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Abstract

Adapting cursed equilibrium to a beauty contest game, we study the impact

of information policies when agents underinfer from equilibrium statistics. We

propose a subjective envelope condition to discipline information acquisition with

mislearning while maintaining behaviorally plausible assumptions and show that

it characterizes the rest points of a natural learning process.

Cursed agents use and acquire more private information, creating a positive

externality which initially exceeds the losses from misuse: Local to rationality,

cursedness increases welfare. Transparency crowds out private information but

increases welfare. Policies targeting fundamental information may backfire as they

distract cursed agents from information they already underuse.
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1 Introduction

Many economic decisions are taken in environments with interdependent payoffs

and uncertainty both about fundamental states and the actions of others. To guide

such decisions, players rely on information that includes direct sources about the

fundamental as well as signals about aggregate statistics of the actions of others. Such

statistics (“aggregative signals”) arise naturally in many economic settings, ranging

from the transaction price in a financial market (Grossman and Stiglitz, 1980; Diamond

and Verrecchia, 1981; Kyle, 1985) and the level of activity and number of infections

during a pandemic, to inflation statistics (Lucas, 1972; Morris and Shin, 2005).

Aggregative signals do not just contain information about the actions of others but

also disseminate information about the fundamental. The amount of fundamental

information conveyed by such statistics depends both on their precision around the

true aggregate moment —for which we adopt the moniker of transparency— and on

the informativeness of the moment itself. This informativeness, in turn, depends on

how much private information the players use and disseminate through their strategies

and ultimately on how much information they possess to begin with.1 These intricate

interactions are at the center of lively debates both in policy circles and in the academic

literature, especially surrounding policy instruments that directly target the very

availability and transmission of information.

One key though hitherto neglected aspect of these interactions is that extracting

fundamental information from an equilibrium statistic is no easy feat. In particular,

it requires understanding how the actions of others reflect their private information.

Ample evidence (e.g. on the winner’s curse and underinference in social learning)

indicates that agents often fail to take this inferential step.2 A natural implication is

that agents will also underuse aggregative statistics and place an excessive weight on

private information.3 This observation is empirically supported in several contexts.

1Deviations from full transparency may arise, e.g., from measurement error, intentional coarsening
of information, or delays in reporting. For example, a fully transparent financial market would be one
where a trader knows the transaction price before submitting his order. A lower level of transparency
would correspond to a market where traders have only noisy information about the transaction price,
say they observe the current price at another similar market place or in the past.

2In the winner’s curse, agents fail to appreciate that they are more likely to win a common value
auction when their private information leads them to overestimate the value of the prize. Implicitly, they
miss the information contained in winning the auction. See Kagel and Levin (2002) for a review of the
experimental evidence. Weizsäcker (2010) shows through a meta analysis that private information is
overused in social learning experiments. This effect is also present with continuous actions and stems
from a lack of learning from observed actions as opposed to the signals of others (Angrisani et al.,
2021). In financial market versions of the social learning setting, there is evidence of contrarianism,
i.e. buying at low and selling at high prices against the rational interpretation of information, which
is consistent with an underappreciation of the information content of prices which aggregate the
information contained in others’ actions (Cipriani and Guarino, 2005; Drehmann et al., 2005). See also
(Eyster et al., 2019, Section IV) for evidence of cursedness in financial markets.

3Some experiments, by contrast, find an excessive use of social information. Participants choose to
acquire information about the actions of others even though they are uninformative about the state in
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Inflation expectations strongly depend on noisy private signals (individual supermarket

prices) even when precise aggregative information is provided (Cavallo et al., 2017);

traders in an experimental financial market fail to incorporate information from prices

(Ngangoué and Weizsäcker, 2021). This evidence suggests that a complete analysis of

such environments should take into account both the endogenous dissemination of

information as well agents’ limited grasp of the information contained in aggregative

signals.

Towards this end we study a beauty contest game with information acquisition and

adapt cursed equilibrium (Eyster and Rabin, 2005) as a tractable model of incomplete

inference from aggregative signals. The beauty contest and its generalizations are

a stylized yet rich laboratory used to study dispersed information across a range of

applications (Hellwig and Veldkamp, 2009; Vives, 2017; Angeletos and Lian, 2018).

Cursed equilibrium provides a parsimonious solution concept capturing the range

from rational to fully cursed agents who fail to take into account that the actions of

other players are a result of their private information and hence consider the aggregate

outcomes to be uninformative about fundamentals. It has been used successfully to

account for overbidding in common value auctions and has also found applications to

financial markets (Eyster et al., 2019).4 We introduce cursed equilibrium in a simple

beauty contest game in which agents target a combination of the state and the average

action. Simplifying the strategic environment (relative to, e.g., Angeletos and Pavan

(2007) and many specific applications) allows us to focus on the novel interaction

between cursedness and transparency.

To evaluate the effects of transparency and other information policies we need a

model which includes all the relevant adjustment margins. Those margins encompass

both information use and information acquisition: Increased transparency, for instance,

may backfire because it crowds out private information acquisition and thereby un-

dermines the very source of information in the aggregate moment. To capture such

adjustments, our beauty contest game features an information acquisition stage wherein

agents choose the precision of their private information at a cost (as in Colombo et al.,

2014). To even represent this decision, one has to describe how agents assess the value

of information ex-ante. While this is conceptually straightforward for rational agents,

it becomes tricky when dealing with cursed agents. Specifically, how do agents perceive

a social learning game (Goeree and Yariv, 2015) and follow uninformative social signals in a financial
contagion game (Trevino, 2020). We study a setting with informative aggregative information and focus
on its underuse.

4Belief-based explanations of the winner’s curse, among them cursed equilibrium, have been
questioned by experiments showing that the phenomenon persists when the required beliefs are hard to
rationalize or inconsistent with the rules of the game (Ivanov et al., 2010) and against computerized
opponents using simple action rules (Charness and Levin, 2009). We take such behavior to be consistent
with cursedness in a wide sense, as a model for a lack of updating from difficult information sources
requiring conditioning and inversion, including an inability to engage in conditional or hypothetical
thinking (Esponda and Vespa, 2014; Ngangoué and Weizsäcker, 2021).
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the impact of altering the same information environment that they misperceive when

acting within it? To what extent are they aware of their misuse, and how does such

awareness affect information acquisition? Our modeling challenge is to address these

issues with behaviorally plausible assumptions that yield a tractable analysis of the

role of transparency in markets with cursed agents.

We propose a notion — cursed expectations equilibrium with information acquisition —

based on the following behavioral desiderata: Agents correctly anticipate the equilib-

rium relationships as well as their expected welfare and play, but they do not consider

their future information use to be erroneous. They are, therefore, not meta-rational

and do not use information acquisition to fix their wrong use. To operationalize these

desiderata, we assume that the amount of private information chosen by agents satisfies

a subjective envelope condition. We provide a further foundation for the subjective

envelope condition by grounding it in a natural learning process whose rest point

corresponds to its solution (Theorem 3). Throughout the process, agents choose a

target level of information acquisition, which is implemented with trembles. Agents

do not adjust their actions to the tremble, but record its realization together with the

realization of welfare; this data set indicates a direction for improvement for all targets

that fail the subjective envelope condition. The learning process also clarifies that

cursedness is the only cognitive limitation of our agents, but that it manifests itself in

both stages of the game: at the action stage, through the misuse implied by the cursed

updating rule; at the acquisition stage, through the conviction that the cursed updating

rule is the correct updating rule. The subjective envelope condition is a representation

of this dual nature of cursedness.

Having developed this theoretical tool, we can address our original question of

the effects of transparency in markets where agents under-appreciate the information

content of aggregative statistics. We now preview these results. The equilibrium

is characterized by a vector of loadings on the different sources of information. As

agents become more cursed, they substitute away from the aggregative signal and

increase the use of private information. This is because cursedness makes them

perceive the aggregative signal as less informative, so they need to rely more on their

remaining information sources. The subjective envelope condition implies that the

use of private information is a sufficient statistic for its acquisition; in particular, the

comparative statics of information acquisition and information use coincide. Moreover,

the acquisition channel creates a feedback loop, as the precision of private information

is a function of its perceived value: using and acquiring more information, cursed

agents disseminate it more effectively.

Cursedness and transparency have opposed impacts on the equilibrium loadings:

For any degree of cursedness, an increase in transparency makes agents substitute from

private information towards the aggregate signal but crowds out private information
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use and acquisition. The crowding out effect, however, never overturns the direct

positive effect and the aggregative signal becomes more informative about the state as

transparency increases. This monotonicity does not necessarily hold for other measures

of informational efficiency, such as the total precision of information available to agents

or the realized covariance between the aggregate action and the state. Along the latter

metric, cursedness increases the inflow of private information into the aggregative

signal but hinders its extraction, thereby reducing the efficiency of dissemination. With

information acquisition, these forces balance exactly. Contrary to the intuition that

inferential naivety hampers information aggregation and to the result with exogenous

private information in Eyster et al. (2019), the covariance between the aggregate action

and the state is independent of cursedness and transparency. While cursed agents

extract less from the aggregative signal, they also inject more private information into

it.

The tractability of our framework allows an exhaustive analysis of the welfare

consequences of cursedness and of information policies. In the rational equilibrium,

the use and acquisition of private information is inefficiently low because of an

information dissemination externality. If agents are cursed enough, however, they

may use (and acquire) at or even above the efficient level, though they simultaneously

misuse their signals. Indeed, welfare is nonmonotonic in the degree of cursedness.

Local to rationality, cursedness is bliss: An increase in cursedness causes a (first-order)

welfare gain from improved dissemination that dominates the (second-order) welfare

loss from privately suboptimal use. As cursedness grows further, agents are increasingly

unable to reap the gain from increased dissemination and significantly misuse their

information; eventually, cursedness reduces equilibrium welfare.

Lower information acquisition costs and more public information have an am-

biguous effect. While both increase welfare in the rational benchmark for our payoff
specification (Bayona, 2018; Colombo et al., 2014), they can reduce welfare with cursed

agents: They cause agents to substitute away from the aggregative signal and towards

fundamental information (private or public, resp.), exacerbating suboptimal informa-

tion use when agents are cursed. We show that this effect can dominate the direct

effect of cheaper and more precise information, causing the paradoxical comparative

statics. More transparency, by contrast, unambiguously improves the dissemination of

information and does not exacerbate cursed agents’ misuse. Hence, transparency is the

only policy instrument that increases welfare across the whole parameter space – our

second blessing. Somewhat paradoxically, therefore, only increasing the precision of the

very source of information that cursed agents underestimate makes them systematically

better off.

Although their welfare increases with transparency, their inability to correctly

process all available information implies that cursed agents fail to reap its full benefits.
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A natural question that arises is how an agent who is able to extract all the information

from the environment—such as proverbial smart money in a financial market— would

behave in an environment with cursed agents. Does he benefit from interacting with

less rational agents? How is he impacted by information policies? We address these

questions by studying the behavior of an atomistic rational agent facing equilibrium

play in a economy of cursed agents. Such a shrewd agent benefits from the large

amount of information disseminated by the cursed crowd, sometimes even abstaining

from acquiring private information. However, the shrewd agent is also harmed by their

misuse of information, as strategic complementarity forces him to follow the crowd and

distort his actions away from the fundamental. Compared to the rational environment,

low levels of cursedness are always beneficial for the shrewd agent (whose welfare can

even exceed first best). At high levels of cursedness the imitation effect dominates in

games with sufficiently strong strategic complements, making excessive cursedness

harmful even for the shrewd agent. The trade-off between information free riding

and miscoordination creates nontrivial comparative statics in the policy parameters.

A shrewd agent always profits from transparency but can be hurt by more public

information and lower information acquisition costs, even when they are beneficial for

the cursed crowd.

We conclude the introductory section by discussing the related literature. In Section

2 we present the model and establish existence and uniqueness of a cursed equilibrium,

taking the precision of private information as given. We introduce information

acquisition in Section 3: We define the notion of cursed expectations equilibrium

with information acquisition (Subsection 3.1) and discuss the behavioral principles

behind the notion, provide a learning foundation and compare it to alternative notions

(Subsection 3.2). We analyze the positive comparative statics of the model in Section 4.

We turn to welfare analysis in Section 5. We analyze the behavior and welfare of an

atomistic rational agent in Section 6. Section 7 concludes.

1.1 Related Literature

The impact of information policies, be they about the fundamentals of the economy

or about endogenous statistics, is at the heart of several research areas of applied

economics. Conducting our analysis of these questions within the workhorse class of

linear quadratic models, we connect to a rich theoretical and applied literature ranging

from business cycles (e.g. Hellwig and Veldkamp, 2009; Angeletos and La’O, 2010;

Angeletos and Lian, 2018; Baeriswyl et al., 2020) and demand function competition

(e.g. Vives, 1988, 2017), to political economy (e.g. Shadmehr et al., 2022). Angeletos

and Pavan (2007) characterize the inefficiencies of information use in a general linear-

quadratic Gaussian game. Ui and Yoshizawa (2015) classify such games according to
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the welfare properties of additional public and private information. Colombo et al.

(2014) study how private information acquisition affects the value of information. This

literature generally considers only signals of the fundamental. We analyze the value of

information in the presence of a signal of the average action, providing information of

endogenous precision about the state. Bayona (2018) considers an information structure

with such a signal in a setting akin to Angeletos and Pavan (2007), establishing that

this can lead to a dissemination inefficiency in the use of private information.5 We

focus on the role of agents’ limited understanding of aggregative information for the

social value of information and transparency. Our restriction of the payoff structure to

the simple beauty contest game allows us to isolate the novel sources of inefficiency in

our setting.

The results of Morris and Shin (2002), who show that more precise public infor-

mation can reduce welfare, have spurred extensive debate in the literature about

the desirability of public information in particular in the context of central bank

announcements.6 This discussion has often been couched in the terminology of “anti-

transparency” vs. “pro-transparency”. This label does not correspond to our usage,

as we reserve the word transparency for the precision of the public signal about the

aggregate action.7 Although we would argue that much of the information provided by

central banks is aggregative in nature and explore the impact of such transparency at

length, we also contribute to the original debate by demonstrating a novel channel based

on cursed inference which can render public fundamental information undesirable: It

distracts behavioral agents from other information sources whose information content

they underestimate. The issue of endogenous information dissemination has been

studied in the context of business cycles by Wong (2008) who show that increased

5Our rational benchmark nests a payoff restriction of Colombo et al. (2014), Bayona (2018), and
their so far unexplored meet and establishes that the dissemination inefficiency goes hand in hand with
inefficiently low information acquisition. Amador and Weill (2012) show that with such a dissemination
externality more public information can cause a decrease in welfare, even without interdependent payoffs.
Hebert and La’O (forthcoming) study a model with flexible information acquisition, studying which
cost functions lead to efficiency and nonfundamental volatility, and show that such an externality arises
whenever the ease of acquiring information through the aggregate action depends on its responsiveness
to the state, as is the case in our setting with additive noise.

6Svensson (2006), e.g., argues that the ratio of private to public precision required for the paradoxical
welfare result is unreasonably high and Woodford (2005) calls into question the assumptions on strategic
complementarity and welfare. The role of these assumptions is clarified and general conditions for such
welfare results are given in Angeletos and Pavan (2007) and Ui and Yoshizawa (2015). Kool et al. (2011)
show that public information can reduce information acquisition by market participants and thereby
increase financial market volatility. Amador and Weill (2010) show that through a signal jamming
channel public information can be welfare decreasing, as it reduces the informativeness of the price
system thereby increasing uncertainty about the monetary shock.

7In the financial economics literature, enhanced transparency is sometimes conceptualized as the
sharing of private signals between asymmetrically informed traders, e.g. Glosten and Milgrom (1985);
Chowdhry and Nanda (1991). Pagano and Röell (1996) define transparency as the extent to which market
makers can observe the size and direction of the current order flow, a notion that is much closer to that
we use in this paper. They find that greater transparency generates lower trading costs for uninformed
traders on average, although not necessarily for every size of trade.

7



transparency can be self-defeating as it reduces the information available to the central

bank itself to learn about the state of the economy, a mechanism that has also been

studied in Morris and Shin (2005) and Baeriswyl et al. (2020).8

Inference from a signal that aggregates information contained in individual best

responses is also at the center of the literature on information aggregation in financial

markets. Grossman and Stiglitz (1980) show that the equilibrium informativeness of

the price system is unresponsive to changes in transparency: an increase in noise leads

to more information acquisition which exactly offsets the direct effect. We establish a

similar invariance along a metric of informational efficiency in our setting, but show

that transparency has an impact on the total precision available to (rational) agents.

Updating biases have received considerable attention in the literature on behavioral

finance, see Barberis (2018) for recent survey. While this literature focuses on the time

series properties of prices and returns, we focus on the (social) value of information.

Underinference from the actions of others has been documented across many

settings in the lab and in the field, see Eyster (2019) for a survey of related evidence.

Cursed equilibrium was proposed by Eyster and Rabin (2005) as a model such un-

derinference. Eyster et al. (2019) apply a cursed analogue to rational expectations

equilibrium in a trading game and show that cursed behavior can explain excessive

trade volume. We adapt cursed equilibrium to a beauty contest game with endoge-

nous aggregative and private information and devise a novel notion of information

acquisition to study the impact of underinference on welfare and the social value of

information. Cohen and Li (2023) and Fong et al. (2023) extend cursed equilibrium

to extensive form games. A version of our game can be analyzed along the lines of

Cohen and Li (2023), which however imposes independence among the conjectured

actions of others which is a strong restriction in our continuum setting (see footnote 20

for a detailed discussion). An alternative equilibrium concept modeling a failure to

account for the information content of others’ action was proposed by Esponda (2008)

in the spirit of self-confirming equilibrium. While this approach bears similarity to

our learning foundation for the subjective envelope condition, the nature of learning

differs: In Esponda (2008) (and more generally in Berk-Nash equilibrium (Esponda

and Pouzo, 2016)) agents learn their structural beliefs to which they best-respond; our

learning foundation instead directly adjusts information acquisition in the spirit of

gradient ascent. We return to the implications of behavioral equilibrium in the beauty

contest game as well as the differences in the learning approach in Section 3.2.

Our approach contrasts with the literature on misspecified models, which focuses

on the asymptotic properties of posterior beliefs of misspecified Bayesian agents (see

8The role of information in macroeconomic settings is also studied through the lens of global games.
See Szkup and Trevino (2015) for an analysis of information acquisition in this setting, also showing that
the mechanics of the model are quite different from the beauty contest setting.
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e.g. Heidhues et al. (2018); Bohren and Hauser (2021); Frick et al. (2023)). We focus

on a specific updating bias and study active learning by non-Bayesian agents in a

single period. Bohren and Hauser (2023) study the relationship between misspecified

models and updating biases such as cursedness. We propose a notion of the value of

information for non-Bayesian agents which does not rely on such a quasi-Bayesian

representation but is instead founded on behavioral principles that are operationalized

by a learning process.

2 The Model with Exogenous Private Information

The game has two stages: First, agents choose how much private information to acquire.

Second, agents play a beauty contest game. We begin our description of the setting by

presenting the game with exogenous precision of private information in this section. We

then introduce information acquisition in Section 3.

2.1 Actions and Payoff

There is a unit interval of agents i ∈ [0,1], playing a simple beauty contest game. Their

payoff is given by

u(ai , ā,θ) = − (1− r) (ai −θ)2 − r (ai − ā)2 , (1)

where ai ∈ R is the action of player i, ā =
∫
i
ai di is the average action9 and θ ∈ R is

the state (or fundamental). We allow for both strategic complementarity (r > 0), and

substitutability (r < 0), and assume that complementarity is not too strong (r < 1) to

ensure the existence of a unique interior linear equilibrium and a planner solution.

The restriction to a simple beauty contest allows us to isolate the inefficiencies

generated by the features specific to our information environment: the dissemination

externality of aggregative information, and cursed updating from that source. Indeed,

in our simple beauty contest game both information use and acquisition are efficient for

the rational benchmark without aggregative information (Angeletos and Pavan, 2007;

Colombo et al., 2014).10

9As is customary, we adopt a law of large numbers for the private signals as a convention, see Vives
(2008, 10.3.1) for a discussion. One formal operationalization of this is to view the integrals in the sense
of Pettis, see Uhlig (1996).

