in L to reports θ̂L

and budget-balanced transfers within the coalition. We denote by S̄L the set of probability
16The formal proof of Proposition 1 is omitted as it directly follows from Theorem 1 proven in Section 4.2.
17It is without loss of generality to assume that collusion is enforced by a side contract (see Laffont and

Martimort (1997) and Laffont and Martimort (2000)).

13



distributions on these pure strategies. Intuitively, a side contract determines coordination
on (possibly random) submitted reports and budget-balanced transfers within L.

We denote by s̄I\{i} ∈ S̄I\{i} a joint collusive strategy of all the agents except i. The
collusive strategy s̄I\{i} can be treated as a “punishment” the other agents can coordinate
against agent i who does not join the grand coalition.

We say that a collusive strategy s̄I ∈ S̄I of the grand coalition is a weak collusive
equilibrium if:18

∀i ∈ I, ∀si ∈ S i, ∃s̄I\{i} ∈ S̄I\{i} : E
[
U i(si, s̄I\{i})

]
⩽ E

[
U i(s̄I)

]
. (17)

Intuitively, condition (17) states that the grand coalition collusive strategy s̄I can be
sustained if no agent i is able to deviate and collect a strictly higher utility against the
“punishment” strategy s̄I\{i} all other agents can impose on him. The right-hand side of (17)
reflects i’s utility if he follows the grand coalition collusive strategy. The left-hand side of
(17) reflects i’s utility if he is not part of the grand coalition, i.e. if he follows a non-collusive
strategy. Thus, s̄I is a weak collusive equilibrium if, for each agent i, there exists a “threat”
s̄I\{i} all other agents can use to incentivize agent i to join the grand coalition. A weak
collusive equilibrium should be interpreted as a necessary but not a sufficient condition for
a collusive strategy profile to be plausible. For instance, every Bayesian Nash equilibrium
satisfies the definition of weak collusive equilibrium.

An alternative way to define a weak collusive equilibrium s̄I is to require that no agent
has a strictly dominant deviation, where a strictly dominant deviation from s̄I is a strategy
si such that:

∀s̄I\{i} ∈ S̄I\{i} : E
[
U i(si, s̄I\{i})

]
> E

[
U i(s̄)

]
. (18)

We now introduce our notion of collusion-proofness.

We say that a game is collusion-proof if all weak collusive equilibria are utility-
equivalent. That is, the vector of agents’ utilities

(
E
[
U i(s̄I)

])
i∈I

is the same for all weak

collusive equilibria s̄I .
We will prove that this definition of collusion-proofness implies not only the guaranteed

utility property but also a stronger version of the guaranteed utility property.

Theorem 1. The Guaranteed Utility Mechanism is collusion-proof.
Proof: See Appendix B.

18The order of ∀si ∈ Si and ∃s̄I\{i} ∈ S̄I\{i} in (17) are interchangeable since it is an instance of a 2-player
(agent i and coalition I \ {i}) 0-sum game.
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The reason GUM is collusion-proof is that no coalition of agents L ⊆ I can collude and
collect a total utility higher than

∑
j∈LΥ

j
0,N if other non-colluding agents are truthful. For

any coalition of agents L ⊆ I, the upper bound for the sum of their expected utilities is
the highest total expected surplus of all agents minus the sum of the guaranteed expected
utilities of other agents i /∈ L outside of the coalition. If members I \ L outside of the
coalition follow the equilibrium truth-telling strategies, coalition L cannot get a higher total
expected utility:

sup
θ̃

∑
i∈I

Eµ(θ0,χ)

[
U i(θi, χ(θ̃), yi)

]
−
∑
i/∈ L

Eµ(θ0,χ)

[
U i(θi, χ(θ̂), yi)

]
⩽

∑
i∈I

Υi
0,N −

∑
i /∈L

Υi
0,N =

∑
j∈L

Υj
0,N .

(19)

To highlight the connection between utility guarantees and collusion-proofness, we in-
troduce the following definition that extends the GUP property to a collusive environment.
We say that a mechanism satisfies the Collusion-Proof Guaranteed Utility Property
(CPGUP) if there exists a strategy profile s∗ ∈ SI and a vector C ∈ RN satisfying the
following:

∀i ∈ I, ∀s̄I\{i} ∈ S̄I\{i} : E
[
U i(si∗, s̄

I\{i})
]
⩾ Ci; (20)

sup
s̄I∈S̄I

∑
i∈I

E
[
U i(s̄I)

]
=

∑
i∈I

Ci. (21)

Equivalently, a mechanism satisfies the CPGUP property if and only if∑
i∈I

max
si∈Si

min
s̄I\{i}∈S̄I\{i}

E
[
U i(si, s̄I\{i})

]
= max

s̄I∈S̄I

∑
i∈I

E
[
U i(s̄I)

]
. (22)

We now discuss the connection between the CPGUP property and GUP introduced in
Section 4.1. Recall that, in (11) and (12), agent i evaluates his utility against the non-
collusive strategies of other agents. That is, GUP property requires the existence of a utility
guarantee for agent i, assuming the other agents do not coordinate their strategies. However,
the strong version of GUP requires that a utility guarantee exists for agent i even if all the
other agents collude and coordinate their reports. As can be seen, agent i’s utility on the
left-hand side of (20) is evaluated against any collusive strategy s̄I\{i} of agents I \ {i}.
Similarly, the left-hand side of (21) allows any collusive strategy s̄I of the grand coalition.
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Proposition 2. A mechanism is collusion-proof if and only if it satisfies CPGUP.

Proof. On the one hand, if G satisfies CPGUP, then

Ci
(11)
≤ E

[
U i(si∗, s̄

I\{i})
] (17)
≤ E

[
U i(s̄I)

]
, (23)

Thus, ∑
i∈I

Ci
(23)
≤

∑
i∈I

E
[
U i(s̄I)

] (12)
≤

∑
i∈I

Ci, (24)

therefore, E
[
U i(s̄I)

]
= Ci for every agent i ∈ I.

On the other hand, if G does not satisfy CPGUP, then the negation of (22) says that
there exists (s̄I , s̄I\{1}, s̄I\{2}, ..., s̄I\{N}) satisfying the following.∑

i∈I

max
si∈Si

E
[
U i(si, s̄I\{i})

]
<

∑
i∈I

E
[
U i(s̄I)

]
. (25)

We can modify the transfer rules in s̄I by an additional constant balanced vector cI , denoted
by s̄I + cI . Any profile of expected utilities (U1

∗ , U
2
∗ , ..., U

N
∗ ) satisfying

∑
i∈I

E
[
U i(s̄I)

]
=

∑
i∈I

U i
∗

can be achieved by a collusive strategy profile of the form s̄I+cI . There are different expected
utility vectors which also satisfy max

si∈Si
E
[
U i(si, s̄I\{i})

]
≤ U i

∗ for every agent i ∈ I. For all

these vectors, s̄I + cI is a weak collusive equilibrium, witnessed by
(
s̄I\{1}, s̄I\{2}, ..., s̄I\{N}).

5 Relation to Bergemann and Välimäki (2010)

and Athey and Segal (2013)

We now discuss GUM in relation to the Dynamic Pivot Mechanism (DPM) and the Balanced
Team Mechanism (BTM). To begin, we extend the definition of γi→j in (9) as follows:

γi→j
t (h) =

T∑
t′=0

(
Eµ((h,θ̂it),χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(h,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)] )
. (26)

This extended definition will allow us to illustrate better the technical differences among
the three mechanisms.19 In particular, the payment rules in the three mechanisms can be
expressed as follows:

19The main properties of the three mechanisms (DPM, BTM, and GUM) were summarized in Table 1.
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yDPM,i
t =

∑
j ̸=i

γi→j
t (ht,I\{i}), (27)

yBTM,i
t =

∑
j ̸=i

γi→j
t (ht−1,N)−

1

N − 1

∑
j ̸=i

∑
k ̸=j

γj→k
t (ht−1,N), (28)

yGUM,i
t =

∑
j ̸=i

(
γi→j
t (ht,i−1)− γj→i

t (ht,j−1)

)
, (29)

where ht,I\{i} = (θ̂0, θ̂1, ..., θ̂t−1, θ̂
−i
t ) is the history of reports until time point t excluding θ̂it.

Additive externality. As can be seen from (27), (28), and (29), the key differences among
the three mechanisms (DPM, BTM, and GUM) are the way the externalities and the contri-
butions of an individual report to the externalities are calculated. In our mechanism, these
contributions are additive. That is, when multiple reports are made, the joint externality
imposed by simultaneously updating these reports equals the sum of the calculated individ-
ual externalities. Moreover, each agent i pays the transfer to agent j equal to the externality
j imposes on i. If the externality is not additive, then members of a collusive cartel can
exploit the difference between the sum of their calculated individual externalities and the
true joint effect of simultaneous updating of their reports. This makes a mechanism prone
to collusion.

We now illustrate formally that the way the externality is defined in GUM additive.
That is, the sum of all the agents’ externalities is equal to the total externality imposed by
updating all the agents’ reports simultaneously.

We define the total externality simultaneous updating of all the agent’s reports at
period t imposes on the agent’s j payoff as follows:

γI→j
t =

T∑
t′=t

(
Eµ(ht,N ,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht−1,N ,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)] )
. (30)

That is, γI→j
t reflects the change in the j’s anticipated payoff as a result of updating

all the agents’ reports at period t. In other words, we calculate how the anticipated payoff
of agent j changes when we update the reported types from θ̂t−1,N to θ̂t,N . Intuitively, we
update the newly reported types simultaneously when calculating the total externality.

The externality is additive if the sum of the externalities across all the agents is equal
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to the total externality: ∑
i∈I

γi→j
t = γI→j

t ∀j, ∀t. (31)

Lemma 1. The externality defined in (9) is additive.
Proof: See Appendix A.

Note that (9) uses the total externality defined as the simultaneous updating of all the
agent’s reports. More generally, we can define the externality to be additive if the simulta-
neous updating of reports of a coalition of agents L ⊆ I equals the sum of the externalities
across the agents in that coalition. GUM satisfies this definition of additivity as well.

If the externality is additive, the change in every agent’s anticipated payoff resulting
from updating types from θ̂t−1,N to θ̂t,N at period t could be decomposed into the sum of
the marginal “contributions” of every agent. This additivity is crucial for the mechanism to
have the Collusion-Proof Guaranteed Utility Property. Contrarily, if the externality is not
additive, then it provides an opportunity for several agents to jointly deviate from truthtelling
and collect a higher utility. For instance, this is the case with the Balanced Team Mechanism.

5.1 Examples for AGV (static BTM) and BTM

We now provide an example in which the truth-telling strategy sustained by the BTM is
weakly dominated. Moreover, only a non-truthful inefficient equilibrium survives the iterated
elimination of weakly dominated strategies (regardless of the order of elimination).

Static case: AGV (which coincides with BTM for T = 1). This weakness (truth-
telling strategy being weakly dominated and the fact that only a non-truthful equilibrium
survives the iterated elimination of weakly dominated strategies) of BTM is already present
in the single-round setup, where BTM coincides with the AGV mechanism.

If there is a type profile for which there are multiple efficient decisions, then there are mul-
tiple efficient decision policies. We will call an AGV with a particular efficient decision policy
an AGV implementation. We state the results below, and the proofs are in Appendix E.

Theorem 2. There exists a setup with multiple efficient decision policies, such that, in one of
its AGV implementations, the truthful strategy of an agent is weakly dominated. Moreover,
an inefficient strategy profile survives iterative elimination of weakly dominated strategies
(not depending on the order of elimination).
Proof: See Appendix E.
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To highlight the role of multiple efficient decision policies in our results, we provide the
following Theorem.

Theorem 3. If a setup has a unique efficient decision policy, then under the unique AGV
implementation, the truthful strategy profile survives iterative elimination of weakly domi-
nated strategies.
Proof: See Appendix E.

