Intergenerational Returns to Migration Evidence from Italian Migrants Worldwide

Chiara Malavasi^{*†} and Guido Neidhöfer[†] * University of Mannheim, [†]ZEW August 27, 2024 EEA-ESEM 2024

Motivation

Key motivation behind migration decisions is improving opportunities

of migrants themselves and of their children (intertemporal utility maximization).

This paper

Focus on performance of migrants' children.

Comparison with (children of) stayers and across destination countries.

We aim at:

- quantifying intergenerational returns to migration
 - $\,\,\hookrightarrow\,\,$ estimate the causal effect of migration by host country
- account for self-selection
 - \hookrightarrow extrapolate country-specific effect
- investigate parental migration choices

 \hookrightarrow in an intertemporal utility maximization framework

Literature

Integration of migrants

e.g. Borjas (1992); Card (2005); Dustmann and Glitz (2011)

Comparison of first generation migrants with stayers e.g. Bryan et al. (2014); Lagakos (2020); Corneo and Neidhöfer (2021); Sarvimäki et al. (2022)

Descriptive evidence on Turkish second generation migrants

e.g. Dustmann et al. (2012); Zuccotti et al. (2017); Guveli et al. (2016)

Migrants' children within countries e.g. Chetty et al. (2016); Alesina et al. (2021)

Data Data

Anagrafe Italiani Residenti all'Estero (AIRE)

2 Survey on Household Income and Wealth (SHIW)

Luxembourg Income Study (LIS)

Data

Data

Anagrafe Italiani Residenti all'Estero (AIRE)

- → administrative data on Italians living outside Italy in 2015;
- → mandatory registration, information on children;
- → demographics, family identifiers, place of residence and origin, education and occupation;

2

Survey on Household Income and Wealth (SHIW)

Luxembourg Income Study (LIS)

Data

Data

Anagrafe Italiani Residenti all'Estero (AIRE)

Survey on Household Income and Wealth (SHIW)

- \hookrightarrow representative survey of Italian population in Italy;
- \hookrightarrow used to compare migrants' outcomes with their peers in Italy.
- 3 Luxembourg Income Study (LIS)

Data

Data

- Anagrafe Italiani Residenti all'Estero (AIRE)
- Survey on Household Income and Wealth (SHIW)
- Luxembourg Income Study (LIS)
 - \hookrightarrow harmonized cross-country household survey;
 - \hookrightarrow collects data from 50 countries around the world;
 - \hookrightarrow used to estimate income in destination country.

Baseline sample

Second generation (2G) migrants (AIRE):

- \hookrightarrow born abroad or migrated before age 18;
- \rightarrow at least one parent born in Italy;
- \hookrightarrow living abroad in 2015.
- + residents of Italy in 2014 (SHIW).
- All born between 1960 and 1980.

Information on education and employment for both generations.

Imputed income from LIS. 💿

Migrants live in: Argentina, Australia, Switzerland, UK, Germany, Canada, France, USA, Belgium, Venezuela, Brazil.

Baseline sample

Second generation (2G) migrants (AIRE):

- \hookrightarrow born abroad or migrated before age 18;
- \rightarrow at least one parent born in Italy;
- \hookrightarrow living abroad in 2015.
- + residents of Italy in 2014 (SHIW).

All born between 1960 and 1980.

Information on education and employment for both generations.

Imputed income from LIS. 💿

Migrants live in: Argentina, Australia, Switzerland, UK, Germany, Canada, France, USA, Belgium, Venezuela, Brazil.

Baseline sample

Second generation (2G) migrants (AIRE):

- \hookrightarrow born abroad or migrated before age 18;
- \hookrightarrow at least one parent born in Italy;
- \hookrightarrow living abroad in 2015.
- + residents of Italy in 2014 (SHIW).

All born between 1960 and 1980.

Information on education and employment for both generations.

Imputed income from LIS. 💿

Migrants live in: Argentina, Australia, Switzerland, UK, Germany, Canada, France, USA, Belgium, Venezuela, Brazil.

Empirical Strategy

Selection in parents generation biases OLS estimates (Heckman, 1979; Dubin and McFadden, 1984; Dahl, 2002).