10This contrasts with the specification of the beauty contest in Morris and Shin (2002) who consider
the utility function u(ai , ā,θ) = − (1− r) (ai −θ)2 − r(ai − aj )2, which results in a dependence of individual
utility on the variance of others’ actions.
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2.2 Information, Best Response and Inference

The following information structure is common knowledge. The state θ is drawn from

the prior distributionN (0,τ−1
θ

).11 Agents receive three signals: a private fundamental
signal si = θ + zsi ∼ N (θ,τ−1

s ), i.i.d. across agents with a precision τs that we will

endogenize in Section 3; a public fundamental signal y = θ + zy ∼ N (θ,τ−1
y ) about the

state; and a public aggregative signal p = ā+zp ∼N (ā,τ−1
p ), where τp denotes the precision

of the aggregative signal as a signal of a, is our transparency parameter.12

Note that the timing of information implies that our game is not a Bayesian game,

as agents actions are allowed to react to the realization of p which in turn is a function

of their actions. We instead think of our setup in the spirit of rational expectations

equilibrium. There are two foundations for this approach. First, we can think of the

model as a reduced form of a dynamic game in which the state is fixed or evolves only

slowly. Second and more formally, we can consider agents who submit action schedules

ai : p 7→ a ∈ R (see Vives, 2014). This formulation is equivalent to our equilibrium

notion for rational and (partially) cursed agents and it depends on the application

which seems more natural. In the context of (financial) markets, it is common to

consider models of demand/supply function competition, while acting based on a

realized signal seems more natural for individual consumers or workers reacting to the

inflation rate.

The optimal action is given by

ai(si , y,p) = argmax
ai

Ei [u(ai , ā,θ)] (2)

where Ei is the expectation operator with respect to agent i’s information, including

his updating biases. As u is quadratic, (2) takes the linear best response form

ai = (1− r)Ei (θ) + rEi (a) (3)

Throughout, we focus on linear equilibria. That is, following the structure of the best

response and posterior beliefs, we conjecture that the optimal action rule is a linear

11A prior mean of zero is merely a convenient normalization. We insist on a proper prior as we
analyze the comparative statics of ex-ante welfare.

12The situation we have in mind is a central authority having exclusive access to the actions chosen by
each player inside a market. With those data, it can perform statistical analysis (which is noisy because
of missing data, imperfect reporting, etc.) and produce a report which will then be observed without
further noise by everyone. Interpreted as the accuracy of the process turning actions into a report,
transparency becomes a natural parameter for positive comparative statics as well as policy evaluation.
More generally, τp represents the access agents have to information about others when they make their
decisions and the degree to which they can condition their actions on an aggregate outcome, e.g. the
price when submitting orders in a financial market.
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combination of the signals

ai = α0 +α1si +α2y +α3p (4)

for some vector of loadings α. Then, we can write the true aggregate action as

ā =
∫ 1

0
ai di = δ0 + δ1θ + δ2y + δ3p (5)

with aggregate weights δ. Inspection of equation (5) makes clear that the aggregative

signal p = ā+zp provides information of endogenous precision about θ. Indeed, under the

assumption that δ1 , 0, δ3 , 1 (and conditionally on y), p is informationally equivalent

to

p̂ =
1− δ3

δ1

[
p − δ2

1− δ3
y

]
− δ0

δ1
= θ +

1
δ1

zp ∼N
θ, 1

δ2
1τp

 (6)

The Bayesian posterior on θ can be written based on the three conditionally indepen-

dent sources (s,y, p̂) which determines the posterior on a through (5). The precision of

the aggregative signal about the state, δ2
1τp, depends both on transparency τp and on

the equilibrium loading δ1.

2.3 Cursed Equilibrium: Definition

As a model of the failure to update from observing the action of others, we adapt

cursed equilibrium (Eyster and Rabin, 2005). In this solution concept, agents are

characterized by a parameter χ, the degree of cursedness, that ranges from χ = 0 for

rational benchmark to χ = 1 denoting fully cursed behavior. A fully cursed agent fails

to perceive any correlation between other agents’ actions and their private information.

Instead, he thinks that others play according to the marginal distribution of their actions

conditional on his private information. To see what this implies for the interpretation

of p, consider the action of agent j according to the beliefs of agent i with information

Ii . From 4, we have

aj = E[aj |Ii ] +α1

(
sj −E[θ |Ii ]

)
=α0 +α1E[θ |Ii ] +α2y +α3p+α1

(
sj −E[θ |Ii ]

)
(7)

where the αk are the weights used in the linear strategy of player j. The action of another

player can be decomposed in the part that is predictable based on the information

of agent i and the prediction error. A fully cursed agent treats the prediction error

sj −E[θ |Ii ] as independent of the state. Therefore, in a linear symmetric equilibrium,

fully cursed agents perceive the aggregate action as

ā = δ0 + δ1 (E[θ|Ii] + z̃) + δ2y + δ3p (8)
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where z̃ is a subjective noise term independent of the true state. Consequently the

aggregate action is independent of θ conditional on his information. Therefore, p does

not provide additional information about the state; a fully cursed agent ignores p (and,

equivalently, p̂) when forming his posterior.13

Partially cursed agents are characterized by an interior level of cursedness χ ∈ (0,1).

They form expectations as a convex combination of rational and fully cursed ones,

namely

Eχ[θ |Ii ] = χ
τyy + τssi
τθ + τy + τs

+ (1−χ)
τyy + τssi + δ2

1τpp̂

τθ + τy + τs + δ2
1τp

(9)

Eχ[ā|si , y,p] = δ0 + δ1

χ τyy + τssi
τθ + τy + τs

+ (1−χ)
τyy + τssi + δ2

1τpp̂

τθ + τy + τs + δ2
1τp

+ δ2y + δ3p (10)

Note that even cursed agents do all the updating about the state θ and then turn

it into a belief about a through the equilibrium condition (5): they have “equilibrium

awareness”. Where they go wrong is in the under-appreciation of the correlation

between their private information and others’ actions.

When we interpret our game as one of submitting action schedules as a function of

the aggregative signal, cursedness also captures agents inability to engage in conditional

or hypothetical thinking (Esponda and Vespa, 2014; Ngangoué and Weizsäcker, 2021).

In light of this evidence, we interpret the degree of cursedness not as an individual

characteristic but as codetermined by the market structure.

Cursed equilibrium is defined as a solution concept for Bayesian games. Recall that

due to the presence of the aggregative signal, however, the model described so far is

not a Bayesian game, strictly speaking. We therefore adapt cursed equilibrium in a

fashion similar to a linear rational expectations equilibrium:14

Definition 1. A vector of loadings (α,δ) constitutes a χ-cursed expectations equilibrium
if α satisfies the best response condition (3)-(4) with expectations formed according to

(9)-(10) given δ; and the aggregate action is consistent with individual actions, δ = α.

As is customary in the literature, we restrict attention to symmetric linear equilibria.

Consequently, our claims to existence and uniqueness of equilibria refer to this class

throughout.15

13In contrast to other updating biases – e.g. overconfidence or dismissiveness –, cursed agents
correctly perceive the relative precision of p as a signal about the aggregate action. They fail, however, to
relate it to the private information of others and to extract information about the state.

14See also Eyster et al. (2019) for a similar approach in a trading game with finitely many agents.
15Morris and Shin (2002) show that the only equilibrium is linear in a setting without aggregative

information.
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2.4 Cursed Equilibrium: Characterization

This section studies the equilibrium for fixed τs. An equilibrium is computed by

matching coefficients in the best-response function (3).

Theorem 1. There exists a unique χ-cursed equilibrium for any τs. The intercept is δ0 = 0,
the loading on private information δ1 ∈ [0,1) is the unique real solution to

δ1 = [1− r + rδ1]
τs

τθ + τy + τs + δ2
1τp

1 +χ
δ2

1τp

τθ + τy + τs

 , (11)

and the loadings on the public sources of information are given by

δ2 =
δ2

1τy

(1− r)τs − δ1

(
τθ + τy

) , δ3 = 1− δ1 (1− r)τs
(1− r)τs − δ1

(
τθ + τy

) (12)

In equation (11) the RHS has a natural interpretation as it denotes the optimal

loading on private information given aggregate δ1. First, the private signal is valuable

for predicting the state, with best-response weight 1− r, as well as the aggregate action

to the degree that it reflects the state (conditional on public signals), with best-response

weight rδ1. Second, the relative precision of the private signal is the usual Bayesian

weight τs

τθ+τy+τs+δ
2
1τp

. Hence, the private signal is ignored (δ1 = 0) only if it is pure

noise (τs = 0). This term also contains the information spillover effect: the more other

agents use their private information (higher δ1), the more can be learned from the

aggregative signal, which reduces the weight on the private signal. Third, the final

term adjusts this weight as cursed agents fail to understand that the aggregative signal

is informative about the state and therefore perceives the private signal to be relatively
more informative. In the extreme case of χ = 1, the agent ignores the aggregative signal

and the two final factors simplify to τs
τθ+τy+τs

, the relative precision of the private signal

as if there were no aggregative information. Therefore, transparency is without effect

in the fully cursed equilibrium while, symmetrically, cursedness has an impact on

the equilibrium only if there is an informative aggregative signal (τp > 0). Cursedness

manifests itself as a pure updating bias and only distorts inference from the aggregative

signal. Absent such signal, cursed agents act just like a rational agent as they correctly

interpret all fundamental sources of information.

At first sight, that cursedness matters only in the presence of an aggregative signal

may be surprising when compared with the implications of cursed equilibrium in a

common value auction. In the auction, there is no aggregative information available

to the agent before he chooses his action but still cursedness impacts his choice. This,

however, is a natural consequence of the payoff structure: In an auction, the agent

considers his payoff conditional on winning the auction, which is exactly such an
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aggregative conditioning event. In our model, the payoffs themselves weigh all states

equally ex-ante and there is no such “implicit conditioning” embedded in them.

The fully rational case is easily obtained from Theorem 1 but doesn’t lead to a simple

and immediately interpretable representation. It was analyzed in depth in Bayona

(2018). The fully cursed case, by contrast, results in a considerable simplification.

Corollary (Fully Cursed Equilibrium δFC). The equilibrium with χ = 1 has

δFC
1 =

(1− r)τs
τθ + τy + (1− r)τs

, δFC
2 =

τy

τθ + τy + (1− r)τs
, δFC

3 = 0 (13)

The role of strategic substitutability and complementarity is directly apparent in

the fully cursed equilibrium. If there are no such strategic interactions, cursed agents

weigh the two signals at their (mental) disposal according to their precision. Strategic

complementarity shifts weight away from the private signal si and towards the public

signal, y, while substitutability has the opposite effect.

The fact that the fully cursed equilibrium puts no weight on the aggregative signal

deserves a clarification. This does not follow from cursedness alone. Indeed, even

for fully cursed agents, the aggregative signal, p, remains a valid source of the public

fundamental signal, y, and of public noise, zp. As those are relevant for coordination

purposes, agents want to incorporate p into their best response as long as others do so.

However, as they can directly condition on the public signal instead which provides

information about the state in addition to correlated noise, they always want to put

a lower weight on p than others. Hence, we only obtain δFC
3 = 0 as the consequence

of an unraveling argument set in motion by the interplay between equilibrium and

cursedness.16

3 Information Acquisition

In the first stage, agents simultaneously choose the precision of their private signal,

τs, at cost cτs. To study this decision, it is necessary to derive a representation for

the agents’ perceived ex-ante welfare as a function of τs. If our agents were Bayesian

the natural modeling choice for this value would be to take the subjective ex-ante

expectation of welfare according to the prior distribution. For cursed agents, however,

deriving ex-ante welfare presents a modeling challenge because interim beliefs, despite

being well-definite, are not derived from a prior joint distribution.

In this section we propose a notion, cursed expectations equilibrium with information
acquisition, to overcome this challenge. In this notion, agents evaluate the impact of

16Vives (2017) considers limited inference, equivalent to fully cursed behavior, in a Linear-Quadratic-
Normal model of competition in supply schedules with unknown costs. Fully cursed traders in his
setting do not ignore the noisy signal of fundamentals, the price, as it is directly payoff relevant.
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private information on their welfare according to the true joint distribution of state and

actions, where their cursed use of information is held fixed in the spirit of the envelope

theorem. We first give a formal definition and show that such an equilibrium always

exists in Subsection 3.1. In Subsection 3.2 we then discuss the notion, grounding it in

three behavioral principles, provide a learning foundation based on those principles,

and relate its implicit assumptions to those made by alternative models of information

acquisition with incorrect use, including a quasi-Bayesian approach.

3.1 χ-Cursed Expectations Equilibrium with Information Acquisition

The true ex-ante welfare of an agent who acquires precision τs, plays according to α,

and faces an equilibrium δ is given by

W(α,δ,τs) =E
[
− (1− r) (ai −θ)2 − r (ai − ā)2

]
− cτs (14)

=−
α2

1

τs
− (1− r)

[α2 + δ2α3
1

1− δ3

]2 1
τy

+[
α3

1
1− δ3

]2 1
τp

+
(
α1 +α2 +α3

1
1− δ3

{δ1 + δ2} − 1
)2 1
τθ

− cτs (15)

The optimal τs taking as given and holding fixed both the equilibrium loadings as well

continuation play therefore solves

∂
∂τs

W(α,δ,τs) = 0. (16)

Solving this equation, we arrive at the first-order subjective envelope condition

α2
1

τ2
s

= c (SE)

According to this condition, the weight on private information in the best response, α1,

is a sufficient statistic for the marginal value of private information, independently of

the level of cursedness. Cursedness only affects the calculus through α1(δ1) and the

equilibrium.

For a rational agent, this condition simply follows from the envelope theorem.17

In the cursed case, α does not maximize objective ex-ante welfare and the condition

doesn’t follow from an envelope theorem. Instead, we include the condition as part

of our equilibrium notion to operationalize the behavioral assumption that agents

17Indeed, the privately optimal level of private information solves a condition of this form both in
our setting and in the case without an aggregative signal but a more general payoff structure studied
in Colombo et al. (2014). As in their case, the sufficiency of the first-order condition follows from the
concavity of the problem.
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(erroneously) deem their information use to be optimal, which we detail in the following

subsection.

Definition 2. A tuple (α,δ,τs) constitutes a χ-cursed expectations equilibrium with
information acquisition if (α,δ) constitute a χ-cursed expectations equilibrium given τs
and (α1,τs) satisfy the subjective envelope condition (SE).

The subjective envelope condition and equilibrium consistency give a linear depen-

dence between τs and δ1

τs =
δ1√
c

(17)

Taking account of endogenous information acquisition in the equilibrium condition

(11), we arrive at

δ1 = [1− r + rδ1]
δ1

δ1 +
√
c
(
τθ + τy + δ2

1τp

) 1 +χ

√
cδ2

1τp

δ1 +
√
c
(
τθ + τy

) (18)

Contrary to the game with exogenous τs which always has an interior solution, the

existence of an interior equilibrium with information acquisition requires a parametric

restriction. This is because we need to ensure not only that agents want to use their

private information, but that they are also willing to acquire it. More precisely, we

require that the best-response weight on private information (RHS) exceeds δ1 local to

δ1 = 0. This is the case if
√
c <

1− r
τθ + τy

(19)

or, equivalently, if the costs of acquiring information are sufficiently small compared to

the benefits of private information in the trivial candidate equilibrium. These benefits

depend on the precision of prior and public information τθ + τy and the relative value

of public versus private information, as summarized by 1− r.18 If this condition is not

met, we are stuck in a corner solution with zero information acquisition (and therefore

use). Note that (18) always has a trivial solution δ1 = 0, which describes the equilibrium

in that case. We now summarize this discussion.

Theorem 2. There exists a unique χ-cursed equilibrium with information acquisition. The
acquisition of private information is proportional to its use according to (17).

If
√
c < (1−r)

τy+τθ
, the loading on private information δ1 ∈ (0,1) is the unique interior real

solution to (18). Otherwise, we have a corner equilibrium with δ1 = τs = 0 and only public
fundamental information is used (δ2 =

τy

τθ+τy
).

18If we instead assume convex costs with an Inada-type condition at zero, the analogue of (19) is
always satisfied and we have an interior solution.
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3.2 Foundations of Cursed Information Acquisition

Before analyzing cursed equilibrium with information acquisition, we discuss in more

detail the behavioral assumptions that lead to this notion, ground it in a learning

foundation, and contrast it with possible alternatives. Recall that to model information

acquisition in a setting with incorrect use, one first has to address how agents perceive

their information environment and their actions from an ex-ante perspective. Our

approach, which leads to Definition 2, is based on three principles. First, cursedness is

the result of a systematic tendency and not of an unexpected mistake: agents correctly

anticipate their information use, but they do not consider it erroneous. Therefore,

agents should believe that the cursed use of information is (individually) optimal and

should not try to fix their bias via information acquisition. Second, when evaluating

the returns of private information, an agent should hold his coplayers’ acquisition and

use fixed at their equilibrium values: there can be no “magical thinking”. Third, we

require that—at the information acquisition stage—agents conceptualize their true

ex-ante welfare. This is in line with a positive interpretation of cursed equilibrium as a

representation of behavior rather than as a normatively valid cognitive model. In this

interpretation, the role of cursed interim beliefs is only as a foundation of the use of

information. Agents do not attempt to forecast (misspecified) interim expectations to

guide information acquisition, which are instead more naturally driven by experienced

welfare.19

Definition 2 satisfies all the principles as agents take the precision of public

information as well as the equilibrium loadings as given (second principle), have

correct beliefs about their realized equilibrium welfare (third principle), however they

do not attempt to use information acquisition to fix their bias (first principle). In

χ-cursed expectations equilibrium with information acquisition, agents depart from

rationality because they follow the cursed updating rule and erroneously deem it

optimal. The two mistakes go hand in hand because they originate from the same

source — cursedness — and only information acquisition gives the second mistake a

stage to manifest itself.

Note that our agents are neither sophisticated nor naive in the traditional sense.

They are not sophisticated as they do not anticipate making mistakes or distort their

information acquisition to align with the rational updating rule. Conversely, they are

not naive as they are fully aware of updating in a cursed fashion. Both these notion are

unsuitable for analyzing cursed agents in this setting as cursedness affects them at all

19Indeed, a cursed agent forecasting his distribution over interim beliefs is problematic conceptually,
as they would predict that they update their beliefs over the actions of others based on information about
the state but understand that they will refuse to update in the opposite way. Furthermore, using interim
welfare to guide information acquisition implies magical thinking contra the second desideratum, see
later in this section and Appendix C for further discussion.
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stages of the game. It is not realistic to assume that they are surprised by their actions

nor that they disavow their future updating from an ex-ante perspective.

Learning Foundation

We now provide a learning foundation that operationalizes the above-described prin-

ciples and show how they translate directly into the subjective envelope condition

(SE). For concreteness, we detail one specific process (whose formal construction is

relegated to Appendix A) that allows the agents to estimate the gains from information

and update their level of acquisition accordingly. Clearly, many of its specific features

are not essential for our results and are assumed for brevity and simplicity.

Consider an agent who has to choose his level of information acquisition and action

for an infinite number of periods. Every period, the state and all signals are drawn

anew but the parameters of the game and equilibrium δ are fixed. The agent updates

his beliefs and acts in a cursed manner throughout, but has to learn the value of

information. He does so based on the insights gained from implementation mistakes:

in each period, the agent chooses a target level of precision τ̄s, but the realized precision

is τs = τ̄s + σϵ, where σ > 0 scales a well-behaved zero-mean (and serially independent)

implementation error ϵ. We will be particularly interested in the case of small σ.