Dynamic case: BTM (T > 1). We now illustrate that Theorem 3 no longer holds in a
dynamic environment.

Theorem 4. There exists a setup with a unique efficient decision policy such that, in the
unique BTM implementation, only an inefficient strategy profile survives the iterative elimi-
nation of weakly dominated strategies (not depending on the order of elimination).
Proof: See Appendix D.

Although the formal proof of Theorem 4 is delegated to Appendix D, we now illustrate
the main idea using Example 5.1 below.

Example 5.1. Consider a game with a large number of periods T and with three agents:
blue (b), red (r), and green (g). The set of agents is denoted by I = {b, r, g}. At periods
1, 2, ..., T − 1, nothing happens except that the types of blue and red stochastically evolve,
independently. At period T , the type of both blue and red is either H (high type) or L (low
type). A public decision “YES” or “NO” is made. If the decision is YES, then the payoffs
are ui

T (L, Y ES) = 5 and ui
T (H, Y ES) = 100 for i ∈ {b, r}, and ug

2(Y ES) = −150. If the
decision is NO then all the agents’ payoffs are normalized to zero. Thus, it is efficient to
choose YES if both blue and red agents have type H, and NO otherwise.

For i ∈ {b, r}, let pit = Pr(θiT = H | θit) denote the probability at t that i will have type
H in round T . The transfers can be directly expressed by these probabilities.

The Balanced Team Mechanism. Each agent publicly reports the probability p̂it ∈ [0, 1]

at every period t = 1, 2, ..., T , and

p̂i0 = pi0 = E(pit). (32)

Given the reports, each agent gets a transfer calculated in two steps. First, for each t, we
calculate how each agent’s report changes the anticipated payoffs of other agents, given all
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the reported types in the previous round t− 1:

γBTM,i
t =

∑
j∈I\{i}

T∑
t′=0

E
[
uj
t′

(
p̂it, p̂

I\{i}
t−1

)
− uj

t′

(
p̂It−1

)]
, (33)

where uj
t′ expresses the payoff of agent j in round t′, and p̂It−1 denotes the reports of all

agents I = {b, r, g} at t− 1.
Second, each agent i gets this transfer γBTM,i

t paid equally by the other two agents.
Formally, the total transfer to agent i becomes:

yBTM,i =
T∑
t=1

[
γBTM,i
t − 1

2

∑
j∈I\{i}

γBTM,j
t

]
. (34)

In this example, each agent gets a transfer equal to the imposed externality on others,

γBTM,i
t = 50 · p̂−i

t−1(p̂
i
t−1 − p̂it), (35)

because the report changed the probability of Y ES from p̂−i
t−1 · p̂it−1 to p̂−i

t−1 · p̂it, and this
decision would cause a total of 100 − 150 = −50 change in the total payoff of the other
agents. Each of these transfers γBTM,i

t is paid by the other two agents, shared equally.
Consider the following deviation from the truth-telling strategies. In every even round

both blue and red agents report p̂b2k = p̂r2k = 0, and in every odd round they report p̂b2k+1 =

p̂r2k+1 = 1. Then, from round t = 2 on, in every even round both get a transfer of γBTM,i
2k =

50 · 1 · (1− 0) = 50, and in every odd round both get a transfer γBTM,i
2k+1 = 50 · 0 · (0− 1) = 0.

So this deviation from the truthful strategies is beneficial for both agents.20

Note that, in this dynamic setup, deviation from truthfulness does not require coordi-
nation: if either agent starts playing one of the stable equilibria, then the other agent is
incentivized to join. In Appendix D, we show a discrete example based on the same idea
with a full analysis that iterative elimination of weakly dominated strategies eliminate all
efficient strategy profiles.

Technical Differences: BTM vs. GUM. We now discuss the key technical differences
between the BTM and the GUM in detail. In particular, we discuss the two technical
differences between the way transfers are calculated in the BTM and the GUM.

20The described deviation from the truth-telling equilibrium is reminiscent of the stable (pure strategies)
equilibrium in the Battle of Sexes. The truth-telling equilibrium is analogous to the unstable equilibrium.
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Incentive Term. In the BTM, the externality the agent i’s updated report θ̂it imposes on
an agent j’s payoff is given by:

γBTM,i→j
t = Eµ(θ̂it,θ̂

−i
t−1,χ)

[ ∑
t′

uj
(
θt′ , χ(θt′)

) ]
− Eµ(θ̂t−1,χ)

[ ∑
t′

uj
(
θjt′ , χ(θt′)

) ]
. (36)

When calculating the change in the j’s anticipated payoff at period t′ as a result of updating
agent i’s report at period t, the BTM updates only the report of agent i from θ̂it−1 to θ̂it

while keeping reports of all other agents j ̸= i at period-(t − 1) value. That is, in both the
anticipated payoff functions, we have θ̂−i

t−1. This way of capturing the externality the agent
i’s report θ̂it imposes on other agents is not, in general, additive:21

∑
i∈I

γBTM,i→j
t ̸= γI→j

t . (37)

Intuitively, if the joint externality of several agents differs from the sum of their externalities,
they can “game” the mechanism. That is, by misreporting their types, agents can exploit the
difference between the total and the sum of the externalities their reports impose on other
agents.

How transfers are paid. Second, the GUM differs from the BTM in the way transfers are
paid. In the BTM, to ensure the transfers are budget-balanced, the agent i’s incentive term
is paid equally by all the other agents. In contrast, in the GUM, after each updated report
θit, each other agent j pays the transfer equal to the effect of this report on j.

We illustrate the two differences related to the transfers using the motivating example
with agents {b, r, g} introduced above.

First, recall that, in the BTM, the payment γBTM,r
t that reflects how the anticipated

payoffs of blue and green change as a result of updating red’s report from p̂rt−1 to p̂rt is:

γBTM,r
t = 50 p̂bt−1

(
p̂rt−1 − p̂rt

)
,

and if p̂bt−1 = 0 then γBTM,r
t = 0 regardless of p̂rt . This is the reason red can benefit from an

exaggerated report p̂rt = 1.
However, in the GUM, according to the order of agents {b, r, g}, we have

γGUM,b
t = 50 p̂rt−1

(
p̂bt−1 − p̂bt

)
= γBTM,b

t (38)

γGUM,r
t = 50 p̂bt

(
p̂rt−1 − p̂rt

)
̸≡ γBTM,r

t , (39)

21If in every round, only one agent has randomness in his new type, then the externality is additive in the
BTM.
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because we already updated the report of red to p̂rt when calculating the incentive term for
red. Note that with our way of calculating γGUM,r

t , agent red cannot report p̂rt = 1 without
“paying the price” as now he has to compensate for the externality his exaggerated report
p̂t2 = 1 imposes on the other two agents.

Second, to guarantee that the mechanism is balanced, γGUM,r
2 is paid by the agents

affected by p̂r2. For instance, since green’s payoff is −150 in case decision YES is made, red
has to compensate green if his report p̂r2 increases the chances of decision YES being made.

Note that only modifying the way the incentive terms are calculated is not sufficient.
For example, suppose we use the modified value of γr

t but require it to be paid equally by
all the other agents like in the BTM. Then, although red now must compensate for the
externality his exaggerated report imposes on the other agents, he does not compensate for
the entire change in the anticipated payoff of others. Thus his incentives to misreport remain.
Simultaneously changing both the way the incentive terms are calculated and the way they
are paid guarantees the truth-telling strategy is not weakly dominated.

5.2 Example (Dynamic Pivot Mechanism)

We now illustrate that the dynamic pivot mechanism introduced in Bergemann and Välimäki
(2010) is subject to the possibility of inefficient equilibria. Furthermore, the truthful strategy
sustained by the mechanism might be weakly dominated, and the iterated elimination of
dominated strategies may eliminate all efficient outcomes.

Example. Consider a two-period game with three agents: blue (b), red (r), and green (g),
and we denote the set of all agents by I = {b, r, g}. In both periods, an allocation (i.e., a
public decision) at ∈ A is an element of a finite set A = {−1, 0,+1} of possible allocations.
The payoff function for all i ∈ I is defined as follows:

ui(at, θi,t) = θi,t · at − (at)
2, (40)

where θi,t is the type of player i at period t, described next.
At t = 1, θb,1 = θr,1 = 5 and θg,1 = −2. At t = 2, the types depend on the types at

t = 1 as well as the allocation a1. If a1 = −1, then θb,2 = θr,2 = 0; otherwise, θb,2 = 100 and
θr,2 = −100. The green type at t = 2 is θg,2 = 0, regardless of the allocation. In addition,
agents can report the outside option X, which represents the “efficient exit condition”.22

Intuitively, the agent is deemed irrelevant if he does not affect the efficient social decision
22As mentioned in Bergemann and Välimäki (2010), page 781, paragraph 2, X is a type with u(X, at) = 0

and the transition from (X, at) to type X occurs with probability one.
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upon exit, the mechanism satisfies the efficient exit condition if agents neither make nor
receive transfers in periods where they are irrelevant.

The Dynamic Pivot Mechanism. We now describe the dynamic pivot mechanism. Given
the described types, the socially efficient allocation for every t is the following:

at = sign

(
θb,t + θr,t + θg,t

)
. (41)

We now specify the non-zero monetary transfers as functions of the reported types θ̂i,t.
If θ̂b,2 = 100 and θ̂r,2 = −100, then both blue and red pay 99 at t = 2, pb,2 = pr,2 = 99. At
t = 1, if θ̂b,1 = X, θ̂r,1 = 5, and θ̂g,1 = −2 then red pays 2 at t = 1, pr,1 = 2. Finally, if
θ̂r,1 = X, θ̂b,1 = 5, and θ̂g,1 = −2 then blue pays 2 at t = 1, pb,1 = 2. The expected utilities
are summarized in Table 3 below.

EU b,EU r θ̂r,1 = 5 θ̂r,1 = X

θ̂b,1 = 5 −94,−94 −96,−94

θ̂b,1 = X −94,−96 −2,−2

Table 2: utilities from the truthful and "exit" report for blue and red agents.

The main idea behind the example is that blue and red are better off reporting type X at
t = 1 and then rejoining the mechanism by reporting their type truthfully at t = 2. By doing
this, blue and red avoid the conflict as they want the opposite allocations at t = 2 (blue
benefits from a2 = 1 but red benefits from a2 = −1). To see, note that, in both periods,
green is better off being truthful as the truthful strategy dominates reporting θ̂g,t = X). In
addition, if the decision at t = 1 is a1 = 1, then both blue and red are better off reporting
θ̂b,2 = 100 and θ̂r,2 = −100 than reporting θ̂b,2 = θ̂r,2 = X.

6 Additional Properties and Extensions

We now discuss some of the additional properties and extensions of our mechanism.23 First,
in Section 6.1, we enhance GUM to satisfy a dynamic version of an interim participation
constraint. Second, in Section 6.2 we extend our results to a more general environment where
agents observe informative signals of the true past types of other agents. In Section 6.3, we
allow agents to choose private actions.

23In Appendix H, we discuss a symmetric version of GUM and the connection to Shapley values.

