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Abstract5

While methodological advancements and greater data have improved the understanding of how cli-6
mate affects economic production, the potential for adaptation and important sectors remain under-7
studied, such as animal agriculture. We use daily data on the milk production of 130,000 cows over 128
years in Israel, and survey data on adaptation measures, to estimate the contemporaneous and delayed9
impacts of humid heat on milk yield. Heat exerts nonlinear negative effects reaching a 10% decrease in10
milk production on extreme days, and effects persist 10 days after direct exposure. Moreover, the adop-11
tion of cooling equipment, and changes in cow management practices are associated with only limited12
reductions in the impact of extreme heat. Given the technological advancement, long-standing exposure13
to heat, and climatic diversity of the Israeli dairy system, our results suggest that common adaptation14
strategies may hold limited potential to avert the impacts of climate change in this important sector.15
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Understanding the impacts of climatic variability on economic systems remains an active research agenda.16
As evidence about the severity of the potential damages of climate change accumulates [23], it has become17
increasingly important to extend the literature to under-studied economic sectors, and to improve our18
understanding of the degree to which adaptation can reduce those damages. But while methodological19
advances have enabled the precise estimation of response functions in multiple sectors of the economy,20
other important sectors remain insufficiently studied, such as animal agriculture, and crucial knowledge21
gaps persist about the extent to which the adoption of cost-effective technologies reduce the impacts of22
anomalous weather conditions.123

This study provides such novel evidence for the dairy sector, whose global production is projected to increase24
faster than most other main agricultural commodities [29]. Data of unusual scale and high spatio-temporal25
resolution, covering 12 years of the daily milk yield of each of 130,000 dairy cows in Israel, allow us to26
derive several novel insights which were difficult to obtain in previously studied contexts. The position of27
the Israeli dairy sector at the technological frontier of production and weather resilience further provides28
an opportunity to study the limits of existing cost-effective technologies for adaptation, while the country’s29
wide climatological gradient supports the broad geographical relevance of the results.30

In addition to its economic significance, the analysis of the dairy sector also sheds light on the physiological31
impacts of heat on the healthy functioning of mammals, joining studies that have found impacts on human32
physical and cognitive performance [11, 14, 30, 22].33

Humid heat stress is considered to be one of the main limiting factors of milk production [37], and extreme34
humid heat events—which have more than doubled in frequency over the past four decades [32]—are35
predicted to occur over large regions for months at a time on a warmer planet, leading to the notion of36
a steambath world [10].2 Yet existing estimates of the response of milk yield to weather remain limited37
in some respects, by making strong assumptions on functional form, relying on highly-aggregated data or38
small sample sizes, and imperfectly accounting for the potential of adaptation to reduce impacts.39

We leverage exogenous high-frequency variation in weather realizations to estimate flexible models of the40
relationship between milk production and temperature and humidity. We disentangle the contemporaneous41
and delayed effects of humid heat, and estimate the rate of their dissipation. We further combine these42
data with farm-level survey responses on adaptation to analyze the heterogeneity of the relationship with43
respect to the adoption of common candidate adaptation measures, including cooling technologies (mostly44
ventilation and spraying systems), shifting of calving periods and adjusting feeding practices. The analysis45
helps to assess how much of the adverse impacts of heat may be reduced by the adoption of these adaptation46
strategies.47

Background48

Cow response to humid heat49

Cows, like all mammals, must maintain thermal homeostasis in order to function and grow. When the50
external temperature rises, a mammal’s body adopts strategies to maximize heat loss, e.g., through evap-51
orative cooling by perspiration and panting, or by resting to reduce its metabolic rate [13]. The amount of52
heat stress is thereby affected by not only dry-bulb temperature—which affects sensible heat loss—but also53

1The Fifth Assessment Report of the Intergovernmental Panel on Climate Change notes that “In comparison to crop and
fish production, considerably less work has been published on observed impacts for other food production systems, such as
livestock or aquaculture [...] The relative lack of evidence reflects a lack of study in this topic, but not necessarily a lack
of real-world impacts of observed climate trends“ [31, p. 494]. Similar sentiments are expressed by other academic reviews,
including McCarl and Hertel [28]: “Livestock will be affected by climate change, although studies are sparser on this topic, and
widely available simulation models do not exist.” Even the most comprehensive study of current and future climate change
impacts on the U.S., across numerous social, agricultural, and economic sectors, does not include animal agriculture [23].