Controlling for parents' characteristics deals with selection on observables.

To abstract from self-selection on unobservables, we implement a 2-step self-selection bias correction model (Bourguignon et al., 2007):

1. estimate probability of migrating (P_{ij}) via **multinomial logit**:

→ push and pull factors as excluded variables;

2. estimated migration probabilities as **control** in the main estimating equation.

Empirical Strategy

Selection in parents generation biases OLS estimates (Heckman, 1979; Dubin and McFadden, 1984; Dahl, 2002).

Controlling for parents' characteristics deals with selection on observables.

To abstract from self-selection on unobservables, we implement a 2-step self-selection bias correction model (Bourguignon et al., 2007):

1. estimate probability of migrating (P_{ij}) via multinomial logit:

 \hookrightarrow push and pull factors as excluded variables;

2. estimated migration probabilities as **control** in the main estimating equation.

Step 2

$$y_{ik} = \beta_0 + \beta_1 \mathbf{c}_{ik} + \underbrace{\beta_2 \mathbf{S}_{ik}}_{\text{self-sel. on obs.}} + \beta_3 \mathbf{X}_{ik} + \underbrace{\lambda_1 \hat{P}_{ik} + \lambda_2 \hat{P}_{ik}^2}_{\text{self-sel on unobs.}} + \varepsilon_{ik}$$

- *y_{ik}* is either education, occupation or income;
- c_{ik} are country of residence fixed effects;
- X_{ik} are individual characteristics (gender, age).
- S_{ik} are parents characteristics (self-selection on observables):
- \hat{P}_{ik} is the estimated probability of migrating in the chosen country (sel-selection on unobservables).

Step 2

$$y_{ik} = \beta_0 + \beta_1 \mathbf{c}_{ik} + \beta_2 \mathbf{S}_{ik} + \beta_3 \mathbf{X}_{ik} + \underbrace{\lambda_1 \hat{P}_{ik} + \lambda_2 \hat{P}_{ik}^2}_{\text{self-sel on unobs.}} + \varepsilon_{ik}$$

- *y_{ik}* is either education, occupation or income;
- **c**_{*ik*} are **country of residence** fixed effects;
- **X**_{*ik*} are **individual characteristics** (gender, age).
- \mathbf{S}_{ik} are **parents characteristics** (self-selection on observables):
- \hat{P}_{ik} is the estimated probability of migrating in the chosen country (sel-selection on unobservables).

Step 2

$$y_{ik} = \beta_0 + \beta_1 \mathbf{c}_{ik} + \underbrace{\beta_2 \mathbf{S}_{ik}}_{\text{self-sel. on obs.}} + \underbrace{\beta_3 \mathbf{X}_{ik}}_{\text{self-sel on unobs.}} + \underbrace{\lambda_1 \hat{P}_{ik} + \lambda_2 \hat{P}_{ik}^2}_{\text{self-sel on unobs.}} + \varepsilon_{ik}$$

- y_{ik} is either education, occupation or income;
- c_{ik} are country of residence fixed effects;
- X_{ik} are individual characteristics (gender, age).
- S_{ik} are parents characteristics (self-selection on observables):
- \hat{P}_{ik} is the estimated probability of migrating in the chosen country (sel-selection on unobservables).

Step 2

$$y_{ik} = \beta_0 + \beta_1 \mathbf{c}_{ik} + \underbrace{\beta_2 \mathbf{S}_{ik}}_{\text{self-sel. on obs.}} + \beta_3 \mathbf{X}_{ik} + \underbrace{\lambda_1 \hat{P}_{ik} + \lambda_2 \hat{P}_{ik}^2}_{\text{self-sel on unobs.}} + \varepsilon_{ik}$$

- y_{ik} is either education, occupation or income;
- c_{ik} are country of residence fixed effects;
- **X**_{*ik*} are **individual characteristics** (gender, age).
- S_{ik} are parents characteristics (self-selection on observables):
 → education and Italian region of origin.
- \hat{P}_{ik} is the estimated probability of migrating in the chosen country (sel-selection on unobservables).

