Markups and Inflation in Oligopolistic Markets: Evidence from Wholesale Price Data

Patrick Alexander

Lu Han

Bank of Canada (INT/EFR)

Bank of Canada (INT/EFR)

Oleksiy Kryvtsov

Ben Tomlin

Bank of Canada (EFR)

Bank of Canada (INT/EFR)

ESEM, Rotterdam August 29, 2024

Disclaimer: the views expressed in this presentation are those of the authors and not the Bank of Canada

Does market power influence inflation dynamics and transmission of monetary policy?

• Markets are concentrated; rising market power over time (De Loecker, Eeckhout, & Unger 20)

Does market power influence inflation dynamics and transmission of monetary policy?

Markets are concentrated; rising market power over time (De Loecker, Eeckhout, & Unger 20)

Recent theoretical papers highlight important interactions between firms' market power and nominal rigidity

• Stronger non-neutrality due to pricing complementarity (Mongey 21; Wang & Werning 22)

Does market power influence inflation dynamics and transmission of monetary policy?

Markets are concentrated; rising market power over time (De Loecker, Eeckhout, & Unger 20)

Recent theoretical papers highlight important interactions between firms' market power and nominal rigidity

Stronger non-neutrality due to pricing complementarity (Mongey 21; Wang & Werning 22)

Lack of direct empirical evidence

Existing studies focus on flexible price (Auer & Schoenle 16; Amiti, Itskhoki, Konings 19)

Does market power influence inflation dynamics and transmission of monetary policy?

Markets are concentrated; rising market power over time (De Loecker, Eeckhout, & Unger 20)

Recent theoretical papers highlight important interactions between firms' market power and nominal rigidity

Stronger non-neutrality due to pricing complementarity (Mongey 21; Wang & Werning 22)

Lack of direct empirical evidence

• Existing studies focus on flexible price (Auer & Schoenle 16; Amiti, Itskhoki, Konings 19)

This paper: studies how market power interacts with nominal rigidity using micro data

This paper

Build a model with oligopolistic competition, Calvo sticky prices and heterogeneous firms

- derive <u>closed-form solution</u> for firm-level price adjustments to cost shocks
- differential reset price pass-through of 'common' (industry-wide) vs idiosyncratic cost changes

This paper

Build a model with oligopolistic competition, Calvo sticky prices and heterogeneous firms

- derive closed-form solution for firm-level price adjustments to cost shocks
- differential reset price pass-through of 'common' (industry-wide) vs idiosyncratic cost changes

Exploiting unique data from Canadian wholesale firms (2013M1-2019M12):

- accurate proxy of the marginal cost changes ⇒ decompose into 'common' vs idio components
- estimate pass-through of the two cost changes and find strong support of model predictions

This paper

Build a model with oligopolistic competition, Calvo sticky prices and heterogeneous firms

- derive <u>closed-form solution</u> for firm-level price adjustments to cost shocks
- differential reset price pass-through of 'common' (industry-wide) vs idiosyncratic cost changes

Exploiting unique data from Canadian wholesale firms (2013M1-2019M12):

- accurate proxy of the marginal cost changes ⇒ decompose into 'common' vs idio components
- estimate pass-through of the two cost changes and find strong support of model predictions

Micro to macro: market power and heterogeneity lead to

- ullet 1/3 decline in slope of New Keynesian Phillips Curve (NKPC) in one-sector model
- 2/3 decline in slope of NKPC in multi-sector model

Roadmap

- Model and closed form
- Empirical results
- Micro to macro: aggregate price and output dynamics

Model overview

Includes standard features from New Keynesian models and additional novel features:

- Oligopolistically-competitive distributors
- They buy goods from monopolistically-competitive producers
- Many industries, heterogeneity in market power and price stickiness
- Timing of distributor's price and cost changes is synchronized

Model overview

Includes standard features from New Keynesian models and additional novel features:

- Oligopolistically-competitive distributors
- They buy goods from monopolistically-competitive producers
- Many industries, heterogeneity in market power and price stickiness
- Timing of distributor's price and cost changes is synchronized
 - standard feature of distributors (Eichenbaum, Jaimovich & Rebelo 11; Goldberg & Hellerstein 13)

Model overview

Includes standard features from New Keynesian models and additional novel features:

- Oligopolistically-competitive distributors
- They buy goods from monopolistically-competitive producers
- Many industries, heterogeneity in market power and price stickiness
- Timing of distributor's price and cost changes is synchronized

Additional (standard) assumptions to get closed form solution:

- Log consumption utility and linear labour: $U = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\ln C_t + L_t \right)$
- ullet Cobb-Douglas aggregation across sectors: $C_t = \Pi_j \, C_{jt}^{lpha_j}$
- Cash-in-advance constraint: $M_t = W_t = P_t C_t$
- Small shocks (first order approximation remains accurate)

$$\widehat{P}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \underbrace{\left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right)}_{\text{Idiosyncratic change}} + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \lambda_j)}{1 - \beta \lambda_j \Lambda(\vec{\varphi}_j, \lambda_j)}\right)\right] \times \underbrace{\widehat{Q}_{jt}}_{\text{Common change}}$$