2In addition, over the next ten years, more than half of this growth in production is expected to occur in South Asia, where
“heatwaves and humid heat stress will be more intense and frequent during the 21st century” [40].
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ambient humidity—which hinders latent heat loss via evaporative cooling. Other environmental factors54
such as wind speed and incoming radiation also affect heat stress [5]. As these determinants of heat stress55
increase, they make the dissipation of body heat more difficult, i.e., heat stress becomes heat strain. Mul-56
tiple studies have documented deleterious effects on humans, in terms of productivity, behavior, morbidity57
and mortality rates, and on livestock, specifically cow milk yield and pig growth [18, 25, 33, 41].58

The effect on lactating cows is known in principle to involve physiological and metabolic adjustments [4, 13].59
Though many studies have investigated the impact on milk yield in the dairy science literature, existing60
analyses present several limits. Most assume, rather than test, that the relationship follows a certain61
functional form, which is most often linear beyond a certain threshold; they tend to rely on small datasets,62
whether in experimental or observational settings, which raises the question of sensitivity to specification63
form; and they generally use as weather variables versions of a “Temperature Humidity Index” (THI), whose64
unitlessness and calibration to the contexts of original small-sample studies hinders the interpretability and65
generalizability [24, 1, 35, 37, 7, 9, 2, 8, 6, 26, 20, 21, 36].66

In this paper, we first estimate the shape of the daily milk yield response to dry-bulb temperature (T) and67
relative humidity (RH) using model specifications that make very few assumptions as to the functional68
form. We subsequently use the wet-bulb temperature as our preferred summary index of heat stress in69
regression models, finding it to be at least as adequate as common THIs to account for the combined effects70
of T and RH, but more easily interpretable and with greater external validity.71

Israeli dairy farms and climate72

The dairy farms in Israel gather a total standing population of about 133,000 cows, producing in 202073
over 1,521 million liters, the vast majority of which—72.7% over our whole sample—we observe at the74
individual cow-by-day level over 12 years. Such rich high-frequency outcome data allow us to leverage75
exogenous variation in weather and alleviate concerns of potential aggregation bias. Three features of the76
Israeli dairy sector further make it a particularly suited setting to produce estimates with both alleviated77
potential bias and global relevance. First, due to the land’s topography, the dairy farms dispersed across78
its area experience a wide range of temperature and humidity values that are representative of large79
parts of the world. Such a narrow spatial scale combined with significant variation in climate strengthens80
identifying assumptions as potentially confounding variables should tend to be homogeneous [17]. Second,81
milk production is carried out under a quota system in which prices are centrally controlled, which reduces82
concerns of confounding from demand shocks. Finally, virtually all farms have adopted technologies to83
reduce heat stress,3 and vary in the timing of their installation over our period of study, which we measure84
in a survey. We can therefore leverage within-farm variation to estimate the range of effects that may be85
expected with or without the utilization of such adaptation potential.86

Other characteristics of Israeli dairy farms, notably size and management of the cows, show relatively low87
heterogeneity. Nearly all cows are Israeli-Holsteins, a breed obtained from several generations of cross-88
breeding to be specially adapted to the local climate, and which has the world’s highest average milk yield89
per cow—around 12,020 kg/year. There are two main types of dairy farms: three out of four are family90
farms in cooperative villages called moshavim; the rest are in kibbutzim, which are organized as collective91
economic units where means of production are communally owned. Lactating cows are milked on average92
three times a day, they do not graze, and are confined in permanent roofed enclosures exposed to outside93
air. They are fed a total mixed ration composed mostly of silages.94

A cow’s production of milk follows a lactation cycle that starts at the birth of her calf and lasts on average95
14 months. Over the course of the cycle, the body and metabolism of the cow changes, and the expected96
milk output follows a distinctive shape where production increases rapidly until “peak milk”—expected97

3While shading is already the norm in virtually all farms, different systems capable of either cooling the cow directly or
cooling the surrounding environment can be employed, such as ventilation, sprinklers or evaporative cooling systems, and
installed in different areas of the farm.
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at about two to three months—then declines slowly. The cow goes through different physiological states98
throughout the lactation cycle, notably a highly negative energy balance at the beginning of the period99
accompanied by substantial weight loss [4]. The dry period is relatively short as the typical cow has been100
inseminated again mid-cycle to produce a new calf, and thereby ensure the start of a new lactation cycle.101