Step 2

$$y_{ik} = \beta_0 + \beta_1 \mathbf{c}_{ik} + \underbrace{\beta_2 \mathbf{S}_{ik}}_{\text{self-sel, on obs.}} + \beta_3 \mathbf{X}_{ik} + \underbrace{\lambda_1 \hat{P}_{ik} + \lambda_2 \hat{P}_{ik}^2}_{\text{self-sel, on unobs.}} + \varepsilon_{ik}$$

- y_{ik} is either education, occupation or income;
- c_{ik} are country of residence fixed effects;
- **X**_{*ik*} are **individual characteristics** (gender, age).
- S_{ik} are parents characteristics (self-selection on observables):
- \hat{P}_{ik} is the estimated probability of migrating in the chosen country (sel-selection on unobservables).

Step 2

$$y_{ik} = \beta_0 + \beta_1 \mathbf{c}_{ik} + \underbrace{\beta_2 \mathbf{S}_{ik}}_{\text{self-sel. on obs.}} + \beta_3 \mathbf{X}_{ik} + \underbrace{\lambda_1 \hat{P}_{ik} + \lambda_2 \hat{P}_{ik}^2}_{\text{self-sel on unobs.}} + \varepsilon_{ik}$$

- *y_{ik}* is either education, occupation or income;
- c_{ik} are country of residence fixed effects;
- X_{ik} are individual characteristics (gender, age).
- S_{ik} are parents characteristics (self-selection on observables):
- \hat{P}_{ik} is the estimated probability of migrating in the chosen country (sel-selection on unobservables).

Step 1

Estimate probability of migrating by destination via multinomial logit:

$$P_{ij} = \theta_0 + \theta_1 \mathbf{Z}_{ij} + \theta_2 \mathbf{S}_{ij} + \theta_3 \mathbf{X}_{ij} + \eta_{ij} \qquad \forall j$$

where P_{ij} is the probability of migrating to country *j*.

 \mathbf{Z}_{ij} includes: (Borjas, 1987; McKenzie and Rapoport, 2010; Beine et al., 2016)

- push factors: number of migrants in *i*'s parents birth cohort and Italian region of origin;
- 2. **pull factors**: Gini index in destination country at birth interacted with parents' education.

Step 1

Estimate probability of migrating by destination via multinomial logit:

$$P_{ij} = \theta_0 + \theta_1 \mathbf{Z}_{ij} + \theta_2 \mathbf{S}_{ij} + \theta_3 \mathbf{X}_{ij} + \eta_{ij} \qquad \forall j$$

where P_{ij} is the probability of migrating to country *j*.

 \mathbf{Z}_{ij} includes: (Borjas, 1987; McKenzie and Rapoport, 2010; Beine et al., 2016)

- 1. **push factors**: number of migrants in *i*'s parents birth cohort and Italian region of origin;
- 2. **pull factors**: Gini index in destination country at birth interacted with parents' education.

Step 1

Estimate probability of migrating by destination via multinomial logit:

$$P_{ij} = \theta_0 + \theta_1 \mathbf{Z}_{ij} + \theta_2 \mathbf{S}_{ij} + \theta_3 \mathbf{X}_{ij} + \eta_{ij} \qquad \forall j$$

where P_{ij} is the probability of migrating to country *j*.

 \mathbf{Z}_{ij} includes: (Borjas, 1987; McKenzie and Rapoport, 2010; Beine et al., 2016)

- 1. **push factors**: number of migrants in *i*'s parents birth cohort and Italian region of origin;
- 2. **pull factors**: Gini index in destination country at birth interacted with parents' education.

Accounting for self-selection

Likelihood of completing tertiary education

Base A Self-sel. on obs Self-sel. on unobs.

Returns to migration

Likelihood of completing tertiary education

Returns to migration

Likelihood of employment

Returns to migration

Predicted disposable income

Other results

We also find:

- positive returns in hourly earnings, especially for males 💿
- mixed returns in income distribution's position
- age at migration matters: if 2G migrates after birth, income returns are lower ()
- 2G from lower SES families benefit from migration the most
- mixed returns by number of Italian parents

Intertemporal utility maximization

Alternative-specific logit model

Test if **expected chances for children** affect parents' migration choice.

