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Abstract

We propose a novel randomization approach for randomized controlled trials (RCTs),
named the cube method. The cube method allows for the selection of balanced sam-
ples across various covariate types, ensuring consistent adherence to balance tests and,
whence, substantial precision gains when estimating treatment effects. We establish
several statistical properties for the population and sample average treatment effects
(PATE and SATE, respectively) under randomization using the cube method. The
relevance of the cube method is particularly striking when comparing the behavior of
prevailing methods employed for treatment allocation when the number of covariates
to balance is increasing. We formally derive and compare bounds of balancing adjust-
ments depending on the number of units n and the number of covariates p and show
that our randomization approach outperforms methods proposed in the literature when
p is large and p/n tends to 0. We run simulation studies to illustrate the substantial
gains from the cube method for a large set of covariates.
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1 Introduction

Randomized controlled trials (RCTs) substantially differ in the number of available covariates
used at the randomization stage. Considering RCTs published in top-five journals during
the past five years, 34% do not use covariates for randomization, i.e., completely randomized
designs, even if some covariates were available. Most studies, 54%, employ a stratified design
for allocation, choosing a set of p baseline covariates to be “balanced” between treatment
and control. For a large sample size n, researchers would like to stratify using all available
covariates. For n fixed, however, “imbalances” become more frequent as p grows, limiting
the relevance of stratified designs with large p. This curse of dimensionality in p arises in all
stratification methods, including the matched-pairs design (Bai et al., 2022; Bai, 2022) and
its recent generalization by Cytrynbaum (2023).

To attenuate this curse of dimensionality, we here extend the “cube method”, initially
developed by Deville and Tillé (2004) for sampling, to the experimental framework. As we
will show, the cube method improves randomization in RCTs on several key dimensions.

Let us start with a motivating example to illustrate how the number of covariates affects
imbalance and how the cube method stands out. Consider an empiricist who wants to bal-
ance p covariates Xi = (X1i, ..., Xpi)′ between a treated and control groups for a given sample
of units i = 1, ..., n. We consider the simple case where (Xi)i=1,...,n are drawn independently
from uniform distributions on [0; 1]p, and every individual is treated with probability 1/2.
The degree of imbalance between control group C and treatment group T is here measured
by the squared Euclidean norm of Bn,p(X) = 2

n

∑
i∈T Xi − 2

n

∑
i∈C Xi.1 For different random-

ization methods, we compute Monte Carlo estimates of E[||Bn,p(X)||2] for p = 1, ..., 30 and
n = 500.

Figure 1 shows that stratification indeed limits imbalances for small values of p but im-
balances become more frequent as p grows. For p > 15 stratification provides worse results
than complete randomization. Recent developments, such as the matched-pairs design, limit
imbalances because of their ability to mitigate the small strata issue (i.e., situations in which
strata are empty or contain a single observation). The cube method allows spectacular im-
provements and exhibits a different dynamic with a linear growth of the squared Euclidean
norm. The cube method exhibits a different dynamic when p grows because it relies on a dif-
ferent notion of “balancing”. Indeed, stratification and matched-pairs design aim at making

1We here use the Horvitz-Thompson estimator to compute average differences between control and
treatment. When the number of units in each group is fixed, as for complete randomization, matched-pairs
design, or the cube method, this estimator is equivalent to a difference-in-means.
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Figure 1: Balance Quality and Number of Covariates
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the joint probability distribution of selected covariates as similar as possible between treat-
ment and control. In sharp contrast, the cube method balances a set of selected moments.
Balancing numerous covariates is crucial as precision gains in treatment estimates depend
on picking out the most explicative ones. Empiricists are typically unsure which covariates
to include, especially if they are interested in several treatment outcomes. Selecting more
covariates, without facing the small strata issue, will help empiricists increase precision and
thus reduce the cost of RCTs as the number of required units to achieve the same precision
will be lower.

We here contribute to four streams of research. The cube method is a sampling method
designed by Deville and Tillé (2004) to obtain balanced samples so that Horvitz–Thompson
estimators of the population totals of a set of covariates equal the known totals of these
variables. The cube method is a notable achievement that selects approximately balanced
samples with equal or unequal inclusion probabilities and uses numerous covariates. The
cube method is routinely used by national statistical institutes (see Tillé, 2011, for a review
of applications of the cube method). Our technical contribution is to extend the scope of the
cube method beyond sampling for estimating treatment effects in RCTs. Our contribution
includes, among others, deriving asymptotic properties for estimators of the population aver-
age treatment effect (PATE) and sample average treatment effect (SATE). For the PATE, we
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show how to perform inference and that the semiparametric efficiency bound in Hahn (1998)
is attained. We also provide an explicit formula for asymptotic precision gains, showing that
they are higher when balancing covariates more correlated to potential outcomes. We thus
formally motivate the interest of increasing the number of covariates used for randomization.

Our second contribution is to provide a more general comparison of the behavior of
randomization methods when p, the number of covariates used for balancing, increases.
Asymptotic properties of randomization methods when the number of units n is getting
larger are well studied already. In contrast, the asymptotic behavior when p grows has not
been surveyed yet, to the best of our knowledge. Our introductory example provided already
insights into this crucial question, illustrating an essential difference between the cube and
other methods. We show that observed patterns are de facto generic and, thus, not specific
to a particular example. In particular, we formally derive the relation between the number
of units n and the number of covariates p. Our main result is to uncover three areas where
stratification behaves differently. For a small number of covariates (i.e., p ≪ ln(n)), stratifi-
cation improves balancing compared to complete randomization. When p ≈ ln(n), there is
a critical regime where the balancing quality deteriorates quickly. Last, for p ≫ ln(n), be-
cause of the small strata issue, stratification is similar to Bernoulli randomization and worse
than complete randomization. In sum, stratification exhibits different balancing properties
when p varies. In sharp contrast, the cube method grants the balance of (the moments of)
selected covariates with no critical change when p grows, allowing balancing on a large set
of covariates. By construction, the cube method further guarantees the balance between
treatment and control on selected covariates with probability one (up to an asymptotically
negligible rounding term). Complete randomization only guarantees that balancing occurs
on average, which means that in some instances, some imbalances occur as p grows. Some
RCTs will thus not pass balance checks, which is shown to increase rejection probability by
economic journals, creating a publication bias (see Snyder and Zhuo, 2024, for evidence and
discussion). A side effect of using the cube method could thus be to reduce publication bias
by avoiding large imbalances.