Each period, the agent uses his signal based on the action rule associated with the
target precision τ̄s, not the realized precision τs. This can be justified either by the timing

of the decision or by costs of reoptimizing this rule: since the agent deems it optimal

given the target τ̄s, reoptimization gains are subjectively second order. At the end of

each period, the agent records his realized welfare and the implementation error. With

this data set at hands, the agent can infer whether positive implementation errors are

systematically associated with higher or lower realized welfare and thereby estimate

the slope of welfare at a target information acquisition level τ̄s. If a sufficiently large

sample indicates a clear direction for improvement, the agent chooses another target

level; otherwise, he sticks with his choice.

This learning process, formally represented by equation (44), has two key features.

First, the agent bases his decision on realized welfare. Second, by not adjusting his

action to the implementation error, he gets to estimate the partial derivative of the

welfare function (14). For a rational agent, who uses his information correctly, fixing

the action rule is innocuous by the envelope theorem. In the cursed case, instead, it is

the manifestation of an error that we deem intrinsic to cursedness, namely that at the

acquisition stage individuals operate under the (erroneous) assumption that their use of

information will be correct. These two features are a direct manifestation of the first and

third behavioral principle discussed above (the second is satisfied automatically as the

agent individually learns in fixed environment); they also constitute the essential
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properties of the learning process that lead the agent to the subjective envelope

condition.

Consider now the long-run behavior of the learning process. Call a target level

of precision a rest point if, conditional on reaching this level in some period, the

agent remains there forever with positive probability. If a level precision satisfies the

subjective envelope condition (SE), it is always a rest point of our learning process (44).

Conversely, any level of precision that violates the subjective envelope condition will

not be a rest point if the implementation error is small enough. Formally,

Theorem 3. The learning process (44) satisfies

{τ : (SE) holds} =
⋂
σ>0

{τ : τ is a rest point of (44) for σ}

Theorem 3 establishes our learning foundation, guiding our intuition for the types

of settings wherein the subjective envelope condition is most natural. In light of

Theorem 3, we can interpret condition (SE) as representing the behavior of agents

who actively search for information while using their natural faculties to process it.

This approach appears particularly compelling for modeling, e.g., household decisions

or retail investors (in financial markets) who instinctively react to information but

consciously decide how much attention to pay to the relevant news.

Theorem 3 also clarifies that following the subjective envelope condition does

not require high levels of sophistication. Instead, it results from a simple learning

process that requires minimal cognitive resources: Agents does not compute subjective

expected values and are also reluctant to reoptimize their action rule.

Alternative Models of Information Acquisition

We now discuss alternatives to the subjective envelope condition for endogenizing τs.

Quasi-Bayesian (Interim): One approach to modeling information acquisition by

agents suffering from an updating bias is to consider them as misspecified Bayesians,

the bias being the result of an incorrect prior belief about the joint distribution of

states and signals (Bohren and Hauser, 2023). To arrive at this representation, we

assume that cursed individuals hold correct beliefs over the distribution of signals

and the marginal distribution of the state. A χ-cursed agent then corresponds to a

Bayesian who believes that with probability 1−χ the signals will be drawn from the

true distribution while with probability χ the signal will be drawn from a distribution

that renders p uninformative about the state conditional on s and y.20 Note that this

20This conditioning is essential. Cursedness only posits that the opponents’ actions are independent
of the state conditional on the agent’s information. To arrive at such an interim belief with the quasi-
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ex-ante quasi-Bayesian notion coincides with taking the expectation of interim welfare

with respect to the correct prior distribution over signals.

We do not follow this approach for three reasons. First and perhaps most problemat-

ically, in order to obtain a signal that is independent of the state conditionally on their

private and public fundamental signal, the perceived correlation of the public signal p

with the state θ at the ex-ante stage depends on an agent’s individually chosen τs. In other

words, the agent behaves as if his personal information acquisition affects the precision

of public information obtained by all agents, which is a sort of magical thinking we

don’t commonly associate with cursedness. Second, at a practical level, the resulting

mixture leads the analysis outside the family of conjugate (normal) priors selected

throughout the literature for the analysis of the model, which becomes significantly

less tractable as a result.21 Finally, at a conceptual level, we think of the partially

cursed posterior as a useful tool to model the behavior of agents who only partially

account for the information contained in aggregate statistics, but not as an accurate

representation of the mental model and subjective welfare of agents. Indeed, the above

mental model does not appear very plausible. In conclusion, while cursedness is a

highly compelling model of partial updating from aggregative signals ex-interim at

the action stage, extending it to a subjectively Bayesian ex-ante representation requires

committing to costly compromises, such as the conceptually unappealing mixture

distribution with magical thinking.

In Appendix C, we formally develop this quasi-Bayesian approach and provide

a numerical solution to demonstrate that the qualitative properties of the χ-cursed

expectation equilibrium with information acquisition we present in the following

sections remain valid when agents choose information acquisition based on this notions.

Bayesian approach, this needs to be reflected in the cursed prior, according to which the signal p is
indeed informative about the state, just such in a way that conditioning on si , y renders it uninformative.
Furthermore, the actions of others keep their correlation. This is a key difference compared to sequential
cursed equilibrium (Cohen and Li, 2023) which posits that agents do not expect that their opponents
actions are correlated with each other and with signals the agent will receive in the future. In our setting,
an analogue to SCE would imply that fully cursed agents view the aggregate action as deterministic:
ex-ante deterministically zero, ex-interim deterministically at its expectation. This seems implausible in
our setting.

21One way to address this issue is to instead consider a misspecified Bayesian with a normally
distributed prior whose posterior replicates the behavior of the (partially) cursed agent. By assuming
signals are conditionally independent and preserving the (implicit) weight on the prior mean, we arrive
at the perceived precisions

(̂
τθ , τ̂s, τ̂y , τ̂p

)
=

τθ ,τs,τy , (1−χ)τp
τθ + τy + τs

τθ + τy + τs +χδ2
1τp

 .
Aside from being quite ad hoc, this approach suffers from conceptual drawbacks. First, the perceived
precision of the exogenous signal about the aggregate action now depends on the endogenous equilibrium
weight δ1. Second, and more importantly, the perceived precision of the public signal p depends on an
agent’s individually chosen τs, which violates our second principle.
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Sophisticated: Alternatively, one could consider sophisticated agents who choose τs
to maximize true ex-ante welfare (14), that is, choose maxτs W(α (τs,δ) ,δ,τs) letting the

action rule α (τs,δ) change in response to information acquisition. This corresponds to

a rational agent who correctly predicts his cursed actions but desires to correct them by

distorting the precision of private information available to his future biased self. This

level of sophistication, together with an inability to use the aggregative signal correctly

ex-interim, seems implausible to us. Our notion instead does not presume this high

level of meta-rationality while preserving a subjective world view that is consistent

with the atomistic position of the agent within the game.

Behavioral Equilibrium: A further alternative would be to adapt behavioral equilib-

rium (Esponda, 2008).22 In this equilibrium concept, interim beliefs are required to be

consistent with the marginal distribution of observables, which have to be specified

by the analyst. Assuming that agents only observe what is necessary to implement

their conditional strategy, namely p, the fully cursed (and many other, including highly

unreasonable) beliefs and action profiles are a naive behavioral equilibrium. In the

learning foundation, we instead assume that agents can observe their realized payoffs.

Assuming that agents observe the ingredients of this payoff, namely θ and ā, no naive

behavioral equilibrium exists. This is because the marginal distributions need to

coincide with the truth, which—under the independence condition—would imply

inaccurate beliefs about the distribution of utility, which are however ruled out. The

sophisticated behavioral equilibrium, instead, coincides with the rational case. The

intermediate case in which agents only observe their realized utility requires finding

subjective marginal distributions over θ, ā which induce the true distribution over

realized welfare. There is no immediate way to ascertain whether such distributions

exist.

Beyond these hurdles to applying behavioral equilibrium in our beauty contest

setting, the spirit of its learning motivation differs markedly from that of our learning

foundation. In a learning interpretation of behavioral equilibrium (and in Berk-Nash

equilibrium more generally (Esponda and Pouzo, 2016)), individuals learn an interim

belief over the structural parameters of their optimization problem (the distribution

of states and the actions of others) and calculate their best-response. Our approach

distinguishes between the use and acquisition of information. For former, we do not

follow an approach motivated by learning interim beliefs (a very high dimensional

object) but instead embrace cursed equilibrium as a model of instinctive information

use of biased individuals. For the latter we do propose a notion which can be grounded

22Note that behavioral equilibrium is defined for static Bayesian games and not directly applicable
in our setting. We consider an version in which agents observe si and y and submit action schedules
conditioning on p. Still, we interpret ā as the action of others and impose the independence condition of
naive behavioral equilibrium with respect to this statistic.
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in a learning process. This learning process, however, operates differently from the

learning motivation behind behavioral equilibrium: Our agents disregard the structure

of the problem and instead directly assess whether their current level of precision is

optimal by estimating the derivative of their welfare, an approach akin to gradient

ascent.

4 Positive Comparative Statics

In this Section, we study the comparative statics of the model. We begin by considering

the impact of cursedness and transparency on the equilibrium loadings and information

acquisition.

Proposition 1. The equilibrium loadings and information acquisition respond to cursedness
χ as follows

dδ1

dχ
≥ 0,

dδ2

dχ
≥ 0,

dδ3

dχ
≤ 0,

dτs
dχ
≥ 0 (20)

Moreover, d
dχ

δ2
δ1

= d
dχ

1−δ3
δ1

= 0.

The comparative statics w.r.t. transparency τp have the opposite sign, namely

dδ1

dτp
≤ 0,

dδ2

dτp
≤ 0,

dδ3

dτp
≥ 0,

dτs
dτp
≤ 0 (21)

Moreover, the precision of the aggregative signal increases in transparency, i.e. d
dτp
δ2

1τp ≥ 0.

The above inequalities are strict if (19) holds and τp , 0 or χ , 1, respectively.

If agents are more cursed, they load more on the fundamental sources of information,

either private or public, and less on the aggregative signal. Because cursedness makes

agents underestimate the information content of the aggregative signal, cursed agents

substitute away from this source of information and towards fundamental information.

Notice that this reasoning is based only on how individuals use the signals they observe,

and indeed all the comparative statics (20) hold if the level of private information

τs were exogenous (see Appendix E.1 for this and other derivations in the fixed-τs
environment). By the subjective envelope condition, τs grows proportionately to its

use δ1 and amplifies this effect: adjusting upward the precision of private information

makes agents want to load even more on this source of information, reinforcing the

comparative statics. The stability of the relative loadings δ2
δ1
, 1−δ3
δ1

, is instead driven

by information acquisition; if τs were exogenous, then cursedness would shift the

relative loadings on fundamental information in favor of the public signal ( d
dχ

δ1
δ2
≤ 0).

This is because the public signal is a closer substitute to the aggregative one as both
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have a public noise component. Increased information acquisition in response to

higher cursedness counteracts this effect by making the private signal (relatively) more

appealing.

The mirror structure of the comparative statics of χ and τp in Proposition 1 formal-

izes the intuition that cursedness and transparency are complementary antagonists:

reducing the amount of information contained in the source whose interpretation is

directly affected by the processing bias has (qualitatively) the same impact as increasing

the processing bias itself. In particular, higher transparency decreases the loading

on private information: As the private information of others is disseminated more

effectively, each agent relies less on his own.23 Nevertheless, this crowding-out effect

never dominates and the precision of the aggregative signal about the fundamental

is always increasing in transparency (see Figure 1). We now study how the use and

acquisition of private information (δ1 and τs) vary with the information and strategic

environment.

Proposition 2. The loading on private information responds as follows

dδ1

dc
≤ 0,

dδ1

dτy
≤ 0,

dδ1

dr
≤ 0 (22)

The comparative statics of τs have the same sign as the comparative statics of δ1, namely

dτs
dc
≤ 0,

dτs
dτy
≤ 0,

dτs
dr
≤ 0 (23)

The above inequalities are strict if (19) holds.

As costs increase, agents will acquire less precise private information, which pushes

towards a decrease in its use. As everybody does so, however, the aggregative signal

becomes less informative, leading to an increased reliance on private information as

well as a boost in its value. This counteracting force never dominates and reliance

on (as well as acquisition of) private information always decreases with cost. That δ1

decreases in τy follows because when the public fundamental signal becomes more

precise agents shift away from the private signal. Finally, as complementarities become

stronger the public signals become more attractive relative to the private signal as they

allow for better coordination with the aggregate action. Consequently, an increase in r

decreases the weight on the private signal.24

23Again, this result holds irrespective of whether τs is allowed to adjust in response of higher
transparency.

24By the subjective envelope condition (17) δ1 is a sufficient statistic for the gains from acquiring
information, therefore the comparative statics on τs for all parameters but c follow directly from those of
δ1.
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The other equilibrium loadings, δ2 and δ3, have an immediate interpretation as the

weight given by the agent to the public fundamental and aggregative signal, respectively.

However, in terms of information, they do not fully reflect how much agents load on

the different sources. For example, agents load on the public signal both directly and

indirectly, through the aggregative signal. For this reason, the comparative statics

of δ2 and δ3 in τs,τy , r (which are all ambiguous) can be misleading. We get a clear

understanding of how agents use public sources of information only by analyzing the

fundamental representation

ai =
δ1 + δ2

1− δ3︸  ︷︷  ︸
β

θ + δ1zsi +
δ2

1− δ3︸︷︷︸
γ2

zy +
δ3

1− δ3︸︷︷︸
γ3

zp (24)

The term β represents the regression coefficient of the individual action (and, a fortiori,

the aggregate action) on the state and hence we interpret it as an informational

efficiency metric. Notice that β is determined by the interaction of use, acquisition, and

equilibrium dissemination of private information. The weights γ2,γ3 on the public

shocks differ from the direct loadings on the signals by a factor of 1
1−δ3

: as we argued,
the aggregative signal contains and amplifies both public shocks. Taking account of

this amplification, we obtain the following comparative statics
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Figure 1: Crowd-out vs Reliance on Private Information: The effect of τp on δ1 and δ2
1τP for different

levels of cursedness.

Proposition 3. The loadings in the fundamental representation (24) are

β = 1−
√
cτθ

1− r
, γ2 =

τy
√
c

1− r
, γ3 =

1
δ1

(
1−

τθ + τy
1− r

√
c
)
− 1. (25)

The loading on the aggregative signal, γ3, is decreasing in cursedness and increasing in
transparency. It has ambiguous comparative statics in c, r and τy .

Let’s focus first on γ3, the fundamental loading on the aggregative signal p. Cursed-

ness and transparency have an unambiguous effect as they impact γ3 exclusively
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through δ1: when agents perceive the aggregative signal to be less informative, either

because they are more cursed or because the environment is less transparent, they

will use it less. The comparative statics of γ3 in τy , r, c are instead ambiguous due to a

tension between the direct effect and the effect that goes through δ1 (see Proposition 2).

Consider, for example, how γ3 responds to an increase in c. On the one hand, it reduces

information acquisition and makes agents substitute towards the aggregative signal.

On the other hand, the reduction in information acquisition and reliance on the private

signal removes the very basis of information in p, making it less attractive. Either

effect can dominate depending on the rest of the information environment. A similar

intuition is the basis for the ambiguous comparative statics in the other parameters: the

precision of the aggregative signal changes both in level and relative to the precision of

other signals.

Notice from (25) that the state-action regression coefficient β is decreasing in c,τy
and r, but is independent of either cursedness or transparency. That β is invariant in

χ and τp has three consequences of economic relevance: First, we cannot identify the

degree of cursedness in a market by just looking at the responsiveness of individual

actions to fundamentals. Second, transparency is an ineffective tool at increasing

the informational efficiency along the β metric as its effect is fully offset by lower

acquisition and use of private information. This result closely resembles the invariance

property with respect to the dispersion of net supply from noise traders in Grossman

and Stiglitz (1980). Third, as opposed to the setting without information acquisition

and the findings in Eyster et al. (2019), cursedness does not reduce the responsiveness

of the aggregate action with respect to the fundamental. Even though cursed agents

reduce the efficiency of information dissemination by failing to amplify the information

content of p, they inject more private information into the system.

Analytically, the invariance of β results from the combination of information

acquisition and use. If private information were exogenous (Appendix E.1 presents

the results in this case), β would decrease in cursedness (and increase in transparency);

with exogenous τs, the higher use of private information of cursed agents is more than

offset by the fact that those same agents fail to learn from the aggregative signal and

hence hamper dissemination. Once we allow agents to adjust τs in response to changes

in the perceived value of private information caused by either a more transparent

environment or a decrease in cursedness, those effects are neutralized.

The fundamental loading γ2 on public fundamental information has intuitive

comparative statics: agents load more on y if it is more precise, if private acquisition is

more costly, or if the coordination motive is stronger. The degree of cursedness does not

affect γ2, not even indirectly. Even though cursed agents fail to process all information

disseminated through the aggregative signal, when they can adjust τs, their increased

demand for and use of private information exactly offsets the less efficient inference.
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While cursedness does not affect the total weight on information obtained through

private signals, β− γ2, it changes its composition: agents substitute away from indirect

inference of disseminated private information, δ3, towards information agents have

acquired themselves, 1− δ3. This decomposition (depicted in Figure 2) is apparent in

the following rewriting of the fundamental representation (24)

ai = (β− γ2) [(1− δ3) (θ + zs) + δ3θ] + γ2y + γ3zp. (26)
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Figure 2: Equilibrium weight on information from private signals: direct and indirect.

We analyze a different metric of informational efficiency, namely the total precision

available to the agents, in Appendix E.2 and show that cursedness determines whether

transparency improves efficiency along this metric.

5 Welfare

In this section, we first characterize the first-best benchmark for the use and acquisition

of information. Then we identify and characterize the inefficiencies of the χ−cursed

equilibrium with information acquisition. Finally, we perform welfare comparative

statics.

5.1 The Planner Problem

As a welfare benchmark, we consider the problem of a planner who controls both the

use and acquisition of information, but cannot share information across agents.25 To

this end we impose the consistency condition α = δ in the welfare expression (14) and,

with slight abuse of notation, let W(δ,τs) := W(δ,δ,τs) denote the objective function –

25This is the benchmark customarily adopted in the literature (Angeletos and Pavan, 2007). It
avoids the unfair comparison with an economy in which agents can also share information: as there
are uncountably many, this would coincide with playing a game of complete information with a trivial
solution and trivial welfare properties.
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and W⋆ the value – of a planner choosing(
δ⋆ ,τ⋆s

)
= argmax

(δ,τs)
W(δ,τs) (27)

that can be expressed as

W(δ,τs) = − (1− r)
(1− δ3)2

{
δ2

2

τy
+
δ2

3

τp
+

(1− δ1 − δ2 − δ3)2

τθ

}
−
δ2

1

τs
− cτs. (28)

We proceed by characterizing the solution of (27) and the comparative statics of first-

best welfare.

Theorem 4. The loading on private information in the efficient linear action rule is the
unique solution of

δ1 = (1− r + rδ1)τ⋆s
1τθ + τy + τpδ

2
1

τθ + τy + τpδ1

︸              ︷︷              ︸
efficiency wedge

(
τθ + τy + τpδ

2
1

)
+ τ⋆s

. (29)

The efficient precision of private information satisfies τ⋆s = δ⋆1√
c
. Moreover, first-best welfare

has the following comparative statics

dW⋆

dτθ
> 0,

dW⋆

dτy
> 0,

dW⋆

dτp
> 0,

dW⋆

dc
< 0. (30)

Condition (29) corresponds to the rational equilibrium condition (11), modified by

an efficiency wedge. The wedge accounts for the fact that using public information

as the basis of action dilutes the dissemination of private information. The planner

internalizes this effect and therefore downweighs public information by the adjustment

term
τθ+τy+τpδ

2
1

τθ+τy+τpδ1
< 1. This wedge is equal to one only if δ⋆1 = 1 and therefore δ⋆2 = δ⋆3 = 0,

i.e., if the aggregative signal is not polluted by public signals to begin with, which is

impossible in equilibrium. Two implications of economic relevance follow. First, δ1 is

inefficiently low, the efficient solution features a higher weight on private information

compared to the rational equilibrium.26 Therefore, the equilibrium with χ = 0 is

not efficient. For a positive level of cursedness, the inefficiency of the equilibrium

26Note that this distortion only arises because δ1 determines the signal-to-noise ratio when inferring
the state from the signal of the aggregative action. In a setting with fully flexible information acquisition,
(Hebert and La’O, forthcoming) characterize the information cost functions under which this scaling
does not matter and that therefore result in an efficient equilibrium.