23



6.1 Participation constraints

To focus on efficiency and budget balance, we presented the main model without explicitly
addressing the agents’ participation incentives. One interpretation of that setup is that the
decisions and payments are implemented by an external enforcer. To formally introduce
participation constraints, one must define every agent’s outside option, i.e., the payoff of
non-participating in the mechanism. The mechanism is then individually rational if no
agent suffers a decrease in expected utility relative to this outside option.24

A natural way to introduce an outside option might be as follows.25 An agent can refuse
to pay the transfers, but his type and, therefore, the payoff is updated according to the
transition probabilities of the setup. The mechanism chooses the policy of the public decision
so that it maximizes the expected sum of the participating agents, ignoring the incentives
of the non-participating agents. This version of individual rationality implies that, at each
round, after the agent observes his type, he can choose whether to participate or not. If
he chooses not to participate, then the transfer to him is zero. We extend GUM for this
extended model as follows. Let Pt ⊆ I denote the set of participating agents in round t.
The mechanism always follows a decision policy χ(Pt, t), which maximizes the total expected
flow payoff of the participating agents:

χ(Pt, t) ∈ argmax
χ′

Eµ(θ̂t,χ′)

[ ∑
i∈I

T∑
t′=t

ui
(
θ̃it′ , χ

′(Pt, t)(θ̃t′)
) ]

. (42)

To formally make the mechanism individually rational, we introduce additional transfers
for each period an agent quits the mechanism. Let ũi

t− and ũi
t denote the anticipated payoff

of i starting from round t and assuming that the set of participating agents for the rest of
the game will be Pt−1 and Pt−1∩Pt, respectively. Note that

∑
i∈Pt−1∩Pt

E(ũi
t) ≥

∑
i∈Pt−1∩Pt

E(ũi
t−)

because in the former summation, the public decisions maximize that total anticipated payoff.
We introduce additional transfers as follows:

yexit→i
t = E(ũi

t−)− E(ũi
t) +

1

|Pt−1 ∩ Pt|
∑

i∈Pt−1∩Pt

(
E(ũi

t)− E(ũi
t−)

)
. (43)

24We can analogously define coalitional rationality: no set of agents can get a higher total expected utility
by some of them using the outside option.

25In public goods applications, the appropriate benchmark from which to measure payoff change might
not be uniquely defined. For example, if an agent declines to participate in a mechanism, he might be able
to avoid paying transfers. However, he might still be affected by the public decision as well as the decisions
of the remaining agents (see Green and Laffont (1978) for a discussion). See also Krishna and Perry (1998)
for a discussion of type-dependent participation constraints in efficient mechanisms.
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The additional transfers ensure that the truthful agents are compensated for the effect of
quitting, which guarantees that the truthful agents get the same guaranteed expected utility
no matter what the others do.

The extended GUM with additional transfers guarantees the same anticipated payoff
for every truthful agent who does not exit the mechanism, and the utility guarantees sum
up to the maximum possible total expected utility of all agents. Therefore, the proof of
incentive compatibility and collusion resistance applies to this extended setup when exiting
is allowed.26

6.2 Observing true past types

While we presented our main results assuming that agents observe only public reports re-
garding other agents’ types, our results remain intact if agents observe the true past types
(or noisy signals of them) of other agents. For instance, consider a modified model where
some agents O ⊆ I observe all the true past types. Namely, at period t, every agent j ∈ O
observes both the reported θ̂it−1 as well as the true type θit−1 for every i. In this modified
model, all our results remain intact, and truth-telling remains an equilibrium. Similarly, we
can allow the agents to observe any informative signals regarding the past types.27 Moreover,
within each period t, we can allow an agent whose report is being updated to observe the
true types of agents whose reports have already been updated at t. That is, when a report
of agent j from an ordered set {0, 1, ..., N} is updated, we can allow agent j to observe the
true types θkt of all agents k < j.

Our mechanism, therefore, extends the results of the efficient budget-balanced mechanism
design into the environment where the agents observe signals regarding the past types in
addition to the public reports. For instance, the (unbalanced) team mechanism in Athey
and Segal (2013) sustains truth-telling as a subgame-perfect equilibrium if all the private
types are publicly observed. However, under the Balanced Team Mechanism, the truthful
strategy profile is not a subgame-perfect equilibrium in the modified model where agents
observe the true past types of other agents.

The proof will be based on a strengthening of CPGUP (22) as follows. Let ¯̄SL denote
26If we want to allow re-entering, then we need to introduce additional transfers compensating the agents

in Pt−1 ∩ Pt. The rule is the same as before: the re-entering of j changes the expected total payoff of each
other agent i, and j pays the negative of this change. Note that re-entering with a type of constant zero
payoff throughout the game causes no transfer. Hence, an agent has the same incentives to re-enter and to
report the true type instead of that constant zero payoff type.

27The proof of Theorem 1 remains intact even if agents observe noisy signals regarding the past types in
addition to the public reports.
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the set of collusive strategies of L ⊆ I also allowing them to observe the true past types
of others. Namely, a pure extended collusive strategy of a set of agents L ⊆ I is given by
¯̄sL = {¯̄sLt }Tt=1 where

¯̄sLt : (ΘI)t−1 ×ΘL ×Ht−1 → ΘL (44)

and the set of the mixed extended collusive strategies are denoted by ¯̄SL. Clearly, S̄L ⊂ ¯̄SL.
In Appendix B we prove that GUM has the following strengthened property, where we

replaced S̄I\{i} with ¯̄SI\{i} in the definition of CPGUP.

∑
i∈I

max
si∈Si

min
¯̄sI\{i}∈ ¯̄SI\{i}

E
[
U i(si, ¯̄sI\{i})

]
= max

¯̄sI∈ ¯̄SI

∑
i∈I

E
[
U i(¯̄sI)

]
(45)

This proves an even stronger robustness about observing the past of each other: it works
for example in any model with noisy and correlated observation, because it only assumes
two things.

1. Each agent i can use his strategies as if he did not observe the past of others, meanwhile
hiding his current-round type.

2. If i hides his current-round type, then whatever the other agents do must be a legal
(mixed) collusive strategy where they fully observe the true past types of all agents.

6.3 Private actions

All our results remain intact if agents take private actions.28 Namely, we will show that the
guaranteed utility property (13) prevails, and as we have seen, all the proven features are
consequences of it. In particular, suppose that each period t consists of the following steps:

1. θt is chosen from the probability distribution
∏

i∈I∪{0} µ(θ
i
t−1, θ

0
t−1, x

i
t−1, x

0
t−1) for every

t > 0. Each agent i ∈ I privately observes θit, and all agents observe θ0t .
2. Each agent makes a report θ̂it.
3. A public decision x0

t ∈ X is made.
4. Each agent i ∈ I makes a private decision xi

t ∈ X.

The notion of a decision policy extends naturally to this extended setup as a vector
χ′ = (χ′0, χ′1, . . . , χ′N) where χ′i : {0, 1, . . . , T} × Θ → X.29 A history h and a decision
policy χ′ determines a probability distribution µ(h, χ′). The mechanism chooses an efficient

28In the working paper version of Athey and Segal (2013), the mechanism includes private decisions.
29As in the basic model, the decisions could depend on the full history. Our mechanism will use a decision

policy of this simpler form, with no loss in efficiency.
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decision policy χ = (χ0, χ1, . . . , χN), that is

χ ∈ argmax
χ′

Eµ(θ0,χ′)

[ ∑
i∈I

T∑
t=0

ui
(
θ̃it, χ

′(θ̃t)
) ]

. (46)

After all the agents report their types θ̂it, the mechanism makes a recommendation for
their private action χi(θ̂t) in the future period. When choosing the recommended private
actions, the designer calculates the anticipated payoffs. Given the efficient decision policy
and the payments described by (10), all the agents report their types truthfully and follow
the recommendation when choosing their private actions.30 This extension of the setup can
be combined with Section 6.2. Namely, we can allow the observation of true past types and
the observation of past private actions. This yields a similar strengthening of CPGUP (22)
as in Section 6.2.

7 Approximate efficiency without transfers

We now consider a modification of our base model without transfers.31 We will show a
transfer-free version of GUM that implements approximate CPGUP with limited error pro-
vided that the externalities γi→j

t (h) defined in (9) are absolutely bounded by a constant D.
Approximate CPGUP with error R is defined by the following modification of (21).

∀i ∈ I, ∀¯̄sI\{i} ∈ ¯̄SI\{i} : E
[
U i(si∗, ¯̄s

I\{i})
]
⩾ Ci; (47)

sup
¯̄sI∈ ¯̄SI

∑
i∈I

E
[
U i(¯̄sI)

]
−
∑
i∈I

Ci ≤ R (48)

We define the transfer-free GUM with bound B as the GUM with the following two
modifications:

1. There are no transfers, y ≡ 0.
2. For any ordered pair of agents i ̸= j and for any round t0, if

∑t0
t=1 γ

i→j
t < −B, then

the reports θ̂it for t > t0 are replaced with random types from µi
(
θ̂it−1, xt−1

)
until the

game ends.32

In other words, the agents are playing GUM except that the payments are not paid but
each ordered pair of agents (i, j) ∈ I2 has a separate virtual budget for the ordered bilateral

30See Csóka et al. (2023) for a general model with both moral hazard and adverse selection.
31The modification is applicable in the environment with private actions and observability of past types.
32Note that the replacement of reports with random ones affects both the public decisions xt and the

virtual transfers of γj→k
t for j ≥ i and t > t0.
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payments γi→j
t , and if i owes j more than this limit B, then i’s reports are replaced with

random reports after that period.
The maximum externality a report can cause to another agent is formalized as follows.33

D := max
i,j,t,ht,i

∣∣γi→j
t (ht,i)

∣∣ ≤ max
t,θt,θ′t,i

(
Eµ(θt,χ)

[ T∑
t′=t

ui
(
θ̃it′ , χ(θ̃t′)

)]
− Eµ(θ′t,χ)

[ T∑
t′=t

ui
(
θ̃it′ , χ(θ̃t′)

)])
(49)

The inequality tells that D is bounded by the maximum change in the anticipated payoff of
any player caused by changing the current type vector.

Theorem 5. In any game with N agents and T rounds and a bound D as in (49), the
transfer-free GUM with B = D ·

√
T · ln(T ·N) implements approximate CPGUP with error

bound R = N2 ·D ·
(
1 +

√
T · ln(T ·N)

)
.

We can illustrate the theorem with repeated games where independent copies of the same
single-round setup are played in a (large number) T of independent rounds. In this case, the
externality is bounded directly by the payoff function as follows.

D ≤ sup
i, θi

[
sup
x

ui(θi, x)− inf
x
ui(θi, x)

]
. (50)

As a consequence, the per period error bound is at most N2 ·D ·
√

ln(T ·N)
T

which converges
to 0 as T → ∞.

We note that if the evolution of the type space induced by µ and χ is a finite irreducible
Markov chain, then D is a bounded function of T . Therefore, for such setups, the per period
error also converges to 0.

We also note that all of these results are valid in the extensions where agents can observe
past types and the agents have private actions (see Section 6).

The mechanism and the error bounds could be improved by changing the decision policy
as compensation for a “virtual debt”. This technique could be particularly efficient in a case
of continuous payoff functions and transition rules on connected topological type spaces, in
which case the factor

√
T ln(T ·N) in Theorem 5 could be replaced by ln(T ). We leave this

for future research.
The repeated game problem without transfers we considered was solved for constant-size

type spaces in Jackson and Sonnenschein (2007) (hereafter, JS).34 The key idea in JS, is to
33Notice that µ

(
(ht−1,N , θt), χ

)
starting from round t is independent of ht−1,N , therefore, we denote this

distribution by µ(θt, χ).
34See also Ball et al. (2022) for a correction of the approximate truthfulness definition used in JS.
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use statistical tests to detect lies. If the reported statistics of a coalition of agents differ
significantly from their expected true distribution, then the mechanism “punishes” those
agents by replacing their reports with random ones. A truthful agent secures a sequence
of payoffs that converge to the target level under the efficient decision policy. However,
the error term in JS is heavily increasing with the size of type spaces and the number of
agents.35 In particular, the approach used in JS is not applicable if type spaces are infinite.
In contrast, our transfer-free GUM achieves efficiency with an error that does not depend
on the type space size.

Proof of Theorem 5. For each agent i, consider the joint distribution of the reports of others,
as a function of the reports of i. By reports, we mean the random replacement in the cases
when the agent already violated the budget constraint. This distribution can be simulated
by a collusive strategy ¯̄sI\{i} ∈ ¯̄SI\{i} in GUM. If agent i always reports truthfully, then
GUM guarantees E

[
U i

]
≥ CGUM,i for any collusive strategy of the other agents, including

¯̄sI\{i}. The two modifications of GUM to the transfer-free GUM change this expected utility
as follows.