We also contribute to a stream of recent papers that propose new randomization tech-
niques to increase precision gains when estimating treatment effects. Bai et al. (2024) propose
a stimulating review of recent developments. An essential question in this literature is how
randomization methods relate to the precision of treatment effects estimates. For instance,
there are several ways of using stratification to create a control and a treatment group. Bugni
et al. (2018) provides several estimators with associated exact confidence intervals, allowing
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exploitation of precision gains obtained by stratification. Bai (2022) shows that a specific
matched-pairs design achieves the maximum statistical precision for estimating the average
treatment effect using the difference in means estimator. Figure 1 shows an example of the
sizeable improvements of matched-pairs designs. Cytrynbaum (2023) extends this result and
shows that precision gains are more substantial when using covariates more predictive of
treatment effect heterogeneity. A crucial question in this literature is thus to identify the
most relevant covariates to use at the randomization stage. A pivotal advantage of the cube
method is to allow the inclusion of a large set of covariates, thus maximizing the probabil-
ity of including the relevant ones (i.e., the ones that correlate to potential outcomes). Put
differently, by providing precision gains, the cube achieves the same precision with a smaller
sample, which diminishes the cost of RCTs by reducing the number of surveyed units. We
gauge the size of precision gains using both Monte Carlo simulations and an empirical ex-
ample using real world data.

When choosing a particular randomization method and estimating treatment effects, ex-
perimenters now have the choice among several methods and associated estimators. Building
on the seminal work of Bruhn and McKenzie (2009), Athey and Imbens (2017) that provide a
systematic review of the pros and cons of each method, Bai et al. (2024) review the most re-
cent developments. Our last and modest contribution emphasizes five properties of the cube
method that experimenters may want to consider when choosing a randomization method.
First, the cube method removes most of the bad luck that may arise from sampling errors,
as the most unfavorable samples have a null probability of being selected. As explained, the
same desirable property is granted by stratification designs but only for a “small” number of
covariates. Second, the cube method requires no particular assumption regarding the prob-
ability of being allocated to the treatment group (e.g., probabilities do not need to be equal
to 1/2), and probabilities may differ across units (e.g., inclusion probabilities may depend
on some covariates). Freedom of choosing assignment probabilities is desirable when the
experimenter wants to target a specific group (for instance, oversampling a group because
of anticipated attrition). Third, the cube method does not require the choice of any tuning
parameter (unlike, for example, the Gram-Schmidt walk design). The experimenter only
needs to choose the set of moments on which she wishes to balance control and treatment
groups. This feature avoids ad-hoc choices regarding parameters. Fourth, the cube method
is computationally simple and can rapidly run on any computer, even for large samples and
numerous covariates. Five, there already exist packages allowing the interested reader to run
the cube algorithm. Six, we show through simulations that balancing using the cube method
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provides very similar estimates as the double-lasso regression (Belloni et al., 2014), which
uses regularization techniques to estimate treatment effects after running the experiment.
While both methods provide very similar estimates- there is a reason to prefer the cube over
the double lasso. As shown by Kolesár et al. (2024), estimation of treatment effect using
lasso regressions is prone to instability arising from seemingly innocuous choices (e.g., cen-
tering variables around mean vs median, choosing a reference category). The cube method
does not involve any data formatting, thus avoiding a potential source of instability.

Section 2 introduces the potential outcome framework and covariate balancing. Section
3 presents the cube algorithm and its application to RCTs. Section 4 gives the balancing
properties of the cube method, compares imbalances to other methods, and provides novel
asymptotic expressions for the variance of average treatment effect estimators. We then
specify two ways of performing inference based on asymptotic normality and the random-
ization mechanism. Section 5 uses simulated and experimental data to show our precision
gains and how the cube method might be less constrained by the curse of dimensionality.
Finally, Section 6 reviews current practices in RCTs and discusses practical considerations
of the cube method.

2 Setup

This section presents the potential outcomes framework, provides assumptions on the data-
generating process, and formally defines covariate balancing.

2.1 Data Generating Process and Assignment Design

We consider the standard Neyman-Rubin framework of potential outcomes where Yi(0) is the
outcome of unit i when untreated and Yi(1) is the outcome when treated. We consider Xi a
vector of p covariates. According to the literature, we assume i.i.d.ness and the existence of
second-order moments for all these variables.

Assumption 1
(Yi(0), Yi(1), Xi) are i.i.d. across i and E (Y (0)2 + Y (1)2 + ||X||2) < ∞

The empiricist observes (X1, . . . , Xn) for a finite sample of size n. She wants to randomly
allocate these n units to treatment according to a design Π, i.e., a distribution on the set of
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the possible treatment allocations {0, 1}n. If the design Π does not depend on the potential
outcomes, it balances potential outcomes in the treatment and control groups in average,
avoiding selection bias. The design Π could depend on (X1, ..., Xn). For instance, the
treatment probability of a unit i could depend on Xi for various reasons, such as efficiency,
cost of the treatment depending on Xi, or subpopulations of particular interest. In the
following, Di is the dummy variable indicating if i is treated or untreated. Empiricists
have to choose not only each individual selection probability PΠ(Di = 1|X1, ..., Xn) but the
full design Π that determines PΠ (∩i=1,...,nDi = di|X1, ..., Xn) for any potential allocations
(di)i=1,...,n ∈ {0, 1}n. A major issue is exploiting the knowledge of (X1, ..., Xn) to define a
“good” design Π to go beyond the balancing of potential outcomes in average. To study this
question, let us formulate the assumption on the class of design we consider in the following.

Assumption 2 The empiricist observes a sample (Xi)i=1,...,n of size n and generates a
random assignment (Di)i=1,...,n according to a randomization design Π such that:

(D1, ..., Dn) ⊥⊥ (Y1(0), Y1(1), ..., Yn(0), Yn(1))|X1, ..., Xn (1)

and for any i = 1, ..., n

PΠ(Di = 1|X1, ..., Xn) = p(Xi) ∈ [c, 1 − c], (2)

where p is a function chosen by the empiricist and c is a positive constant.

Equation (1) means that assignment is independent of the unknown potential outcomes,
conditional on the auxiliary information X. Equation (2) specifies that the assignment
probability of unit i could depend on Xi but not on Xj for j ̸= i. It also states that the
propensity score p(Xi) fulfills a common support condition. This restriction is usual and
necessary in the literature on treatment effects estimation. In many RCTs, p(Xi) = 1/2
for all i, and in that case, there is (on average) the same number of treated and untreated
units. But in some cases, for theoretical reasons (e.g., efficiency, population of interest) or
practical reasons (e.g., budget constraints), only a smaller fraction of units could be treated
(p(Xi) < 1/2) or p(Xi) could be heterogeneous across i (V(p(Xi)) > 0). In the following,
we denote the propensity score p(Xi) as πi. Our proposition of design accommodates any
propensity score type, offering complete flexibility to empiricists concerning its definition.