In demand function competition, Vives (2017) shows that there is both an information dissemination
externality as well as a pecuniary externality, the latter causing a potentially excessive weight on private
information.
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is an immediate consequence of the processing bias. Therefore, we have the second

implication, the equilibrium is always inefficient.

The optimality condition for τs is our familiar envelope condition (17): The use of

private information is a sufficient statistic for the gains from acquiring it, even for the

planner. Both efficient and equilibrium information acquisition are fully determined

by the respective use of private information. Therefore, there is under-(over)acquisition

of private information in equilibrium if and only if there is under- (over)use of private

information in equilibrium, i.e.

sgn{τs − τ⋆s } = sgn{δ1 − δ⋆1}. (31)

In particular, information acquisition in equilibrium is efficient if an only if information

use in equilibrium is efficient.

Finally, the comparative statics of first-best welfare (30) are natural: as information

is used efficiently by the planner, increasing precision – whatever the source – or

lowering acquisition costs is always beneficial.

5.2 The Inefficiencies of Equilibrium

In equilibrium, by contrast, information is generally used inefficiently: agents do not

internalize the dissemination externality and they are subject to a processing bias that

makes them misuse the available information.

Proposition 4. The rational equilibrium always has inefficiently low information acquisition.
Sufficiently cursed agents acquire more private information than the efficient benchmark if
τp > τp, where τp =

(
τθ + τy

)(
1− 2δFC

1

)(
δFC

1

)−3
.

Since rational agents do not internalize the dissemination externality, the equilib-

rium with χ = 0 features underacquisition. As τs is increasing in χ by Proposition

1, cursedness alleviates this inefficiency. This effect can be strong enough to lead

to overacquisition relative to the efficient benchmark if the aggregative signal is

sufficiently precise. Intuitively, if transparency exceeds the lower bound τp, then

dissemination is so effective that even τ⋆s (which is independent of χ) is low compared

to the precision of information acquired by the agent in the fully cursed equilibrium

(which is by construction independent of τp). Then, there exists an interior χ such

that the equilibrium use and acquisition of private information coincide with the

efficient quantity (see the left panel of Figure 3).27 Even in this case, however, agents

misperceive the information environment and hence misuse their information. To

27The condition is always met (τp < 0) if incentives for private information acquisition are sufficiently
high, namely

√
c ≤ 1

2
1−r
τθ+τy

.
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analyze this source of inefficiency, consider the gradient of welfare at equilibrium as

we vary the cursedness parameter (displayed in the right panel of Figure 3).
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Figure 3: Equilibrium vs. efficient information acquisition (Proposition 4, left) and the gradient of W in
equilibrium (Proposition 5, right) as a function of cursedness.

Proposition 5. In any equilibrium, δ2 is conditionally efficient: ∂W
∂δ2

(δ,τs) = 0 for all χ.

In a rational equilibrium, δ3 is conditionally efficient: ∂W
∂δ3

(δ,τs) = 0 for χ = 0.

In a fully cursed equilibrium, δ1 is conditionally efficient: ∂W
∂δ1

(δ,τs) = 0 for χ = 1.

In a fully rational equilibrium, the only externality is the dissemination of private

information. Fixing the use of private information and thereby its dissemination, the

other loadings of the equilibrium are conditionally efficient. In a fully cursed equi-

librium, agents ignore the aggregative signal altogether, so there is no dissemination

externality and private information is used efficiently.28 Independently of the degree

of cursedness, there is no externality or misunderstanding in the use of the public

fundamental signal.

5.3 The Comparative Statics of Equilibrium Welfare

The sources of equilibrium inefficiency identified in Propositions 4 and 5 provide

the bedrock for analyzing the impact of cursedness and changes in the information

environment on equilibrium welfare. Let WEQ BW
(
δχ,τχs

)
denote equilibrium welfare,

where we introduce δχ,τχs as shorthand for the equilibrium with χ-cursed agents.

Cursedness is Bliss

Consider a marginal increase in cursedness starting from the rational equilibrium. It

has two impacts on welfare. First, agents now use their information suboptimally as

they underestimate the information contained in p. The associated welfare reduction is

28Again, recall that fully cursed equilibrium coincides at the action stage with fully rational
equilibrium in which τp is set to zero. Without an aggregative signal our model is a special case
of Angeletos and Pavan (2007) where payoffs satisfy the conditions for efficient use of information.
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second order, however, as δ is privately optimal in the rational equilibrium. Second,

cursed agents acquire and disseminate more information. Since the rational equilibrium

features underacquisition, this impact on the dissemination externality has a first

order effect on welfare. Thus, local to rationality and up to first order, cursedness

only has beneficial effects on welfare. When χ is already large, however, marginal

increments in cursedness have a first order negative effects from additional misuse,

while the underacquisition gap is narrower, if existent at all. The effect of inefficient use

dominates close to χ = 1 as fully cursed agents do not use the information contained in

the aggregative signal.

Proposition 6 (Cursedness is Bliss.). Equilibrium welfare is maximized for an interior
level of cursedness,

dWEQ

dχ

∣∣∣∣∣∣
χ=0

> 0, and
dWEQ

dχ

∣∣∣∣∣∣
χ=1

< 0. (32)
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Figure 4: Cursedness is Bliss

The shape of welfare as a function of χ and the comparison to efficient welfare is

shown in Figure 4. One might wonder if the comparison in the plot holds in general

or whether a fully cursed economy can ever outperform full rationality. This cannot

happen. Indeed, it is easy to show that in the two extreme cases χ ∈ {0,1}, welfare takes

the simple form

WEQ = −
√
c (1 + δ1) . (33)

and it follows from the comparative statics of δ1 that the fully cursed equilibrium

has lower welfare than the rational case: Even though acquisition and dissemination

of private information are higher, cursed agents are unable to make any use of their

aggregative information. The inefficiently imprecise aggregative information provided

in the rational equilibrium is preferable to complete ignorance of – albeit plentiful –

aggregative information.
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Transparency and Other Information Policies

In contrast to the efficient solution (Proposition 4), more information and lower costs

do not always increase welfare in equilibrium.

Proposition 7. Equilibrium welfare WEQ is always increasing in τp.
WEQ is increasing in τy ,τθ and decreasing in c if χ is sufficiently close to either 0 or 1 or

τp is sufficiently small. If, however, τp is sufficiently large, there exist an interior region of χ
such that equilibrium welfare is

(i) decreasing in τy ,τθ if strategic complementarities are sufficiently strong (r > 1
2),

(ii) and increasing in c in a game with strategic substitutes (r < 0).

The proposition identifies sufficient conditions for counterintuitive comparative

statics. Let us first focus on the comparative static with respect to the precision of the

public fundamental signal.29 An increase in τy has two equilibrium effects. First, a

direct effect as the precision of the agents’ information increases mechanically. Second,

a substitution effect as agents reduce their use and acquisition of private information

and also substitute towards y and away from p. When strategic complementarities

are sufficiently strong, the second effect is particularly important and causes the

paradoxical comparative static: For partially cursed agents, the use of p is already

suboptimally low and a further decrease entails a welfare loss. This effect dominates

the welfare calculus for interior χ. For (close to) fully cursed agents, however, the

substitution effect is negligible as they disregard p and the direct effect is important as

they rely heavily on y.30

Likewise, an increase in acquisition costs potentially benefits partially cursed

agents: It causes them to rely less on private information and to substitute towards p,

whose informativeness they effectively underestimate. This effect can dominate with

sufficiently strong strategic substitutes, when the value of information is relatively

low because agents want to anti-coordinate. As we can see in Figure 5, the effect is

present for sufficiently small costs, since then the substitution is towards a relatively

informative p, whereas if costs are too high, the aggregative signal itself becomes too

noisy.

29A similar result is also obtained in Morris and Shin (2002), but for different reasons. There, all
signals are fundamental, but the increased use of public information entails a payoff externality. In our
setting, payoffs are such that – absent dissemination externality and cursedness – information use is
efficient (Angeletos and Pavan, 2007; Colombo et al., 2014) and hence more precise public information is
always welfare improving. Natural comparative statics continue to hold even if τp > 0 and χ = 0, a case
not subsumed by the literature; therefore both the dissemination externality and cursedness interact to
yield the paradoxical effects listed in Proposition 7.

30In the proof of this result, we consider the limit economy as τp → ∞. The limit welfare (70) is
decreasing in τy (or, τθ) if and only if 1−2r + rχ < 0, which provides a lower bound, χ > 2− 1

r that can be
satisfied only if r > 1

2 . Incidentally, this is the same threshold on the degree of complementarities that
Morris and Shin (2002) obtain for public information τy to be reduce welfare.
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Figure 5: Counterintuitive comparative statics of welfare in τy (left) and c (right).

It might be surprising that transparency always increases welfare: After all, it has

an ambiguous effect on total precision τΣ and other parameters may have perverse

effects on welfare. In addition, inference from aggregative information is biased by

cursedness while the fundamental sources, which generate these counterintuitive

effects, are interpreted correctly. The key observation to understand this difference is

that transparency renders the aggregative signal more informative relative to the

fundamental sources of information, while the opposite is the case for the other

parameters. Consequently, partially cursed agents substitute towards the aggregative

signal, which ameliorates their bias. At worst, in the fully cursed case, the aggregative

signal is not understood at all and hence irrelevant. However, as the fully cursed case

makes apparent, there remain unreaped benefits from increased transparency in such

economies.

6 Shrewd Agent: Behavior and Policy

Although their welfare increases with transparency, cursed agents fail to reap its

full benefits. How does an agent who is able to extract all the information from the

environment – such as proverbial smart money in financial markets – interact with a

cursed crowd? Could it be beneficial to act in an environment with less rational agents?

We address these questions by studying the behavior and welfare of a shrewd agent: a

fully rational, atomistic agent in the model who understands its structure and is aware

that all other agents (the cursed crowd) are χ-cursed. We discuss the results in the text,

relegating much of their formal development to Appendix D in the interest of brevity.

6.1 Best Response and Information Acquisition

We continue to denote the precision of information acquired by the cursed crowd as τs
and denote the precision acquired by the shrewd agent as τR

s . The shrewd agent takes
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the equilibrium loadings (and information acquisition) of the cursed crowd as given,

and chooses both how much private information to acquire as well as the coefficients in

his linear action rule aR
i = αR

1 si +αR
2y +αR

3p. Formally, he solves

max
αR,τR

s

W
(
αR,δ,τR

s

)
(34)

Best responding to the equilibrium in the cursed crowd, the individual loadings of

the shrewd agent αR (characterized in Proposition 10 of the Appendix), will differ

from δ whenever χ > 0. There is again a tight connection between the use of private

information, αR
1 , and its acquisition through the envelope condition

τR
s =

αR
1√
c
. (35)

Denote the total precision available to the cursed agents by τΣB τθ + τy + τs + δ2
1τp

and that available to the rational agent by τR
Σ
B τθ+τy+τR

s +δ2
1τp. We obtain an equation

linking the information acquired by the shrewd agent and the cursed crowd

τΣ

τR
Σ

= 1 +
χδ2

1τP

τθ + τy + τs
. (36)

The shrewd agent acquires less information. Compared to the cursed crowd, he can

substitute it with a better comprehension of aggregative information. If the crowd is

fully cursed, then (36) simplifies to

τR
s = τs − δ2

1τp (37)

that is, the shrewd agent exactly offsets the information he can glean from the aggrega-

tive signal and his precision is equal to the precision perceived by the crowd.

Clearly, equation (37) holds only if it delivers a positive τR
s . Otherwise, the shrewd

agent will choose τR
s = 0 as he is already satiated with the information he can infer

from the aggregative signal. With a fully cursed crowd, this always happens with

sufficiently large transparency since both τs and δ1 are unresponsive to τp. In that case,

transparency only serves as a cost-saving device for the shrewd agent. The shrewd

agent continues to free-ride on the crowd’s use of private information even at interior

levels of cursedness.

Proposition 8. The information acquired by the shrewd agent, τR
s , satisfies:

1. It is bounded by the precision acquired by the cursed crowd τR
s ≤ τs. It grows without

bounds as costs vanish but can be zero even when τs > 0.

2. If τp is sufficiently large, then it is
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(i) nonmonotonic in prior and public precision, τθ and τy , possibly with an interior
activity region; and

(ii) nonmonotonic in costs c, possibly with an interior inactivity region.

3. It has ambiguous comparative statics w.r.t. χ,

dτR
s

dχ
∝ r − 2

√
cδ1τp.

The shrewd agent acquires a strictly positive amount of information if and only if

τθ + τy ∈
(

1−r√
c

(
1− 1

τp
√
c

)
, 1−r√

c

)
. Therefore, there is an inactivity region whenever τp >

1√
c
.

In that case, the shrewd agent acquires private information only if public information

is sufficiently precise. The rationale is as follows: If public fundamental information

is noisy, the cursed crowd will acquire and use a lot of private information; since he

can be parasitic on this information, the rational agent has no incentive to acquire

information himself. As public information becomes more abundant, however, there is

less information acquisition and use by the crowd. The aggregative source dries up and

the shrewd agent needs to supplement it with private information acquisition. Finally,

the upper bound on τθ + τy for the existence of a nontrivial equilibrium is the same for

both classes of agents. In the trivial equilibrium δ1 = τs = 0, the shrewd agent cannot

utilize his advantage in understanding the aggregative source since it is uninformative:

he behaves identically to the crowd.

An immediate consequence of this inactivity region is that τR
s is nonmonotonic in τy .

This contrasts with the unambiguously signed comparative statics for τs (Proposition

1). Similarly, the effect of information acquisition costs on τR
s is nonmonotonic and

we can have an inactivity region (see Figure 6). Again, a change in parameters affects

both the availability of aggregative information provided by the cursed crowd and the

shrewd agent’s demand for information overall.
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Figure 6: τs and τR
s as a function of c (left). τR

s (normalized to 1 at χ = 0) as a function of χ for
r ∈ {0.3,0.75,0.9} (right).
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The impact of cursedness on the precision of information acquired by the shrewd

agent depends on the nature of strategic interactions (see Figure 6). Take as a benchmark

the case of r = 0, i.e., all agents simply try to guess the true state, and all strategic

interaction comes from the precision of aggregative information. In this case, τR
s is

decreasing in χ as more cursed agents acquire and disseminate more information.

Strategic substitutes increase this effect: As the crowd becomes more cursed, δ1

increases, which reduces the desire to match the state and therefore the value of

private information. With complements, the opposite is the case: A higher δ1 increases

the desire to match θ and therefore – if this motive is sufficiently strong – information

acquisition.

6.2 Welfare

Let WR
χ denote the welfare of the shrewd agent facing an equilibrium δχ. Then,

WEQ
χ = W

(
δχ,δχ,τχs

)
≤max

α,τR
s

W
(
α,δχ,τR

s

)
= WR

χ (38)

As he comprehends his information environment, he always obtains a higher welfare

than the cursed crowd. The inequality is strict if χ > 0.

We now ask whether the shrewd agent benefits from an increase in the cursedness of

the crowd. This is the case for the first modicum of cursedness since for small positive ϵ

WR
ϵ > WEQ

ϵ > WEQ
0 = WR

0 . (39)

The central inequality follows since in this region “cursedness is bliss” (Proposition

6).31 In a highly cursed environment, however, the impact of cursedness depends on

nature of the strategic interaction.

Proposition 9. Suppose parameters are such that τR
s > 0. If r ≤ 0, then

dWR
χ

dχ

∣∣∣∣∣∣
χ=1

≥ 0.

However, for r sufficiently large,
dWR

χ

dχ

∣∣∣∣∣∣
χ=1

≤ 0.

If there are strategic substitutes, the shrewd agent always benefits from increasing

the cursedness of the crowd: not only does he free-ride on aggregative information,

but the crowd’s over-reliance on the private signal helps him anti-coordinate. In the

presence of complementarities, however, informational free-riding and the lack of

coordination implied by cursed information misuse have opposing effects. While the

31Indeed, the information spillover can be strong enough to make the shrewd agent in the cursed
world better off than first-best welfare (as can be checked for r = 0, τθ = τy = 0.1, τp = 0.19, c = 0.03,
where we have WR

1 > W⋆). By continuity, this holds for an open set of parameters.
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shrewd agent can learn the state more precisely, his action has to follow the behavior of

the less informed crowd. The latter effect can be overwhelming close to χ = 1, so he

would prefer an interior level of cursedness.

We conclude this section by studying the impact of precision and cost parameters

on WR
χ . If the crowd is close to rational, then policies have an impact similar to that in

the rational equilibrium. We therefore focus our analysis on the other extreme case and

evaluate the welfare of the shrewd agent facing a fully cursed crowd. By continuity, the

results extend to a sufficiently cursed environment.

We now discuss the effect of information policies on the welfare of a shrewd agent

that plays against a fully cursed crowd (formalized in Proposition 11 of the Appendix).

First, notice that WEQ
1 is independent of τp as fully cursed agents do not respond

to transparency. Therefore, higher transparency only affects the shrewd agent by

providing a more precise aggregative signal, which is clearly beneficial. Recall that

more public information τy and lower cost c are always beneficial for the cursed crowd

(Proposition 7). The shrewd agent, however, suffers from the crowding out effect, as

higher τy decreases information acquisition and dissemination by the cursed crowd.

This is especially harmful if he is largely relying on this source of information, leading

to the negative welfare impact when τR
s is small.

Higher c can be beneficial for the shrewd agent if τR
s is zero, i.e. if there is no

direct effect of higher costs. Suppose that this is the case, that aggregate information is

relatively abundant, and that r < 0 (strategic substitutes). As c increases, cursed agents

rely more on y which makes it easier for the shrewd agent to anti-coordinate. This

action externality can dominate the harm from reduced information dissemination.

When τR
s is positive, by contrast, the direct effect always dominates, yielding the natural

comparative static.

The comparison between Proposition 7 and the results just sketched highlights

qualitative differences in the impact of policy on the welfare of cursed and shrewd

agents. Transparency leaves the welfare of the cursed crowd unaffected but has a strictly

positive (and large) impact for the shrewd. If both types affected the aggregate outcome,

this could easily turn into a redistribution result, suggesting that transparency can

function as an elitist policy that gives an advantage to sophisticated agents who are

able to understand and utilize aggregative information. For public information and

lower cost this trade-off is already apparent in the present results.32 A natural avenue

for studying these questions further would be to extend our model to include true

cognitive heterogeneity, featuring several non-atomistic groups with different levels of

cursedness, all affecting the aggregate outcomes. Although the linear structure of the

model makes action aggregation straightforward, the correlation between information

32This conflict of interest between experts and unsophisticated actors casts doubt on the role of expert
lobbying as a source of information on the impact of such policies.
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use and acquisition affects the aggregate outcome and introduces nonlinearity. The

analysis of such cognitive heterogeneity is therefore beyond the scope of this paper.

7 Conclusion

This paper studies the effect of aggregative information focusing on the interplay of

two key aspects: First, that the precision of such aggregate statistics as signals of the

fundamental depends on the amount of private information present in individual

actions; and second, agents’ well-documented difficulty in making inference based on

such signals as it requires inferring others’ information from their actions.

We conduct our analysis in a beauty contest game with information acquisition,

adapting a notion of cursed equilibrium to model agents limited understanding of

aggregative information. Though parsimonious, the model is sufficiently rich to relate

to existing literature and offer alternative explanation of well-established theoretical

predictions such as the detrimental effect of public information and the irrelevance

of transparency for informational efficiency. Since cursedness significantly alters the

positive and normative results in our setting, it would be interesting to extend the

analysis to more general payoff specifications as e.g. in Angeletos and Pavan (2007) and

more deeply microfounded models yielding reduced forms similar to this class, as e.g.

the business cycle model considered in Colombo et al. (2014) and demand function

competition in Vives (2017).