• In the transfer-free GUM, agent i may suffer a loss by not receiving the transfers. If
i is truthful, then Eθit

[
γi→j
t (θit, θ̂

−i
t )

]
= 0 for any fixed report profile θ̂−i

t . About the

sequence
t0∑
t=1

γj→i
t , once it goes below −B, the further terms become 0 in expectation.

To sum up, the total expected transfer to i in GUM is at most (N − 1) · (B +D).

• The loss due to the obligatory misreporting of i. Hoeffding’s inequality shows that∑t0
t=1 γ

i→j
t < −B occurs with probability at most e

−2B2

t0·D2 ≤ e
−2·D2·T ·ln(T ·N)

T ·D2 = e−2·ln(T ·N) =
1

T 2·N2 . Therefore, the probability that it happens with any of the agents j ̸= i at any
time point t0 is less than 1

T ·N . In case it happens, the loss of i due to the obligatory
random misreporting is bounded by D per round, which is at most T ·D loss in total.
Therefore, the expected loss is less than D

N
.

Therefore, the guaranteed payoff of i is Ci ≥ CGUM,i − D
N
− (N − 1) · (B + D). So the

sum of the guaranteed payoffs satisfies the following.

sup
¯̄sI∈ ¯̄SI

∑
i∈I

E
[
U i(¯̄sI)

]
−
∑
i∈I

Ci =
∑
i∈I

(CGUM,i−Ci) ≤ D+N(N−1)·(B+D) < N2·(B+D) = R.

35Jackson and Sonnenschein (2007) do not provide explicit bounds for the dependence of the error term
on the parameters.
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8 Concluding Remarks

We construct an efficient dynamic mechanism with agents privately observing types over
time. Transfers are calculated based on the reported types. The reports are updated se-
quentially within each period. After agent i’s report is updated, i pays to j the negative of
the externality his report imposes on j. All Bayesian Nash equilibria sustained by our mech-
anism are utility equivalent. We prove that each agent can guarantee himself an expected
utility by being truthful, and those guaranteed utilities add up to the total ex-ante expected
surplus. Consequently, our mechanism is collusion-proof, and all Bayesian Nash equilibria
are utility equivalent. While we used a standard private values setup with independent types
to present our main results, our mechanism remains intact in a more general environment.
For instance, the truthful equilibrium sustained by our mechanism remains intact if agents
can also choose private actions. In addition, our results remain intact if agents observe
signals of the past true types of other agents. Finally, in environments without monetary
transfers, we construct a transfer-free GUM that approximately implements CPGUP.
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Appendix

A Proof of the additivity of externality

We show equation (31) in Section 5. First, using (9), the sum of the expected externalities
across all the agents is equal to:

∑
i∈I

γi→j
t =

∑
i∈I

( T∑
t′=t

(
Eµ(ht,i,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,i−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)] ))

=
T∑

t′=t

(∑
i∈I

(
Eµ(ht,i,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,i−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)] ))
.

(51)

Second, using the definition of ht,i in (6), the expression inside the
∑T

t′=t

()
on the right-

hand side of (51) can be rewritten as:

∑
i∈I

(
Eµ(ht,i,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,i−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)])
= Eµ(ht,0,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
+ · · ·

+ Eµ(ht,N ,χ)
[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,N−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
= Eµ(ht,N ,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
,

(52)

where ht,−1 = ht−1,N .
Finally, using that ht,−1 = ht−1,N , the expression on the right-hand side of (52) becomes:

Eµ(ht,N ,χ)
[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht,−1,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
= Eµ(ht,N ,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht−1,N ,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
.

(53)

Thus, we proved that the externality defined in (9) is additive:

∑
i∈I

γi→j
t =

T∑
t′=t

(
Eµ(ht,N ,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)]
− Eµ(ht−1,N ,χ)

[
uj
(
θ̃jt′ , χ(θ̃t′)

)])
= γI→j

t .

Q.E.D.
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B Proof of Theorem 1

We prove that Theorem 1 holds even in the extended model where the agents may have
private decisions (Section 6.3) and may observe the past of each other (Section 6.2). We
show that GUM satisfies CPGUP, which is equivalent to collusion-proofness according to
Proposition 2.

We prove that every agent i ∈ I obtains a utility guarantee of Υi
0,N by being truthful

and
∑
i∈I

Υi
0,N is equal to the highest possible expected total utility.36 The latter statement

is obvious. If all agents are truthful, then by the definition of Υi
0,N , the expected utility of

agent i is exactly Υi
0,N . By the definition of the efficient decision policy, if the types are

truthfully reported, then the mechanism maximizes the expected total payoff, and the total
payoff equals the total utility because the transfers are balanced. Formally,

∑
i∈I

E
[
U i

(
¯̄sI
)]

≤
∑
i∈I

Eµ(θ0,χ)

[
U i

(
θ̃i, χ(θ̃), yi(θ̃)

) ]
(54)

=
∑
i∈I

Eµ(θ0,χ)

[ T∑
t=0

[
ui(θ̃it, χ(θ̃t)) + yit(θ̃)

]]
=

∑
i∈I

Eµ(θ0,χ)

[ T∑
t=0

ui(θ̃it, χ(θ̃t))

]
=

∑
i∈I

Υi
0,N .

(55)
Therefore, we only need to prove the following.

E
[
U i

(
θi, χ(θ), yi(θ)

)
(si, ¯̄sI\{i})

]
= Υi

0,N ∀i ∈ I, ∀¯̄sI\{i} ∈ ¯̄SI\{i}. (56)

From now on, the strategy si is fixed as the truthful strategy of agent i, and a collusive
joint strategy ¯̄sI\{i} is also fixed. The transition probabilities in the stochastic process depend
on the choice of ¯̄sI\{i}.

Starting from the first round (t = 1), we consider the private actions to be made at time
(t, N + 1). Hence, the Nth player’s report of θ̂Nt at time (t, N) is followed by the private
actions at time (t, N + 1), which is followed by the report of θ̂0t+1 at time (t+ 1, 0).

36Note that Υi
0,N is only a function of the fixed initial type vector θ0.
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We split each transfer to a sum yit =
N+1∑
j=0

yit,j in the following way.

yit,j =


0 , if j = 0 or j = N + 1∑
k ̸=i

γi→k
t , if j = i

−γj→i
t , if j ̸= 0, j ̸= N + 1 and j ̸= i

. (57)

Notice that yit,j is a function of ht,j.
Let F i

t,j contain

1. the current history ht,j,

2. all public and private decisions up to round t− 1, namely, (xi
t′) for all i ∈ I ∪ {0} and

t′ ≤ t− 1,

3. the true current types θt, excluding θit for j < i, namely,

θ−i
t if j < i;

θt if j ≥ i.

This expresses an upper bound for the total information of all agents excluding i at time
(t, j). More formally, we assume that if i does not collude, then θ̂jt must be F i

t,j-measurable.
We prove that the sum of the anticipated payoff Υi

t,j of the truthful agent i and the total

transfers
(t,j)∑

(t′,i)=(1,0)

yit′,i up to a time (t, j) is a martingale:

E
[
Υi

t,j +

(t,j)∑
(t′,i)=(1,0)

yit′,i

∣∣∣∣F i
t,j−1

]
= Υi

t,j−1 +

(t,j−1)∑
(t′,i)=(1,0)

yit′,i, (58)

which is equivalent to:

E
[
Υi

t,j −Υi
t,j−1 + yit,j

∣∣∣∣F i
t,j−1

]
= 0, (59)

or alternatively

E
[
γj→i
t + yit,j

∣∣∣∣F i
t,j−1

]
= 0. (60)

When the second lower index is j = 0, then (t, j − 1) = (t,−1) is identified by the time
(t − 1, N + 1). We now formally prove that condition (60) holds. There are four cases
depending on the type of report being updated.

Case 1 (j = 0, updating the public report). Since yit,0 = 0, we need to show that
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E
[
γ0→i
t

∣∣∣∣F i
t,−1

]
= 0; see (60). That is, by the definition of externality (9), we need

E
[
Eµ(ht,0,χ)

[ ∑
t′

ui
(
θ̃it′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,−1

]
= E

[
Eµ(ht,−1,χ)

[ ∑
t′

ui
(
θ̃it′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,−1

]
. (61)

The left-hand side of the equality is the total expectation of
∑
t′
ui
(
θ̃it′ , χ(θ̃t′)

)
as θt ranges

through ΘN+1 according to the transition probabilities governed by µ. Hence, (61) follows
from the law of total expectation:

E
[
Eθ̃∼µ(ht,0,χ)

[ ∑
t′

ui
(
θ̃it′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,−1

]
(62)

= E
[
Eθ̂0t∼µ0(θ̂0t−1,xt−1)

[
Eθ̃∼µ((ht,−1,θ̂0t ),χ)

[ ∑
t′

ui
(
θ̃it′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,−1

] ∣∣∣∣F i
t,−1

]
(63)

= E
[
Eθ̃∼µ(ht,−1,χ)

[ ∑
t′

ui
(
θ̃it′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,−1

]
. (64)

Case 2 (j = i, updating agent i’s report). Since j = i, we have γj→i
t + yit,j = γi→i

t +∑
k ̸=i

γi→k
t =

∑
k

γi→k
t . Thus according to (60), we need to show that E

[ ∑
k

γi→k
t

∣∣∣∣F i
t,i−1

]
= 0.

That is, we need

∑
k

E
[
Eµ(ht,i,χ)

[ ∑
t′

uk
(
θ̃kt′ , χ(θ̃t′)

)]
− Eµ(ht,i−1,χ)

[ ∑
t′

uk
(
θ̃kt′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,i−1

]
= 0.

Hence, it is enough to show that for each k ∈ I we have

E
[
Eµ(ht,i,χ)

[ ∑
t′

uk
(
θ̃kt′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,i−1

]
= E

[
Eµ(ht,i−1,χ)

[ ∑
t′

uk
(
θ̃kt′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,i−1

]
.

(65)
As agent i is truthful, his report is updated from his past true type θ̂it−1 = θit−1 to his new
true type θ̂it = θit. Note that because the true type θit is revealed at time (t, i), we can view
θ̂it as a random variable governed by µ. By the law of iterated expectations, we have

E
[
Eθ̃∼µ(ht,i,χ)

[ ∑
t′

uk
(
θ̃kt′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,i−1

]
(66)

= E
[
Eθ̂it∼µi(θ̂0t−1,θ̂

i
t−1,xt−1)

[
Eθ̃∼µ((ht,i−1,θ̂

i
t),χ)

[ ∑
t′

uk
(
θ̃kt′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,i−1

] ∣∣∣∣F i
t,i−1

]
(67)
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= E
[
Eθ̃∼µ(ht,i−1,χ)

[ ∑
t′

uk
(
θ̃kt′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,i−1

]
. (68)

Case 3 (j ̸= i and j ̸= 0, updating other agent j’s report). By (57), we have γj→i
t +yit,j = 0,

and thus (60) holds trivially.
Case 4 (j = N + 1, making the private actions). Since yit,N+1 = 0, we need to show that

E
[
γN+1→i
t

∣∣∣∣F i
t,−1

]
= 0; see (60). That is, by the definition of externality (9), we need

E
[
Eµ(ht,N+1,χ)

[ ∑
t′

ui
(
θ̃it′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,N

]
= E

[
Eµ(ht,N ,χ)

[ ∑
t′

ui
(
θ̃it′ , χ(θ̃t′)

)] ∣∣∣∣F i
t,N

]
. (69)

The distributions µ(ht,N+1, χ) and µ(ht,N , χ) are the same, since at time (t, N) only deter-
ministic presumed private actions are made according to the decision policy χ.