After the experiment, the empiricist observes Yi = Yi(1) × Di + Yi(0) × (1 − Di). She will
thus never observe both potential outcomes for the same unit.
Empiricists are generally interested in estimating the sample and population average treat-
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ment effects given by
SATE : θ0 = 1

n

n∑
i=1

Yi(1) − Yi(0) (3)

and
PATE : θ∗

0 = E [Yi(1) − Yi(0)] , (4)

respectively.2

In this paper, we will focus on the Horvitz-Thompson estimator (HT) and the Hájek
estimator (H), which are of central interest in RCTs. The Horvitz-Thompson estimator is

θ̂HT = 1
n

n∑
i=1

Å
YiDi

πi

− Yi(1 − Di)
1 − πi

ã
(5)

which is unbiased for both the SATE and the PATE and is the difference between the inverse
probability weighting estimators on the treated and the control group.

The Hájek estimator is

θ̂H = 1∑n
i=1

Di

πi

n∑
i=1

YiDi

πi

− 1∑n
i=1

1−Di

1−πi

n∑
i=1

Yi(1 − Di)
1 − πi

(6)

and corresponds as well to the inverse probability weighting OLS estimator

θ̂H = arg min
θ

min
a

n∑
i=1

wi (Yi − a − θDi)2

for wi = 1
πi

if Di = 1 and wi = 1
1−πi

if Di = 0. Let nT denote the number of treated units
and nC the number of control units. When πi is constant, θ̂H = 1

nT

∑
i:Di=1 Yi − 1

nC

∑
i:Di=0 Yi

is the difference between the average on the treated group and the control group whereas
θ̂HT = 1

E(nT )
∑

i:Di=1 Yi − 1
E(nC)

∑
i:Di=0 Yi is a slight modification of this difference of averages.

If, additionally, nT and nC are fixed, both estimators are identical to the difference-in-means
estimator.

2.2 Balancing Constraints

Under Assumption 2, as soon as E(Di|(Xi′ , Yi′(0), Yi′(1))i′=1,...,n) = πi and we have average
balance for the potential outcomes, i.e.,

E
Ç

1
n

∑
i:Di=1

Yi(1)
πi

∣∣∣∣(Xi′)i′=1,...,n

å
= 1

n

n∑
i=1

Yi(1) and

2In some cases, they are interested in similar parameters for some subpopulations:
1∑n

i=1
1{Xi∈X }

∑n
i=1(Yi(1) − Yi(0))1{Xi ∈ X } or E [Yi(1) − Yi(0)|Xi ∈ X ]. Estimators of these quan-

tities are defined restricting the sample to units such that Xi ∈ X and the asymptotic properties of these
estimators follow from a straightforward adaptation of what is presented in the following.
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E
Ç

1
n

∑
i:Di=0

Yi(0)
1 − πi

∣∣∣∣(Xi′)i′=1,...,n

å
= 1

n

n∑
i=1

Yi(0),

for any covariates Xj for j = 1, ..., p:

E
Ç

1
n

∑
i:Di=1

Xji

πi

∣∣∣∣(Xi′ , Yi′(0), Yi′(1))i′=1,...,n

å
= E
Ç

1
n

∑
i:Di=0

Xji

1 − πi

∣∣∣∣(Xi′Yi′(0), Yi′(1))i′=1,...,n

å
= 1

n

n∑
i=1

Xji.

As explained in Section 1, to go beyond the balancing of potential outcomes on average,
empiricists can take advantage of the observation of covariates X before the experiment. A
long and natural idea (Fisher, 1926) is to balance these covariates not only in average but
also almost surely. Let us define more precisely a perfectly-balanced design.

Definition 1 (Perfectly-balancing Design)
A design Π is perfectly-balancing over X = (X1, ..., Xp)′ if for (Di)i=1,...,n sampled in Π we
always have for any j = 1, ..., p:

1
n

n∑
i=1

XjiDi

πi

= 1
n

n∑
i=1

Xji (7)

and
1
n

n∑
i=1

Xji(1 − Di)
1 − πi

= 1
n

n∑
i=1

Xji (8)

Equation (7) describes equality between the covariate sample mean and the estimated mean
in the treatment group, whereas equation (8) ensures perfect balance for the control group.
A perfectly-balanced assignment eliminates any allocation to the treatment that does not
balance perfectly the covariates between treatment and control groups. Note that when πi

is constant, conditions (7) and (8) are equivalent. But this is not the case if the πi are
heterogeneous. A common practice in experiments is to form treatment and control groups
of fixed sizes, nT , and nC = n − nT , respectively. This is equivalent to setting the constraint
in (7) with Xji = πi. Indeed, for any possible allocation (d1, ..., dn):

nT =
n∑

i=1
di =

n∑
i=1

πi = E(nT ) (9)

In that case we also have: nC = ∑n
i=1(1 − di) = ∑n

i=1(1 − πi) = E(nC). As recommended by
Deville and Tillé (2004), we also balance a constant (Xji = 1), for the treatment and control
groups:

1
n

n∑
i=1

Di

πi

= 1
n

n∑
i=1

1 = 1 (10)
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1
n

n∑
i=1

(1 − Di)
1 − πi

= 1
n

n∑
i=1

1 = 1. (11)

Under such assignment θ̂HT defined in (5) is equal to θ̂H defined in (6). Notice that, as in
Tillé and Favre (2004), we can rewrite (7), (8), (9), (10), (11) as

1
n

n∑
i=1

Z1iDi

πi

= 1
n

n∑
i=1

Z1i ⇔ 1
n

n∑
i=1

Z0i(1 − Di)
1 − πi

= 1
n

n∑
i=1

Z0i (12)

with Z1i = (1, πi

1−πi
, πi, X ′

i,
πi

1−πi
X ′

i)′ and Z0i = (1−πi

πi
, 1, 1 − πi,

1−πi

πi
X ′

i, X ′
i)′ = 1−πi

πi
Z1i. If

assignment probabilities are homogeneous (i.e., πi = π), the balancing covariates are reduced
to Z1i = Z0i = (1, X ′

i) due to perfect multicollinearity, but this is no more the case if the πi

are heterogeneous.
The notion of perfect balance is closely related to the balance tests produced by empiricists
after randomization. These tests check ex-post that randomization has balanced or not
treatment and control on the covariates not only in average but for a particular sampling
according to the design Π. A perfectly-balancing design integrates ex-ante the information
contained in the observation of X to ensure balance ex-post and improve the balance in
the potential outcomes. For these reasons, debates on the conciliation of randomization and
balancing have a long history in statistical sciences (see for instance Fisher, 1926). It is worth
noticing that perfect balance is not always attainable: for instance, if n = 101 and πi = 1/2.
Imposing (9) implies nT = 50.5, which is simply impossible. But statistical analysis ensures
that balancing up to a op