- \widehat{Q}_{ijt} is the firm's cost shock; $\widehat{Q}_{jt} \equiv \sum_i s_{ij} \widehat{Q}_{ijt}$
- s_{ij} denotes firm's market share; λ_j denotes share of firms that do not adjust prices
- ullet Strategic complementarity due to market power: ϕ_{ij}

$$\widehat{P}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \underbrace{\left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right)}_{\text{Idiosyncratic change}} + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \lambda_j)}{1 - \beta \lambda_j \Lambda(\vec{\varphi}_j, \lambda_j)}\right)\right] \times \underbrace{\widehat{Q}_{jt}}_{\text{Common change}}$$

- \widehat{Q}_{ijt} is the firm's cost shock; $\widehat{Q}_{jt} \equiv \sum_i s_{ij} \widehat{Q}_{ijt}$
- s_{ij} denotes firm's market share; λ_i denotes share of firms that do not adjust prices
- Strategic complementarity due to market power: $\varphi_{ij} \equiv (\theta-1)s_{ij}/(1-s_{ij})$

$$\widehat{P}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \underbrace{\left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right)}_{\text{Idiosyncratic change}} + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \lambda_j)}{1 - \beta \lambda_j \Lambda(\vec{\varphi}_j, \lambda_j)}\right)\right] \times \underbrace{\widehat{Q}_{jt}}_{\text{Common change}}$$

- \widehat{Q}_{ijt} is the firm's cost shock; $\widehat{Q}_{jt} \equiv \sum_i s_{ij} \widehat{Q}_{ijt}$
- s_{ij} denotes firm's market share; λ_i denotes share of firms that do not adjust prices
- ullet Strategic complementarity due to market power: $m{arphi}_{ij}=(heta-1)\left(rac{ heta-1}{ heta}\mu_{ij}-1
 ight)$

$$\widehat{P}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \underbrace{\left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right)}_{\text{Idiosyncratic change}} + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \lambda_j)}{1 - \beta \lambda_j \Lambda(\vec{\varphi}_j, \lambda_j)}\right)\right] \times \underbrace{\widehat{Q}_{jt}}_{\text{Common change}}$$

- \widehat{Q}_{ijt} is the firm's cost shock; $\widehat{Q}_{jt} \equiv \sum_i s_{ij} \widehat{Q}_{ijt}$
- ullet s_{ij} denotes firm's market share; λ_j denotes share of firms that do not adjust prices
- ullet Strategic complementarity due to market power: $m{arphi}_{ij}=(heta-1)\left(rac{ heta-1}{ heta}\mu_{ij}-1
 ight)$
- $\Lambda(\vec{\varphi}_j, \lambda_j)$ is 'sticky price multiplier' that governs dynamics of sectoral prices

The distributor's optimal reset price, up to a first-order approximation, is:

$$\widehat{P}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \underbrace{\left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right)}_{\text{Idiosyncratic change}} + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \lambda_j)}{1 - \beta \lambda_j \Lambda(\vec{\varphi}_j, \lambda_j)}\right)\right] \times \underbrace{\widehat{Q}_{jt}}_{\text{Common change}}$$

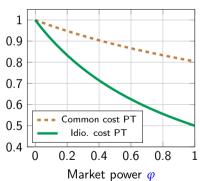
- \widehat{Q}_{ijt} is the firm's cost shock; $\widehat{Q}_{jt} \equiv \sum_i s_{ij} \widehat{Q}_{ijt}$
- ullet s_{ij} denotes firm's market share; λ_j denotes share of firms that do not adjust prices
- Strategic complementarity due to market power: $m{arphi}_{ij}=(heta-1)\left(rac{ heta-1}{ heta}\mu_{ij}-1
 ight)$
- $\Lambda(\vec{\varphi}_j, \lambda_j)$ is 'sticky price multiplier' that governs dynamics of sectoral prices

Predictions:

- Pass-through of idio. cost change is decreasing in φ_{ij} , independent of λ_j
- ullet Pass-through of common cost change is decreasing in $ec{ec{\phi}}_j$ and λ_j

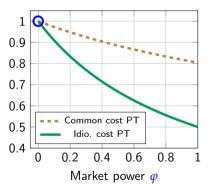
$$\widehat{P}_{ijt,t} = rac{1}{1 + arphi_{ij}} imes \left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}
ight) + \left[rac{1}{1 + arphi_{ij}} + rac{arphi_{ij}}{1 + arphi_{ij}} \left(rac{1 - \Lambda(ec{q}_{j}, oldsymbol{\lambda}_{j})}{1 - eta \lambda \Lambda(ec{q}_{j}, oldsymbol{\lambda}_{j})}
ight)
ight] imes \widehat{Q}_{jt}$$

Price stickiness fixed at $\lambda = 0.4$



$$\widehat{P}_{ijt,t} = rac{1}{1+arphi_{ij}} imes \left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}
ight) + \left[rac{1}{1+arphi_{ij}} + rac{arphi_{ij}}{1+arphi_{ij}} \left(rac{1-\Lambda(ec{q}_{j}, oldsymbol{\lambda}_{j})}{1-eta\lambda\Lambda(ec{q}_{i}, oldsymbol{\lambda}_{j})}
ight)
ight] imes \widehat{Q}_{jt}$$

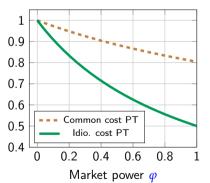
Price stickiness fixed at $\lambda = 0.4$