Alternative-specific conditional logit model (McFadden et al., 1973):

$$\mathcal{U}_{ij} = \gamma_0 + \gamma_1 \mathbf{A}_{ij} + \gamma_2 \mathbf{X}_i + \xi_{ij} \qquad \forall j$$

- \mathcal{U}_{ij} : utility from potential choice of each alternative;
- A_{ij}: alternative-specific characteristics (predicted income);
- **X**_i: case-specific characteristics:
 - \hookrightarrow parents: birth year, migration age, Italian area of origin;
 - \hookrightarrow children: birth year, gender.

Intertemporal utility maximization

Results

Predicted disposable income in 10,000 USD per year.

		Child born	
	All families	aft migration	bf migration
Predicted income:			
First child	0.208***	-0.053	0.654***
	(0.057)	(0.075)	(0.102)
Parents	0.516***	0.872***	-0.008
	(0.095)	(0.127)	(0.143)
Obs.	56,331	41,895	14,436
Cases	6,259	4,655	1,604
	*** p<0.01, ** p<0.05, * p<0.1.		

Simulation of a college expansion

Migrants in USA are asked a 20% income lump-sum tax to finance college for their first born child.

Simulation of a college expansion

Migrants in USA are asked a 20% income lump-sum tax to finance college for their first born child.

To sum up

We quantify intergenerational returns to migration.

After accounting for self-selection, we find:

- heterogeneous returns by destination country and gender;
- returns in education are not always positive;
- returns in income and likelihood of employment are mostly positive.

We show empirically that expectation of **better opportunities** for their offspring impacts parents' migration choices.

Thank you for the attention!

Check out my website:

chiara.malavasi@uni-mannheim.de

References I

- Alesina, A., S. Hohmann, S. Michalopoulos, and E. Papaioannou (2021). Intergenerational mobility in africa. *Econometrica 89*(1), 1–35.
- Beine, M., S. Bertoli, and J. Fernandez-Huertas Moraga (2016). A practitioners' guide to gravity models of international migration. *The World Economy 39*(4), 496–512.
- Borjas, G. J. (1987). Self-selection and the earnings of immigrants. *The American economic review*, 531–553.
- Borjas, G. J. (1992). Ethnic capital and intergenerational mobility. *The Quarterly journal of economics 107*(1), 123–150.
- Borjas, G. J., I. Kauppinen, and P. Poutvaara (2019). Self-selection of emigrants: Theory and evidence on stochastic dominance in observable and unobservable characteristics. *The Economic Journal 129*(617), 143–171.

References II

- Bourguignon, F., M. Fournier, and M. Gurgand (2007). Selection bias corrections based on the multinomial logit model: Monte carlo comparisons. *Journal of Economic Surveys 21*(1), 174–205.
- Bryan, G., S. Chowdhury, and A. M. Mobarak (2014). Underinvestment in a profitable technology: The case of seasonal migration in bangladesh. *Econometrica 82*(5), 1671–1748.
- Card, D. (2005). Is the new immigration really so bad? *The economic journal 115*(507), F300–F323.
- Chetty, R., N. Hendren, and L. F. Katz (2016). The effects of exposure to better neighborhoods on children: New evidence from the moving to opportunity experiment. *American Economic Review 106*(4), 855–902.

References III

- Corneo, G. and G. Neidhöfer (2021). Income redistribution and self-selection of immigrants. *Journal of Public Economics 198*, 104420.
- Dahl, G. B. (2002). Mobility and the return to education: Testing a roy model with multiple markets. *Econometrica 70*(6), 2367–2420.
- Dubin, J. A. and D. L. McFadden (1984). An econometric analysis of residential electric appliance holdings and consumption. *Econometrica 52*, 345–362.
- Dustmann, C., T. Frattini, and G. Lanzara (2012). Educational achievement of second-generation immigrants: an international comparison. *Economic Policy 27*(69), 143–185.
References IV

- Dustmann, C. and A. Glitz (2011). Migration and education. In *Handbook of the Economics of Education*, Volume 4, pp. 327–439. Elsevier.
- Guveli, A., H. B. Ganzeboom, L. Platt, B. Nauck, H. Baykara-Krumme, S. Eroglu, and N. Spierings (2016). *Intergenerational consequences of migration*. Palgrave Macmillan UK London.
- Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the econometric society, 153–161.
- Lagakos, D. (2020). Urban-rural gaps in the developing world: Does internal migration offer opportunities? *Journal of Economic perspectives 34*(3), 174–192.