Ä
1√
n

ä
is sufficient to take full advantage of the auxiliary information

Xi, πi. Empiricists are then reduced to find a design Π such that for (Di)i=1,...,n ∼ Π,

1
n

n∑
i=1

Z1iDi

πi

= 1
n

n∑
i=1

Z1i + op

Å 1√
n

ã
for Z1i =

Å
1,

πi

1 − πi

, πi, X ′
i,

πi

1 − πi

X ′
i

ã′
(13)

Various randomization strategies have been proposed and used in the literature to achieve
Equation (13). Some of the oldest and widest-used strategies to do so are stratified designs
or blocking (Fisher, 1926), re-randomization (Student, 1938; Morgan and Rubin, 2012),
matched-pairs design (Imai et al., 2009; Greevy et al., 2004; Ball et al., 1973; Bai et al.,
2022). We briefly discussed their limitations in Section 1. In this paper, we advocate the
cube method that achieves simultaneously many desirable properties of the various usual
balancing designs with a large number of covariates Z1 that could be as large as a O(n1/2−1/r)
if covariates admit moments of order r and as large as o(n1/2) if covariates have bounded
supports. Let us briefly present the cube method before detailing its theoretical properties,
the consequence of its use on the estimators θ̂H and θ̂HT and on the inference about PATE
and SATE.
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3 Balancing Covariates with the Cube Method

Deville and Tillé (2004) first introduced the cube method to produce samples balanced to the
population. The cube method consists of an algorithm in two steps: the flight and landing
phases. The technique gets its name from the graphical representation of a sampling problem.
Equation (12) ensures that balancing treatment and control groups in an experimental setting
for some covariates is equivalent to balancing the treatment group to the entire sample. Let
us consider the n-cube C = [0, 1]n. Each vertex of C (from 2n possibilities) represents a
possible allocation: for instance, (1, 1, ..., 1) corresponds to the situation where all units are
allocated to treatment, (1, 0, 1, 0, ..., 1, 0) corresponds to the case where the treatment group
is {i : i odd}. A sampling design Π corresponds to how a vertex is selected. Recall that we
consider a framework where empiricists impose that Equation (2) holds for Π and a vector
(πi)i=1,...,n.

We will first describe the cube algorithm without balancing constraints before moving to
the more interesting case where the balancing constraints in Equation (12) are considered.
Whatever the set of balancing constraints, the cube method is a discrete martingale that
moves in (at most) n + 1 steps from the interior point π(0) = (πi)n

i=0 to π(n + 1) = (Di)n
i=0

a vertex of C. Let us consider the case without constraints. At the first step, one chooses
a random direction for π(1) − π(0) and a step size such that π(1) belongs to a facet of
C and that E[π(1)|π(0)] = π(0). After this step, because π(1) belongs to a facet of C,
one component i0 of π(1) is equal to 0 or 1, selecting Di0 = πi0(1) one has thus assigned a
first unit to either treatment or control. Because a facet of a n-cube is a (n − 1)-cube, one
can then repeat the process in a (n − 1)-cube, and so on, until landing in a vertex of C. At
the final step n, one will have (Di)i=1,...,n = π(n) ∈ {0, 1}n and E[Di] = πi (i.e., every unit
is allocated to the treatment group with the probability specified by the empiricist). These
successive steps are the flight phase and for the cube method without balancing constraint,
allocation (Di)i=1,...,n is always determined at the end of this phase. Figure 2 illustrates
graphically the method.

In Figure 2, all vertices of the n-cube can be selected, meaning that all individuals could
be allocated to the control group. We now consider that the empiricist wants to allocate
a fixed number nT of units to the treatment and nc units to the control. This can be
achieved with the cube method as soon as ∑n

i=1 πi = nT . The condition that exactly nT

units are assigned to the treatment can be expressed as a balancing constraint. Indeed,
because nT = ∑

i Di and ∑
i πi = nT , the fixed size condition is equivalent to ∑

i
ZiDi

πi
= ∑

i Zi
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Figure 2: Cube Method without Balancing Constraints

π(0) π(1)

π(2)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)= π(3)

(1,1,0)

This figure depicts an example of the cube method with n = 3 when no balancing
constraint is imposed. The red arrow represents the initial treatment probabilities
(πi)i=1,...,n. Then, every blue arrow is a step of the flight phase. In this example, the
first unit is initially assigned to the treatment group. Then, the third unit is assigned
to the treatment group. Last, the second unit is assigned the control group. Therefore,
the final allocation – in bold – is (1, 0, 1).

for Zi = πi. Let K the set of vectors s in the n-cube C such that ∑
i si = nT . K is a

closed convex set and its extreme points are vertices of C, that is the set of allocations
respecting the fixed-size constraints. K is contained in an affine subspace of dimension n−1
of direction V := {v : ∑n

i=1 vi = 0}, we have K = C ∩ {π(0) + v : ∑
i vi = 0}. The cube

method selects randomly an element of V for the direction of π(1)−π(0) and fixes the step
size such that π(1) is a border point of K and that E(π(1)|π(0)) = π(0). After this first
step, π(1) belongs to a facet of C and a unit i1 is assigned either to the treatment either
to the control group. Units i ̸= i0 remain unassigned and we have ∑

i:i ̸=i0 πi(1) = nT − Di0 .
We can then replicate the first step after replacing nT by nT − Di1 the sample {1, ..., n} by
{1, ..., n}\{i0} and to allocate a second unit and to update assignment probability as π(2).
At step n − 1, π(n − 1) belongs to the extreme points of K, this ends the flight phase.
If, for instance, πi = 1/2 and n is even, the extreme points of K are some vertices of C,
so the assignment is achieved. Now imagine that one has 101 units to assign with equal
probability to the treatment and control groups. Perfect balancing on the two group sizes is
not possible: 101 is an odd integer and it is not feasible to assign 50.5 units to the treatment.
A popular solution is to consider πi = 50/101 or πi = 51/101 and to sample randomly 50
(or 51) elements among the 101 units. However, this strategy does not accommodate easily
with heterogeneous probabilities of assignment and does not generalize to take into account
many balancing constraints. With the cube method described above, for each step t of the
flight phase we have ∑

i πi(t) = 50.5 and the extreme points of K are not anymore vertices
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Figure 3: Cube Method with Fixed Sample Size

π(0)π(0)
π(1)

(1,1,0)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)= π(2)

This figure depicts an example of the cube method with n = 3 when imposing the
constraint nT = 2 and