We show that there is inefficiently low acquisition and use of private information in

the rational benchmark due to an information dissemination externality. Cursed agents

rely more heavily on their private information, which can push information acquisition

towards (or even above) its efficient level. While cursedness creates inefficiencies in

information use, the increased dissemination of private information initially dominates:

a bit of individual cursedness is a collective blessing. Transparency crowds out

the acquisition and use of private information but always increases the endogenous

precision of the aggregative signal. This is the main driving force making it the only

policy instrument with an unambiguously positive effect on welfare, despite being

ineffective at increasing informational efficiency (Section 4) and causing potential

redistributive concerns (Section 6). Combining our results then, a policymaker con-

sidering information policies while uncertain about the specifics of the environment

must weigh the risk of doing harm against the risk of having only modest effects

which primarily benefit sophisticated market participants. An analysis focusing on this

cognitive heterogeneity is an interesting avenue for future research.

Incorporating information acquisition into a model of incorrect information use,

such as cursed equilibrium, is the conceptual novelty of this paper. Doing so requires

making an assumption on how such agents assess the value of information. Our notion,
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cursed expectations equilibrium with information acquisition, is based on the principle

that agents correctly anticipate both the equilibrium strategies and how they will use

their information, but mistakenly consider this use to be optimal. We operationalize

this principle through a subjective envelope condition, which implies that information

acquisition is proportional to its use, resulting in a tractable analysis. Additionally, we

demonstrate that the subjective envelope condition characterizes the rest points of a

simple learning process in which the misperception at the acquisition stage is the dual

error of cursedness. While alternative notions do not conform to this principle or are

not tractable in our setting, the properties and predictive power of such notions across

applications of cursed equilibrium (and other behavioral equilibrium notions that do

not easily allow a quasi-Bayesian analysis) remain an important question for future

research.
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A Learning Foundation

Consider the following learning process; the heuristics of it, as well as potential

microfoundations, are given in the text. In each period t, agents submit a target

level of information acquisition τ̄t,33 which is implemented with error. The realized

level of information acquisition is given by τt = τ̄t + σϵt, where ϵt is a zero mean

random variable symmetrically distributed on support [−1,1] according to distribution

F with continuous density f . Moreover, implementation errors are serially independent

(ϵt1 ⊥ ϵt2 if t1 , t2). To ensure that the realized precision is nonnegative, we restrict the

agent to τ̄t > δ for a small δ > 0 and assume throughout that σ is small enough that

δ− σ > 0. Since (19) holds, we can choose δ such that the correct τs can be learned.34

For each τt, the agent uses the realized signals according to the loadings αt that

are the best response for precision τ̄t of the private signal — the other information

parameters, as well as the equilibrium play δ are fixed throughout the process. Denote

the realized welfare by Wt. At the end of each period the agent records xt = (τ̄t,τt,Wt).

At any point in time, the data-set of the agent consists of the whole history xt = (xs)s≤t.

The agent proceeds in two steps. He evaluates whether to reoptimize the target pre-

cision τ̄t based on all previous observations with the same target precision. Concretely,

consider the estimates at time t of the average welfare associated to a negative (resp,

positive) implementation error,

W− (τ̄, t) =
∑

s∈T−(τ̄,t)

1
|T−(τ̄, t)|

Ws (40)

W+ (τ̄, t) =
∑

s∈T+(τ̄,t)

1
|T+(τ̄, t)|

Ws (41)

where T+(τ̄, t) = {s ≤ t|τ̄s = τ̄,τs > τ̄s} and T−(τ̄, t) = {s ≤ t|τ̄s = τ̄,τs < τ̄s} denote the sets of

periods with positive (resp. negative) deviations from target precision τ̄ before time

t. Denote the expected value of these processes by W−(τ̄) and W+(τ̄), respectively. Let

also

∆(τ̄, t) =
1

σE[|ϵ|]
(W+ (τ̄, t)−W− (τ̄, t)) (42)

an estimate of the derivative with expected value ∆(τ̄).

33Since only the precision of the private signal τs is chosen, we avoid double subscript and write τ̄t
(and τt for its realized value) in lieu of τ̄s,t ,τs,t .

34Notice that our procedure fails to estimate the partial derivative at τ = 0 as no negative precision
can be implemented. Generally, the partial derivative of W does not exist at τ = 0 and the subjective

envelope condition (SE) is only well-defined as the limit of α2
1(τ)
τ2 , which is convergent. Therefore, any

learning process that could estimate the value of information at τ = 0 would need to make use of this
relationship, which would be more complex for the agent as it requires knowledge of the structure of the
problem.
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Lemma 1. For all τ̄ > δ, along all histories x∞ where τ̄ is chosen infinitely often,

plim
t→∞

∆(τ̄, t) = ∆(τ̄) =
∂
∂τ

W
∣∣∣∣∣
α(δ,τ̄),δ,τ̄

+σ
E[ϵ2]

2E[|ϵ|]
W′′ + o (σ) . (43)

The proofs of this and the subsequent Lemmata of this section are relegated to

Online Appendix E.3.

The learning process proceeds as follows. The agent keeps the same target level

of precision unless he has observed at least K(σ) draws with negative and positive

implementation error. This minimum sample size K(σ) will be pinned down in the

proof of Lemma 3. If the sample is sufficient he stays with his target if the estimated

derivative is smaller than a tolerance level B(σ) > 0 which shrinks to zero with the

implementation tremble. This tolerance level will be pinned down in the proof of

Theorem 3 to ensure that the solution of the subjective envelope condition is a rest point.

If instead a sufficient sample leads to an estimate outside the tolerance bound at time

t, the target is rejected and the agent draws a new target level yt+1 from an absolutely

continuous distribution (possibly) dependent on the full history xt.35 Accordingly,

after arbitrary initialization τ̄0, the process (τt)t∈N follows

τ̄t+1 =

τ̄t if |∆(τ̄t, t)| < B(σ) or min{|T+(τ̄, t)|, |T−(τ̄, t)|} < K(σ)

yt+1 else
(44)

Definition. We say that τ is a rest point of τ̄t if P({τ̄s = τ,∀s ≥ t}|τ̄t = τ) > 0.

Lemma 2. If |∆(τ)| > B(σ), then τ cannot be a rest point of τ̄t.

Lemma 3. If |∆(τ)| < 1
2 B(σ), then τ is a rest point of τ̄t.

Proof of Theorem 3: Let τ be the solution to the subjective envelope condition. Then,

set B(σ) = 2sups≤σ
∣∣∣∆(τ)

∣∣∣. Note that B(σ) is decreasing in σ and that B(σ) > 0 since the

partial derivatives in the Taylor expansion in the proof of Lemma 1 are bounded away

from zero on the domain of evaluation. Hence, B(σ) satisfies is a valid tolerance level.

Then, by Lemma 3, τ is a rest point of the learning process.

Conversely, consider a point τ that does not solve the subjective envelope condition,

i.e. |∂W
∂τs

(τ)| > 0 . Then, by Lemma 1, there exists an S > 0 such that for any σ < S we

have |∆(τ)| > 1
2 |

∂W
∂τs

(τ)|. Furthermore, there exists an S′ > 0 such that B(σ) < 1
2 |

∂W
∂τs

(τ)|
for σ < S′. Then, by Lemma 2, τ cannot be a rest point of the learning process for any

σ < min{S,S′}.

35Note that we allow for a quite general (stochastic) reoptimization process, since the structure of this
process is not essential for our results. All that is required given our definition of a rest-point below is
that the reoptimization does not stubbornly return to points that have been rejected arbitrarily often,
which is assured by our assumption of absolute continuity.
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B Proofs

We relegate lengthy computational proofs of all Lemmas and of Proposition from the

text which are not by themselves main results to Online Appendix E.4 and E.5, resp.

Proof of Theorem 1: Recall from the text that δi = αi and the best response

ai = (1− r)

χ τssi + τyy

τθ + τy + τs
+ (1−χ)

τssi + τyy + δ2
1τp

1−δ3
δ1

[
p − δ2

1−δ3
y
]

τθ + τy + τs + δ2
1τp


+ r

α0 +α1

χ τssi + τyy

τθ + τy + τs
+ (1−χ)

τssi + τyy + δ2
1τp

1−δ3
δ1

[
p − δ2

1−δ3
y
]

τθ + τy + τs + δ2
1τp

+α2y +α3p


Matching coefficients with (4) and simplifying, we arrive at the desired expressions.

From (11) we arrive at the equilibrium condition

0 = f (δ1)B δ1

(
τθ + τy + δ2

1τp

)
−χ τs

τθ + τy + τs
[1− r + rδ1]δ2

1τp − (1− r) (1− δ1)τs (45)

To show that the solution is unique, note that f (δ1)
τθ+τy+τs+δ

2
1τp

evaluated at δ1 = 0 is equal

to − 1−r
τθ+τy+τs

< 0 and at δ1 = 1 it is greater than 1− τs
τθ+τy+τs

> 0. Hence, there is at least

one root in (0,1). Furthermore, the expression is increasing at a root, as

∂
∂δ1

f (δ1)

τθ + τy + τs + δ2
1τp

= 1− rτs

 χ

τθ + τy + τs
+

1−χ
τθ + τy + τs + δ2

1τp

+ 2(1−χ)δ1τpτs
1− r + rδ1(

τθ + τy + τs + δ2
1τp

)2

where the first two terms are in sum positive and, at a root, we have sgn {δ1 [(1− r) + rδ1]} =
1 whence the final term is also positive.

Corollary 1. In equilibrium, we have

(1− r) + rδ1 =
δ1

τs
τθ+τy+τs+χδ

2
1τp

(τθ+τy+τs)(τθ+τy+τs+δ
2
1τp)

> 0. (46)

Proof of Theorem 2: Equation (17) is derived in the text assuming that δ1 ≥ 0. There

cannot be an equilibrium with δ1 < 0.

Lemma 4. There is no equilibrium with information acquisition and δ1 < 0.

Our system is defined by

f (δ1,τs) = δ1

(
τθ + τy + δ2

1τp

)
−χ

τs [(1− r) + rδ1]δ2
1τp

τθ + τy + τs
− (1− r) (1− δ1)τs = 0 (47)

g(δ1,τs) = δ2
1 − c · τ

2
s = 0 (48)
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substituting g into f we obtain that loading δ1 must solve

0 = f̃ (δ1)B δ1 +
√
c
(
τθ + τy + δ2

1τp

)
− [(1− r) + rδ1]

1 +χ

√
cδ2

1τp

δ1 +
√
c
(
τθ + τy

) (49)

Lemma 5. We have f̃δ1
> 0 for all δ1 ∈ (0,1).

Moreover, f̃ (0) =
√
c
(
τθ + τy

)
− (1− r), which is negative if and only if condition (19)

holds. In that case, therefore, a solution to (49) exists. Else, we are in a corner case

δ1 = τs = 0. We obtain δ2 =
τy

τθ+τy
and δ3 = 0 by plugging δ1 = τs = 0 into the original

matching coefficients equations.

Proof of Proposition 1: Implicitly differentiating the equilibrium system (47)-(48) we

get, for a generic parameter ν

dδ1

dν
=
gτsfν − fτsgν
gδfτs − gτsfδ

,
dτs
dν

=
fδgν − gδfν
gδfτs − gτsfδ

Lemma 6. In equilibrium, we have gδfτs − gτsfδ > 0, and hence dδ1
dν ∝ gτsfν − fτsgν .

Hence, we have

dδ1

dχ
∝ gτsfχ − fτsgχ = gτsfχ = −2cτs

(
− τs

τθ + τy + τs
[1 + r(δ1 − 1)]δ2

1τp

)
> 0.

dδ1

dτp
∝ gτsfτp − fτsgτp = gτsfτp < 0.

since fτp > 0. Plugging (17) into (12), we obtain

δ2 =

√
cδ1τy

(1− r)−
√
c
(
τθ + τy

) , δ3 = 1− δ1 (1− r)
(1− r)−

√
c
(
τθ + τy

) , (50)

from which it follows immediately that dδ2
dχ ∝

dδ1
dχ > 0, dδ3

dχ ∝ −
dδ1
dχ < 0, dδ2

dτp
∝ dδ1

dτp
> 0, dδ3

dτp
∝

−dδ1
dτp

< 0, and d
dχ

δ2
δ1

= d
dχ

1−δ3
δ1

= 0. Finally, we are left to prove that ∂
∂τp
δ2

1τp > 0. Notice

d
dτp

τpδ
2
1 =

2δ4
1

gδfτs − gτsfδ

1− r +

√
cδ2

1τp (1−χr)

δ1 +
√
c
(
τθ + τy

) − √
cδ2

1τp (1−χ)

δ1 +
√
c
(
τθ + τy +χδ2

1τp

)
which follows from lengthy computation involving (46) and (17). Clearly, 1− r > 0 so it

remains to show that the last two terms sum to a positive expression. This, however is

immediate since (1−χr) > (1−χ) < χ ⇐⇒ r < 1, which is assumed.
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Proof of Proposition 2: Let us begin with δ1. Note that for all precision parameters,

we have gτ ≡ 0, and for costs, we have fc ≡ 0. For the cost parameter we have dδ1
dc ∝

fτs (τs)
2 < 0 as fτs < 0. Moreover, dδ1

dτy
∝ gτsfτy < 0 since fτy > 0, dδ1

dτθ
= ∂δ1

∂τy
< 0, and finally

dδ1
dr ∝ gτsfr < 0 since fr ≥ 0. Using (17), we have dτs

dν ∝
dδ1
dν for all ν , c. For c, we get

dτs
dc = 1

c
dδ1
dc − τsc < 0.

Proof of Proposition 3: By plugging (17) into (66) we obtain the expressions for the

fundamental loadings. For β and γ2 the comparative statics are immediate. In particular,

γ2 is increasing in τy , c and r. Lengthy calculations, available upon request, show that

instead δ2 has ambiguous comparative statics in all τy , c and r. Notice that γ3 = δ3
1−δ3

is an increasing transformation of the direct loading δ3, so it is increasing in τp and

carries all the following ambiguous comparative statics. For τy , consider

lim
χ→1

∂δ3
∂τy

δ3
∝

(
1− δ1 (1− r)− r −

√
c
(
τθ + τy

))
1− δ1(1−r)

1−r−
√
c(τθ+τy)

= 1− r −
√
c
(
τθ + τy

)
> 0

proving ∂δ3
∂τy

converges to 0 from above as χ→ 1. Therefore, δ3 is increasing in τy for

large χ. However, in the limit as r → 1 −
√
c
(
τθ + τy

)
, then ∂δ3

∂τy
→ − 1−r

τθ+τy
δ1 < 0. To

see that ∂δ3
∂c is of ambiguous sign, consider the limit as

√
c → 1−r

τθ+τy
. Then, we have

sgn
{
∂δ3
∂c

}
→ sgn

{
− (1− r)3

}
< 0. Furthermore, as c→ 0, we have

∂δ3

∂c
∝ δ2

1 (1− r)
(
(1− δ1)

(
τθ + τy

)
+ (1−χ)δ2

1τp

)
> 0

Following similar arguments, ∂δ3
∂r is ambiguous: In the limit as

√
c→ 1−r

τθ+τy
, we have

sgn
{
∂δ3
∂r

}
→ sgn

{
− (1− r)3

}
< 0. As r→−∞, we get

∂δ3

∂r
∝ −r (1− δ1)

(
δ1 +
√
c
(
τθ + τy +χδ2

1τp

))2
> 0.

Proof of Theorem 4: Taking FOC in (27), we obtain

Wδ1
=2

(1− r)
(1− δ3)2

(1− δ1 − δ2 − δ3)
τθ

− 2
δ1

τs
= 0

Wδ2
=−

(1− r)
(1− δ3)2

{
2
δ2

τy
− 2

(1− δ1 − δ2 − δ3)
τθ

}
= 0

Wδ3
=− 2(1− r)

(1− δ3)3

{
δ2

2

τy
+
δ3

τp
− (1− δ1 − δ2 − δ3) (δ1 + δ2)

τθ

}
= 0 (51)
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Note that the last two equations simplify to a linear system in δ2,δ3, which we solve to

obtain

δ2 =
τy(1− δ1)

τθ + τy + τpδ1
, δ3 =

δ1(1− δ1)τp
τθ + τy + τpδ1

(52)

Simplifying and using the envelope condition we arrive at the defining equation for

the efficient outcome

f ⋆(δ1) =
(
τθ + τy + δ2

1τp

)τθ + τy + τpδ
2
1

τθ + τy + τpδ1

− (1− r) 1
√
c

(1− δ1) = 0

Lemma 7. We have f ⋆
δ1
> 0 for all δ1 ∈ (0,1).

By Lemma 7, there is a unique interior solution, as f ⋆(0) =
(
τθ + τy

)
− (1− r) 1√

c
< 0

by (19) and f ⋆(1) = τθ + τy + τp > 0. Reformulating f ⋆(δ1) = 0, we get the desired

representation (29). Finally, plugging the efficiency conditions (52) and τ⋆s = δ⋆1√
c

into

the welfare expression (28) we get

W⋆ BW
(
δ⋆ ,τ⋆s

)
= max

δ1
−2
√
cδ1 −

(1− r) (1− δ1)2

τθ + τy + δ2
1τp

. (53)

Applying the envelope theorem, all the comparative statics (30) follow.

Proof of Proposition 4: Since f ⋆
δ1

> 0 (Lemma 7), we know that f ⋆(δ1) < 0 implies that

there is underacquisition and f ⋆(δ1) > 0 implies that there is overacquisition. Plugging

the equilibrium δ1 and using the fact that f (δ1) = 0

f ⋆(δ1) =
(
τθ + τy + δ2

1τp

)τθ + τy + δ2
1τp

τθ + τy + δ1τp
− 1

+χ
1
√
c

1

τθ + δ1√
c

+ τy
[1 + r(δ1 − 1)]δ2

1τp

Note that at χ = 0, this expression is negative and hence, δ1 is inefficiently low. As δ1 is

increasing in χ, we are below the efficient initially, but may exceed it for χ sufficiently

large. There exists a χ with δχ1 = δ⋆1 iff f ⋆(δFC
1 ) > 0 (by f ⋆

δ
> 0). We get

f ⋆(δFC
1 ) =

δ1τp

τθ + τy + δ1τp

{
2
(
τθ + τy

)
δ1 + δ3

1τp −
(
τθ + τy

)}
This is larger than zero iff τp ≥

(τθ+τy)−2(τθ+τy)δ1

δ3
1

. Since the cutoff is decreasing in δ1

(and δ1 is decreasing in χ), we obtain the sufficient bound τ̄p.36

Proof of Proposition 5. See Online Appendix (E.5).

36In particular, if δFC
1 ≥

1
2 , i.e.

√
c(τθ+τy)

1−r ≤ 1
2 , the fully cursed agents always overacquires.
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Proof of Proposition 6: To determine the impact of cursedness, we compute

dWEQ

dχ
=
∂WEQ

∂δ1

dδ1

dχ
+
∂WEQ

∂δ2

dδ2

dχ
+
∂WEQ

∂δ3

dδ3

dχ

local to χ = 0, by Proposition 5, dWEQ

dχ = ∂WEQ

∂δ1
· dδ1

dχ . Therefore,

dWEQ

dχ
|χ=0 =

{
(1− r)

(1− δ3)2

{
2

(1− δ1 − δ2 − δ3)
τθ

}
− 2
√
c

}
dδ1

dχ
|χ=0

and applying the rational δ2,δ3, f (δ1) = 0 and the envelope condition gives

dWEQ

dχ
|χ=0 =

{
(1− r)

(1− δ3)2

{
2

(1− δ1 − δ2 − δ3)
τθ

}
− 2
√
c

}
dδ1

dχ
|χ=0

=2


(
(1− r)τs + δ2

1τp

)
(1− r)τ2

s
δ1 −
√
c

 dδ1

dχ
|χ=0 = 2

{
δ1τpc

(1− r)

}
dδ1

dχ
|χ=0 > 0.

In the fully cursed case χ = 1, using Proposition 5 we know that dWEQ

dχ = ∂WEQ

∂δ3

dδ3
dχ .