No market power: complete PT to both shocks as in standard NK models

$$\widehat{P}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right) + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \frac{\boldsymbol{\lambda}_j}{\boldsymbol{\lambda}_j})}{1 - \beta \lambda \Lambda(\vec{\varphi}_j, \frac{\boldsymbol{\lambda}_j}{\boldsymbol{\lambda}_j})}\right)\right] \times \widehat{Q}_{jt}$$

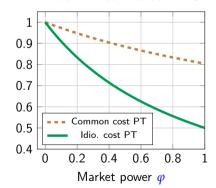
Price stickiness fixed at $\lambda = 0.4$



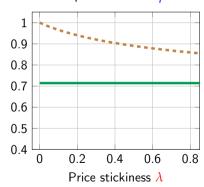
• For given price stickiness λ , PT to both shocks are decreasing in market power φ

$$\widehat{\boldsymbol{P}}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right) + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}{1 - \beta \lambda \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}\right)\right] \times \widehat{\boldsymbol{Q}}_{jt}$$

Price stickiness fixed at $\lambda = 0.4$

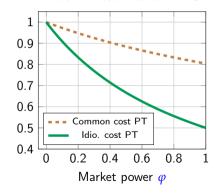


Market power fixed at $\varphi = 0.4$

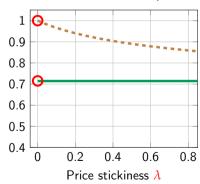


$$\widehat{\boldsymbol{P}}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right) + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}{1 - \beta \lambda \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}\right)\right] \times \widehat{\boldsymbol{Q}}_{jt}$$

Price stickiness fixed at $\lambda = 0.4$



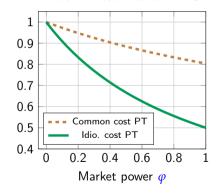
Market power fixed at $\varphi = 0.4$



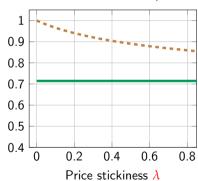
Flexible price case: complete pass through to common cost change (Amiti, Itskhoki, Konings 19)

$$\widehat{\boldsymbol{P}}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \left(\widehat{Q}_{ijt} - \widehat{Q}_{jt}\right) + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}{1 - \beta \lambda \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}\right)\right] \times \widehat{\boldsymbol{Q}}_{jt}$$

Price stickiness fixed at $\lambda = 0.4$



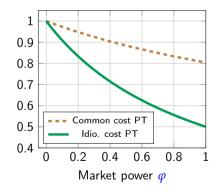
Market power fixed at $\varphi = 0.4$



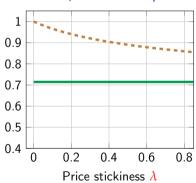
• Common cost PT decreases in λ : given my competitors' prices are sticky, my PT is lower

$$\widehat{\boldsymbol{P}}_{ijt,t} = \frac{1}{1 + \varphi_{ij}} \times \left(\widehat{\boldsymbol{Q}}_{ijt} - \widehat{\boldsymbol{Q}}_{jt}\right) + \left[\frac{1}{1 + \varphi_{ij}} + \frac{\varphi_{ij}}{1 + \varphi_{ij}} \left(\frac{1 - \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}{1 - \beta \lambda \Lambda(\vec{\varphi}_j, \boldsymbol{\lambda}_j)}\right)\right] \times \widehat{\boldsymbol{Q}}_{jt}$$

Price stickiness fixed at $\lambda = 0.4$



Market power fixed at $\varphi = 0.4$



• PT of idiosyncratic part of cost shock is not affected by price stickiness λ

Roadmap

- Model and closed form
- Empirical results
- Micro to macro: aggregate price and output dynamics

Canadian Wholesale Services Price Index microdata

- Monthly data from Jan 2013 to Dec 2019
- Firm-product level info on price and cost (pprox 280k obs after cleaning)
 - selling price, purchase price (reliable measure of marginal cost)
 - markup = (selling price)/(purchase price)
- A large sample of firms (\approx 1,800 obs after cleaning)
 - can identify common (industry-wide) vs. idiosyncratic cost changes
- Observe the industry (4-digit NAICS and 7-digit NAPCS codes) of the firm-product
 - exploit industry-level variation in price stickiness and market power (average markup)

Empirical specification: Step 1

Empirical findings

Decompose cost changes into two components using a fixed effect approach: (à la Di Giovanni, Levchenko & Mejean 14)

$$\Delta \ln(Q_{ijt}) = \underbrace{\epsilon_{jt}}_{\text{Common cost change}} + \underbrace{\epsilon_{ijt}}_{\text{Idiosyncratic cost change}}$$

• i, j, t denotes firm-product, industry, month, respectively

Empirical specification: Step 2

Estimate selling price adjustments to these two cost changes:

$$\Delta \log(P_{ijt}) = \underbrace{\left(\Psi + \Psi^{ps} \lambda_j + \Psi^{mp} D_j\right)}_{\text{common cost PT}} \cdot \widehat{\epsilon}_{jt} + \underbrace{\left(\psi + \psi^{ps} \lambda_j + \psi^{mp} D_j\right)}_{\text{idiosyncratic cost PT}} \cdot \widehat{\epsilon}_{ijt} + FE_{ij} + \nu_{ijt}$$

- Estimate conditional on price adjustment: when $\Delta \log(P_{iit}) \neq 0$
- Weighted by market share of firm-product sii
- λ_i: sectoral price stickiness
- D_i : dummy for high markup (market power) industries

Reset price pass-through estimates by industry characteristics

	Data	Model prediction
Common cost		pprox 1
Common cost × Industry stickiness		< 0
Common cost × High-markup industry		< 0
Idio. cost		< 1
Idio. cost × Industry stickiness		≈ 0
Idio. cost × High-markup industry		< 0
Observations Firm-product fixed effects R^2	136,085 √ 0.5	

[†] means not statistically different from 1; ‡ means statistically different from 1;

^{**} means statistically different from 0.