∑3
i=1 πi = 2. The red area depicts the points (s1, s2, s3) in the

cube satisfying the equation
∑3

i=1 si = 2. This condition is equivalent to imposing
the balancing constraint

∑
i

Zisi

πi
=

∑
i Zi with Zi = πi. The red arrow represents the

initial treatment probabilities. Then, every blue arrow is a step of the flight phase.
In this example, the first unit is initially assigned to the treatment group. Then,
since nT = 2, only one unit among the second and third units can be assigned to the
treatment group. In this case, the second blue arrow shows that, in the same step, the
second unit is assigned to the control group and the third one to the treatment group.
Therefore, the last allocation – in bold – is (1, 0, 1).

of C. In that case, at the end of the flight phase, n − 1 = 100 units are assigned at the
end of the flight phase with (n − 1)/2 = 50 units to the treatment and (n − 1)/2 = 50
units to the control. The cube method can be completed with a last phase that randomly
assigns to the treatment of the control the remaining unit ensuring that nT = 50 or 51 and
E(nT ) = 50.5. In that case, the sizes of treatment and control groups are not exactly fixed
but almost fixed (in fact as fixed as possible as soon as we respect the initial assignment
probabilities πi = 1/2). This second phase is called landing phase. These two phases, the
flight phase and the landing phase, can be generalized to the case where the empiricist wants
to impose several balancing constraints and heterogeneous probabilities of treatment.

Let us describe the cube method with an arbitrary number of balancing constraints
defined by q variables Zi. A point s ∈ C will satisfy an equation analog to (12) if

n∑
i=1

Zisi

πi

=
n∑

i=1
Zi. (14)

Let Ai = Zi

πi
and A = (A1, ..., An) the matrix of size q × n. Then (14) is equivalent to

n∑
i=1

Aisi =
n∑

i=1
Aiπi
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Figure 4: Cube Method with One Balancing Constraint

(a) landing phase not required

π(0)
π(1)

(1,1,0)

(0,0,0) (1,0,0)= π(2)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)

(b) landing phase required

π(0) π(1)

π(2)

(1,1,0)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)= π(3)

This figure depicts an example of the cube method with n = 3 where we do not always
get perfectly-balanced allocations. We consider the initial treatment probabilities in
(2) to be π1 = π2 = π3 = 2

3 . The red area depicts the points (s1, s2, s3) in the cube
satisfying the equation

∑3
i=1 s1 + s2 − 1

2 s3 = 1. This is equivalent to imposing the
constraint in (14) with Z1 = Z2 = 2

3 and Z3 = − 1
3 . The red arrow represents the

initial treatment probabilities. Since not every vertex of the plane is a cube vertex,
we cannot always satisfy the constraint. In both panels, the algorithm assigns the first
unit to the treatment group (first blue arrow). The second blue arrow corresponds to
the assignment of the third unit. If the algorithm assigns the third unit to the control
group (panel a), it automatically assigns the second one to treatment. However, if the
algorithm assigns the third unit to the treatment group (panel b), the second unit is in
neither group, even if we attain a plane vertex. In the landing phase, the cube method
will proceed by randomly allocating the second unit. In this example, the green arrow
shows that the landing phase allocates the second unit to the control group.

⇔ As = Aπ(0)

⇔ s ∈ Q := π(0) + ker(A).

K = C ∩ Q is, therefore, the (n − q)-polytope that contains all the points in C such that
(14) holds. At the first step, one chooses a random direction in v ∈ ker(A) and we select the
unique λ > 0 such that π(1) := π(0)+λv is on a facet of K and that E[π(1)|π(0)] = π(0).
Because any facet of K is the intersection of a facet of C with Q, a component i0 of π(1)
is 0 or 1 and defining Di0 = πi0(1) one has assigned a first unit. Next, one applies a similar
step for the facet of K instead of K and π(1) as a starting point instead of π(0). After
n − q steps, one has reached a vertex of K. This process corresponds to the flight phase in
Deville and Tillé (2004). If this vertex of K is also a vertex of C, the flight phase allocates
every unit, and the two groups are perfectly balanced (see Figures 3 and 4a). But in many
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cases, the vertex of K is not a vertex of C, and there remain at most q units to assign during
the landing phase (according to the wording of Deville and Tillé, 2004) (see Figure 4b).

Say that at the end of the flight phase, one has not assigned r ≤ q units and let π∗ =
π(n−q) be the updated treatment probabilities at this stage. The landing phase of the cube
method assigns the r missing units such that E[Di|π∗] = π∗. Grafström and Tillé (2013)
describe two methods for the landing phase (these are also the options used in sampling
packages): (i) Linear programming: one considers all the 2r allocations for these units and
assigns probabilities to each allocation to minimize a cost function and satisfy E[Di|π∗] = π∗.
Sampling probabilities are chosen to minimize

E
Ç∑

i/∈S

Z ′
i(Di − π∗

i )M
∑
i/∈S

Zi(Di − π∗
i )
∣∣Wå ,

where S is the set of units allocated at the flight phase, W = (S, (Di)i∈S, (π∗
i )i/∈S, (Zi)i=1,...,n),

and M is a symmetric positive-definite matrix q × q. Common choices for M are the identity
matrix or the inverse-covariance matrix. After solving this minimization problem, the em-
piricist randomly draws an allocation using these probabilities. (ii) Suppression of variables:
if r > 20, solving a linear problem becomes computationally difficult. In that case, at the
end of the flight phase, one can drop a covariate and continue with the flight phase. One
can thus successively drop variables until attaining a vertex of C. This method, however,
implies that the empiricist has to define an order to drop the covariates, ideally from the
least to the most important.

4 Statistical Properties of the Cube Method

This Section shows how the cube method allows obtaining an “almost-perfect balance” be-
tween the treatment and control groups and relates this balance to gains in precision for
treatment effect estimators.

4.1 Balancing Approximations

4.1.1 Balance Checks

As explained above, designing an allocation mechanism that always produces perfectly-
balanced groups is impossible. However, we here prove that the cube method is successful,
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under certain conditions, in creating almost-perfectly-balanced samples in the sense of Equa-
tion (13).

To check balance properties after allocating individuals according to the design Π, em-
piricists are interested in computing the difference

∆Π
j,n = 1

n

n∑
i=1

XjiDi

πi

− Xji(1 − Di)
1 − πi

.

Because PΠ(Di = 1|(Xi′)i′=1,...,n) = πi, we have E
(
∆Π

j,n

)
= 0 and under weak conditions

on Π, we have

√
n∆Π

j,n
d−→ N

(
0,V(∆Π

j,n)
)

, (15)

where V(∆Π
j,n) is an asymptotic variance depending on Π and the distribution of X.