Results102

Milk yield decreases at an increasing rate with elevated temperature and relative hu-103
midity, whose joint effect can be captured by the wet-bulb temperature104

To extract the general shape of the milk yield response to weather, without making restricting assumptions105
on functional form, we first estimate semi-parametric models on continuous regressors. We specify a106
generalized additive model which expresses the relationship of the outcome with daily average T and RH107
as a bivariate smooth spline, to flexibly capture non-linear and interaction effects. We adjust for cow-level108
covariates including the stage of lactation, milking frequency, and lactation number, after demeaning the109
data by farm, year, and month (often referred to as including fixed effects in the applied microeconomics110
literature). Figure 1 shows the shape of the estimated response surface over the ranges of T and RH. It111
reveals a highly non-linear response, where the rate at which T and RH affect yield is itself increasing in112
these two variables.113

This pattern is consistent with previous evidence of a non-linear combined effect of T and RH. While this114
flexible specification captures the full shape of the response function, for the purpose of the subsequent115
analyses, it is useful to identify a single summary indicator of humidity and heat that allows for the116
estimation of response functions which are more tractable than a bivariate spline. The dairy science117
literature often uses variations of a “Temperature Humidity Index” (THI) for this purpose. One limit118
of these indices is that they are often calibrated empirically from small historical samples of cows—whose119
average milk yield, and hence metabolic heat output, was much lower than it is today, and they are unit-less,120
making results difficult to interpret and generalize [7, 16]. Here, we choose the wet-bulb temperature (Twb)121
as our preferred summary indicator of humid heat. The wet-bulb temperature is the lowest temperature to122
which an air parcel may cool by the adiabatic evaporation of water. As such, it reflects in part the cooling123
efficiency of sweat, and hence has a direct physiological relevance. We find that the Twb captures the124
response surface at least as well as THIs do, and also rivals them in predictive ability (SI Appendix, S2). The125
Twb is not calibrated to fit impacts, but relies on thermodynamic principles, ensuring its interpretability126
and validity across settings. It also provides a physiological limit—applicable to all placental mammals—of127
35°C [34]. We therefore use Twb as our preferred index of humid heat in all subsequent analyses.128

The highest 5% of the daily temperature distribution see reductions in milk output of129
over 5%—relative to a daily average within 10-12°C—precisely captured by the hourly130
exposure to wet-bulb temperatures131

We estimate regressions of milk output on vectors of variables that capture the daily realization of wet-132
bulb temperature, adjusting for the stage of the lactation cycle, the cow’s age proxied by her number of133
lactations, the number of milkings, and farm, year and month fixed effects. These fixed effects ensure that134
estimates are based on high-frequency variation in weather which lends itself to causal interpretability,135
rather than on differences between farms or across years and seasons, which are prone to potential bias.136

We first consider a simple regression on a vector of binary indicators of whether the daily average wet-bulb137
temperature is in the given interval. The middle panel of Figure 2 shows the shape of the estimated step138
function, overlaid with a univariate regression spline. We observe a somewhat inverted-U response, with139
a pronounced and gradually steeper decline above moderate temperatures—nuancing the assumption of140
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a sharp threshold made in a large part of the dairy literature.4 Relative to a day with average wet-bulb141
temperatures in the 10-12°C range, a daily mean within 18-20°C reduces output by about 1.6%, one within142
22-24°C by 3.7%, and one above 26°C by 9.6% (all values represent wet bulb temperatures).143

The left panel of Figure 2 replaces the indicator bins with count bins of degree-hours, i.e., explanatory144
variables that count the number of hours that fall in specified temperature intervals. This specification145
captures the response of milk yield to the exposure to different levels of Twb within the course of the day.146
The reference category corresponds to the 10-12°C bin; each bin coefficient then represents the expected147
average difference in log of milk produced if one additional hour in the day had been exposed to the Twb148
of the given bin instead of the 10-12°C range. We find a similarly shaped response as in the previous149
specification. On average, one additional hour of Twb above 26°C relative to the 10-12°C range reduces150
daily milk yield by 0.5%.151