Plugging in the fully cursed weights δFC
1 , δFC

2 , and δFC
3 into (51) yields Wδ3

= 2
√
cδFC

1 .

Therefore, we have dWEQ

dχ |χ=1 =
√
cδFC

1
dδ3
dχ |χ=1 < 0, where dδ3

dχ |χ=1 < 0 follows from

dδ3

dχ
|χ=1 =

(
∂δ3

∂δ1

∂δ1

∂χ

)
|χ=1 +

∂δ3

∂χ
|χ=1 = 0−

δ2
1τp

(
τθ + τy + τs

)
(1− r)τs

(
τθ + τy + τs + δ2

1τp

) < 0.

Proof of Proposition 7: At χ = 0, χ = 1 we have W = −
√
c (1 + δ1). Hence, dW

dτ ∝ −
dδ1
dτ and

the comparative statics w.r.t. τs follow immediately from Proposition 1. For costs, note

that in the rational case, direct computation yields

∂WEQ
0

∂c
= −

1− r −
√
c
(
τθ + τy

)
+
√
cδ1τp

√
c (1− r) + 2cδ1τp

< 0

which is negative by the parameter condition (19). In the fully cursed case, note that

∂WEQ
1

∂c
= − 1
√
c

(1− r)−
√
c
(
τθ + τy

)
1− r

 = − δ1√
c
< 0

For τp = 0, the rational and (partially) cursed equilibria coincide, hence the above

comparative statics prevail, and by continuity, this extends to small but interior τp. The

paradoxical welfare results emerge instead for large τp. To make them apparent we

consider the transparent limit case τp→∞. By continuity, the following comparative

statics hold for sufficiently large τp.
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Lemma 8. The limit welfare (70) is

• Decreasing in τθ,τy if and only if r > 0 and χ ≤ 2r−1
r .

• Decreasing in costs, unless r < 0, when higher costs increase welfare for intermediate χ.

It remains to be shown that welfare is always increasing in τp. Note that

dW
dτp

=
∂W
∂τp

+
∂W
∂δ1

dδ1

dτp
+
∂W
∂δ2

dδ2

dτp
+
∂W
∂δ3

dδ3

dτp
+
∂W
∂τs

dτs
dτp

=
∂W
∂τp

+
∂W
∂δ1

dδ1

dτp
+
∂W
∂δ3

dδ3

dτp

Since we proved that ∂W
∂δ2

= ∂W
∂τs

= 0 for every χ. Simplifying this expression and

plugging in for dδ1
dτp

, we obtain an expression that, after removing clearly signed factors,

is proportional to a sum of positive addenda plus

cχδ4
1τ

2
p

(
1 +χ+χ2r − 3χr

)
,

but h (χ, r)B 1 +χ+χ2r − 3χr ≥ 0 whenever r ≤ 1 and χ ∈ [0,1],37 as desired.
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Supplementary Online Appendix

Acquisition, (Mis)use and Dissemination of Information: The Bless-

ing of Cursedness and Transparency

C The Quasi-Bayesian Approach (For Online Publication)

In this appendix, we study an alternative models of information acquisition. Instead of

using the subjective envelope condition, the agent maximizes the expectation of his

interim cursed-expected welfare. Formally, the interim χ-cursed posterior (Eyster and

Rabin, 2005) is given by the mixture distribution θ|si , y,p ∼ µχB χN
(
τyy+τssi
τθ+τy+τs

, 1
τθ+τy+τs

)
+

(1−χ)N
(
τyy+τssi+δ

2
1τpp̂

τθ+τy+τs+δ
2
1τp

, 1
τθ+τy+τs+δ

2
1τp

)
. Interim welfare is then given by

w (si , y,p) = Eµχ

[
− (1− r) (ai −θ)2 − r (ai − ā)2

]
= a2

i − (1− r)
(
Vµχ

[θ] +E
2
µχ

[θ]
)
− r

(
Vµχ

[ā] +E
2
µχ

[ā]
)

where ai denotes the χ-cursed optimal action (4) which is measurable w.r.t. (si , y,p). To

estimate the value of private information ex-ante, the agent requires a joint prior over

the signals (that also takes into account their correlation through θ). Note that these

beliefs over signal realizations do not depend on cursedness. Cursedness only affects

the inference from the aggregative signal to the state, not the perceived distribution

over signals having integrated out the state.38 The prior distribution is therefore given

by


si
y

p

 ∼ µ(τs)BN




0

0

0

 ,


1
τθ

+ 1
τs

1
τθ

(
δ1+δ2
1−δ3

)
1
τθ

1
τθ

1
τθ

+ 1
τy

(
δ1+δ2
1−δ3

)
1
τθ

+
(
δ2

1−δ3

)
1
τy(

δ1+δ2
1−δ3

)
1
τθ

(
δ1+δ2
1−δ3

)
1
τθ

+
(
δ2

1−δ3

)
1
τy

(
1

1−δ3

)2
(

(δ1+δ2)2

τθ
+ δ2

2
τy

+ 1
τp

)



(54)

The quasi-Bayesian level of information acquisition solves

max
τs

Eµ(τs) [w (si , y,p)]− cτs,

where the expectation is taken under the measure (54).

38To see this, note that a fully cursed agent perceives the rescaled aggregative signal to be p̂ =
τs

τθ+τy+τs
si +

τy
τθ+τy+τs

y + noise + 1
δ1
zp, where the noise is uncorrelated with the other signals and the state.

This is because information about θ affects the agents beliefs about p even though he doesn’t update
vice versa. It is easy to check from this representation that the covariance of p with the other signals is
unaffected by cursedness.
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This notion is similar to the subjective envelope condition in that agents under both

criteria correctly predict their (cursed) action rule, do not use information acquisition to

fix their bias, and correctly predict the equilibrium outcome as well as understand that

they cannot change it. That is, both notions satisfy the bulk of the behavioral desiderata

outlined in section 3. The main difference is that agents under the subjective envelope

condition consider their true welfare, while they follow the cursed mixture distribution

under the objective interim condition. In terms of our learning foundation (Theorem

3), this requires that the agent records his subjective expected welfare—instead of the

true realized welfare—and correlates it with the sign of the information acquisition

implementation tremble.

This approach has three significant shortcomings. First, at a conceptual level, we

see the mixture distribution as an auxiliary device to represent behavior, less as a

normatively valid notion, even subjectively. Second, in order to obtain a signal that

is independent of the state conditionally on their private and public fundamental

signal, the perceived correlation of the public signal p with the state θ at the ex-ante

stage depends on an agent’s individually chosen τs. In other words, the agent behaves

as if his personal information acquisition affects the precision of public information

obtained by all agents, which is a sort of magical thinking we don’t commonly associate

with cursedness. Third, from a modeling standpoint, the mixture distribution leads

posteriors outside of the family of conjugate priors selected for the analysis of the

model. In our case, a mixture of normal distributions is not itself a normal distribution.

In many settings of applied theory, however, the tractability of the model crucially

depends on these distributional assumptions.39 Indeed, a characterization of the

comparative statics of the model under this notion has proven elusive.

To compare this notion with our results from the subjective envelope condition,

we therefore resort to numerical computations. The key comparative statics results

continue to hold. Higher levels of cursedness still correspond to an increased use and

acquisition of private information, even though τs and δ1 are no longer proportional

(Figure 7). Starting with the rational case, an increase in cursedness increases welfare

(Figure 8). Moreover, for intermediate cursedness and high levels of transparency, more

and cheaper fundamental information has a paradoxical effect on welfare (Figure 8).

Finally, notice that the two notions coincide not only in the rational case but also for

fully cursed agents. This is the case since fully cursed agents act just like rational agents

would in a world without the aggregative signal. The true and the subjective interim

39Notice that the issue is not computing the cursed optimal action, as the first moment is highly
tractable. Indeed Eµχ

= χEµ1
+ (1−χ)Eµ0

, while by the rule of total variance

Vµχ
[θ] = χVµ1

+ (1−χ)Vµ0
+χ (1−χ)

(
Eµ1
−Eµ0

)2

It is the ex-ante expectation of the final term that limits tractability in our case.
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welfare of such agents coincide, as the precision of an unused signal is immaterial for

welfare.

Figure 7: δ1 and τs as a function of χ under different information acquisition notions (left). Equilibrium
loadings as a function of χ under different information acquisition notions (right).

Figure 8: Welfare as a function of χ under different information acquisition notions (left). Welfare under
objective interim information acquisition, as a function of τy . (right).

D Formal Results for Section 6 (Shrewd Agent) (For Online

Publication)

Proposition 10. The action rule of the shrewd agent is

αR
1 =

(1− (1− δ1)r)τR
s

τθ + τy + τR
s + δ2

1τp
(55)

αR
2 =

(1− (1− δ1)r)τy + δ2

(
r
(
τθ + τy + τR

s

)
− (1− r)δ1τp

)
τθ + τy + τR

s + δ2
1τp

(56)
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αR
3 =

δ1 (1− (1− δ1)r)τp + δ3

(
r
(
τθ + τy + τR

s

)
− (1− r)δ1τp

)
τθ + τy + τR

s + δ2
1τp

(57)

where τR
s solves

τR
s =

αR
1√
c

(58)

with complementary slackness ensuring τR
s ≥ 0 when required.

Proof. This follows immediately from shrewd observation of the derivation of the

matching coefficients and g equations. More directly, the welfare of an agent playing

loadings α and private precision τR
s while the rest of (the average of) others play δ is

derived in (71). By setting

∇αW(α,δ) = 0

we find the best response coefficients as a function of others’ loadings. We get

0 =(1−α2 −α3 (δ1 + δ2)−α1 (1− δ3)− δ3 − r (1− δ1 − δ2) + δ3 (α2 + r))τs −α1(1− δ3)τθ

0 =(1−α2 −α3 (δ1 + δ2)−α1 (1− δ3)− δ3 − r (1− δ1 − δ2) + δ3 (α2 + r))τy − (α2 (1− δ3) + δ2 (α3 − r))τθ
0 =τy

[
− (δ1 + δ2) (1−α1 −α2 −α3 (δ1 + δ2)− (1−α1 −α2)δ3 − r (1− δ1 − δ2 − δ3))τp + (α3 − δ3r)τθ

]
+ 2τpτθ (δ2 (α2 (1− δ3) + δ2 (α3 − r)))

The solution to this linear system is the α in the proposition, which we can plug back

in welfare to obtain the expression

W(δ) =
(1− r)r
(1− δ3)2

[
δ2

2

τy
+
δ2

3

τp
+

(1− δ1 − δ2 − δ3)2

τθ

]
− (1− (1− δ1)r)2

τθ + τy + τR
s + δ2

1τp
− cτR

s

Differentiating this equation with respect to τR
s , we obtain the final condition.

Proof of Proposition 8: We first derive equation (36) in the text. Note that

(1− (1− δ1)r)2(
τθ + τy + τR

s + δ2
1τp

)2 − c = 0

(1− (1− δ1)r)2 = c
[
τθ + τy + τR

s + δ2
1τp

]2
using (46) on the LHS we get after rearranging

(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp

)
τθ + τy + τs +χδ2

1τp

 =
[
τθ + τy + τR

s + δ2
1τp

]
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From there, τs ≥ τR
s is immediate, since

τθ + τy + τs + δ2
1τp

τθ + τy + τR
s + δ2

1τp
= 1 +

χδ2
1τp

τθ + τy + τs
≥ 1

For the fully cursed equilibrium, the above implies that τθ+τy+τs = τθ+τy+τR
s +δ2

1τp

and hence we have

τR
s = τs − δ2

1τp =
1
√
c

1− r −
√
c
(
τθ + τy

)
1− r

− τp

1− r −
√
c
(
τθ + τy

)
1− r


2

Solving for τR
s ≥ 0, we get positive information acquisition iff

τθ + τy ∈


(1− r)

(
1− 1

τp
√
c

)
√
c

,
1− r
√
c

 (59)

.

Now, for the Proposition, we have established τR
s ≤ τs. For the limit result, note that

τR
s =

(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp

)
τθ + τy + τs +χδ2

1τp
−
(
τθ + τy + δ2

1τp

)
=

(
τθ + τy + τs

)
τs −χδ2

1τp

(
τθ + τy + δ2

1τp

)
τθ + τy + τs +χδ2

1τp

and that τs→∞ as c→ 0. From there, we have

τR
s =

(
τθ + τy + τs

)
τs −χδ2

1τp

(
τθ + τy + δ2

1τp

)
τθ + τy + τs +χδ2

1τp
→ τ2

s

τs
→∞

We have τR
s = 0 for τθ + τy ≤

(1−r)
(
1− 1

τp
√
c

)
√
c

in the fully cursed case, where τs > 0.

To see nonmonotonicity in τθ + τy in the general case, note that as we approach the

limit (19), we have

dτR
s

dτy
|√c= 1−r

τθ+τy
=

τθ + τy
√
c
(
2τθ + τy

) dδ1

dτy
∝ dδ1

dτy
< 0

and hence, local to this value, we always get a positive τR
s . However, for τθ + τy ≤ χ1−r√

c

interior, we get that for τp→∞

τR
s =

(
τθ + τy + τs

)
τs −χδ2

1τp

(
τθ + τy + δ2

1τp

)
τθ + τy + τs +χδ2

1τp
→−δ2

1τp < 0

which establishes the result. Interior nonmonotonicity follows by continuity.
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To see nonmonotonicity in c, note that

1. dτR
s

dc < 0 in the limit (19) (
√
c = 1−r

τθ+τy
). To see this, take the representation above,

plug 17, take the derivative, set
√
c = 1−r

τθ+τy
, δ1 = 0, then we get

dτR
s

dc
|√c= 1−r

τθ+τy
→

2(1− r)4 ∂δ1
∂c(

τθ + τy
)2 ∝ ∂δ1

∂c
< 0

2. τR
s = 0 at the limit (19), as 0 ≤ τR

s ≤ τs = 0. Combining this with (1.), we obtain

that τR
s > 0 local to this upper bound on costs.

3. τR
s →∞ as c→ 0, as shown above.

4. For any c satisfying the existence of an interior equilibrium in the τp→∞ limit

(i.e.
√
c ≤ χ 1−r

τθ+τy
, see footnote 43), there exists a τp sufficiently large such that(

τR
s

)FOC
< 0. To see this, pick an interior c. Then, because δ∞1 > 0 and τp→∞(

τR
s

)FOC
→−δ2

1τp < 0

This establishes nonmonotonicity, as τR
s is large for small c, zero for intermediate c, but

nonzero local to
√
c = 1−r

τθ+τy
.

To analyze the derivative in χ, we compute

dτR
s

dχ
∝ r − 2

√
cδ1τp

It is apparent that τR
s is decreasing for r ≤ 0 and that it is increasing as r → 1 −

√
c
(
τθ + τy

)
when this is positive, as then δ1→ 0. To see that we can have a hump shape,

note that δ1 is increasing in χ and hence

d2τR
s

dχdχ
∝ −dδ1

dχ
≤ 0

around dτR
s

dχ = 0, which establishes a hump-shape (but, importantly, not necessarily

concavity!). Clearly, all these comparative statics only apply for interior solutions,

otherwise τR
s ≡ 0 locally.

Remark 1 (The Shrewd Agent in the Transparent Limit). Consider the limit as τp→∞.

Since δ∞1 > 0 whenever a limit equilibrium exists, the rational agent can exactly infer

the state. Therefore, he does not acquire or use private information40 and relies solely

40Indeed, notice that the interval (59) vanishes as τp→∞.
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on the aggregative signal for information

αR
1 → 0, τR

s → 0, αR
2 →

− (1− r)
√
cτy

1− r −
√
c
(
τθ + τy

) < 0, αR
3 →

1− r −
√
c
(
τθ + τy

)
r

1− r −
√
c
(
τθ + τy

) > 0

(60)

The apparent anti-imitation in αR
2 < 0 allows the shrewd agent to filter out the over-

reliance of the cursed crowd on the public signal.

Proof of Proposition 9: For χ, we plug the general δ into the welfare expression, take
derivative w.r.t. χ, set χ = 1, δ1 = δFC

1 and we get

dWR
χ

dχ
= −

2
√
c (1− r)τp

(
1− r −

√
c
(
τθ + τy

))2 [
r
(
τθ + τy + τR

s + τp
)
− τp

(
1−
√
c
(
τθ + τy

))](
1− r

(
1 +
√
c
(
τθ + τy

)))2

[·]2
[
1 +
√
cτp

(
1−
√
c
(
τθ + τy

))2
+ r2

(
1 +
√
c
(
τθ + τy + τp

))
− r

(
2− 2cτp

(
τθ + τy

)
+
√
c
(
τθ + τy + 2τp

))]
∝ −

2
√
cτpδ

2
1 (1− r)3

[
r
(
τθ + τy + τR

s + τpδ1

)
− τpδ1

]
1 +
√
cτp

(
1−
√
c
(
τθ + τy

))2
+ r2

(
1 +
√
c
(
τθ + τy + τp

))
− r

(
2− 2cτp

(
τθ + τy

)
+
√
c
(
τθ + τy + 2τp

))
(61)

Consider first the case of r > 0, which implies that 1 −
√
c
(
τθ + τy

)
> 0. As r → 1 −

√
c
(
τθ + τy

)
, we have for the above expression

→−2τp
(
τθ + τy

)√
c
(
1−
√
c
(
τθ + τy

))
δ2

1 ≤ 0

This converges to zero from below since δ1→ 0 as r→ 1−
√
c
(
τθ + τy

)
. Therefore, for

large χ, the shrewd agent prefers a less cursed environment if r is big.

Consider now r ≤ 0. Note that the numerator in (61) is always negative. Furthermore,

note that the denominator v(r) is positive for r = 0. We will show that it is positive for

all r ≤ 0 and hence the expression is positive for all r ≤ 0. First, note that v is a convex

quadratic function in r. Minimizing, we find that the minimizer and minimum, resp.,

are given by

r∗ ∝ 2− 2cτp
(
τθ + τy

)
+
√
c
(
τθ + τy + 2τp

)
v∗ ∝ −1 + 4cτp

(
τθ + τy

)
If v∗ > 0, we are done. If it is negative, it is easy see that r∗ must be positive. But then,

the fact that v(0) > 0 implies that v(r) > 0 for all r ≤ 0.

Proposition 11. The welfare of a shrewd agent in a fully cursed population,WR
1 , has the

following properties.

1. It is strictly increasing in τp.

7



2. It has ambiguous comparative statics with respect to τy . In particular,

• At the boundary of the activity region, (i.e. τy =
(1−r)

(
1− 1

τp
√
c

)
√
c

− τθ), we have
dWR

1
dτy

< 0,

• for τy large (i.e. local to the nontriviality limit τy = (1−r)√
c
− τθ), we have dWR

1
dτy

> 0.

3. It is decreasing in c whenever τR
s > 0, but it has ambiguous comparative statics with

respect to c if τR
s = 0. In particular,

• If τp ≥ 1√
c

and r sufficiently negative, then dWR
1

dc > 0.

Proof. To obtain the welfare of the shrewd agent in the fully cursed equilibrium, we

simply plug action rule (55)-(35) and the equilibrium δs into the welfare equation to

obtain, for the unconstrained case

WR,τR
s >0

1 = −2
√
c+
−2c3/2 (1− r)τp

(
τθ + τy

)
+ c2τp

(
τθ + τy

)2
+ c (1− r)

(
τθ + τy + (1− r)τp

)
(1− r)2

as well as for the constrained case, where we leave the expression in general form both

for compactness and ease of analysis

WR,τR
s =0

1 = −
(1− r)rδ2

2

τy
− (1− r)r (1− δ1 − δ2)2

τθ
− (1− (1− δ1)r)2

τθ + τy + δ2
1τp

For transparency, we obtain by direct computation for an interior solution ∂W
R,τR

s >0
1
∂τp

=

c
(1−r−

√
c(τθ+τy))

2

(1−r)2 = cδ2
1 > 0, and through an envelope argument from the general expres-

sion, we get form corner solutions ∂W
R,τR

s =0
1
∂τp

= δ2
1(1−(1−δ1)r)2

(τθ+τy+δ2
1τp)

2 > 0.