For the so-called baseline balance tests, empiricists often consider the t-statistic

tΠ
j,n =

√
n

∆Π
j,n»

V̂(∆Π
j,n)

where V̂(∆Π
j,n) is a consistent estimator of the asymptotic variance of ∆Π

j,n to test the null
hypothesis of perfect balance. tΠ

j,n is then associated to a p-value pΠ
j,n which take values

between 0 and 1. As explained by Snyder and Zhuo (2024), when creating balance tests for
RCTs, small p-values (below 0.15) are considered problematic.

Let us first consider a naive mechanism that does not use baseline information to assign
units. Such situations correspond to the case where the design Π is a Poisson design, ie
a design where each unit i is allocated to the treatment independently of the allocation of
other units:

PΠ

Ç
n⋂

i=1
{Di = di}

∣∣(Xi)n
i=1

å
=

n∏
i=1

πdi
i (1 − πi)1−di .

A Poisson design does not balance any variable nor group sizes.
When πi = nT

n
for any i, another popular design is sampling without replacement of nT

treated units, also known as complete randomization:

PΠ

Ç
n⋂

i=1
{Di = di}

∣∣(Xi)n
i=1

å
=
Ç

n

nT

å−1

1

®
n∑

i=1
di = nT

´
.

Complete randomization only balances constant variables. In that case, the sample of treated
and control groups are fixed, and the design is also balanced on the constant ∑n

i=1 Di = nT ,∑n
i=1(1 − Di) = n − nT and ∑n

i=1
Di

πi
= n.
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Under such assignments and Assumptions 1 and 2, and more generally for any design
Π such that (15) holds with V(∆Π

j,n) > 0, we have ∆Π
j,n = Op

Ä
1√
n

ä
, tΠ

j,n
d−→ N (0, 1) and

pΠ
j,n

d−→ U(0, 1). This result means that if one randomizes naively, control and treatment
groups will present imbalances with a strictly-positive probability. Moreover, for a confidence
level of 100(1 − α)%, there exists always 100α% chance of obtaining significant differences.
If an empiricist evaluates the balance of 10 independent covariates at the 85% confidence
level (a level over which rejection is considered problematic for publication as shown by
Snyder and Zhuo, 2024), there is more than 80% chance of having at least one significant
difference. This magnitude questions the mere implementation of such widely used tests.
Even if a multiple F-test with a confidence level of 85% mitigates this rejection rate, the
null hypothesis of simultaneously balanced covariates is rejected by construction with a 15%
chance.

The cube method ensures that these tests are unnecessary since we can balance control
and treatment groups in any covariate (Xj)j=1,...,p. This is achieved because V(∆Π

j,n) = 0 for
any j = 1, ..., p in (15). Performing these tests would not make sense since we never reject the
null hypothesis by construction. However, one might report them if the editor worries about
empiricists randomizing badly. Usual balancing strategies are stratified or matched-pairs
designs. These methods ensure V(∆Π

j,n) = 0 if the covariates (Xj)j=1,...,p are all discrete but
will always generate imbalances for continuous ones since the empiricist needs to discretize
or aggregate them before randomizing.

The following proposition explains how the balancing approximations are satisfied with
the cube method. Because the number q of balancing constraints in equation (13) could be
large with the cube method, we are also explicit on how q affects balancing approximations
to allow us to consider a framework where q tends to ∞.

Proposition 1 (Balancing Approximations with the Cube Method)
If Assumptions 1 and 2 hold, then

∆cube
j,n = op

Å
q√
n

ã
.

Moreover if E [|Xj1|r] < ∞ for r ≥ 2, then ∆cube
j,n = op

(
q

n1−1/r

)
, if Xj1 is sub-Gaussian, then

∆cube
j,n = Op

Å
q
√

ln(n)
n

ã
, and if Xj1 has a bounded support, then

∣∣∆cube
j,n

∣∣ < Kq
cn

for K such that

|Xj1| < K. As soon as
√

n∆cube
j,n = op(1), we have tcube

j,n
P−→ 0, and pcube

j,n
P−→ 1.

Proposition 1 shows that, as n grows, the cube method ensures the balancing equation
(13) as soon as the second-order moments of X exist. Furthermore, if moments of order r > 2
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exist for X, (13) holds as soon as q = O
Ä
n

1
2 − 1

r

ä
. q can even be o

(»
n

ln(n)

)
if the covariates

X are all sub-Gaussian or o(
√

n) if they are bounded. This means that with probability
tending to one, the p-values of balance tests tend to 1. Balance is thus never rejected for
large n contrary to randomization under a design Π such that (13) does not hold.

4.1.2 Comparison with Other Methods

We here compare the balancing properties of the cube method with other randomization
methods. For the sake of simplicity, we fix πi = 1/2. We check imbalances by using the
Horvitz-Thompson estimators for the average difference between the control and treatment
groups Bn,p(X) = 2

n

∑n
i=1 XiDi − Xi(1 − Di) and looking at their squared Euclidean norm

||Bn,p(X)||2 = 4
n2

∑p
j=1 (∑n

i=1 XjiDi − Xji(1 − Di))2 .

Assumption 3 n is an even positive number and Xi = (X1i, ..., Xpi)′ are some independent
and identically distributed random vectors of dimension p for i = 1, ..., n. X1 admits a
density fX with respect to the Lebesgue measure on [0; 1]p such that there exists some positive
constants C and C (independent of p) such that for any x ∈ [0; 1]p, C ≤ fX(x) ≤ C.

Assumption 3 imposes mild conditions over the baseline covariates. In particular, the com-
ponents of the vector Xi are not assumed to be independent. Figure 1 illustrates our main
results for a simple case where this assumption holds: (Xji)j=1,...,p,i=1...,n are independent and
follow a uniform distribution on [0, 1]. In this case, we have V (Xji) = 1/12, E(X2

ji) = 1/3,
and C = C = 1.

To create comparable treatment and control groups, empiricists sometimes use “naive
randomization” methods, meaning they do not use any information previously available to
design the assignment mechanism. The simplest naïve method is Bernourlli randomization,
where empiricists allocate units to treatment independently and with equal probabilities.
This method corresponds to assigning units to treatment using an independent coin toss for
each unit. Bernoulli randomization ensures that treatment and control groups are balanced
on average (i.e., E[Bn,p]=0). However, we can still have imbalances between groups for a given
allocation. Additionally, Bernoulli randomization will often generate different sizes between
the treatment and control groups, meaning that it fails to balance on a constant. Proposition
A.1 in Appendix A shows that for Bernoulli randomization, 4C

3
p
n

≤ E[||Bn,p(X)||2] ≤ 4C
3

p
n
.

For the case illustrated in Figure 1, we thus have E[||Bn,p(X)||2] = 4p
3n

.
Another naïve method that improves from Bernoulli sampling is complete randomization.