In the third panel, we evaluate how the estimates from the hourly and daily averages models compare, and152
what they imply for certain percentiles of the daily temperature distribution: from the median at 15.64°C153
to the 99.9% percentile at 26.19°C. For each percentile of the distribution of daily average Twb, the daily154
averages model provides a unique prediction of the impact on milk production. However, the realizations155
of this daily value in the sample (i.e., specific date-farm observations) have various hourly temperature156
profiles, resulting in different predictions from the hourly model. For each top percentile, Figure 2C plots157
these predictions vis-a-vis the prediction of the daily average model. We find that the daily average model158
almost systematically underestimates the true effect—to which the hourly model gets closer—a discrepancy159
that reflects the concavity (increasing negative slope) of the hourly-response function. Other univariate160
models that use the daily minimum or maximum daily temperature perform similarly to the daily average161
model (see the SI Appendix, S4). Overall, the 95%-percentile day, which corresponds to a daily average162
temperature of about 23.4°C, results in reductions in milk output of around 5%, relative to a day with163
average wet-bulb temperature in the 10-12°C range.164

Robustness of the shape and magnitude of the estimated response to the choice of heat index, size of degree165
intervals, and weather dataset, is documented in the SI Appendix, S4.166

Heat still affects milk yield 10 days after exposure167

Physiological considerations suggest that the impacts of humid heat on milk yield may not only be contem-168
poraneous, but persist after direct exposure [4, 15]. To estimate the delayed effects of humid heat exposure,169
we add lagged daily wet-bulb temperatures as regressors to the model.170

First, we examine how long effects persist, if at all, by including up to 21 daily lags of Twb as regressors.171
To keep the model tractable, we model each daily temperature realization as a single binary indicator of172
whether the daily average was above a given threshold. Results for the different thresholds of 22°C, 24°C173
and 26°C are presented in Figure 3A. We observe clear negative impacts of exposure to humid heat on174
milk production that persist over 10 days after exposure, with the highest negative effects on day-of-sample175
output caused by days -1 and -2.5 Higher thresholds result in stronger negative impacts, but the dissipation176
of the delayed effects follows a similar pattern for the different thresholds. Including lags prior to day -10177
does not affect the coefficients of the impacts of days -1 to -10 (effects have either almost entirely subsided178
beyond 10 days, or the last lagged regressor—day -10—captures most of the residual effects). We can179
therefore restrict our model to only include 10 lags without risk of misspecification.6180

4Bryant et al. [9] is one exception which does estimate an inverted-U shaped relationship, by assuming a quadratic functional
form.

5These results are consistent with West et al. [38], which found on a small sample that the THI of day -2 had the greatest
effect on milk yield, and Bernabucci et al. [6], which estimated negative linear effects of THI from day -8 to 0 and the largest
negative impact on day -4. Studies have also found evidence of delayed effects of heat stress on dairy cow fertility [15, 39].

6Specifications including less than 10 lags were also explored, and resulted in changes in the coefficients of the included
lags, suggesting residual omitted variable bias.
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To analyze the full shape of the response to past heat, we focus on these 10 lags, and now estimate a181
richer model that includes a vector of binary indicators for each Twb bin of each lagged day, extending182
our original specification. Results are presented in Figure 3B. Within each temperature bin, we observe a183
similar dissipation pattern of effects over the contemporaneous and 10 lagged days as found in the threshold184
model, above (reading the graph from right to left within each bin: negative effects are strongest from days185
-1 and -2, and dissipate as we go further back in time).186

Comparing the response to same-day exposure, when estimated in the baseline, contemporaneous model187
(Figure 2A) and in the model that includes lags (Figure 3B), shows the former estimate to be larger than the188
latter. Due to serial correlation in weather, coefficients estimated in the baseline specification capture both189
the contemporaneous effect of same-day heat exposure and the effects of the serially correlated previous190
days’ exposure. In the subsequent heterogeneity analysis, we keep the no-lag specification for tractability,191
whose coefficients should hence be interpreted as embedding the delayed effect of previous days that are in192
relatively close ranges of temperature as the day of sample.7193

The adoption of cooling technologies is associated with an attenuation of the direst194
effects of heat of less than half195

We use data from a survey we administered in 2020-2021 to a representative sample of 306 dairy farm196
managers to explore their strategies to cope with heat stress. Our survey data provide information on the197
year of adoption of cooling technologies in various areas of the cow sheds. Virtually all farm managers198
surveyed reported having some cooling system in place, but differed in the type of system, its location,8199
and the year of installation. Figure 4A shows the geographical variation in the year of adoption.200