Reset price pass-through estimates by industry characteristics

	Data	Model prediction
Common cost	1.08 [†]	pprox 1
Common cost \times Industry stickiness	(0.11) -0.96** (0.34)	< 0
Common cost × High-markup industry	-0.29** (0.11)	< 0
Idio. cost	(0.11)	< 1
Idio. cost × Industry stickiness		≈ 0
Idio. cost × High-markup industry		< 0
Observations	136,085	
Firm-product fixed effects R^2	√ 0.5	

[†] means not statistically different from 1; ‡ means statistically different from 1;

^{**} means statistically different from 0.

Reset price pass-through estimates by industry characteristics

	Data	Model prediction
Common cost	1.08 [†]	pprox 1
	(0.11)	
Common cost × Industry stickiness	-0.96**	< 0
	(0.34)	
Common cost × High-markup industry	-0.29**	< 0
	(0.11)	
Idio. cost	0.75 [‡]	< 1
	(0.06)	
Idio. cost × Industry stickiness	0.03	pprox 0
	(0.13)	
Idio. cost × High-markup industry	-0.25***	< 0
	(0.05)	
Observations	136,085	
Firm-product fixed effects	\checkmark	
R^2	0.5	

[†] means not statistically different from 1; ‡ means statistically different from 1;

^{**} means statistically different from 0.

Roadmap

- Model and closed form
- Empirical results
- Micro to macro: aggregate price and output dynamics

Aggregation: homogeneous sectors

When $\varphi_i = \varphi$ and $\lambda_i = \lambda$, the aggregate New Keynesian Phillips curve is given by:

$$\widehat{\pi}_t = \frac{(1 - \beta \lambda)(1 - \lambda)}{\lambda \left(1 + \varphi\right)} \widehat{\textit{mc}}_t + \beta \mathbb{E}_t \widehat{\pi}_{t+1}$$

Aggregation: homogeneous sectors

When $\varphi_i = \varphi$ and $\lambda_i = \lambda$, the aggregate New Keynesian Phillips curve is given by:

$$\widehat{\pi}_t = \frac{(1 - \beta \lambda)(1 - \lambda)}{\lambda \left(1 + \varphi\right)} \widehat{\textit{mc}}_t + \beta \mathbb{E}_t \widehat{\pi}_{t+1}$$

Relative to standard monopolistic competitive Calvo.

- Slope of NKPC is reduced by a factor of $\frac{1}{1+\omega} \approx 0.7$
- Cumulative output response to MP shock is amplified by a factor of $\frac{\Lambda(1-\lambda)}{\lambda(1-\lambda)} \approx 1.28$

Note: $\Lambda(\lambda, \varphi) \geq \lambda$ and $\Lambda \to \lambda$ as $\varphi \to 0$.

Aggregation: homogeneous sectors

When $\varphi_i = \varphi$ and $\lambda_i = \lambda$, the aggregate New Keynesian Phillips curve is given by:

$$\widehat{\pi}_t = \frac{(1 - \beta \lambda)(1 - \lambda)}{\lambda \left(1 + \varphi\right)} \widehat{\textit{mc}}_t + \beta \mathbb{E}_t \widehat{\pi}_{t+1}$$

Relative to standard monopolistic competitive Calvo.

- Slope of NKPC is reduced by a factor of $\frac{1}{1+\omega} \approx 0.7$
- Cumulative output response to MP shock is amplified by a factor of $\frac{\Lambda(1-\lambda)}{\lambda(1-\lambda)} \approx 1.28$
- \Rightarrow Sizable amplification

Note: $\Lambda(\lambda, \varphi) \geq \lambda$ and $\Lambda \to \lambda$ as $\varphi \to 0$.

Amplification of monetary non-neutrality

Relative to monopolistic competitive Calvo

	(1) one-sector OC	
Slope of NKPC Cum. Output to MP shock	0.70 1.28	

1. Market power reduces the NKPC by 30%, resulting output amplification of 28%

Amplification of monetary non-neutrality

Relative to monopolistic competitive Calvo

	(1)	(2)	
	one-sector OC	multi-sector OC, heter price stick + homo market power	
Slope of NKPC Cum. Output to MP shock	0.70 1.28	0.52 1.57	

2. Allowing industry heterogeneity in price stickiness further reduces slope of NKPC by 20%

Amplification of monetary non-neutrality

Relative to monopolistic competitive Calvo

	(1)	(2)	(3)
	one-sector OC	multi-sector OC, heter price stick + homo market power	multi-sector OC, heter price stick + heter market power
Slope of NKPC	0.70	0.52	0.36
Cum. Output to MP shock	1.28	1.57	1.96

3. With heterogeneity in market power and price stickiness, our model implies 64% reduction in slope of NKPC and 100% increase in cumulative output response

Conclusions

We study how interaction of market power and price stickiness impacts transmission of shocks in the macroeconomy