In this method, the researcher fixes the group sizes. Since we here assume πi = 1/2, the
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empiricist randomly chooses an allocation among those having an equal number of treated
and untreated units. The empiricist still does not use any information on the baseline
covariates to refine the randomization process but manages to reduce the imbalances due
to different group sizes. Indeed, under Assumption 3 and complete randomization C

3
p
n

≤
E[||Bn,p(X)||2] ≤ C

3
p
n
, so bounds reduce by four, relative to Bernoulli randomization. For the

example in Figure 1, we have E[||Bn,p(X)||2] = p
3n

. This result clearly shows the advantages
of using designs with fixed sample sizes such as complete randomization, but also the cube
method with the constraints in Section 2 or matched-pairs design.3

In sharp contrast with naïve methods, covariate-adaptive randomization uses baseline
information to improve balance between treatment and control. Stratified designs are the
most used and studied covariate-adaptive method. Stratification has a long tradition in
RCTs (Fisher, 1935; Higgins et al., 2016). Stratified designs are the most popular assign-
ment mechanisms used in RCTs as they are simple to grasp and can produce balanced
samples. This method consists of using one or several baseline variables to create blocks or
strata and then using complete randomization inside each stratum. A common practice in
experiments is to block on gender, meaning that randomization is performed independently
amongst male and female units, generating the same proportion of men and women in each
treatment arm. When using dummy variables to define the strata, stratified or blocked
randomization allows almost perfect balancing of the variables used to create them. Athey
and Imbens (2017) recommend balancing on small strata since this method generates sub-
stantial precision gains. However, stratified designs do not come without any limitations.
Notably, the type and number of covariates that one wants to balance can impose some
difficulties. Facing continuous covariates, such as income or grades, makes it impossible to
stratify without the empiricist deciding how to create the strata. Assumption 3 imposes
continuous covariates. We thus will focus on two ways of generating (possibly-)small strata,
discretization and matched pairs.

First, the empiricist can discretize continuous variables using ℓ-quantiles for each covari-
ate, generating thus ℓp strata. Stratifying will produce balance gains as long as the number of
units remains large compared to the number of strata. In particular, we show in Proposition
A.1 that whenever nℓ−p → ∞, stratified designs through discretization outperform complete
randomization. Discretizing baseline covariates, however, does not ensure fixed sizes for each

3One can show that the gains from fixed group sizes are not present if one uses a difference-in-means
estimator instead. Moreover, in the case of n even and πi = 1/2, this estimator is equivalent to the Horvitz-
Thompson for complete randomization, matched-pairs design, and the cube method. However, it can lead
to more precise estimates for Bernoulli randomization or stratified designs.
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stratum. In particular, if the number of strata is big compared to the sample size, there is a
big chance of having some strata with only one unit. In the limit case where nℓ−p → 0, every
non-empty strata has one unit with probability one, and stratifying through discretization
performs strictly worse than complete randomization and approximates Bernoulli random-
ization. We also show that, in both limit cases, imbalances grow at a rate of p/n. We observe
this behavior in Figure 1 for ℓ = 2, 4. In this example, the stratified designs perform better
than complete randomization whenever lp ≤ n/2 and similarly to Bernoulli randomization
for lp ≥ 32n. Balancing deterioration can thus occur quite rapidly when stratifying is done
by discretizing many continuous variables. It is worth noticing that this issue is not exclusive
to continuous variables, as it arises when stratifying using many categorical variables. In
that case, the number of strata equates to the product of covariate support cardinalities.

To eliminate the issue of single-unit strata, empiricists may use a more sophisticated way
of creating their strata: matched-pair designs. Following Greevy et al. (2004); Bai et al.
(2022); Bai (2022), the empiricist can create n/2 strata of two units to minimize the average
intra-strata distance. The empiricist thus creates pairs of two units that resemble each
other. After constructing these strata, the empiricist randomly allocates one to treatment.
By doing so, she creates control and treatment groups that are very similar. We show in
Proposition A.1 that this design always outperforms complete randomization. However, this
type of strata construction works by trying to have a similar joint distribution of X between
treatment and control. This approach to balancing implies that for large p, it becomes more
difficult to find pairs of units close to each other. In particular, we show that under this
design and Assumption 3, E[||Bn,p(X)||2] ≥ p

n

Å
1
3 −

√
2 ln(n−1)+4 ln C

p

ã
. This result entails

that the number of balancing covariates p is large relative to ln(n), balance gains shrink,
and imbalances increase at the rate of p/n. Figure1 illustrates this effect. Indeed, when p

becomes larger than ln(500) ≈ 6, the matched-pairs design performs better than complete
randomization, but its relative gains quickly reduce.

For all these randomization methods, imbalances grow at the rate of p/n. We now show
that the cube method is less concerned by this curse of dimensionality since imbalances grow
at a rate p2/n2. If p remains smaller than n, then this result implies a much slower balance
deterioration than for the methods described above. Proposition 2 gives this upper bound
for E[||Bn,p(X)||2||] when using the cube method. This proposition is also stated and proved
in Appendix A.

Proposition 2 (Imbalance under the Cube Method)
Suppose Assumption 3 holds. Under the cube method using linear programming with positive-
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definite matrix M for the landing phase, we have

E
[
||Bn,p(X)||2

]
≤ 4(p + 1)2

n2
λmax(M)
λmin(M)

for λmax(M) and λmin(M) the largest and the smallest eigenvalues of M .

The upper bound depends on the matrix M , described in equation Equation (7) in Deville
and Tillé (2004), used during the landing phase. Notably, one can take M the identity
matrix, and we have λmax(M)

λmin(M) = 1. Then, we see that the cube method outperforms other
methods that grow at a rate of p/n. This is clearly illustrated in Figure 1, where we see
that imbalances increase only very lightly on the number of covariates when randomizing
with the cube method. The main difference between the cube and other designs is that it
balances selected moments of the covariates instead of balancing the whole joint distribution
of X. It thus reduces the burden of balancing a higher number of covariates. Balancing
moments can also be achieved through other methods. In particular, we can perform re-
randomization such that the stopping criterion requires balancing moments of X or perform
a Gram-Schmidt walk design (Harshaw et al., 2024).