We estimate the differences in the response of milk production that are associated with the use of these201
technologies, by comparing estimates of the response function prior to and after adoption. We do so by202
adding interaction terms of the exposure to Twb values above 12°C with binary indicators of whether203
cooling equipment was installed in the farm by the year of observation. Figure 4B displays the estimated204
response functions with and without cooling technologies. They reveal a substantially steeper response205
curve in the absence of any cooling equipment, with impacts reaching a loss of 12% in milk production206
on days with average Twb exceeding 26°C (relative to the 10-12°C range). They further show that while207
cooling equipment is associated with an attenuation of the impact of heat, this attenuation capacity itself208
reduces with higher temperatures. On moderately hot days with average Twb between 12 and 14°C, cooling209
seems to fully nullify the negative effects of heat. On 18-20°C days, the impact of heat reduces by only210
half, and on days above 24°C, by less than 40%. The decomposition of these observed differences by area211
of the barn where the equipment is installed reveals that they are predominantly driven by the holding212
yard, where cows are kept in higher densities before entering the milking parlor (SI Appendix, S5.A).213

Our survey also elicited information about the adoption of two other potential forms of adaptation. First,214
cows go through different physiological processes throughout the stages of their lactation cycle, and may215
be more sensitive to heat depending on the timing of their calving.9 This suggests that some shifting216
of the period of calving (mostly from summer to winter) may help reduce the impacts of heat. Second,217

7We also endeavored to investigate the accumulation or acclimation effects of past heat, i.e., whether heat exposure affects
the later sensitivity to heat. A net increase in sensitivity would suggest an accumulation effect; the reverse an acclimation
effect. A model would capture this by allowing for interactions between temperatures across days. However, the interacted
variables are so highly correlated in our data—given the values of the other covariates—that the attribution of the effect to
either the main regressor or its interaction is not robust, and the analysis is inconclusive.

8The loose-housing system adopted in Israeli farms features three types of areas: the main area containing stalls, the feeding
area with troughs, and the holding pen or pre-milk area where cows wait before entering the milking parlor.

9We also directly estimate the heterogeneity in heat sensitivity across the different stages of the lactation cycle. Using
the same modeling approach of interacting the higher-degree bins with the categorical variable of interest—here, the lactation
stage—we find indeed that cows are significantly more sensitive to heat in the first 100 days of the cycle, when the day-to-day
increase in milk production is the steepest and body reserves are used for milk production (SI Appendix, S5.B).
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the complex metabolic changes that support the condition of lactation, and their potential sensitivity to218
heat stress, suggest adjustments to feed patterns as another potential channel to reduce heat strain. We219
observe whether each surveyed farm adopted either of these approaches, but unlike in the case of the220
cooling technologies, we do not observe the year of adoption—nor the specific feed composition or schedule.221
To assess the association between the adoption of these adjustments and the impact of heat on milk222
production, we therefore restrict the sample to the most recent period in our data (2019-2020). By that223
time, all farms have installed cooling equipment. Within this sample, we estimate the differences in the224
sensitivity to high temperatures between those farms that adopted or did not adopt these two additional225
adjustments, by interacting the higher-degree temperature bins with categorical indicators of shifting birth226
periods only (86 farms), shifting feed timing only (10 farms), or implementing both (11 farms). Figure227
4C displays the estimated response functions for each of these categories. We find suggestive evidence of228
additional abatement potential associated with these strategies, by up to 4 percentage points in the highest229
temperature bins, compared to farms which only implement cooling. A similar analysis of the heterogeneity230
of the response with the strategic changing of feed composition (implemented by 53 farms) does not yield231
any indication of a significant difference (SI Appendix, S5.B).232

Discussion233

Our results indicate that humid heat stress has highly non-linear and relatively long-lasting impacts on234
milk production. Furthermore, the adoption of simple cooling technologies may be able to reduce less than235
half of the impacts of extreme exposure. Israel’s diverse climate and the technological advancement of its236
dairy sector suggest these indications may reflect an upper bound on the adaptation potential that can be237
achieved by economically viable technologies in broad world regions.238

The differences we estimate in cooled and un-cooled farms cannot be strictly causally attributed to the239
adoption of the cooling technology, as their adoption may be endogenous. However, we expect selection240
into adoption to be biased towards farms where it would be most beneficial, suggesting our estimates may241
even overstate the real average impacts of the cooling equipment.242