- Theoretically, we show that this interaction leads to:
 - Pass-through of common costs that decreases in price stickiness
 - Pass-through of common and idiosyncratic costs that decreases in market power
- Empirically, we find strong support for our theoretical predictions

Conclusions

We study how interaction of market power and price stickiness impacts transmission of shocks in the macroeconomy

- Theoretically, we show that this interaction leads to:
 - Pass-through of common costs that decreases in price stickiness
 - Pass-through of common and idiosyncratic costs that decreases in market power
- Empirically, we find strong support for our theoretical predictions
- At aggregate level, market power and industry heterogeneity lead to:
 - 2/3 decline in slope of New Keynesian Phillips curve
 - 100% increase cumulative output response to monetary policy shock

Appendix

Distributors' optimal reset price takes the usual Calvo form:

$$P_{ijt,t} = \frac{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} \vartheta_{ijt+\tau,t} C_{ijt+\tau,t}}{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} (\vartheta_{ijt+\tau,t} - 1) C_{ijt+\tau,t} / Q_{ijt+\tau}}$$

- i, j, t denotes firm, industry, time; λ_i is probability of no price adjustment
- $Q_{iit+\tau}$ is cost of product sold; $C_{iit+\tau,t}$ is expected demand of $t+\tau$ at t

Distributors' optimal reset price takes the usual Calvo form:

$$P_{ijt,t} = \frac{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} \vartheta_{ijt+\tau,t} C_{ijt+\tau,t}}{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} (\vartheta_{ijt+\tau,t} - 1) C_{ijt+\tau,t} / Q_{ijt+\tau}}$$

- i, j, t denotes firm, industry, time; λ_i is probability of no price adjustment
- $Q_{ijt+\tau}$ is cost of product sold; $C_{ijt+\tau,t}$ is expected demand of $t+\tau$ at t

Expected effective demand elasticity:

$$\mathbb{E}_t artheta_{ijt+ au,t} = \mathbb{E}_t \left[rac{1}{ heta} (1-s_{ijt+ au,t}) + s_{ijt+ au,t}
ight]^{-1}$$

Distributors' optimal reset price takes the usual Calvo form:

$$P_{ijt,t} = \frac{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} \vartheta_{ijt+\tau,t} C_{ijt+\tau,t}}{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} (\vartheta_{ijt+\tau,t} - 1) C_{ijt+\tau,t} / Q_{ijt+\tau}}$$

- i, j, t denotes firm, industry, time; λ_i is probability of no price adjustment
- $Q_{ijt+\tau}$ is cost of product sold; $C_{ijt+\tau,t}$ is expected demand of $t+\tau$ at t

Expected effective demand elasticity:

$$\mathbb{E}_t \vartheta_{ijt+\tau,t} = \mathbb{E}_t \left[\frac{1}{\theta} (1 - s_{ijt+\tau,t}) + s_{ijt+\tau,t} \right]^{-1}$$

Changes in expected market share depends on expected future sector price $\mathbb{E}_t \widehat{P}_{jt+\tau}$:

$$\mathbb{E}_{t}\widehat{s}_{ijt+\tau,t} = -(\theta - 1)\left[\widehat{P}_{ijt,t} - \mathbb{E}_{t}\widehat{P}_{jt+\tau}\right]$$

Distributors' optimal reset price takes the usual Calvo form:

$$P_{ijt,t} = \frac{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} \vartheta_{ijt+\tau,t} C_{ijt+\tau,t}}{\mathbb{E}_{t} \sum_{\tau=0}^{\infty} (\beta \lambda_{j})^{\tau} (\vartheta_{ijt+\tau,t} - 1) C_{ijt+\tau,t} / Q_{ijt+\tau}}$$

- i, j, t denotes firm, industry, time; λ_i is probability of no price adjustment
- $Q_{iit+\tau}$ is cost of product sold; $C_{iit+\tau,t}$ is expected demand of $t+\tau$ at t

Expected effective demand elasticity:

$$\mathbb{E}_t \vartheta_{ijt+\tau,t} = \mathbb{E}_t \left[\frac{1}{\theta} (1 - s_{ijt+\tau,t}) + s_{ijt+\tau,t} \right]^{-1}$$

Changes in expected market share depends on expected future sector price $\mathbb{E}_t \widehat{P}_{jt+\tau}$:

$$\mathbb{E}_{t}\widehat{s}_{ijt+\tau,t} = -(\theta - 1)\left[\widehat{P}_{ijt,t} - \mathbb{E}_{t}\widehat{P}_{jt+\tau}\right]$$

With small shocks: $\mathbb{E}_t \widehat{P}_{jt+\tau}$ can be solved analytically \Rightarrow closed-form solution

With heterogeneity in λ_j , aggregate price stickiness is no longer $\lambda \equiv \sum_j \alpha_j \lambda_j$ (Carvalho 06)

With heterogeneity in λ_j , aggregate price stickiness is no longer $\lambda \equiv \sum_j \alpha_j \lambda_j$ (Carvalho 06)

Under a permanent monetary policy shock at t=0 (i.e., $\widehat{M}_{\tau}=1 \ \forall \tau \geq 0$):

$$\widehat{P}_{\tau} = (1 - \lambda)\widehat{P}_{\tau,\tau} + \lambda\widehat{P}_{\tau-1} - {\it Cov_j}\left[\lambda_j, (\lambda_j)^{\tau}\right]$$