Now as we proved that Υi
t,j +

(t,j)∑
(t′,j′)=(1,0)

yit′,j′ is a martingale, we conclude that every agent

can obtain a utility guarantee of Υi
0,N by being truthful, Υi

0,N = Eµ
[
Υi

0,N +
∑(0,N)

(t,j)=(1,0) y
i
t,j

]

= E

[
Υi

T,N+

(T,N)∑
(t,j)=(1,0)

yit,j

]
= E

[
T∑

k=0

ui
(
θ̃ik, χ(θ̃k)

)
+

N∑
t=0

yit

]
= E[U i] = E

[
U i(si, ¯̄sI\{i})

]
. (70)

Q.E.D.

C Weaknesses of Che–Kim’s Strong Collusion-Proofness

and Safronov’s Coalition-proofness

Our definition of collusion-proofness implies Che–Kim’s and Safronov’s definitions as well as
all earlier definitions of collusion-proofness we are aware of. Equivalently, a violation of any
of these definitions of collusion-proofness is a weak collusive equilibrium which changes the
expected utility of at least one player. In this appendix, we will elaborate on the other direc-
tion: Che–Kim’s and Safronov’s definitions have behaviourally relevant weaknesses compared
to our definition.

All definitions of collusion-proofness we are aware of were defined for static games. The
simplest setup about collusion has two agents and a principal, considering the possible coali-
tion of the two agents. For this case, Laffont and Martimort (2000) (following Cramton
and Palfrey (1995)) introduced a definition of “weak collusion-proofness”. Then Che and
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Kim used the analogous definition for multiple agents, called “strong collusion proofness”.
Hereby, this definition did not address some additional potential problems with collusion, as
we will shortly demonstrate. These definitions did not allow the agents to bond themselves
about what they would report.37 They also did not consider the possibility that the agents
may reveal and verify their true types. Che–Kim’s strong collusion-proofness was entirely
focusing on the utility of the principal. In particular, in an arbitrary game with a principal
and multiple agents, if the payoff of the principal is a constant, then every Nash equilibrium
is “Che–Kim strongly collusion-proof”. However, if the principal also gets a higher payoff
by a rational collusion of the agents, then it was a violation of Che–Kim’s strong collusion-
proofness. They used it for a game with a distinguished principal and at some agents, where
two agents were distinguished. They considered only those coalitions that included those
two agents and did not include the principal.

In a setup similar to ours but in a static framework, Safronov (2018) introduced the
simpler definition of coalition-proofness meaning that no set of agents can benefit in total
by a collusive deviation. This definition has no distinguished agent, and this is a reason
why there is no implication between Safronov’s coalition-proofness and Che–Kim’s strong
collusion-proofness.

Safronov’s Coalition-proofness (Safronov, 2018). In a static game G with a type
profile θ, a strategy profile s∗ is Safronov’s coalition-proof if for any type profile θ, any
coalition C ⊂ I and any joint strategy sC of agents in C, the following condition holds:∑

i∈C

E
[
(U i(sC , sI\C∗ )

]
⩽

∑
i∈C

E
[
U i(sI∗ )

]
. (71)

Safronov’s coalition-proofness can be interpreted as an extension of Nash equilibrium to
groups of colluding agents. We could justify this definition so that if the coalition can benefit
from a deviation, then an appropriate collusive transfer rule can make each agent benefit
from colluding.

While Safronov’s mechanism – as a special case of the GUM – satisfies our stronger def-
inition of collusion-proofness, Safronov’s coalition-proofness is a weaker term. For instance,
it does not imply uniqueness. For example, there are two coalition-proof equilibria in the
symmetrical battle of the sexes. Safronov’s coalition-proofness does not automatically ex-
tend to a dynamic environment where agents learn private information after some actions.

37Che–Kim had an illustrative example of a knockout auction that bonds them how to behave later, but it
did not meet their own definition of collusion. They added a footnote that the specific knockout auction in
that specific example has an equivalent outcome as another behavior that meets their definition of collusion.
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Moreover, Safronov’s coalition-proofness is susceptible to the agents’ beliefs regarding the
formed coalitions.

We next provide an example that satisfies Safronov’s coalition-proofness but where agents
find it beneficial to collude and coordinate their reports for some beliefs regarding the formed
coalitions.

Consider the following three-period game (T = 3) with four players, I = {1, 2, 3, 4}. The
timing is as follows.
t = 1: Agent 1 publicly chooses x1 ∈ {Quit, Bet}. If x1 = Quit, then the game ends. If
x1 = Bet, then the game proceeds to the next period.
t = 2: Agent 2 is trying to predict what Agent 3 and Agent 4 will do in a prisoners’
dilemma they play at t = 3, described below. Formally, Agent 2 privately chooses a “guess”
x2 = (g3, g4) ∈ {Y ,N} × {Y ,N}.
t = 3: Agent 3 and Agent 4 play a prisoners’ dilemma, i.e., make simultaneous choices:
Agent 3 chooses x3 ∈ {Y ,N} and Agent 4 chooses x4 ∈ {Y ,N}.

Utilities. The utilities are as follows. If x1 = Quit, then all the players collect zero utilities
(0, 0, 0, 0). If x1 = Bet, then the utilities are determined by actions of Agent 2, Agent 3,
and Agent 4. We distinguish two scenarios. First, if Agent 2’s guess is correct

(
g3 = x3

and g4 = x4

)
. The utilities are summarized in Table 4. Second, if Agent 2’s guess is wrong(

either g3 ̸= x3, or g4 ̸= x4, or both
)
. The utilities are summarized in Table 5. Intuitively,

Agent 3 and Agent 4 play the prisoner’s dilemma (N is analogous to "cooperate" and Y is
analogous to "defect"). Finally, Agent 2 is better off if his guess is correct, whereas Agent 1
is better off if Agent 2’s guess is wrong.

u1, u2, u3, u4 x4 = Y x4 = N
x3 = Y −2, 1,−10,−10 −2, 1, 10,−20
x3 = N −2, 1,−20, 10 −2, 1, 0, 0

Table 3: utilities if Agent 2’s guess is correct
(
g3 = x3 and g4 = x4

)
.

u1, u2, u3, u4 x4 = Y x4 = N
x3 = Y 8,−9,−10,−10 8,−9, 10,−20
x3 = N 8,−9,−20, 10 8,−9, 0, 0

Table 4: utilities if Agent 2’s guess is wrong
(
either g3 ̸= x3 or g4 ̸= x4, or both

)
.

Equilibrium analysis (without collusion). To characterize the equilibrium, note that there
is a unique equilibrium (Y , Y ) in the Agent 3 and Agent 4 prisoner’s dilemma at t = 3. At
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t = 2, Agent 2 correctly anticipates the outcome at t = 3 and chooses a guess x2 = (Y , Y ).
At t = 1, Agent 1 optimally chooses x1 = Quit anticipating a negative utility from x1 = Bet.
Formally, the unique subgame perfect Nash equilibrium is38

x1 = Quit, x2 = (Y , Y ), x3 = Y , and x4 = Y . (72)

Collusion analysis. Let us now consider the possibility of collusion between Agent 3
and Agent 4. Since they are playing a prisoner’s dilemma, they have incentives to collude
and choose x3 = N and x4 = N . Anticipating the collusion, Agent 2 chooses a guess
x2 = (N,N). If Agent 1 chooses x1 = Bet, he collects −2 if Agent 2’s guess is correct and 8

if Agent 2’s guess is wrong. Therefore, Agent 1 chooses x1 = Bet if he believes that Agent
2’s guess is wrong with probability at least 0.2. However, by checking all the joint deviations
for all possible coalitions, it is straightforward that the equilibrium in (72) is Safronov’s
coalition-proof.

The example above illustrates that Safronov’s coalition-proofness is susceptible to un-
certainty regarding formed coalitions. We note that our analysis remains intact if the game
was static, i.e., played within the same period. Moreover, one could construct an example
where even if it is known that the agents are open to collusion, it remains uncertain which
coalition would be formed.

For example, we could replace the 2-player prisoner’s dilemma at t = 3 with a 3-player
symmetric game between agents 3, 4, and 5 where only two out of the three players should
cooperate. Namely, each of agents 3, 4, and 5, chooses either Y or N . Then the utilities from
the agents’ choices are as follows (symmetrically between the agents): (−10,−10,−10) after
(Y , Y , Y ); (−40, 0, 0) after (N, Y , Y ); (10, 10,−20) after (N,N, Y ); and (−50,−50,−50)

after (N,N,N). This modification of the initial game has the unique Nash equilibrium
(Y , Y , Y ) and three symmetrical options for plausible collusion. Therefore, even if Agent 2
knows that agents 3, 4, and 5 are open to collusion, he cannot predict what they will play.

These examples demonstrated that a strategy profile may be the unique Nash equilibrium,
this equilibrium is Safronov’s coalition-proof, while it is not a rational strategy for an agent
due to some uncertainty about the collusion of others. The same issue could be demonstrated
also for Che–Kim’s strong collusion-proofness by introducing a principal who gets lower
utility in the case of the collusive outcome than for the non-collusive outcome.

38Note that the same argument proves that x1 = Quit with probability one in every Nash equilibrium.
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D Proof of Theorem 4

In this section, we will specify and slightly modify Example 5.1. Our analysis will be based
on (35). In order to get convenient values, we replace the utilities of (Blue,Red,Green)
to (84 or 104, 84 or 104,−204), and hereby in (35) the constant factor 150 − 100 = 50 is
replaced by 204− 104 = 100. We use the notation δit = p̂it − pit. As this section is dedicated
to the BTM, we use the simplified notation γi

t for γBTM,i
t .

Lemma 2. Assume that p̂bluet = pbluet in every even round t, and p̂redt = predt in every odd
round t, and both are true in the first and last rounds t = 0 and t = T . Then

E(γblue) = E
( T∑

t=1

γblue
t

)
= 100 ·

T∑
t=1

E
(
− δredt−1 · δbluet

)
= 100 ·

⌊T−2
2

⌋∑
t=1

E
(
− δred2t · δblue2t+1

)
(73)

E(γred) = E
( T∑

t=1

γred
t

)
= 100 ·

T∑
t=1

E
(
− δbluet−1 · δredt

)
= 100 ·

⌊T−1
2

⌋∑
t=1

E
(
− δblue2t−1 · δred2t

)
(74)

D.1 The setup

Consider now Example 5.1 with T = 4 number of rounds (and N ≥ 3 players). We define a
finite space of types for both players. The types are encoded as follows:

[b/r: Blue or Red][Round number]:[the percentage that his type will be HIGH]%.

Types of agent Blue:

b0:50%
b1:30%, b1:70%

b2:20%, b2:80%
b3:10%, b3:90%

b4:0%, b4:100%
(LOW) (HIGH)

Types of agent Red:

r0:50%
r1:50%

r2:20%, r2:80%
r3:10%, r3:90%

r4:0%, r4:100%
(LOW) (HIGH)

The transition probabilities can be calculated from (the martingale property of) the
percentages. E.g., b1:30% is transitioning to b2:20% or to b2:80% with probabilities 5/6 and
1/6, respectively, because 30% = 5

6
· 20% + 1

6
· 80%.

We make some modifications to the setup in order to incentivize the agents (under the
balanced Team Mechanism) to tell the truth in specific rounds (marked with bold). Hereby,
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we will be able to focus on the possibilities of deviations only in the rest of the rounds, which
will simplify the analysis.