References V

McFadden, D. et al. (1973). Conditional logit analysis of qualitative choice behavior.

- McKenzie, D. and H. Rapoport (2010). Self-selection patterns in mexico-us migration: the role of migration networks. *the Review of Economics and Statistics* 92(4), 811–821.
- Parey, M., J. Ruhose, F. Waldinger, and N. Netz (2017). The selection of high-skilled emigrants. *Review of Economics and Statistics 99*(5), 776–792.
- Sarvimäki, M., R. Uusitalo, and M. Jäntti (2022). Habit formation and the misallocation of labor: evidence from forced migrations. *Journal of the European Economic Association 20*(6), 2497–2539.

References VI

Zuccotti, C. V., H. B. Ganzeboom, and A. Guveli (2017). Has migration been beneficial for migrants and their children? comparing social mobility of turks in western europe, turks in turkey, and western european natives. *International Migration Review 51*(1), 97–126. This slide separates the presentation from backup slides

Registration to AIRE

There is no penalty for not registering to AIRE.

However, registration brings various advantages:

- avoids double taxation;
- registration of marriage;
- possibility to transmit citizenship to children born abroad;
- vote for Italian elections from abroad per post/at local embassy;
- issue/renovate documents in local embassy;
- since 2008, generous fiscal benefits for high skilled upon reentry to Italy.

We can link about 14% of descendants with their parents.

Linked descendants sample might be selected.

We focus on:

- migrants' descendants (2G or 3G);
- born between 1960 and 1980;

Compare "linked" descendants with others to look for systematic differences.

Main concern: 98% of linked registered in the same consulate area as their parents.

Differences in means

	Linked	Not linked	Diff.
Age	41.00	44.17	-3.17***
% males	0.56	0.52	(0.025) 0.03***
% north Italy	0.39	0.42	(0.002) -0.03***
% centre Italy	0.21	0.17	(0.002) 0.04***
% south Italy	0.38	0.41	-0.03***
% university degree	0.31	0.38	(0.002) -0.08***
% employed	0.95	0.92	(0.002) 0.03***
% unemployed	0.03	0.01	(0.001) 0.01***
% inactive	0.02	0.07	(0.001) -0.05*** (0.001)
Observations	53,476	369,013	

	Tertiary e	ducation	Emplo	yment
	(1)	(2)	(3)	(4)
$\mathbb{I}\{linked\}$	-0.078***	-0.081***	0.032***	0.020***
	(0.002)	(0.002)	(0.001)	(0.001)
Age	No	Yes	No	Yes
Male	No	Yes	No	Yes
Ita region FE	No	Yes	No	Yes
Host country FE	No	Yes	No	Yes
Observations Adj. R-squared	422,489 0.003	422,489 0.183	422,489 0.002	422,489 0.077

*** p<0.01, ** p<0.05, * p<0.1.

Likelihood of university degree

Likelihood of employment

Imputing income

Using LIS, we estimate

$$y_i^j = \mu_0^j + \mu_1^j \mathbf{edu}_i + \mu_2^j \mathbf{empl}_i + \mu_3^j \mathbf{X}_i + \kappa_i^j \qquad orall \ countries \ j$$

where:

- y_i^j : income measure in country *j*;
- edu;: education category (below, equal or above compulsory);
- empl_i: employment status (employed, unemployed, inactive);
- **X**_i: gender and age.

Apply $\hat{\mu}^j$ to migrants data by destination country.

Income measures: HH disposable income, and hourly earnings by gender.

Also, estimate median income \rightarrow relative income measures.