With heterogeneity in λ_j , aggregate price stickiness is no longer $\lambda \equiv \sum_j \alpha_j \lambda_j$ (Carvalho 06)

Under a permanent monetary policy shock at t=0 (i.e., $\widehat{M}_{\tau}=1 \ \forall \tau \geq 0$):

$$\widehat{P}_{\tau} = (1 - \lambda)\widehat{P}_{\tau,\tau} + \lambda\widehat{P}_{\tau-1} - \textit{Cov}_{j}\left[\lambda_{j}, \frac{1 - \Lambda_{j}}{1 - \lambda_{j}}(\Lambda_{j})^{\tau}\right]$$

• $\Lambda_j(\lambda_j, \varphi_j) \ge \lambda_j$ is sticky price multiplier with $\Lambda_j \to \lambda_j$ as $\varphi_j \to 0$

With heterogeneity in λ_j , aggregate price stickiness is no longer $\lambda \equiv \sum_j \alpha_j \lambda_j$ (Carvalho 06)

Under a permanent monetary policy shock at t = 0 (i.e., $\widehat{M}_{\tau} = 1 \ \forall \tau \geq 0$):

$$\begin{split} \widehat{P}_{\tau} &= (1 - \lambda) \widehat{P}_{\tau,\tau} + \lambda \widehat{P}_{\tau-1} - \textit{Cov}_j \left[\lambda_j, \frac{1 - \Lambda_j}{1 - \lambda_j} (\Lambda_j)^{\tau} \right] \\ \widehat{C}_{\tau} &= 1 - \widehat{P}_{\tau} = \Lambda^{\tau+1} + \underbrace{x_{\tau} \Lambda^{\tau+1}}_{\text{heterogeneity effect } \geq 0} \end{split}$$

- $\Lambda_j(\lambda_j, \varphi_j) \geq \lambda_j$ is sticky price multiplier with $\Lambda_j \to \lambda_j$ as $\varphi_j \to 0$
- $\Lambda \equiv \sum_j \alpha_j \Lambda_j$ and $x_\tau \equiv \sum_j \alpha_j \Lambda_j^{\tau+1} / \Lambda^{\tau+1} 1 \ge 0$

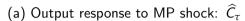
With heterogeneity in λ_j , aggregate price stickiness is no longer $\lambda \equiv \sum_j \alpha_j \lambda_j$ (Carvalho 06)

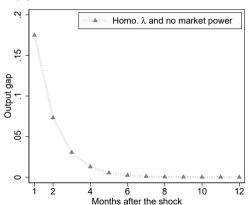
Under a permanent monetary policy shock at t=0 (i.e., $\widehat{M}_{\tau}=1 \ \forall \tau \geq 0$):

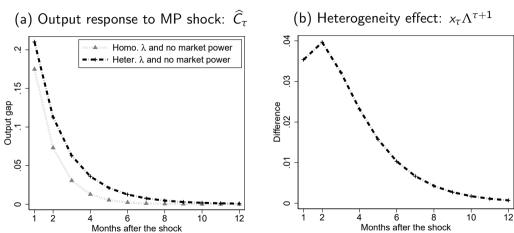
$$\begin{split} \widehat{P}_{\tau} &= (1 - \lambda) \widehat{P}_{\tau,\tau} + \lambda \widehat{P}_{\tau-1} - \textit{Cov}_j \left[\lambda_j, \frac{1 - \Lambda_j}{1 - \lambda_j} (\Lambda_j)^{\tau} \right] \\ \widehat{C}_{\tau} &= 1 - \widehat{P}_{\tau} = \Lambda^{\tau+1} + \underbrace{x_{\tau} \Lambda^{\tau+1}}_{\text{heterogeneity effect } \geq 0} \end{split}$$

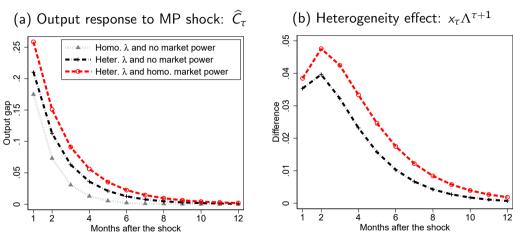
- $\Lambda_j(\lambda_j, \varphi_j) \geq \lambda_j$ is sticky price multiplier with $\Lambda_j \to \lambda_j$ as $\varphi_j \to 0$
- $\Lambda \equiv \sum_j \alpha_j \Lambda_j$ and $x_{\tau} \equiv \sum_j \alpha_j \Lambda_j^{\tau+1} / \Lambda^{\tau+1} 1 \ge 0$

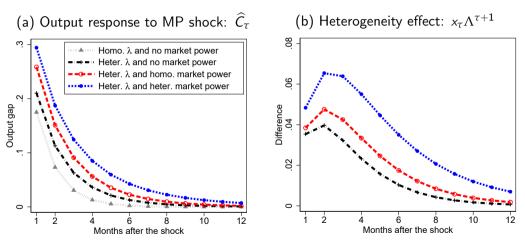
Next, calibrate the model to match industrial heterogeneity in λ_j and $arphi_j$











⇒ Much larger effects due to heterogeneity in price stickiness and market power

Synchronization in selling and purchase price adjustments

(a) firm-product level

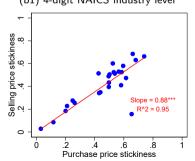
		Selling Yes	price change No
Purchase price change	Yes No	0.86 0.25	0.14 0.75