In the context of a warmer planet where dairy farms experience elevated ranges of wet-bulb temperature,243
and given a limited abatement potential through common cooling technologies, how can the sector reduce244
the effects of heat to ensure a stable level of milk output? Can we alleviate either exposure or sensitivity?245
An approach focused on more capital-intensive reduction in exposure, such as completely enclosed indoor246
housing, which controls the cows’ local environmental conditions and insulates them from weather varia-247
tions, is already implemented in some large-scale operations in the U.S. However, it may not be affordable248
in many parts of the world, and may replace one stressor—weather—with another—confinement. Evidence249
of the production and health benefits of letting cows having access to the outside suggests that reducing250
this access further may increase stress for cows and impact milk production [12].10 In a world of increased251
exposure to heat stress, an alternative may be to alleviate other stressors, e.g., confinement or cow-calf252
separation [19], to reduce the compound effect on cow sensitivity. More research is needed to quantify the253
actual performance and cost effectiveness of a broader range of adaptation approaches.254

10There is even mixed evidence of the superiority of housing systems in altering heat stress effects on milk quantity and
quality [27].
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Methods255

Data256

Milk production data are obtained from the Israel Cattle Breeders Association and cover the majority of257
dairy farms in Israel from 2009 to 2020. The data are a panel of over 329 million observations at the258
cow-by-day level. They include the total daily amount of milk produced, the start date of the cow’s given259
lactation cycle, the number of calvings—which is a reliable proxy for the cow’s age—and the number of260
milkings per day. As the last daily milking generally takes place around 8pm, the total daily amount of261
milk recorded in our data corresponds to that produced by the given cow from 8pm of the previous day to262
8pm of the current day. In order to match the daily yields with the relevant period of weather exposure,263
we shift the definition of calendar days in our weather data to an 8pm cutoff.264

We construct a panel dataset of hourly temperature and relative humidity at the farm-level. To estimate265
the weather realized in the recent past, the existing climate-economy literature resorts to different types266
of sources. Two commonly used are (i) interpolations of direct observations from weather stations, and267
(ii) climate reanalysis estimates produced by combining physics-based dynamic models with observations.268
Each method has advantages and limitations; station-based approaches are based on clear interpolation269
algorithms that enable the researcher to control the factors to account for (such as elevation and wind270
direction), but tend to be sensitive to observation error, while reanalysis products are constructed through271
some spatiotemporal averaging that may hinder capturing short, anomalous events, but provide better272
estimates for data-sparse regions [32, 3]. The quality and reliability of the weather data being particularly273
important in our study, we consider both approaches and construct separate weather datasets: one based274
on in-situ observations from weather stations, the other based on climate reanalysis data, and we check275
the robustness of our results to that choice. The interpolation steps taken to construct farm-level hourly276
panels from n-hourly data, and how we address potential concerns of bias from stations entering or exiting277
the record across the period, are described in detail in the SI Appendix.278

To explore the potential of adaptation to reduce heat impacts, we administered a survey in 2020-2021 to279
Israeli dairies. We collected information from 306 farm managers about their operational characteristics,280
and about the adaptation strategies they have adopted to address heat stress, notably cooling technologies281
and when these were installed.282

Models283

To extract the general shape of the milk yield relationship to weather with little assumptions on functional284
form, we first estimate semi-parametric models on continuous regressors. We consider the generalized285
additive model (GAM) (1), where the two-dimensional smooth function f2() is a tensor product spline286
that flexibly captures any joint nonlinear effects of daily average T and RH on log yield of cow i on day287
t. Controls Xit include the cow’s stage of lactation, daily number of milkings, and lactation number,288
and αf [i], ψy[t] and ωm[t] are farm, year, and month fixed effects, respectively. Estimation is by penalized289
iteratively re-weighted least squares, and the optimal amount of smoothing is estimated using generalized290
cross validation.291

log(milkit) = f2(T it;RH it) +X ′
itδ + αf [i] + ψy[t] + ωm[t] + ϵit (1)

In subsequent models, we use the wet-bulb temperature as preferred heat index to capture the effects of292
both temperature and relative humidity. To estimate the shape of the relationship of milk yield with the293
daily average heat index, we replace the bivariate smooth function in model (1) with a univariate penalized294
cubic regression spline f1(Twbit).295