We add 4+1 extra public decisions, each of them affecting only one agent. In round 2,
there is a public decision “b2:20%” or “b2:80%”. If this decision does not coincide with the
true type of Blue, then Blue gets a payoff −1042 (instead of 0) for that round. We do the
analogous modification in rounds 2 and 4 for Blue and in rounds 3 and 4 for Red (marked
with bold). We add one more public decision, for Red in round 2, but this time with an ε

loss in payoff.
Formally, we have

X2 = {“b2:20%”, “b2:80%”} × {“r2:20%”, “r2:80%”}

X3 = {“r3:10%”, “r3:90%”}

X4 = {“b4:0%”, “b4:100%”} × {“r4:0%”, “r4:100%”} × {“YES”, “NO”}

ublue
1 = ured

1 ≡ 0

ublue
2 (θblue2 , x2) = −1042 · I(θblue2 ̸= x2,1)

ured
2 (θred2 , x2) = −ε · I(θred2 ̸= x2,2)

ublue
3 ≡ 0

ured
3 (θred3 , x3) = −1042 · I(θred3 ̸= x3,1)

ublue
4 (θblue4 , x4) = −1042 · I(θblue4 ̸= x4,1) + I(x4,3 = YES) ·

(
84 + 20 · I(θblue4 = HIGH)

)
ured
4 (θred4 , x4) = −1042 · I(θred4 ̸= x4,1) + I(x4,3 = YES) ·

(
84 + 20 · I(θred4 = HIGH)

)
ugreen
4 (θgreen4 , x4) = −204 · I(x4,3 = YES)

D.2 The analysis

Under the balanced Team Mechanism, these 4+1 extra public decisions induce no transfers
between the agents. The only effect is that the agents get a punishment if they do not report
truthfully in the specified rounds.

Elimination step 1. Therefore, by weak domination (or a dynamic version of strict domi-
nation), we eliminate the possibilities of not reporting the true types at these 4 extra public
decisions (marked with bold) where the punishments are huge. It leaves a total of 3 binary
decisions for the two players: p̂blue1 , p̂red2 and p̂blue3 . The agents only observe their own types
and these earlier decisions of the other agent.

In this reduced game, the utilities u(xt, θ
i
t) are unaffected by these three decisions, and

the conditions of Lemma 2 apply. Therefore,
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• Blue is maximizing E
(
γblue

)
− 1

N−1
E
(
γred

)
= 100 ·E

(
−δred2 ·δblue3

)
− 100

N−1
E
(
−δblue1 ·δred2

)
,

• Red is maximizing E
(
γred

)
− 1

N−1
E
(
γblue

)
= 100 ·E

(
−δblue1 ·δred2

)
− 100

N−1
E
(
−δred2 ·δblue3

)
.

We refer to the binary options and types by “low” and “high”, and in this sense, we can
say that two decisions are of the “same kind”, denoted by “∼”, or “opposite”, denoted by “≁”.
Notice that the reduced game is symmetric in “low” and “high”.

Elimination step 2. Let us start with the last decision p̂blue3 . As (73) and (74) show, it can
only affect E

(
γblue

)
= 100 ·E(−δred2 ·δblue3 ). If p̂red2 = 20%, then −δred2 ≥ 0, therefore, choosing

p̂blue3 = 90% weakly dominates p̂blue3 = 10%. Analogously, if p̂red2 = 80%, then −δred2 ≤ 0,
therefore, choosing p̂blue3 = 10% weakly dominates p̂blue3 = 90%. Hereby we could conclude
by weak dominance that Blue should choose p̂blue3 ≁ p̂red2 .

From now on, the formula γblue will be calculated as a function of pblue1 , p̂blue1 and p̂red2

and with the assumption that p̂blue3 ≁ p̂red2 . It leaves a total of 2 binary decisions for the two
players: p̂blue1 and p̂red2 . Consider now the second decision p̂red2 . It has an effect on E

(
γred

)
=

100 ·E(−δblue1 ·δred2 ) and E
(
γblue

)
= 100 ·E(−δred2 ·δblue3 ) and ured

2 (θred2 , x2) = −ε · I(θred2 ̸= θ̂red2 ).

• The effect on E
(
γred

)
. If p̂blue1 ≁ pblue1 , then choosing p̂red2 ≁ p̂blue1 increases E

(
γred

)
by

100 · (0.7 − 0.3) · (0.8 − 0.2) = 24. If p̂blue1 = pblue1 , then E
(
γred

)
= 0 independently of

p̂red2 .

• The effect on E
(
γblue

)
. If pblue3 ∼ pred2 , then p̂red2 has no effect on E

(
γblue

)
. But if

pblue3 ≁ pred2 , then p̂red2 ≁ pred2 increases E
(
γblue

)
by 100 · (0.8− 0.2) · (0.9− 0.1) = 48.

• The effect on ured
2 : A loss of ε for the case p̂red2 ≁ pred2 .

Thus Red should choose p̂red2 ≁ p̂blue1 or p̂red2 = pred2 . Namely, if both decisions would be the
same, then Red is strictly better by choosing it. Otherwise, the best choice depends on his
belief about the probability that p̂blue1 ≁ pblue1 .

Now the Reader can jump to the matrix games, but we explain in short the dilemma
about the first decision p̂blue1 . It can affect both E(γred) and E(γblue). If Red chooses the
strategy p̂red2 = pred2 , then it does not matter what Blue does. So consider the case when Red
uses his other strategy p̂red2 ≁ p̂blue1 . In this case, E(γblue) is 48 or 0, and the probabilities
depend on p̂blue1 , and also Pr

(
δred2 ̸= 0

)
= 1/2 independently of p̂blue1 . But for example, if

pblue1 = 30%, then they will choose p̂blue1 = 70%, then p̂red2 = 20%, and then p̂blue3 = 90%.
Therefore,

Pr
(
γblue = 48

)
= Pr

(
δblue3 ̸= 0

)
= Pr

(
pblue3 = 10%

∣∣ pblue1 = 30%
)
=

90%− 30%

90%− 10%
=

3

4
.
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With p̂blue1 = pblue1 = 30%, it would be P
(
γblue > 0

)
= Pr

(
pblue3 = 90%

∣∣ pblue1 = 30%
)
= 1/4.

This shows that Blue should report p̂blue1 = 1 − pblue1 , and therefore, Red should report the
opposite.

Assuming that Blue and Red use a symmetric strategy for high and low, we get the
following 2×2 matrix game which only includes γ. Keep in mind that the non-constant terms
in the utility of Blue is γblue− 1

N−1
γred and for Red it is γred− 1

N−1
γblue−ε·I(p̂red

2 ≁ pred
2 ). (We

use a normalization factor of 1/3 for
(
E(γblue), E(γred)

)
in order to have smaller integers.)

1
3

(
E(γblue), E(γred)

)
p̂red2 = pred2 p̂red2 ≁ p̂blue1

p̂blue1 = pblue1 (0, 0) (2, 0)

p̂blue1 = 1− pblue1 (0, 0) (6, 4)

We can see that Blue prefers p̂blue1 = 1− pblue1 , and therefore, Red should choose p̂red2 ≁ p̂blue1

(if ε
6
< 4− 6

N−1
).

We could find some arguments to exclude the rationality of asymmetric strategies with
respect to high and low, but it is easier to extend the matrix with all asymmetric strategies.
The further pure strategies of Blue are always reporting pblue1 = 30% and always reporting
pblue1 = 70%. As for Red, we only need to consider the options when p̂blue1 ∼ pred2 because
otherwise he should choose p̂red2 = pred2 . Therefore, the two extra pure strategies of red are
the followings.

• “preferably high”, meaning that p̂red2 = 80% unless if
(
p̂blue1 = 70% and pred2 = 20%

)
;

• “preferably low”, meaning that p̂red2 = 20% unless if
(
p̂blue1 = 30% and pred2 = 80%

)
.

Now we get the following 4× 4 game.

1
3

(
E(γblue), E(γred)

)
p̂red2 = pred2 p̂red2 ≁ p̂blue1 p̂red2 pref. high p̂red2 pref. low

p̂blue1 = pblue1 (0, 0) (2, 0) (1, 0) (1, 0)

p̂blue1 = 1− pblue1 (0, 0) (6, 4) (3, 2) (3, 2)

p̂blue1 = 70% (0, 0) (4, 2) (1, 0) (3, 2)

p̂blue1 = 30% (0, 0) (4, 2) (3, 2) (1, 0)
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Or directly the non-constant terms in the utilities for N = 3 and ε = 3 are the following,
with the normalization factor changed to 4/3.

4
3

(
E(U blue), E(U red)

)
+ C p̂red2 = pred2 p̂red2 ≁ p̂blue1 p̂red2 pref. high p̂red2 pref. low

p̂blue1 = pblue1 (0, 0) (8, −2) (4, −1) (4, −1)

p̂blue1 = 1− pblue1 (0, 0) (16, 2) (8, 1) (8, 1)

p̂blue1 = 70% (0, 0) (12, −2) (4, −1) (8, 1)

p̂blue1 = 30% (0, 0) (12, −2) (8, 1) (4, −1)

Elimination step 3. p̂blue1 = 1− pblue1 weakly dominates all other strategies of Blue.

Elimination step 4. p̂red2 ≁ p̂blue1 weakly dominates all other strategies of Red.
The strategy profile surviving iterative elimination is an inefficient equilibrium because

Red misreports in round 2 with probability 50%.

D.3 Proof of Lemma 2

Lemma 3 shows that the main part of the expected payment can be expressed by δ, and shows
the reason why it incentivizes the agents to deviate in a synchronous way with alternating
signs. Lemma 2 is a direct consequence of it (using the fact that E(predT · pblueT ) = pred0 · pblue0 ).

Lemma 3. In Example 5.1,

E
( T∑

t=1

γblue
t

)
= 100 · E

(( T−1∑
t=1

(
δredt − δredt−1

)
δbluet

)
− δredT−1δ

blue
T + pred0 pblue0 − predT p̂blueT

)
(75)

E
( T∑

t=1

γred
t

)
= 100 · E

(( T−1∑
t=1

(
δbluet − δbluet−1

)
δredt

)
− δblueT−1δ

red
T + pblue0 pred0 − predT p̂redT

)
(76)

These are true even if players can observe the past types of each other. We assume only that
p̂blueT is independent of predT conditional on the history until round T − 1, and vice versa.

Proof. The martingale property of probabilities implies that E(pbluet ) = pbluet−1 and E(predt ) =

predt−1 for every t > 0. Furthermore, as these martingales for Blue and Red are independent,
E(pbluet1

· predt2
) = pblue0 · pred0 for every t1 and t2. Similarly, predT − predT−1 is independent of p̂blueT−1,
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and we assumed that it is also independent of p̂blueT and vice versa. These imply the following.

E
((

predt − predt−1

)
· p̂bluet−1

)
= E

((
predt − predt−1

)
· p̂bluet

)
= E

((
predt − predt−1

)
· δbluet−1

)
= 0 (77)

E
((

pbluet − pbluet−1

)
· p̂redt−1

)
= E

((
pbluet − pbluet−1

)
· p̂redt

)
= E

((
pbluet − pbluet−1

)
· δredt−1

)
= 0 (78)

By adding up (35) for every t and taking expectation, we obtain the following.

E
( T∑

t=1

γblue
t

)
= 100 ·

T∑
t=1

E
(
p̂redt−1 ·

(
p̂bluet−1 − p̂bluet

))

= 100 ·
T∑
t=1

E
(
δredt−1 ·

(
δbluet−1 − δbluet

)
+ δredt−1 ·

(
pbluet−1 − pbluet

)
+ predt−1 ·

(
p̂bluet−1 − p̂bluet

))
(78)
= 100 ·

T∑
t=1

E
(
δredt−1 ·

(
δbluet−1 − δbluet

)
+ predt−1 ·

(
p̂bluet−1 − p̂bluet

))

= 100 ·
T∑
t=1

E
(
δredt−1 · δbluet−1 − δredt−1 · δbluet + predt−1 · p̂bluet−1 − predt−1 · p̂bluet

))
(77)
= 100 · E

( T−1∑
t=1

δredt · δbluet −
T∑
t=1

δredt−1 · δbluet +
T∑
t=1

(
predt−1 · p̂bluet−1 − predt · p̂bluet

))

100 · E
(( T−1∑

t=1

(
δredt − δredt−1

)
δbluet

)
− δredT−1δ

blue
T + pred0 pblue0 − predT p̂blueT

)
This proves (75), and we can get the proof of (76) in an analogous way.