For τθ,τy : Consider the derivative of WR,τR
s >0

1 and let τθ + τy →
(1−r)

(
1− 1

τp
√
c

)
√
c

. Then,

we get

∂WR,τR
s >0

1

∂τy
→ c

1− r − (1− r)2
√
cτp + 2cτp

(
τθ + τy

)
(1− r)2 =

c
1− r

(
1− 2

√
cτpδ

FC
1

)
= − c

1− r
< 0

Note that this result also holds for WR,τR
s =0

1 , as the value function is C1. Taking instead

the limit as τθ + τy →
(1−r)√

c
(where we always are at an interior solution), we have

∂WR,τR
s >0

1

∂τy
→ c

1− r
(
1− 2

√
cτpδ

FC
1

)
=

c
1− r

8



For c, let us first demonstrate a setting where an increase in costs is beneficial for the

shrewd agent. Consider constrained welfare, let r→−∞ and hence δ1 = 1−
√
c(τθ+τy)
(1−r) →

1, δ2 =
√
c

1−r τy → 0. Then

WR,τR
s =0

1 →−
rcτy

(1− r)
− rτθc

(1− r)
−

(
1−

√
c(τθ+τy)
(1−r) r

)2

τθ + τy + τp
→ cτθ + τyc −

(
1 +
√
c
(
τθ + τy

))2

τθ + τy + τp

and

∂
∂c

cτθ + τyc −

(
1 +
√
c
(
τθ + τy

))2

τθ + τy + τp

 = τθ + τy −

(
τθ + τy

)
√
c

(
1 +
√
c
(
τθ + τy

))
τθ + τy + τp

=
(
τθ + τy

) τp − 1√
c

τθ + τy + τp

 > 0

since we consider the case τR
s = 0, and therefore τp >

1√
c
.

Generally, we can also have ∂
∂cWR

1 < 0. To see this, consider the case of r = 0. Then

WR|r=0 = max
τR
s ≥0
− 1

τθ + τy + τR
s + δ2

1τp
− cτR

s

where we may or may not have a corner solution. In either case, welfare is decreasing

in c because δ1 is decreasing in c and an envelope argument.

At an interior solution (which occurs for τp <
1

δ1
√
c
), we get

∂
∂c

WR,τR
s >0

1 = − 1
√
c

+
−3
√
c (1− r)τp

(
τθ + τy

)
+ 2cτp

(
τθ + τy

)2
+ (1− r)

(
τθ + τy + (1− r)τp

)
(1− r)2

=

(
τθ + τy

)
(1− r)

− 1
√
c

+ δ1τp

δ1 −
√
c
(
τθ + τy

)
(1− r)


which is always negative by condition (19) if δ1 ≤

√
c(τθ+τy)
(1−r) . If this is violated, we have

(
τθ + τy

)
(1− r)

− 1
√
c

+ δ1τp

δ1 −
√
c
(
τθ + τy

)
(1− r)

 ≤
(
τθ + τy

)
(1− r)

− 1
√
c

+
1
√
c

δ1 −
√
c
(
τθ + τy

)
(1− r)


= − δ1√

c
+

1
√
c

δ1 −
√
c
(
τθ + τy

)
(1− r)

 =
1
√
c

−
√
c
(
τθ + τy

)
(1− r)

 < 0

concluding the proof.
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E Additional Proofs and Results (For Online Publication)

E.1 Model With Exogenous Private Information τs

We start by analyzing the model with exogenous private information, some results from

which are cited in the discussion after Propositions 1, 2 and 3 to clarify the impact of

endogenous information acquisition. We first establish a helpful lemma.

Lemma 9. In equilibrium, we have fδ > 0.

Proof. Compute

fδ = τθ + τy + 3δ2
1τp −χ

τs

τθ + τy + τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

=
(
τθ + τy + 3δ2

1τp

[
1−χ τs

τθ + τy + τs

[
1 + r(δ1 − 1)

δ1

]])
+χ

τs

τθ + τy + τs
[1− r]δ1τp + (1− r)τs

=

τθ + τy + 3δ2
1τp

1− χτθ +χτy +χτs +χδ2
1τp

τθ + τy + τs +χδ2
1τp

+χ
τs

τθ + τy + τs
[1− r]δ1τp + (1− r)τs > 0

where in the final step we used (46) in the transformation:

1−χ τs

τθ + τy + τs

[
1 + r(δ1 − 1)

δ1

]
= 1−

χτθ +χτy +χτs +χδ2
1τp

τθ + τy + τs +χδ2
1τp

≥ 0.

Proposition 12. The comparative statics of the model with exogenous τs are given by

∂δ1

∂χ
≥ 0,

∂δ2

∂χ
≥ 0,

∂δ3

∂χ
≤ 0,

∂
∂χ

δ1

δ2
≤ 0 (62)

∂δ1

∂τp
≤ 0,

∂δ2

∂τp
≤ 0,

∂δ3

∂τp
≥ 0,

∂
∂τp

δ1

δ2
≥ 0, (63)

all inequalities being strict if τp , 0 and χ , 1. Furthermore,

∂
∂τp

δ2
1τp > 0. (64)

Proof. By implicit differentiation

dδ1

dχ
= −

fχ
fδ
∝ τs

τθ + τy + τs
[(1− r) + rδ1]δ2

1τp ≥ 0

and from (12), it is immediate that dδ2
dχ ∝

dδ1
dχ ≥ 0 and dδ3

dχ ∝ −
dδ1
dχ ≤ 0.
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Relative size of δ1 and δ2:

d
dχ

δ2

δ1
=

d
dχ

δ1τy

(1− r)τs − δ1

(
τθ + τy

) =
τy

(
(1− r)τs − δ1

(
τθ + τy

))
+ δ1τy

(
τθ + τy

)
(
(1− r)τs − δ1

(
τθ + τy

))2
dδ1

dχ
≥ 0

whence the result in the proposition follows.

τp comparative statics: Again, dδ1
dτp
∝ −fτp and using (46), we have

fτp = δ3
1 −χ

τs

τθ + τy + τs
[(1− r) + rδ1]δ2

1 = δ3
1

1−χ
τθ + τy + τs + δ2

1τp

τθ + τy + τs +χδ2
1τp

 > 0

From (12), the comparative statics are immediate. Finally, we have

dδ2
1τp

dτp
= 2δ1τp

dδ1

dτp
+ δ2

1

= −2δ1τp

δ3
1 −χ

τs
τθ+τy+τs

[(1− r) + rδ1]δ2
1(

τθ + τy + 3δ2
1τp

)
−χ τs

τθ+τy+τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

+ δ2
1

=
δ2

1
fδ

{
−2δ1τp

(
δ1 −χ

τs

τθ + τy + τs
[(1− r) + rδ1]

)
+
((
τθ + τy + 3δ2

1τp

)
−χτs [2 + r(3δ1 − 2)]

τθ + τy + τs
δ1τp + (1− r)τs

)}
∝

(
τθ + τy + δ2

1τp

)
−χ τs

τθ + τy + τs
rδ2

1τp + (1− r)τs

=
1
δ1

(
(1− r)τs +χ

τs

τθ + τy + τs
(1− r)δ2

1τp

)
> 0

where we dropped δ2
1
fδ
> 0 and, in the last step, we use f (δ1) = 0, which establishes the

claim.

Proposition 13. In the model with exogenous τs, the weight on private information respond
to parameter changes as follows:

∂δ1

∂τs
≥ 0,

∂δ1

∂τy
≤ 0,

∂δ1

∂r
≤ 0 (65)

Proof. Since fδ > 0 (Lemma 9), for a generic parameter ν we get

dδ1

dν
= −

fν
fδ
∝ −fν

And hence the comparative statics of δ1 follow immediately, occasionally using (46),

from

fτy = δ1 +χ [(1− r) + rδ1]δ2
1τp

τs(
τθ + τy + τs

)2 > 0
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fτs = −χ
τθ + τy(

τθ + τy + τs
)2 [(1− r) + rδ1]δ2

1τp − (1− r) (1− δ1) < 0

fr = χ
τs (1− δ1)
τθ + τy + τs

δ2
1τp + (1− δ1)τs = τs (1− δ1)

 χδ2
1τp

τθ + τy + τs
+ 1

 > 0

Notice the fundamental representation (24) is valid even in the model with exoge-

nous τs as it does not make use of equation (17).

Proposition 14. In the model with exogenous τs , the loadings in the fundamental represen-
tation (24) are

β = 1− δ1τθ

(1− r)τs
, γ2 =

δ1τy

(1− r)τs
, γ3 =

1− δ1

δ1
−

(
τθ + τy

)
(1− r)τs

. (66)

Furthermore,

dβ

dχ
< 0,

dβ

dτp
> 0,

dβ

dτs
> 0,

dγ2

dτy
> 0,

dγ2

dτs
< 0,

dγ2

dτp
< 0.

Proof. The result for dβ
dχ , dβ

dτp
, dγ2
dτp

is immediate from the comparative statics of δ1. For
dγ2
dτy
∝ dδ1

dτy
τy + δ1, we get

dδ1

dτy
τy + δ1 = −

fτy
fδ
τy + δ1 ∝ −fτyτy + fδδ1

=
δ1(

τy + τs + τθ
)2

[(
3δ2

1τp + τθ + (1− r)τs
)(
τy + τs + τθ

)2
−χδ1τpτs

(
(3− 3r + 4rδ1)τy + (2− 2r + 3rδ1) (τs + τθ)

)]
∝

(
3δ2

1τp + τθ + (1− r)τs
)(
τy + τs + τθ

)2
− 3χδ1τpτs (1− r + rδ1)

(
τy + τs + τθ

)
︸                                                                                             ︷︷                                                                                             ︸

CA1

+ A2

where, using (46),

A1 =
(
τy + τs + τθ

)2
τθ + (1− r)τs + 3

(1−χ)δ2
1τp

(
τy + τs + τθ

)
τy + τs + τθ +χδ2

1τp

 > 0.

It remains to show that A2 > 0. We have

A2 ∝ (1− r) (τθ + τs)− τyrδ1 > (1− r) (τθ + τs)− τyrδFC
1

= (1− r) (τθ + τs)− τyr
(1− r)τs

τθ + τy + (1− r)τs
= (1− r)

(
τθ + τs

(
1− r

τy

τθ + τy + (1− r)τs

))
> 0.
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Note that the result for dγ2
dτs

and dβ
dτs

follows when we establish d
dτs

δ1
τs

< 0:

d
dτs

δ1

τs
=

dδ1
dτs
τs − δ1

τ2
s

∝ dδ1

dτs
τs − δ1 ∝ −fτsτs + fδδ1

= (1− r) (1− δ1)τs − δ1

(
τy + τθ + (1− r)τs

)
+ 3

χ (1− r)τsδ2
1τp

τy + τθ + τs
−
χ (1− r)τ2

s δ
2
1τp(

τy + τθ + τs
)2

− δ3
1τp

3− 4
χrτs

τy + τθ + τs
+

χrτ2
s(

τy + τθ + τs
)2


using f to replace (1− r) (1− δ1)τs, we obtain a decomposition B1 + B2 where

B1 =
χδ2

1τpτs(
τy + τθ + τs

)2

[
δ1r

(
τy + τθ

)
− (1− r)τs

]
B2 = −δ1

(
2δ2

1τp + (1− r)τs
)

+ 2
χδ2

1 [1− r + δ1r]τpτs
τy + τθ + τs

Note that in B1 the final term is negative if r < 0, otherwise, estimate δ1 < δ
FC
1 to arrive

at

δ1r
(
τy + τθ

)
− (1− r)τs <

(1− r)τs
τθ + τy + (1− r)τs

r
(
τy + τθ

)
− (1− r)τs

= −
(1− r)2

τs

(
τy + τθ + τs

)
τθ + τy + (1− r)τs

< 0

and therefore B1 < 0. Plugging (46) into B2, we arrive at

B2 = −δ1

(1− r)τs + 2
(1−χ)δ2

1τp

(
τy + τθ + τs

)(
τy + τθ + τs +χδ2

1τp

)  < 0,

whence we have established d
dτs

δ1
τs

< 0 and therefore dγ2
dτs

< 0 and dβ
dτs

> 0.

E.2 Informational Efficiency: Total Precision

The state-action coefficient β and the endogenous precision δ2
1τp represent natural

metrics to measure the informational efficiency of markets and the information content

of the aggregative signal, respectively. However, since they combine information

acquisition, dissemination, and use, their comparative statics (contained in Proposition

1 and 2) give only a partial view of the impact of transparency on the efficiency of

markets where agents underestimate the information content of aggregate statistics —
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one of our key outcomes of interest.41 To get a more complete understanding of this

issue, we now study how τp affects τΣB τθ +τy +τs +δ2
1τp, namely the total precision of

information that agents possess about the state in the moment they choose their action

(even though cursed agents do not use it efficiently — Section 6 studies an agent who

can fully extrapolate from τΣ). We show that transparency has an ambiguous effect on

τΣ as the dissemination improvement on δ2
1τp can exceed or fall short of the crowding

out effect on τs. To see that, consider the following factorization of τΣ

τΣ =
(

1− r + rδ1√
c

)1 +χ
δ2

1τp

τθ + τy + τs

 . (67)

Since dδ1
dτp
≥ 0, the first factor in (67) is increasing in transparency if and only if r < 0,

while the second factor is always increasing (
dδ2

1τp
dτp

≥ 0 and dτs
dτp
≤ 0). Since χ = 0

shuts down the second channel, transparency increases total precision in the rational

benchmark if and only if actions are substitutes. In this case, transparency increases

τΣ even for interior degrees of cursedness. In a game of complementarities instead,

cursedness increases the range of parameters where transparency is desirable by scaling

up the second factor. Hence, we obtain

Proposition 15. The total precision available the agents is increasing in τp if and only if
r < R(χ), for a cutoff R(χ), possibly trivial, with R(0) = 0 and R′ > 0.

Proof. Computing

∂
∂τp

(
τθ + τy + τs + τpδ

2
1

)
=

∂τs
∂τp

+ δ2
1 + 2δ1τp

∂δ1

∂τp
=

−gδfτp
gδfτs − gτsfδ

+ δ2
1 + 2δ1τp

gτsfτp
gδfτs − gτsfδ

∝ −gδfτp + δ2
1

(
gδfτs − gτsfδ

)
+ 2δ1τpgτsfτp

Plugging in and using (46) and (17) wherever apparent yields a linear equation in r

given δ1, which can be solved for the implicit equation

Rp(χ) = χ

 δ1 +
√
c
(
τθ + τy + δ2

1τp

)
δ1 +
√
c
(
τθ + τy +χδ2

1τp

)
2

= χ

 τθ + τy + τs + δ2
1τp

τθ + τy + τs +χδ2
1τp

2

such that ∂
∂τp

(
τθ + τy + τs + τpδ

2
1

)
> 0 if r < Rp. To derive the properties of Rp, let us

define

k(χ, r) = χ

 δ1 +
√
c
(
τθ + τy + δ2

1τp

)
δ1 +
√
c
(
τθ + τy +χδ2

1τp

)
2

− r = 0

41A similar question is addressed in Morris and Shin (2005) who show that a central bank may
inadvertently sabotage its own information collection from observing aggregate outcomes by providing
precise information about these outcomes to the market.
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To show that Rp(χ) is increasing in χ, we need to establish that R′p(χ) = −kχkr > 0. By

lengthy computation, it is easy to show that,

kχ ∝
(
δ1 +
√
c
(
τθ + τy + δ2

1τp

))(
δ1 +
√
c
(
τθ + τy −χδ2

1τp

))
+
∂δ1

∂χ
2
√
c (1−χ)τpδ1

(
δ1 + 2

√
c
(
τθ + τy

))
Note that ∂δ1

∂χ > 0, and – if the first term is positive – we have kχ > 0. This is the case for

valid parameters: Suppose towards a contradiction that it is not, i.e.

δ1 +
√
c
(
τθ + τy −χδ2

1τp

)
< 0 ⇐⇒ τp >

δ1 +
√
c
(
τθ + τy

)
√
cχδ2

1

But note that r = χ

(
δ1+
√
c(τθ+τy+δ2

1τp)
δ1+
√
c(τθ+τy+χδ2

1τp)

)2
is increasing in τp (as a partial derivative), so

this would imply that

r =χ

 δ1 +
√
c
(
τθ + τy + δ2

1τp

)
δ1 +
√
c
(
τθ + τy +χδ2

1τp

)
2

> χ


δ1 +
√
c
(
τθ + τy + δ2

1
δ1+
√
c(τθ+τy)√
cχδ2

1

)
δ1 +
√
c
(
τθ + τy +χδ2

1
δ1+
√
c(τθ+τy)√
cχδ2

1

)


2

= χ


δ1 +
√
c
(
τθ + τy + δ1

χ
√
c

+ 1
χ

(
τθ + τy

))
δ1 +
√
c
(
τθ + τy + δ1√

c
+
(
τθ + τy

))


2

= χ


(
1 + 1

χ

)(
δ1 +
√
c
(
τθ + τy

))
2δ1 + 2

√
c
(
τθ + τy

) 
2

=
(χ+ 1)2

4χ
= 1 +

(χ− 1)2

4χ
> 1

a contradiction. Hence we require that τp is smaller, otherwise the cutoff is trivial (i.e.

greater than one). Hence, whenever we have an interior cutoff, we have kχ > 0.
It remains to show (to get dr

dχ > 0) that kr < 0. (with linear costs), which is the case, as

kr =
∂
∂r

χ
 δ1 +

√
c
(
τθ + τy + δ2

1τp

)
δ1 +
√
c
(
τθ + τy +χδ2

1τp

)
2

− r

 = χ (1−χ)2
√
cτpδ1

(
δ1 + 2

√
c
(
τθ + τy

))(
δ1 +
√
c
(
τθ + τy + δ2

1τp

))
[
δ1 +
√
c
(
τθ + τy +χδ2

1τp

)]3 ∂δ1

∂r
− 1

≤ −1 < 0

In addition, we have that at the solution to k = 0, we always have kr < 0, whence there

exists a unique solution and therefore a cutoff R(χ), such that k ≥ 0 iff r ≤ R(χ), as we

wanted to show. In addition, R′ > 0, and R(0) = 0.

To see that the cutoff can be trivial, note that

d
dτp

(
τθ + τy + τs + δ2

1τp

)
→ 1− 1−χ

2
√
c
(
τθ + τy

)
as r→ 1−

√
c
(
τθ + τy

)
, which is of ambiguous sign.
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Figure 9 gives a graphic representation of Proposition 15 (and shows that there is a

similar pattern for the impact of public fundamental information τy): In the rational

setting (χ = 0, left panel), transparency increases total precision only in a game of

strategic substitutes. In a game of strategic complements, by contrast, transparency

increases total precision if and only if cursedness is large enough. A sufficiently cursed

environment reduces the crowding out effect and therefore aggregative information

becomes an effective tool to enhance total precision (right panel). In particular, in a

fully cursed economy — where the crowding out effect is completely shut down — τΣ

is always increasing in τp.

-1 -0.5 0 0.5

-0.5

0

0.5

-1 -0.5 0 0.5

-0.5

0

0.5

Figure 9: The effect of τp,τy on τΣ in the rational (left) and partially cursed (χ = 0.5, right) model.

E.3 Proofs of the Lemmata in Appendix A (Learning Foundation)

Proof of Lemma 1: Let W(n) denote the nth partial derivative of W with respect to τ,

evaluated as above. We have

σE[|ϵ|]∆(τ̄, t) = W+(τ̄, t)−W−(τ̄, t)

→
∫ ∞

0
W(α (δ, τ̄) ,δ, τ̄ + σϵ)f (ϵ)dϵ −

∫ 0

−∞
W(α (δ, τ̄) ,δ, τ̄ + σϵ)f (ϵ)dϵ

=
∫ ∞

0

(
W(α (δ, τ̄) ,δ, τ̄) + σϵW′ +

σ2ϵ2

2
W′′ + o(σ2ϵ2)

)
f (ϵ)dϵ

−
∫ 0

−∞

(
W(α (δ, τ̄) ,δ, τ̄) + σϵW′ +

σ2ϵ2

2
W′′ + o(σ2ϵ2)

)
f (ϵ)dϵ

=
∫ ∞

0

(
σϵW′ + σ2ϵ2 1

2
W′′ + o(σ2ϵ2)

)
f (ϵ)dϵ −

∫ 0

−∞

(
σϵW′ + σ2ϵ2 1

2
W′′ + o(σ2ϵ2)

)
f (ϵ)dϵ

= σE[|ϵ|]W′ + σ
2

2
E[ϵ2]W′′ + o(σ2)
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Where we use the fact that W′′′ = α2
1
τ4 is bounded for all τ + σϵ since τ − σϵ > δ− σ > 0 to

ensure the order of convergence of the Taylor expansion. Dividing through by σE[|ϵ|]
we obtain the result.