Baseline sample

Demographics

	2G Mię	grants	Italy residents		
	Mean	SD	Mean	SD	
Age % males % north Italy % centre Italy % south Italy	42.24 0.56 0.37 0.28 0.32	5.39 0.50 0.48 0.45 0.46	44.70 0.48 0.42 0.11 0.47	5.80 0.50 0.49 0.31 0.50	
Observations	18,768		4,1	95	

Baseline sample

Education

	2G Mię	grants	Italy residents		
	Mean	SD	Mean	SD	
Education					
% no degree	0.02	0.12	0.00	0.05	
% < compulsory	0.04	0.20	0.04	0.18	
% compulsory	0.35	0.48	0.43	0.50	
% > compulsory	0.42	0.49	0.36	0.48	
% tertiary	0.17	0.38	0.18	0.38	
Parents' education					
% no degree	0.06	0.24	0.06	0.25	
% < compulsory	0.48	0.50	0.48	0.50	
% compulsory	0.28	0.45	0.27	0.44	
% > compulsory	0.14	0.35	0.14	0.35	
% tertiary	0.04	0.20	0.05	0.22	
Observations	18,768		4,195		

Baseline sample

Employment and predicted income

	2G	2G Migrants			Italy residents					
	Mean	Std.Dev.	Obs.	Mean	Std.Dev.	Obs.				
Employment	Employment									
% employed	0.93	0.26	17,514	0.73	0.44	4,195				
% unemployed	0.04	0.20	17,514	O.11	0.31	4,195				
% inactive	0.03	0.17	17,514	0.16	0.36	4,195				
Predicted income										
Equiv. HH disp. income	30,548.89	9,148.67	13,644	21,405.25	5,847.16	4,195				
Earnings per hour	25.99	11.37	12,689	14.37	3.41	2,995				
Natives-based predicted ind	come									
Equiv. HH disp. income	30,446.73	9,357.70	13,644	21,851.13	5,982.73	4,195				
Earnings per hour	26.72	11.61	12,689	14.75	3.57	2,995				
Migrants-based predicted ir	ncome									
Equiv. HH disp. income	31,346.17	9,174.23	13,644	21,851.13	5,982.73	4,195				
Earnings per hour	24.96	11.72	12,689	14.75	3.57	2,995				

Self-selection in parents' generation

Likelihood of completing tertiary education

Empirical strategy

Selection on observables

To start, we estimate:

$$y_{ik} = \alpha_0 + \alpha_1 \mathbf{c}_{ik} + \alpha_2 \mathbf{S}_{ik} + \alpha_3 \mathbf{X}_{ik} + \varepsilon_{ik}$$

where:

- *y_{ik}* is either education, occupation or income;
- **c**_{*ik*} are **country of residence** fixed effects;
- S_{ik} are parents characteristics (selection on observables):
 - i. education category;
 - ii. Italian region of origin.
- X_{ik} are individual characteristics (gender, age).