E AGV is vulnerable to weak dominance

E.1 Setup and AGV

Each agent i ∈ N privately observes his type θi ∈ Θi from a fixed initial probability dis-
tribution µi ∈ ∆(Θi), independently, µ =

∏
µi. Then a public decision x ∈ X is made,

and each agent gets a payoff u(θi, x). The utility of an agent is the payoff plus the transfer,
namely, Ui = u(θi, x)+ ti. If ∀i ∈ N, ∀θi ∈ Θi : µi(θi) > 0, then we say that this is a simple
discrete setup.
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AGV chooses a decision policy

χ(θ) ∈ argmax
x∈X

∑
i∈N

u(θi, x). (79)

Then the mechanism asks each agent to report a type θ̂i and makes the public decision χ(θ̂).
The payment rule is based on the following.

γi(θ̂i) = Eθ̃∼µ

( ∑
j∈N\{i}

uj

(
θ̃j, χ(θ̂i, θ̃−i)

)
− uj

(
θ̃j, χ(θ̃)

))
(80)

γi(θ̂i) is paid by the other agents shared equally, so the total transfers are as follows.

ti(θ̂) = γi(θ̂i)−
1

|N | − 1

∑
j∈N\{i}

γj(θ̂j) (81)

Each efficient decision policy χ in (79) determines an AGV implementation.

E.2 Results

Theorem 6. If there is a unique efficient AGV implementation in a simple discrete setup,
then the truthful strategy profile is not weakly dominated.

Note. This theorem partially “saves” the AGV mechanism, but this argument works only
in a static and not in a dynamic environment.

Proof of Theorem 1. In short, any deviation either does not change the public decision, and
hereby always provides the same utility as the truthful report, or it possibly leads to an
inefficient public decision, and hereby strictly worse if the others are truthful.

The detailed proof is the following. We can assume that |X| > 1. We say that two
reports of an agent are decision-equivalent if changing the report from one to the other never
changes the public decision. Formally, θi

i∼ θ′i ⇔ ∀θ−i ∈ Θ−i : d(θi, θ−i) = d(θ′i, θ−i). We
extend this definition for the case when θ′i ∈ ∆(Θi) is a probability distribution on types:
θi

i∼ θ′i if and only if θ′i is supported on types decision-equivalent to θi.
The utility of agent i is

Ui = u
(
θi, χ(θ̂)

)
+ ti(θ̂) = u

(
θi, χ

(
θ̂)
)
+ γi(θ̂i)−

1

|N | − 1

∑
j∈N\{i}

γj(θ̂j) (82)
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= u
(
θi, χ(θ̂)

)
+ Eθ̃∼µ

( ∑
j∈N\{i}

uj

(
θ̃j, χ(θ̂i, θ̃−i)

))
− f(θ̂−i) (83)

where
f(θ̂−i) = Eθ̃∼µ

(
uj

(
θ̃j, χ(θ̃)

))
+

1

|N | − 1

∑
j∈N\{i}

γj(θ̂j) (84)

Therefore, if the other agents but i are truthful, then

Eθ∼µ(Ui | θ̂−i = θ−i) = Eθ∼µ

(
u
(
θi, χ(θ̂i, θ−i)

)
− f(θ−i)

)
+ Eθ̃∼µ

( ∑
j∈N\{i}

uj

(
θ̃j, χ(θ̂i, θ̃−i)

))
(85)

= Eθ∼µ

(∑
j∈N

uj

(
θj, χ(θ̂i, θ−i)

))
+ Ci (86)

We show that for any agent i with any type θi ∈ Θi, no stochastic report θ̂i ∈ ∆(Θi)

weakly dominates reporting the true type θi. If θi
i∼ θ̂i, then the deviation does not change

the payoff nor the transfer, so it is not weakly dominating. Otherwise, there exists θ−i ∈ Θ−i

and θ′i ∈ supp(µi) such that χ(θi, θ−i) ̸= χ(θ′i, θ−i). If the other agents are truthful, then
it has a positive probability that the deviation changes the public decision. The efficient
public decision is unique, therefore, this deviation leads to lower expected total utility. (86)
shows that it means lower expected utility for i, so it does not weakly dominate the truthful
report.

Theorem 7. There exists a setup so that in one of its AGV implementations, the truthful
strategy of an agent is weakly dominated, moreover, iterative elimination of weakly dom-
inated strategies ends up in an inefficient strategy profile (not depending on the order of
elimination).

Proof. See the example below.

Conjecture 1. It is an open question whether there exists a setup so that in all of its AGV
implementations, iterative elimination of weakly dominated strategies eliminates all efficient
strategy profiles (and the order of elimination does not matter). We suspect that the answer
is positive.

Clues for the construction. Consider an AGV implementation. The critical point is the first
time when we eliminate a truthful strategy. At this step, an agent has the type θ′i, but
reports θ′′i instead. It is still a non-eliminated case that only i deviates, so (86) shows that the
implied public decision should remain efficient. Now consider the AGV implementation with
the modification that whenever this agent i makes this report θ′i, the same public decision is

46



made as if θ′′i was reported: χ′(θ′i, θ−i) = χ(θ′′i , θ−i). For this AGV implementation, the same
elimination process fails at this step.

A similar idea is the following. Consider the decision policy which chooses a uniform
random efficient public decision. We say that a reporting (θi, θ̂i) (allowing θi = θ̂i) is safe if
it does not allow an inefficient public decision as long as the others are truthful. Consider the
game where every agent must report a safe reporting, and then the uniform random efficient
decision is made according to the reports, with no transfers. Consider a Nash equilibrium of
this game. This provides us a mapping from the type profiles to a probability distribution
on efficient public decisions. For the AGV implementation implied by this decision policy,
eliminating a truthful strategy profile by iterative elimination of weakly dominated strategies
is a key challenge.

E.3 Proof of Theorem 2

Agents 1 and 2 may benefit from an investment d ∈ {N,S,B} (none, small, big) to be made
by agent 3. Θ1 = Θ2 = {L,H} (low, high) chosen with equal probabilities, |Θ3| = 1, and
the payoff table is the following.

Agent 1 Agent 2 Agent 3
ui(θi, di)

L or H L or H

N 0 0 0
S 10 or 20 0 −10

B 20 or 32 5 or 10 −30

We choose the efficient decision policy that we ask agent 3 for the investment only if it is
socially strictly beneficial. This policy means the following table.

d(θ1, θ2) θ2 = L θ2 = H

θ1 = L N N
θ1 = H S B

The AGV transfers ti = γi− 1
2

∑
j ̸=i

γj are calculated as follows. For convenience, these transfers
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are modified by constants.

γ1(L) = 0 (87)

γ1(H) =
(0−10) + (10−30)

2
= −15 (88)

γ2(L) = 0 (89)

γ2(H) =
(32−30)− (20−10)

2
= −4 (90)

γ3 = 0 (91)

Notice that the report of i changes only γi, and therefore, the change in yi and in γi are the
same. So for reporting H, agent 1 should pay 15, and agent 2 should pay 4, shared equally
between the other two agents.

Elimination step 1. If θ1 = H, then θ̂1 = H, because this report costs 15 but benefits a
payoff 20 or 32. This implies that Pr(θ̂1 = H) ≥ 1

2
.

Elimination step 2. If θ2 = H, then θ̂2 = H, because it costs 4 but benefits 10 with a
probability at least 1

2
. This implies that Pr(θ̂2 = H) ≥ 1

2
.

Elimination step 3. If θ1 = L, then θ̂1 = H, because this report costs 15 but benefits an
expected payoff at least 10+20

2
= 15, but potentially more if Pr(θ̂2 = H) > 1

2
. This step

implies that θ̂1 = H.

Elimination step 4. If θ2 = L, then θ̂2 = H, because this report costs 4 but benefits a
payoff of 5. This step implies that θ̂2 = H.

F Comparison of BTM, DPM, and GUM

We now illustrate the difference in the payment rules in BTM, DPM, and GUM. Consider
two sellers, agents 1 and 2, who produce supplementary goods (e.g., bolts and nuts), and
a buyer, agent 3. The agents engage in a two-period relationship, T = 2. In each period
t ∈ {1, 2}, the buyer buys quantity xt ∈ [0, 1] from each of the two sellers. Before the
first period, each seller i ∈ {1, 2} privately observes his random type θ̃i ∼ U [0, 1], whose
realization θi determines his cost function 1

2
θi(xt)

2 in each period t ∈ {1, 2}. The buyer’s
value per unit of the pair of goods in period t = 1 is equal to 1 and, in period t = 2, it is a
random type θ̃3 ∼ U(0, 1] whose realization she privately observes between the two periods.
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The efficient (surplus-maximizing) quantities xi
t are given by:

χ1(θ
1, θ2) =

1

θ1 + θ2
and χ2(θ

1, θ2, θ3) =
θ3

θ1 + θ2
.

Note that the first-period trade reveals the realization of the sum of the parameters of the
two sellers θ1 + θ2.

In the calculation of transfers, we will be using the following expressions:

u1(θ) = −θ1

2
·
(
χ1(θ)

2 + χ2(θ)
2
)

(92)

= −θ1

2
·
(( 1

θ1 + θ2

)2

+
( θ3

θ1 + θ2

)2
)

= −
θ1
(
1 + (θ3)2

)
2(θ1 + θ2)2

; (93)

E
[
u1(θ̃)

]
= −2

3
ln(2); (94)

E
[
u1(θ1, θ̃−1)

]
= −2

3
· E

[ θ1

(θ1 + θ̃2)2

]
= − 2

3(1 + θ1)
; (95)

E
[
u1(θ2, θ̃−2)

]
= −2

3
· E

( θ̃1

(θ̃1 + θ2)2

)
=

2

3
·
(

1

(1 + θ2)
− ln

(1 + θ2

θ2

))
; (96)

E
[
u1(θ−3, θ̃3)

]
= − 2 · θ1

3(θ1 + θ2)2
; (97)

u3(θ) = χ1(θ) + θ3 · χ2(θ) =
1

θ1 + θ2
+ θ3 · θ3

θ1 + θ2
=

1 + (θ3)2

θ1 + θ2
; (98)

E
[
u3(θ̃)

]
=

8 · ln(2)
3

; (99)

E
[
u3(θ1, θ̃−1)

]
=

4

3
· ln

(1 + θ1

θ1

)
. (100)
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BTM (Athey and Segal, 2013). The payments given by the BTM mechanism are

γ1(θ) = E
[
u2(θ1, θ̃−1)

]
− E

[
u2(θ̃)

]
+ E

[
u3(θ1, θ̃−1)

]
− E

[
u3(θ̃)

]
(101)

= E
[
− 1

2
· θ2 · χ1(θ

1, θ̃−1)2
]
− E

[
u2(−1

2
· θ2 · χ1(θ̃)

2)
]

(102)

+ E
[
χ1(θ

1, θ̃−1)2 + θ3 · χ2(θ
1, θ̃−1)

]
− E

[
χ1(θ̃) + θ3 · χ2(θ̃)

]
(103)

=
2

3
·
(

1

(1 + θ1)
− ln

(1 + θ1

θ1

))
+

2

3
ln(2) +

4

3
· ln

(1 + θ1

θ1

)
− 8

3
ln(2) (104)

=
2

3
·
(

1

(1 + θ1)
+ ln

(1 + θ1

θ1

))
− ln(4); (105)

γ2(θ) = E
[
u1(θ2, θ̃−2)

]
− E

[
u1(θ̃)

]
+ E

[
u3(θ2, θ̃−2)

]
− E

[
u3(θ̃)

]
(106)

=
2

3
·
(

1

(1 + θ2)
+ ln

(1 + θ2

θ2

))
− ln(4); (107)