Synchronization in selling and purchase price adjustments

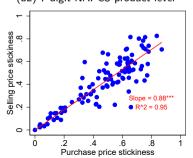
(a) firm-product level

		Selling Yes	price change No
Purchase price change	Yes No	0.86 0.25	0.14 0.75

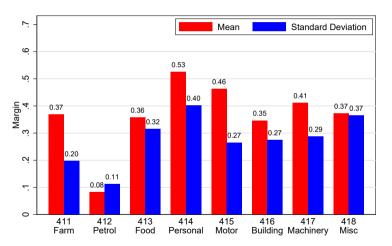
(b1) 4-digit NAICS industry level



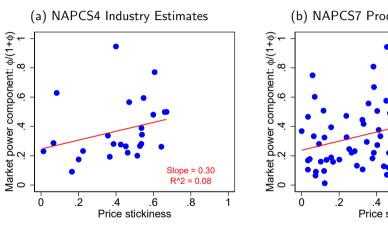
(b2) 7-digit NAPCS product level

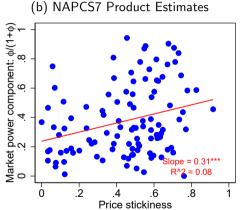


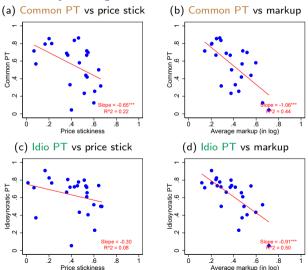
Average markup by 3-digit NAICS wholesale industry



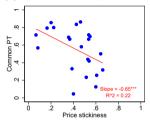
Correlation between market power and stickiness

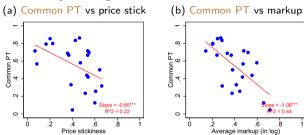


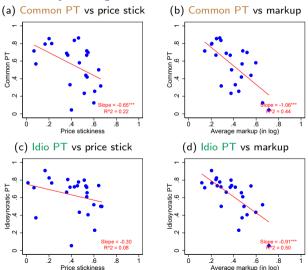




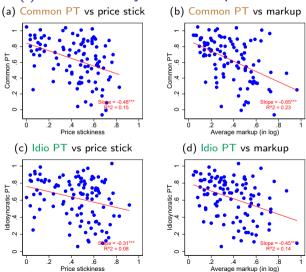
(a) Common PT vs price stick







(i) Estimates by NAPCS7 products



(ii) Pooled pass-through estimates by NAPCS7 product characteristics

	Data	Model prediction
Common cost	0.89	pprox 1
	(0.04)	
Common cost \times Product stickiness	-0.23	< 0
	(0.17)	
Common cost $ imes$ High-markup product	-0.22	< 0
	(0.15)	
Idio. cost	0.75 [‡]	< 1
	(0.04)	
Idio. cost \times Product stickiness	0.04	pprox 0
	(0.10)	
Idio. cost $ imes$ High-markup product	-0.23***	< 0
	(0.09)	
Observations	133,620	
Firm-product fixed effects	\checkmark	
R^2	0.57	

[‡] means statistically different from 1; ** means statistically different from 0.

(ii) NAICS4 estimates with firm markup interactions

	Data	Model prediction
Common cost	1.05 [†]	pprox 1
	(0.05)	
Common cost × Industry stickiness	-0.70**	< 0
	(0.25)	
Common cost \times High-markup industry	-0.29**	< 0
	(0.10)	
Common cost × High-markup firm	-0.05	ambiguous
	(0.19)	
Idio. cost	0.88‡	< 1
	(0.04)	
Idio. cost × Industry stickiness	-0.04	pprox 0
	(0.10)	
Idio. cost \times High-markup industry	-0.24***	< 0
	(0.04)	
Idio. cost × High-markup firm	-0.33***	< 0
	(0.04)	
Observations	136,085	
Firm-product fixed effects	✓	
R^2	0.52	

[†] means not statistically different from 1; ‡ means statistically different from 1;

^{**} means statistically different from 0.

Amplification of monetary non-neutrality: NAPCS7 product results

Relative to monopolistic competitive Calvo

	(1)	(2)	(3)
	one-sector OC	multi-sector OC, heter price stick + homo market power	multi-sector OC, heter price stick + heter market power
Slope of NKPC	0.70	0.40	0.26
Cum. Output from MP shock	1.28	1.84	2.38

Expected sectoral price dynamics

The usual Calvo dynamics hold in **expectations**:

$$\begin{split} \mathbb{E}_{t}\widehat{P}_{jt+\tau} &= \mathbb{E}_{t} \sum_{i} s_{ijt+\tau} \widehat{P}_{ijt+\tau} \\ &= (1-\lambda_{j}) \mathbb{E}_{t} \sum_{i} s_{ijt+\tau} \widehat{P}_{ijt+\tau,t+\tau} + \lambda_{j} \mathbb{E}_{t} \sum_{i} s_{ijt+\tau} \widehat{P}_{ijt+\tau-1} \\ &\approx (1-\lambda_{j}) \mathbb{E}_{t} \widehat{P}_{jt+\tau,t+\tau} + \lambda_{j} \mathbb{E}_{t} \widehat{P}_{jt+\tau-1}. \end{split}$$