Multinomial logit

Step 1

	ARG	AUS	BEL	BRA	CAN	СН	FRA	GBR	GER	USA	VEN
Migrants' in origin area	-0.037***	-0.027***	-0.034***	-0.060***	-0.025***	-0.024***	-0.044***	-0.035***	-0.028***	-0.035***	-0.039***
	(0.004)	(0.004)	(0.004)	(0.009)	(0.004)	(0.004)	(0.003)	(0.004)	(0.004)	(0.004)	(0.005)
Gini at birth	-0.838***	-2.444***	-1.323***	2.989***	-1.766***	-1.973***	1.066***	-2.231***	-1.842***	-0.056	1.371***
	(0.130)	(0.118)	(0.108)	(0.236)	(0.066)	(0.075)	(0.071)	(0.102)	(0.089)	(0.130)	(0.068)
Parents' education											
< compulsory	-1.213	14.511***	-10.780**	-31.326*	3.214	7.162**	8.133**	14.481***	2.521	3.407	6.344**
	(4.876)	(4.501)	(4.402)	(17.452)	(2.733)	(3.099)	(3.274)	(4.073)	(3.525)	(5.005)	(2.990)
Compulsory	-15.203***	9.128*	-25.796***	-33.413	-0.476	0.765	24.394***	10.443**	-4.054	-8.275	4.537
	(5.355)	(4.845)	(5.244)	(21.393)	(2.970)	(3.238)	(4.865)	(4.441)	(3.589)	(5.082)	(4.761)
> compulsory	-15.488***	19.656***	-13.839*	-87.251**	8.637*	10.241*	29.205***	19.442***	7.538	-3.062	-4.312
	(5.384)	(7.415)	(7.665)	(41.506)	(4.893)	(5.466)	(6.193)	(7.029)	(5.988)	(5.231)	(8.314)
Tertiary	-3.651	83.467***	-20.565*	-134.427***	55.147***	59.033***	40.983***	84.846***	38.574**	-3.416	-11.305
	(6.120)	(25.092)	(11.642)	(36.427)	(15.582)	(17.556)	(11.829)	(26.496)	(17.817)	(5.860)	(10.523)
Parents' education× Gini											
Gini × < compulsory	0.062	-0.445***	0.279**	0.524	-0.078	-0.191**	-0.201**	-0.441***	-0.075	-0.065	-0.140*
	(0.126)	(0.138)	(0.117)	(0.322)	(0.073)	(0.086)	(0.079)	(0.121)	(0.101)	(0.127)	(0.072)
Gini × Compulsory	0.401***	-0.318**	0.692***	0.594	0.001	-0.005	-0.616***	-0.327**	0.115	0.238*	-0.093
	(0.139)	(0.149)	(0.139)	(0.395)	(0.082)	(0.091)	(0.121)	(0.134)	(0.103)	(0.129)	(0.114)
Gini \times > compulsory	0.456***	-0.624***	0.366*	1.614**	-0.244*	-0.297*	-0.749***	-0.603***	-0.244	0.119	0.116
	(0.138)	(0.227)	(0.209)	(0.769)	(0.138)	(0.157)	(0.155)	(0.212)	(0.175)	(0.133)	(0.197)
Gini × Tertiary	0.134	-2.520***	0.528*	2.585***	-1.577***	-1.710***	-1.060***	-2.560***	-1.113**	0.127	0.303
	(0.159)	(0.775)	(0.309)	(0.685)	(0.450)	(0.513)	(0.310)	(0.828)	(0.518)	(0.150)	(0.251)
Age	0.063***	0.388***	0.082**	0.163**	0.328***	0.325***	-0.142***	0.429***	0.220***	-0.132***	-0.094***
	(0.017)	(0.016)	(0.034)	(0.067)	(0.012)	(0.012)	(0.012)	(0.016)	(0.015)	(0.016)	(0.029)
Male	0.157	0.144	0.068	-0.281	0.152	0.503***	0.451***	0.272*	0.419***	0.258***	0.026
	(0.102)	(0.145)	(0.130)	(0.417)	(0.139)	(0.137)	(0.084)	(0.144)	(0.150)	(0.097)	(0.212)
Constant	23.202***	63.260***	40.602***	-160.392***	44.778***	50.041***	-40.551***	53.999***	51.364***	0.557	-58.678***
	(4.820)	(3.857)	(3.460)	(14.584)	(2.528)	(2.771)	(3.087)	(3.492)	(3.189)	(4.867)	(3.338)

* p<0.10, ** p<0.05, *** p<.01

Robustness checks

Our results are robust to:

- including not-linked 2G migrants in main sample
- restrict sample to 2G born in current residence country
- selection in comparison sample 🗩
- using different SHIW waves to define the comparison sample
- using different LIS waves to predict 2G income
- use different populations in LIS to predict income
- adopting different specifications of the bias correction term
- alternative strategies to account for 1G self-selection (IV)

Strategy B: instrumental variable (IV)

Two-stage least square estimation of:

$$y_{ik} = \alpha_0 + \alpha_1 \mathbf{c}_{ik} + \alpha_2 \mathbf{S}_{ik} + \alpha_3 \mathbf{X}_{ik} + \varepsilon_{ik}$$

using \mathbf{Z}_{ik} :

- 1. **push factors**: number of migrants in *i* birth cohort and Italian region of origin;
- 2. **pull factors**: Gini index in destination country at birth interacted with parents' education.

as instrument for \mathbf{c}_{ik} . \triangleright Exclusion restriction

First-stage results show F-statistics ~95.