γ3(θ) = u1(θ)− E
[
u1(θ−3, θ̃3)

]
+ u2(θ)− E

[
u2(θ−3, θ̃3)

]
=

1

6
− (θ3)2

2
. (108)

The transfers yi = γi − 1
2

∑
j∈N\{i} γ

j for each agent i become:

y1(θ) =
1

3
·
(

2

(1 + θ1)
− 1

(1 + θ2)
+2 · ln

(1 + θ1

θ1

)
− ln

(1 + θ2

θ2

))
+
(θ3)2

4
− ln(2)− 1

12
; (109)

y2(θ) =
1

3
·
(
− 1

(1 + θ1)
+

2

(1 + θ2)
−ln

(1 + θ1

θ1

)
+2·ln

(1 + θ2

θ2

))
+
(θ3)2

4
−ln(2)− 1

12
; (110)

y3(θ) = −1

3
·
(

1

(1 + θ1)
+

1

(1 + θ2)
+ ln

(1 + θ1

θ1

)
+ ln

(1 + θ2

θ2

))
− (θ3)2

2
+ ln(4)+

1

6
. (111)

To guarantee the participation constraints for the sellers, we can adjust the transfers yi

by adding constant terms:

y1(θ) + c1, y
2(θ) + c2, and y3(θ) + c2 such that c1 + c2 + c3 = 0. (112)
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DPM (Bergemann and Välimäki, 2010). Transfers are given by:39

y1(θ) =
θ1
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
2

3(θ1 + θ2)
+

2

3
ln
( θ2

2 · (1 + θ2)

)
+ c1; (113)

y2(θ) =
θ2
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
2

3(θ1 + θ2)
+

2

3
ln
( θ1

2 · (1 + θ1)

)
+ c2; (114)

y3(θ) = − 1 + (θ3)2

2(θ1 + θ2)
− 2

3(θ1 + θ2)
+

8

3
ln(2) + c3, (115)

where c1 + c2 + c3 = 0.

GUM. Suppose the agents are ordered as either {1, 2, 3} or {1, 3, 2}, or {3, 1, 2}. Then
the transfers can be calculated as:

y1(θ) = E
[
u1(θ̃)

]
−u1(θ)+E

[
(u1+u2+u3)(θ1, θ̃2, θ̃3)

]
−E

[
(u1+u2+u3)(θ̃1, θ̃2, θ̃3)

]
; (116)

y2(θ) = E
[
u2(θ̃)

]
−u2(θ)+E

[
(u1+u2+u3)(θ1, θ2, θ̃3)

]
−E

[
(u1+u2+u3)(θ1, θ̃2, θ̃3)

]
; (117)

y3(θ) = E
[
u3(θ̃)

]
−u3(θ)+E

[
(u1+u2+u3)(θ1, θ2, θ3)

]
−E

[
(u1+u2+u3)(θ1, θ2, θ̃3)

]
. (118)

To simplify the expressions, we first calculate:

E
[
(u1 + u2 + u3)(θ̃1, θ̃2, θ̃3)

]
=

4 ln(2)

3
; (119)

E
[
(u1 + u2 + u3)(θ1, θ̃2, θ̃3)

]
=

2

3
ln
(1 + θ1

θ1

)
; (120)

E
[
(u1 + u2 + u3)(θ1, θ2, θ̃3)

]
=

2

3(θ1 + θ2)
; (121)

E
[
(u1 + u2 + u3)(θ1, θ2, θ3)

]
=

1 + (θ3)2

2(θ1 + θ2)
. (122)

39Note that the transfers in the Dynamic Pivot are not budget balanced.

51



Thus, the transfers simplify to:

y1(θ) = −2

3
ln(2) +

θ1
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
2

3
ln
(1 + θ1

θ1

)
− 4

3
ln(2) (123)

=
θ1
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
2

3
ln
(1 + θ1

8 · θ1
)
; (124)

y2(θ) = −2

3
ln(2) +

θ2
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
2

3(θ1 + θ2)
− 2

3
ln
(1 + θ1

θ1

)
(125)

=
θ2
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
2

3(θ1 + θ2)
+

2

3
ln
( θ1

2 · (1 + θ1)

)
; (126)

y3(θ) =
8

3
ln(2)− 1 + (θ3)2

θ1 + θ2
+

1 + (θ3)2

2(θ1 + θ2)
− 2

3(θ1 + θ2)
(127)

= − 1 + (θ3)2

2(θ1 + θ2)
− 2

3(θ1 + θ2)
+

2

3
ln(16). (128)

Similarly to the BTM and Dynamic Pivot payments described above, we can adjust
the transfers yi by adding constant terms to guarantee the participation constraints for the
sellers:

y1(θ) + c1, y
2(θ) + c2, and y3(θ) + c3 such that c1 + c2 + c3 = 0. (129)

“Symmetric” GUM. As we discuss in Section H, we can make our mechanism “sym-
metric” by calculating payments for all the possible orderings of the agents and average
them. As a result, we will get a symmetric mechanism with payments equal to the Shapley
contributions (up to a constant):

y1(θ) =
θ1
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
1

3(θ1 + θ2)
+

1

3
ln
( (1 + θ1) · θ2

16 · θ1(1 + θ2)

)
+ c1; (130)

y2(θ) =
θ2
(
1 + (θ3)2

)
2(θ1 + θ2)2

+
1

3(θ1 + θ2)
+

1

3
ln
( (1 + θ2) · θ1

16 · θ2(1 + θ1)

)
+ c2; (131)

y3(θ) = − 1 + (θ3)2

2(θ1 + θ2)
− 2

3(θ1 + θ2)
+

2

3
ln(16) + c3, (132)

where c1 + c2 + c3 = 0.

G Collusion in AGV

The Guaranteed Utility Mechanism differs from the Balanced Team Mechanism in two ways.
First, the payment rules are different in case of more than N = 2 agents. Second, the two
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mechanisms "handle" the same-period reports in a different way. For example, the two-
period example in Athey and Segal (2013) has N = 2 agents with only one report at each
round. As a result, GUM and BTM coincide. However, we can add a "dummy" agent
with no action and a constant zero payoff function to highlight the difference between the
two mechanisms. In particular, GUM does not change after this addition. However, BTM
changes and any two of the three agents can benefit from colluding, as we illustrate using
an example below.

Example. Agents 1 and 2 privately observe their types θ1, θ2 ∈ U [−1, 1], distributed inde-
pendently. A public decision d ∈ {−1,+1} is made. The utility of agent i = 1, 2 is

ui(θi, d) = θi · d. (133)

The AGV mechanism asks for reports θ̂i from each agent i, it makes the public decision

d = sign(θ̂1 + θ̂2),

and the transfers are:

ti =
(θ̂−i)

2 − (θ̂i)
2

2
. (134)

In this mechanism, truth-telling is a Bayesian Nash equilibrium. However, problems with
collusion arise when at least 3 agents are present. We can illustrate the mechanism being
prone to collusion by adding a "dummy" agent with neutral preference (constant utility).

Adding a "dummy" agent to the example. Agents 1 and 2 privately receive a type
θ1, θ2 ∈ U [−1, 1], distributed independently, and agent 3 (a "dummy") has type θ3 = 0.
Therefore, the utility of agent 3 is zero regardless of the public decision d ∈ {−1,+1}. The
utility of i ∈ {1, 2, 3} remains

ui(θi, d) = θi · d. (135)

The AGV mechanism asks for reports θ̂i from each agent i and makes a public decision

d = sign(θ̂1 + θ̂2 + θ̂3),
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and the transfers are given by:

t1 = −(θ̂1)
2

2
+

(θ̂2)
2

4
+

1

12
; (136)

t2 =
(θ̂1)

2

4
− (θ̂2)

2

2
+

1

12
; (137)

t3 =
(θ̂1)

2 + (θ̂2)
2

4
− 1

6
. (138)

The reason why Agent 3 makes the mechanism prone to collusion is the following. Agent
i ∈ {1, 2} pays θ̂2i

2
− 1

6
to the others, shared equally between them (including the dummy

player). Now we show that any two agents have a benefit from colluding.

Collusion of agents 1 and 2. If agents 1 and 2 agree to report, for example, θ̂i = ε · θi for
a small enough ε, then this deviation does not change the decision d, but it increases their
total transfer by (1− ε2) (θ̂1)

2+(θ̂2)2

4
. This amount is paid by the dummy agent 3.

Collusion of agents 1 and 3. (Analogous to collusion of agents 2 and 3.)
If agent 1 cares about the total transfer to agents 1 and 3, then his cost of reporting

a stronger preference decreases from (θ̂1)2

2
to (θ̂1)2

2
− (θ̂1)2

4
= (θ̂1)2

4
. Consequently, if agent 2

remains truthful, then agent 1 should report 2 · θ̂ rounded to [−1, 1], namely,

θ̂1 =


−1 if θ1 < −1/2

2 · θ1 if − 1/2 ≤ θ1 ≤ 1/2

1 if 1/2 < θ1

(139)

In addition, the truthfulness of Agent 2 is no longer the best response to this collusive
behavior, but Agent 2 is better at underreporting. In particular, if the collusion of agents 1
and 3 is common knowledge, then there is an inefficient equilibrium where agent 1 overreports
and agent 2 underreports his true preference. Similarly, if agents 1 and 2 both suspect that
the other one may have a collusive agreement with dummy agent 3 (with some probability
at least), then they both should underreport their types.

BTM: Dynamic AGV. BTM is a dynamic generalization of AGV. Therefore, BTM
inherits the aforementioned issue with collusion. Moreover, in a dynamic environment, the
issue might be exacerbated. Namely, one agent deviates and incentivizes others to join the
deviation. As we show in Section 5, under BTM, iterative elimination of weakly dominated
strategies may end up in only strategy profile which is inefficient.
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H Connection to Shapley values

GUM and, in particular, our definition of the externality requires the set of the agents
I = {1, ..., N} to be ordered.40 That is, before the mechanism begins, the ordering of the
agents in the set I = {1, ..., N} is specified, and all the calculations are performed given that
particular ordering. Our mechanism sustains the truthful strategy profile as an equilibrium
with any ordering of the agents while retaining the same properties. Therefore, any convex
combination of these payment rules also implements the truthful strategy profile. Thus, we
can randomly pick the ordering before the mechanism begins.

Another way to make the mechanism “symmetric” is to calculate payments for all the
possible orderings of the agents and average them. As a result, we will get a symmetric
mechanism with payments equal to the Shapley contributions. That is, when the (simulta-
neously updated) reports θ̂1t , θ̂2t , ..., θ̂Nt change the anticipated payoff E[ui], we let γi→j

t to be
the Shapley value of θ̂jt to this change in E[ui] (see Shapley (1953)).41 Since all the agents
obtain a guaranteed expected utility for each of the agents’ orderings, they get the same
guaranteed expected utility for the average of these payment rules.

More formally, every agent’s newly updated report creates a coalition function that de-
termines the externality the report induces on each set of agents. In every period t, for
each agent i and for each subset of agents L ⊆ I, the updated type vector θLt imposes an
externality ϕi(L) on i, where

ϕi(L) = Eµ(θSt ,θ
I/L
t−1 )

[
ui

]
− Eµ(θIt−1)

[
ui

]
. (140)

In this symmetric mechanism, agent i pays the Shapley values of the function ϕi : 2
I → R

to the other agents.
Note that this approach requires the reports to be independent conditional on past ob-

servations. Thus, we might lose “the extra freedom” that a report θ̂it can be dependent on
the earlier reports in the same round θ̂1t , θ̂

2
t , ..., θ̂

i−1
t as well as on the corresponding true types

θ1t , θ
2
t , ..., θ

i−1
t .

40Safronov (2018) discusses the issues related to agents’ ordering in the static environment.
41There is also a connection between an agent i updated report’s marginal contribution in our mechanism

and the marginal contribution axiom (see Young (1985) and Pintér (2015)).
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