• Works for small shocks: $\sum_i s_{ijt+\tau} \widehat{P}_{ijt+\tau-1} \approx \sum_i s_{ijt+\tau-1} \widehat{P}_{ijt+\tau-1}$

Expected sectoral price dynamics

The usual Calvo dynamics hold in **expectations**:

$$\begin{split} \mathbb{E}_{t}\widehat{P}_{jt+\tau} &= \mathbb{E}_{t} \sum_{i} s_{ijt+\tau} \widehat{P}_{ijt+\tau} \\ &= (1 - \lambda_{j}) \mathbb{E}_{t} \sum_{i} s_{ijt+\tau} \widehat{P}_{ijt+\tau,t+\tau} + \lambda_{j} \mathbb{E}_{t} \sum_{i} s_{ijt+\tau} \widehat{P}_{ijt+\tau-1} \\ &\approx (1 - \lambda_{j}) \mathbb{E}_{t} \widehat{P}_{jt+\tau,t+\tau} + \lambda_{j} \mathbb{E}_{t} \widehat{P}_{jt+\tau-1}. \end{split}$$

• Works for small shocks: $\sum_i s_{ijt+\tau} \widehat{P}_{ijt+\tau-1} \approx \sum_i s_{ijt+\tau-1} \widehat{P}_{ijt+\tau-1}$

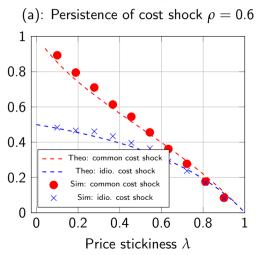
Expected sectoral New Keynesian Phillips Curve can be expressed as:

$$\mathbb{E}_{t}\widehat{\pi}_{jt} = \sum_{i} \frac{\mathsf{s}_{ij}}{\lambda_{j}} \frac{(1 - \beta \lambda_{j})(1 - \lambda_{j})}{\lambda_{j}\left(1 + \varphi_{ij}\right)} \mathbb{E}_{t}(\widehat{Q}_{ijt,t} - \widehat{P}_{jt}) + \beta \mathbb{E}_{t}\widehat{\pi}_{jt+1}$$

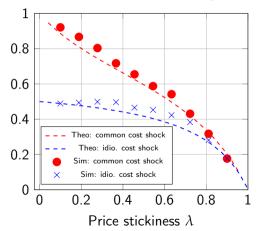
• Can be solved analytically and used in firm's problem to get closed-form solution

Comparing theoretical vs simulated responses

(when $\theta = 3$, $\overline{s} = 0.5$ and $\beta = 0.98^{1/12}$)



(b): Persistence of cost shock $\rho = 0.8$



Flexible price oligopolistic competition model (Atkeson & Burstein 08; Amiti, Itskhoki, Konings 19):

- ullet Common cost change does not affect relative competitiveness ightarrow PT =100%
- ullet Idio change affects relative competitiveness o PT = function of market power $arphi_{ij}$

Flexible price oligopolistic competition model (Atkeson & Burstein 08; Amiti, Itskhoki, Konings 19):

- ullet Common cost change does not affect relative competitiveness ightarrow PT =100%
- ullet Idio change affects relative competitiveness o PT = function of market power $arphi_{ij}$

Calvo oligopolistic competition model (reset price pass-through):

• Common PT: decreasing function of φ_j and sectoral price stickiness λ_j

Flexible price oligopolistic competition model (Atkeson & Burstein 08; Amiti, Itskhoki, Konings 19):

- ullet Common cost change does not affect relative competitiveness ightarrow PT =100%
- ullet Idio change affects relative competitiveness o PT = function of market power $arphi_{ij}$

Calvo oligopolistic competition model (reset price pass-through):

• Common PT: decreasing function of φ_j and sectoral price stickiness λ_j Intuition: price stickiness implies changes in relative competitiveness

Flexible price oligopolistic competition model (Atkeson & Burstein 08; Amiti, Itskhoki, Konings 19):

- ullet Common cost change does not affect relative competitiveness ightarrow PT =100%
- ullet Idio change affects relative competitiveness o PT = function of market power $arphi_{ij}$

Calvo oligopolistic competition model (reset price pass-through):

- Common PT: decreasing function of φ_j and sectoral price stickiness λ_j Intuition: price stickiness implies changes in relative competitiveness
- Idio PT: decreasing function of φ_{ij} , independent of λ_j Intuition: PT not affected by λ_i due to its idiosyncratic nature

Flexible price oligopolistic competition model (Atkeson & Burstein 08; Amiti, Itskhoki, Konings 19):

- Common cost change does not affect relative competitiveness \rightarrow PT = 100%
- Idio change affects relative competitiveness \rightarrow PT = function of market power φ_{ij}

Calvo oligopolistic competition model (reset price pass-through):

- Common PT: decreasing function of φ_j and sectoral price stickiness λ_j Intuition: price stickiness implies changes in relative competitiveness
- Idio PT: decreasing function of φ_{ij} , independent of λ_j Intuition: PT not affected by λ_j due to its idiosyncratic nature

Empirically, our reset price pass-through estimates suggest:

- Common cost: $\approx 100\%$ when $\lambda_j \approx 0$; declines to $\approx 40\%$ for very sticky industries
- Idio cost: 70% on average; decrease in φ_{ij} and independent of λ_j