Proof of Lemma 2: Suppose towards a contradiction that τ is a rest point with proba-

bility p > 0. Since ∆(τ, t)→ ∆(τ) in probability, there exists a T such that for all t ≥ T,

P(|∆(τ, t)−∆(τ)| < ||∆(τ)| − B(σ)|) > 1− p. However, this implies that τT has moved away

from τ with probability 1− p, a contradiction to it being a rest point with probability

p.

Proof of Lemma 3: Since the reoptimization process is local, let us write everything

in terms of periods spent with τ̄t = τ, denoted as t = 1,2, . . . ,T, . . . with slight abuse

of notation. Note that the number of draws with τt > τ at time t follows a binomial

distribution Bin(t, 1
2 ).

We need to show that with positive probability ∆(τ, t) ∈ [−B(σ),B(σ)] for all t > 2K.

We will proceed as follows. For every t, we provide a bound on the probability that

|∆(t)| > B(σ). We then show that the sum of these bounds is smaller than 1, i.e., that

with positive probability the process never leaves the bounds.

LetΨ+ := inf{s > 0 : E
[
e

Wt
s |τt > 0, τ̄t = τ

]
≤ 2} andΨ− := inf{s > 0 : E

[
e

Wt
s |τt < 0, τ̄t = τ

]
≤

2} be the sub-exponential norms of realized welfare for positive and negative implemen-

tation errors, respectively. Note that these norms exist as W is the square of a Gaussian

random variable and hence sub-exponential. Recall from Bernstein’s inequality

P

{∣∣∣W+
t −W+

∣∣∣ ≥ ε} ≤ 2exp
{
−kmin

{
ε2T+(t)

Ψ 2
+

,
εT+(t)
Ψ+

}}
where k > 0 is a positive constant. For ε small, the first bound is the relevant one, and

we will focus on this case.

Consider ε = σE[|ϵ|] B(σ)−|∆|
2 . Then, the probability that |∆(t)| > B(σ) is bounded by

P

{∣∣∣W+
t −W+

∣∣∣ ≥ ε}+P

{∣∣∣W−t −W−
∣∣∣ ≥ ε}, which is given by

t−K∑
s=K

(t
s

)(1
2

)t
∑t−K

s=K
(t
s

)(1
2

)t (2exp
{
−k ε

2s

Ψ 2
+

}
+ 2exp

{
−k ε

2(t − s)
Ψ 2
−

})

. Let ψ+ = k ε2

Ψ 2
+

and ψ− = k ε2

Ψ 2
−

denote the exponents. Note that

t−K∑
s=K

(
t
s

)(1
2

)t
exp {−ψ+s} =

(1
2

)t
e−ψ+K(1+e−ψ+)t−

(1
2

)t
e−ψ+(1+t)

(
t

1−K + t

)
Hyp(1,1−K,2−K+t,−e−ψ+)

(68)
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where Hyp denotes the Gaussian hypergeometric function. If a,c are positive integers,

b is a negative integer and z ∈ (−1,0), the hypergeometric function evaluates to

Hyp(a,b,c,z) =
|b|∑
n=0

(
|b|
n

)
(a)n
(c)n
|z|n

where (a)n, (c)n are the rising Pochhammer series, which are positive for all n. Therefore

the second term in (68) is positive and

t−K∑
s=K

(
t
s

)(1
2

)t
exp {−ψ+s} ≤

(1
2

)t
e−ψ+K(1 + e−ψ+)t

Consider now the normalization factor
∑t−K

s=K
(t
s

)(1
2

)t
. Note that this is the probability

that a Bin(t, 1
2 ) is not in the tails of length K. Clearly, this probability is increasing in t

for fixed K. We can therefore estimate it by its value at t = 2K and obtain
∑t−K

s=K
(t
s

)(1
2

)t
>(2K

K
)(1

2

)K
. Using Stirling’s approximation, we write42

(
2K
K

)(1
2

)K
=

√
2π2K

(
2K
e

)2K(√
2πK

)2 (K
e

)2K

(1
2

)K
=

1
√
πK

Therefore

t−K∑
s=K

(t
s

)(1
2

)t
∑t−K

s=K
(t
s

)(1
2

)t (2exp
{
−k ε

2s

Ψ 2
+

}
+ 2exp

{
−k ε

2(t − s)
Ψ 2
−

})
≤ 2
√
πK

(1
2

)t (
e−ψ+K(1 + e−ψ+ )t + e−ψ−K(1 + e−ψ− )t

)
Finally, consider the sum of these estimates

∞∑
t=2K

2
√
πK

(1
2

)t (
e−ψ+K(1 + e−ψ+ )t + e−ψ−K(1 + e−ψ− )t

)
= 2
√
πK

e−ψ+K

(
1+e−ψ+

2

)2K

1− 1+e−ψ+
2

+ e−ψ−K

(
1+e−ψ−

2

)2K

1− 1+e−ψ−
2


Note that the RHS is eventually decreasing in K and goes to zero as K→∞. Therefore,

we can pick a K sufficiently big such that the RHS is smaller than one. Then, the process

stays within the bounds forever with positive probability.

42Note that the approximation error is small and can be easily taken into account in the following
arguments. We suppress it for brevity.
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E.4 Proofs of the Lemmata in Appendix B (Proof Appendix)

Proof of Lemma 4: Towards a contradiction, let δ1 < 0. Then, τs = − δ1√
c

and f reads

(
τθ + τy + δ2

1τp

)
+χ

1
√
c
(
τθ + τy

)
− δ1

[(1− r) + rδ1]δ2
1τp +

1
√
c

(1− r) (1− δ1) = 0

Clearly, for δ1 = 0, the expression is strictly positive. Furthermore, we have d
dδ1

f
(
δ1,−

δ1√
c

)
<

0, as

2δ1τp +χ
[(1− r) + rδ1]δ2

1τp(√
c
(
τθ + τy

)
− δ1

)2 +χ

[
(1− r) + 3rδ2

1

]
τp

√
c
(
τθ + τy

)
− δ1

− 1
√
c

(1− r)

=
1(√

c
(
τθ + τy

)
− δ1

)2

[
2δ1τp

(√
c
(
τθ + τy

)
− δ1

)2
+χ [(1− r) + rδ1]δ2

1τp

+χ
(√

c
(
τθ + τy

)
− δ1

) [
2(1− r)δ1 + 3rδ2

1

]
τp −

1
√
c

(1− r)
(√

c
(
τθ + τy

)
− δ1

)2
]

∝2δ3
1τp − 4δ1τp

√
c
(
τθ + τy

)
+ 2δ1τpc

(
τθ + τy

)2
+χ [(1− r) + rδ1]δ2

1τp

+χ
(√

c
(
τθ + τy

)
− δ1

) [
2(1− r)δ1 + 3rδ2

1

]
τp −

1
√
c

(1− r)
(√

c
(
τθ + τy

)
− δ1

)2

=2δ3
1τp (1−χr)− δ2

1

[
1
√
c

(1− r) +
(
4τp − 3χrτp

)√
c
(
τθ + τy

)
+χ (1− r)τp

]
+ δ12c

(
τθ + τy

) [
(1− r)

(
1 +χτp

√
c
)
τp + τpc

(
τθ + τy

)]
−
√
c (1− r)

(
τθ + τy

)2
< 0

Hence, we cannot have an solution as f > 0 for all δ1 < 0 and there is no such

equilibrium.

Proof of Lemma 5: Suppose (19) holds. Then, using (46) and (17), we have

d
dδ1

f̃ (δ1) =
(1− r)

(
δ1 +
√
c
(
τθ + τy

))
+
√
cδ2

1τpχ

[
δ1+
√
c(τθ+τy+δ2

1τp)
δ1+
√
c(τθ+τy+χδ2

1τp)
− r

]
δ1 +
√
c
(
τθ + τy

) + 2
√
cδ1τp

(1−χ)
δ1 +
√
c
(
τθ + τy

)
δ1 +
√
c
(
τθ + τy +χδ2

1τp

)
≥

(1− r)
(
δ1 +
√
c
(
τθ + τy

))
+
√
cδ2

1τpχ

[
δ1+
√
c(τθ+τy+δ2

1τp)
δ1+
√
c(τθ+τy+χδ2

1τp)
− r

]
δ1 +
√
c
(
τθ + τy

) ≥
√
cδ2

1τpχ [1− r]

δ1 +
√
c
(
τθ + τy

) > 0

since the first term in the numerator is positive and the fraction in square brackets is

greater than 1.

Proof of Lemma 6: Note that gδ = 2δ1 > 0, gτs = −2cτs < 0 and

fδ =
(
τθ + τy + 3δ2

1τp

)
−χ τs

τθ + τy + τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

19



fτs = −χ
τθ + τy(

τθ + τy + τs
)2 [1 + r(δ1 − 1)]δ2

1τp − (1− r) (1− δ1) .

By direct computation

gδfτs − gτsfδ =2δ1

−χ τθ + τy(
τθ + τy + τs

)2 [1 + r(δ1 − 1)]δ2
1τp − (1− r) (1− δ1)


− (−2cτs)

((
τθ + τy + 3δ2

1τp

)
−χ τs

τθ + τy + τs
[2 + r(3δ1 − 2)]δ1τp + (1− r)τs

)

=2δ1

−χ τθ + τy(
τθ + τy + τs

)2 [1 + r(δ1 − 1)]δ2
1τp − [1 + r(δ1 − 1)] + δ1


+ 2

δ1

τs

((
τθ + τy + 3δ2

1τp

)
δ1 − 2χ

τs

τθ + τy + τs
[1 + r(δ1 − 1)]δ2

1τp + (1− r)τsδ1 −χ
τs

τθ + τy + τs
rδ1δ

2
1τp

)
(fδ>0)
≥ 2

δ1

τs

−χ τθ + τy
τθ + τy + τs

(
τθ + τy + τs + δ2

1τp

)
δ1

τθ + τy + τs +χδ2
1τp

δ2
1τp −

δ1

(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp

)
τθ + τy + τs +χδ2

1τp
+ δ1τs


+ 2

δ1

τs

τθ + τy + 3

1−χ
τθ + τy + τs + δ2

1τp

τθ + τy + τs +χδ2
1τp

δ2
1τp

δ1 + (1− r)τsδ1 +χ
τs

τθ + τy + τs
[1− r]δ2

1τp


=2δ2

1

−τyτs − τθτs + δ2
1τp

− 1
τs

+
1

τθ + τy + τs
− 1−χ
τθ + τy + τs +χδ2

1τp




+ 2
δ1

τs

τθ + τy + 3

1−χ
τθ + τy + τs + δ2

1τp

τθ + τy + τs +χδ2
1τp

δ2
1τp

δ1 + (1− r)τsδ1 +χ
τs

τθ + τy + τs
[1− r]δ2

1τp


(r<1&(17))
≥ 2δ3

1τp (1−χ)
√
c

 2δ2
1 +
√
cχδ3

1τp + 4
√
cδ1

(
τθ + τy

)
+ 2c

(
τθ + τy

)2[
δ1 +
√
c
(
τθ + τy

)] [
δ1 +
√
cχδ2

1τp +
√
c
(
τθ + τy

)]
 ≥ 0

The last equality follows from lengthy but straightforward calculation. The inequality

follows since the expression is decreasing in r and we hence set r = 1 as a worst case,

obtaining our result.

Proof of Lemma 7: We have

f ⋆
δ =

[
2
(
τθ + τy + δ2

1τp

)
δ1τp

] (
τθ + τy + τpδ1

)
− τp

(
τθ + τy + δ2

1τp

)2(
τθ + τy + τpδ1

)2 + (1− r) 1
√
c

=
τp

(
τθ + τy + δ2

1τp

)
(
τθ + τy + τpδ1

)2

(1− r)
√
c

(
τθ + τy + τpδ1

)2

τp

(
τθ + τy + δ2

1τp

) − [2δ1 − 1]
(
τθ + τy

)
+ δ2

1τp


≥
τp

(
τθ + τy + δ2

1τp

)
(
τθ + τy + τpδ1

)2

(1− r)
√
c


(
τθ + τy + τpδ1

)2

τp

(
τθ + τy + δ2

1τp

) − [2δ1 − 1]

+ δ2
1τp


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using that 1−r
τθ+τy

>
√
c. Then, from

(
τθ + τy + τpδ1

)2

τp

(
τθ + τy + δ2

1τp

) − [2δ1 − 1] ∝ τp
(
τθ + τy + δ2

1τp

)
+
(
τθ + τy + τpδ1

)2
− 2δ1τp

(
τθ + τy + δ2

1τp

)
= τp

(
τθ + τy

)
+
(
τθ + τy

)2
+ (2− 2δ1)τpδ

2
1τp > 0

we obtain the result.

Proof of Lemma 8: Taking the τp→∞ limit in (18) we get the limit reliance on private

information is43

δ∞1 =
χ (1− r)−

(
τθ + τy

)√
c

(1− rχ)
, (69)

which we can plug in (28) to obtain that welfare in the limit equilibrium is given by

W∞ = −
2
√
cχ (1− r)2 − c (1− 2r + rχ)

(
τθ + τy

)
(1− r) (1−χr)

, (70)

which we can directly differentiate. To see the comparative static, note that the

coefficient of τθ + τy is 1−2r + rχ. Consider the case where r < 0, then this expression is

negative only for χ > 2, so this case is irrelevant. Instead, with r > 0, we get that the

impact of τθ,τy is negative iff χ ≤ 2− 1
r .

The derivative w.r.t. costs is

∂W∞

∂c
∝ − χ√

c
(1− r)2 + (1− 2r + rχ)

(
τθ + τy

)
and

− χ√
c

(1− r)2 + (1− 2r + rχ)
(
τθ + τy

)
≥ 0

χ
[
(1− r)2 − r

√
c
(
τθ + τy

)]
≤
√
c (1− 2r)

(
τθ + τy

)
Hence, there is two cases we need to consider. First, if (1− r)2 − r

√
c
(
τθ + τy

)
< 0: Note

that this can only be the case if r > 1
2 , since otherwise by (19)

(1− r)2 − r
√
c
(
τθ + τy

)
≥ (1− r)2 − r (1− r) = (1− 2r) (1− r) > 0.

43Because the optimality condition (17) implies that τ∞s solves τs
√
c = χτs(1−r)

τθ+τy+τs(1−rχ) , a interior limit

equilibrium exists if (and only if) χ >
√
c
τθ+τy
(1−r) , a condition that we assume satisfied. Notice that this

condition does not contradict the sufficiency of condition (19) which holds for any interior τp. The order
of limits is relevant, as for every fixed τp, the influence of transparency vanishes as δ1 and τs go to zero.
All details about the derivations of the transparent limit are available upon request.
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Then, we obtain a lower bound for χ:

χ ≥
√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

)
but this bound rules out increasingness in costs, since

√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

) ≥ 1 ⇐⇒
√
c
(
τθ + τy

)
≤ (1− r)

which is guaranteed by (19).

Second, if (1− r)2 − r
√
c
(
τθ + τy

)
> 0: we get an upper bound

χ ≤
√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

) .
The resulting interval is nontrivial only if r < 0, as by (19)

√
c
τθ + τy
1− r

<
√
c (1− 2r)

τθ + τy

(1− r)2 − r
√
c
(
τθ + τy

)
r


√
c
(
τθ + τy

)
(1− r)

 > r ⇐⇒ r < 0.

E.5 Omitted Proofs

Lemma 10. Welfare as a function of δ is given by (28).

Proof. We have

W(α,δ) = E

[
− (1− r) (ai −θ)2 − r (ai − ā)2

]
(71)

= E

[
− (1− r) (α1si +α2y +α3p −θ)2 − r (α1si +α2y +α3p − ā)2

]
= E

− (1− r)
(
α1 (θ + zs) +α2

(
θ + zy

)
+α3

(
δ1 + δ2

1− δ3
θ +

δ2

1− δ3
zy +

1
1− δ3

zp

)
−θ

)2

−r
(
α1 (θ + zs) +α2

(
θ + zy

)
+α3

(
δ1 + δ2

1− δ3
θ +

δ2

1− δ3
zy +

1
1− δ3

zp

)
−
(
δ1 + δ2

1− δ3
θ +

δ2

1− δ3
zy +

δ3

1− δ3
zp

))2
= − 1

(1− δ3)2

 (α2 (1− δ3) +α3δ2)2 + δ2 (δ2 − 2α3δ2 − 2α2 (1− δ3))r
τy

+
α2

3 − 2α3δ3r + δ2
3r

τp
+
α2

1 (1− δ3)2

τs

+
(1− (1− δ3) (α1 +α2)−α3(δ1 + δ2)− δ3)2 − (1 + (δ1 + δ2) (1− 2α3)− 2(α1 +α2) (1− δ3)− δ3) (1− δ1 − δ2 − δ3)r

τθ

}
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where the last step follows after lengthy but straightforward computation. Imposing

αi = δi , we get

W(δ) = − (1− r)
(1− δ3)2

{
δ2

2

τy
+
δ2

3

τp
+

(1− δ1 − δ2 − δ3)2

τθ

}
−
δ2

1

τs

Proof of Proposition 5. Plugging the equilibrium expressions (12) into Wδ1
and using

f (δ) = 0 yields

Wδ1
= 2

(1−χ)δ3
1τp

(
τθ + τy + τs

)
(1− r)τ2

s

(
τθ + τy + τs +χδ2

1τp

)
which is zero for χ = 1.

Plugging the equilibrium expressions for δ2,δ3 into Wδ2
yields

Wδ2
=2

[
(1− r)

(
τθ + τy + τs + (1−χ)δ1τp

)
+ (1− rχ)δ2

1τp

]
(1− r)τθ

(
τθ + τy + τs

)(
τθ + τy + τs + δ2

1τp

)2

·
[
(1− r)χδ2

1τpτs + (1− r)τs
(
τθ + τy + τs

)
+ δ1

(
τθ + τy + τs

)(
τθ + τy + (1− r)τs

)
+ δ3

1τp

(
τθ + τy + (1− rχ)τs

)]
note that the final factor can be written as

(
τθ + τy + τs

)χ τs(
τθ + τy + τs

)δ2
1τp (1− r + δ1r) + δ1

(
τθ + τy + δ2

1τp

)
+ (1− r) (1− δ1)τs


where we recognize the factor as f (δ1) = 0, whence Wδ2

(δEQ) = 0.

Plugging into Wδ3
and simplifying with heavy use of f (δ) = 0, we get

Wδ3
= −

2χ
(
τθ + τy + τs + δ2

1τp

) [
δ1

(
τθ + τy

)
− (1− r)τs

]2
(1− r)2

τ3
s

(
τθ + τy + τs +χδ2

1τp

)
which clearly is zero in the rational case.

Lemma 11. Equation (33): if χ ∈ {0,1}, then WEQ
χ = −

√
c (1 + δ1).

Proof. Plugging the fully cursed equilibrium into (28), we obtain

WEQ
1 = −

2(1− r)
√
c − c

(
τθ + τy

)
1− r

= −
√
c (1 + δ1)

In the rational case, we instead have, using f

WEQ
0 = −

2(1− r)
√
cδR

1 + c
(
τθ + τy +

(
δR

1

)2
τp

)
1− r

= −
(1− r)

√
cδR

1 + (1− r)
√
c

1− r
= −
√
c (1 + δ1) .
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