ML and IV

Likelihood of completing tertiary education

Strategy B: instrumental variable (IV)

Exclusion restriction

Instruments should only impact performance of 2G migrants through their parents' migration choice.

Size of migrants cohort:

• origin region-specific factors that *push* parents to exit.

$\mbox{Gini}\times\mbox{parents'}$ education:

- host country inequality acts as *pull* factor;
- high (low) skilled individuals attracted to less (more) equal countries (Parey et al., 2017; Borjas et al., 2019; Corneo and Neidhöfer, 2021)

Accounting for self-selection

Likelihood of employment

Back

Base A Self-sel. on obs Self-sel. on unobs.

Accounting for self-selection

Predicted disposable income

Accounting for self-selection

Hourly wages

Instrumental variable

	Both instruments	Network	Gini	
	(1)	(2)	(3)	
Argentina	0.000	0.048***	-0.031	
	(0.019)	(0.019)	(0.021)	
Australia	0.073	0.092***	0.028	
	(0.077)	(0.017)	(0.085)	
Belgium	-0.085***	-0.055***	-0.111***	
	(0.019)	(0.015)	(0.021)	
Brazil	0.096	0.135***	0.097	
	(0.118)	(0.044)	(0.120)	
Canada	0.082*	0.109***	0.044	
	(0.042)	(0.020)	(0.047)	
Switzerland	-0.110**	-0.088***	-0.128**	
	(0.048)	(0.012)	(0.050)	
France	0.007	0.037**	-0.014	
	(0.021)	(0.015)	(0.024)	
United Kingdom	-0.112*	-0.083***	-0.144**	
	(0.066)	(0.013)	(0.069)	
Germany	-0.105***	-0.073***	-0.136**	
	(0.036)	(0.013)	(0.039)	
United States	0.064***	0.091***	0.031	
	(0.017)	(0.017)	(0.019)	
Venezuela	0.321*** (0.077)	0.351*** (0.035)	0.314*** (0.085)	
Ita region	Yes	Yes	Yes	
Parents' educ	Yes	Yes	Yes	
Observations	23056	23056	23056	
Adj. R-squared	0.235	0.235	0.235	
1st stage F	84.538	27.903	298.662	

ARE 10 00 44 10 10 00 4 10 10

Results

Likelihood of completing tertiary education

Likelihood of unemployment

Likelihood of inactiveness

Predicted hourly earnings

Different income predictions

Predicted disposable income

Predicted position in host country income distribution

44/17

Returns by education level

Likelihood of completing tertiary education

Returns by education level

Likelihood of being employed

Returns by education level

Predicted disposable income

Age effect

Estimation equation

We extend Chetty et al. (2016); Alesina et al. (2021) and estimate

$$y_{ik} = \delta_0 + \delta_1 \mathbf{mig}_{ik} \times \mathbf{migage}_{ik} + \delta_2 \mathbf{S}_{ik} + \beta_3 \mathbf{X}_{ik} + f(\hat{P}_{ij,\forall j}) + \theta_{ik}$$

where

- mig_{ik} is an indicator for being a 2G migrant;
- migage_{*ik*} are migration age fixed effects;
- X_{ik} are individual characteristics (gender, age)
- \mathbf{S}_{ik} are parents characteristics (selection on observables);
- $f(\hat{P}_{ij,\forall j})$ controls for self-selection on unobservables.

Age effect

Predicted disposable income

Returns by number of Italian parents

Returns including not linked 2G

Returns for 2G born in host

Predicted disposable income

× Baseline + 2G born in host

Returns comparing to Italy+1G

Returns with different SHIW waves

Returns with different LIS waves

Bias correction term

Intertemporal utility maximization

Results by parents' education

Predicted disposable income in 10,000 USD per year.

		Parents' education	
	All families	Low	High
Predicted income:			
First child	0.208***	0.210***	0.404***
	(0.057)	(0.064)	(0.132)
Parents	0.516***	1.374***	-0.166
	(0.095)	(0.150)	(0.130)
Obs.	56,331	49,347	6,984
Cases	6,259	5,483	776
	*** p<0.01, ** p<0.05, * p<0.1.		

End of the presentation