GAMs enable to extract high-level functional forms without making restrictive assumptions, however their296
computation requirements imply using only a subset of the data. All subsequent analyses are based on297
simpler additive linear models of the general form presented in Equation (2), estimated using our entire298
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panel dataset, where the function of interest G() is approximated using the flexible specification of a299
piecewise-constant function.300

log(milkit) = G(Twbit) +X ′
itδ + αf [i] + ψy[t] + ωm[t] + ϵit (2)

We consider two specifications of the step function to capture the distribution of heat during the day.301
The first uses a simple summary statistic: the daily mean Twbit, and defines each bin in G() as a binary302
indicator of whether the statistic falls within the given temperature range:303

G(Twbit) =
∑

h

βh × 1

{
Twbit ∈]h, h+ k]

}
(3)

Alternatively, in order to take into account the entire distribution of weather during the day, we make the304
assumption that the effect of heat is additively substitutable within-day, such that we can measure a cow’s305
daily heat exposure through counts of “degree-hours”. The derivation of the model from this assumption is306
detailed in the SI Appendix. The resulting specification of the response function is the vector of degree-hour307
bins (4), where each bin dh]h,h+k] captures the number of hours of exposure to the heat interval ]h, h+ k].308

G(Twbit) =
∑

h

βh × dh]h,h+k] (4)

Analyses of the abatement potential of adaptation strategies are conducted by interacting the high-degree309
bins in G() with the relevant categorical variables: farm-level adoption of cooling technologies (for the310
2009-2020 analysis), or adoption of sets of additional strategies (for the 2019-2020 analysis of birth and311
feed shifting).312

Standard errors are clustered by farm in all specifications.313
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Figure 1: Contour plot with iso-value lines of the effect of the daily average dry-bulb temperature (T) and
relative humidity (RH) on the logarithm of milk yield. Estimates are obtained from a bivariate smooth
spline fitted on 0.5% of the sample (N = 1,645,477, adjusted R2 = 0.41478.)

Figure 2: Daily milk yield response to wet-bulb temperature. (A) Response to the counts of hours in
each temperature range. (B) Response to the range of the daily average temperature. (C) Corresponding
predictions for the top percentile days of the temperature distribution, comparing the values obtained by
using the estimates from models (A) and (B). The step response functions correspond to the specifications
that fit a separate coefficient for each 2°C temperature interval; the shaded ribbons correspond to their 95%
confidence intervals, and the reference category is the interval [10-12°C]. Each bin coefficient represents the
expected average difference in log of milk produced if, in (A) the daily average temperature, and in (B)
one additional hour, had been in the given bin instead of in the 10-12°C range. The black solid and dotted
curves in (A) correspond to the estimates and 95% confidence band of a spline specification, centered to
match the reference bin of the binned regression. Bin estimates are based on the full sample of observations;
spline estimates are based on a 0.5% sample of lactation times series, stratified by farm. The first and last
bins are modeled with a larger width than the others in order to estimate them precisely—as the end parts
of the distribution have smaller sample sizes—but are displayed similarly as the others for readability.
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Figure 3: Delayed effects of past heat, measured by the wet-bulb temperature, on day-of-sample milk yield.
(A) Effects of lagged daily average temperatures being over a given threshold; estimated from the full
sample of observations. (B) Effects of lagged daily average temperatures being in a given range, relative to
the 10-12°C range; estimated from a 10% sample of lactation times series, stratified by farm.
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Figure 4: Farm adaptation strategies and associated heterogeneity of the effects of high-temperature bins.
(A) Farm locations and years of their first installment of cooling equipment (grouped by 5-year period).
(B,C) Heterogeneity of the effects of high-temperature bins by set of adopted strategies. Only the high-
temperature bins are displayed. The reference range for the bins of wet-bulb temperature is the 10-12°C
range, such that each bin coefficient represents the expected average difference in log of milk produced if
the daily average wet-bulb temperature had been in the given bin instead of in the 10-12°C range. The
colors differentiate the categories of adaptation strategies; points represent the estimates for each category,
and bars represent the difference of each category relative to the reference category. Vertical segments
correspond to the 95% confidence intervals. (B) compares farms by adoption of any cooling equipment,
over the whole panel (N=143,367,607); (C) compares farms by adoption of additional adaptation strategies,
in the last two years of our panel (N=29,415,613).
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