Re-randomization is another method that allows obtaining balance between covariates
that has gained focus in the last decades (Morgan and Rubin, 2012; Li et al., 2018; Im-
bens, 2011). The main idea of re-randomization is to completely randomize repeatedly until
the obtention of balanced groups. Some empiricists perform re-randomization without pre-
specifying it. This repetition affects treatment probabilities in an unknown manner, which
induces invalid inference (Bruhn and McKenzie, 2009; Athey and Imbens, 2017). There are,
however, several ways of performing re-randomization that allow valid inferences to some
extent. Most of them rely on the simulation of the distribution under the re-randomization
procedure used to assign units. This implies that empiricist should draw a large number N

of balanced samples. One can keep randomizing until ||Bn,p(X)||2 ≤ 4 (p+1)2

n2 to achieve the
upper bound of Proposition 2 (with M = Id). However, this upper bound is not sharp and to
compare re-randomization with the cube method, we counted how many times an empiricist
should sample with naive randomization to get N = 1000 samples that are balanced as well
as B∗2 = E (||Bn,p(X)||2), where the previous expectation is computed for the cube method
through simulations. Under the design used in Figure 1, and for complete randomization,
12/4 × n × ||Bn,p(X)||2 converges in distribution to χ2(p). Next, the probability to achieve
balancing as good as the cube is Fχ2(p)(12/4 ∗ n ∗ B∗2). To have N = 1000 samples balanced
as well as the cube, empiricists thus have to sample approximately 1000/Fχ2(p)(3 ∗ n ∗ B∗2).
For p = 3, the empiricist have to sample more than 106 samples and for p = 10 this is
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more than 9, 98 × 1011. The probability of getting a sample that has the same properties as
the cube method becomes small very quickly, so it becomes demanding computationally, in
particular, if one wants several allocations to perform randomization-based inference.

Harshaw et al. (2024) recently developed the Gram-Schmidt walk design to obtain bal-
anced groups in RCTs. As the authors consider a tradeoff between balance and robustness,
they impose a choice of parameter ϕ ∈ [0, 1]. For ϕ = 1, the algorithm from Harshaw et al.
(2024) reduces to Bernoulli randomization and next 4Cp

3n
≤ E (||Bn,p(X)||2) ≤ 4Cp

3n
under

Assumption 3. For ϕ ∈ (0; 1), we conjecture that K1ϕ
p
n

+ K0(1 − ϕ) p2

n2 ≤ E (||Bn,p(X)||2) ≤
K1ϕ

p
n

+ K0(1 − ϕ) p2

n2 for some constant K0, K1, K0, K1. The balance of the Gram-Schmidt
method would be as good as the cube method if ϕ = 0. However, theoretical results in
Harshaw et al. (2024) and implementation of the Julia package depend on bounding ϕ above
0.

4.2 Variance Reduction

The balance between covariates in the control and treatment groups is also beneficial if these
variables are related to the potential outcomes. In this case, using the cube method will also
reduce the variance of the Horvitz-Thompson and Hájek estimators.

Assumption 4
For d ∈ {0, 1},

Yi(d) = βdZdi + εi(d), with E[εi(d)|Zdi] = 0

.

Assumption 4 states that potential outcomes are linearly related to observable covariates.
However, we allow heterogeneity in treatment effects by specifying different equations for
control and treatment groups.

Conjecture 1 (Poisson Approximation)
For any k ∈ N∗ we have with probability one:

lim
n→∞

sup
i1,...,ik

∣∣∣∣∣E
Ç

k∏
j=1

(
Dij

− πij

) ∣∣X1, ..., Xn

å∣∣∣∣∣ = 0

This conjecture establishes that as n increases, the cube method tends to Poisson sam-
pling. As n goes to infinity, the dependence between the assignment of a finite number of
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individuals disappears. We draw this conjecture from results in Deville and Tillé (2005) and
simulations that confirm it.

To have a benchmark for the gains in variance decline, we compare the cube method
with Poisson randomization, i.e., an unconstrained sampling with heterogeneous treatment
probabilities. The results also hold for Bernoulli randomization, that is, with homogeneous
treatment probabilities.

Proposition 3 (Asymptotic Normality)
Let θ0 be the SATE defined in (3), θ∗

0 the PATE in (4) and θ̂ the HT or H estimator in (5)
and (6). If Assumptions 1, 2 and 4, and Conjecture 1 hold, and if Π is a balancing sampling
using the cube method we have:

√
n
Ä
θ̂ − θ0

ä
d−→ N (0, V0)

and
√

n
Ä
θ̂ − θ∗

0

ä
d−→ N (0, V ∗

0 ) .

for V0 = E
(

πi(1 − πi)
Ä

εi(1)
πi

+ εi(0)
1−πi

ä2)
and V ∗

0 = V(Z ′
1iβ1 − Z ′

0iβ0) + E
î

εi(1)2

πi

ó
+ E
î

εi(0)2

1−πi

ó
.

If Poisson randomization is used instead, we have:
√

n
Ä
θ̂ − θ0

ä
d−→ N (0, V0 + Σ0)

and
√

n
Ä
θ̂ − θ∗

0

ä
d−→ N (0, V ∗

0 + Σ0) .

with Σ0 = E
î

πi

1−πi
(Z ′

i0(β1 + β0))2
ó

≥ 0.

Proposition 3 shows the gain in asymptotic variance from balancing covariates using the
cube method. The reduction is more substantial when X explains more of the potential
outcomes. Estimates of the ATE are thus more precise when using the cube method. This
reduction can represent significantly lower costs when conducting an RCT. Notice that under
the same set of assumptions, V ∗

0 corresponds to the semiparametric efficiency bound in Hahn
(1998). Simulations in Sections 5 illustrate these gains.

4.3 Inference

This section provides properties of the cube algorithm and methods to perform inference. We
elicit two main techniques of conducting inference, one based on the asymptotic properties
of the HT estimator and the other based on the randomization mechanism.
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4.3.1 Asymptotics-based Inference

Some methods, such as re-randomization, alter the inclusion probabilities in a manner that
is unclear to the empiricist (Imbens, 2011). When the criterion for selection is known and
behaves in a known way, such as the Mahalanobis distance, one can perform conservative
inference. However, balance is imperfect for numerous covariates. Since the cube method
assigns treatment only once, we can perform asymptotic-based inference. We here give the
asymptotic properties and propose an easy way to construct exact confidence intervals.

To construct a confidence interval, one would like to estimate either V0 or V ∗
0 . Estimating

V0/n is impossible without making assumptions on the relation between εi(1) and εi(0). This
issue is common in RCTs. We can, nonetheless, easily construct an unbiased estimator “V
for V ∗

0 /n. Let β̂d and ε̂i(d) be the estimated coefficients and residuals, respectively, of a
regression of Yi(d) on Zdi, for d ∈ {0, 1}. We then have“V = 1

n

ñ
V̂(Z ′

1iβ̂1 − Z ′
0iβ̂0) + 1

n

n∑
i=1

ε̂i(1)2Di

π2
i

+ 1
n

n∑
i=1

ε̂i(0)2(1 − Di)
(1 − πi)2

ô
. (16)

Then, we can test the weak hypothesis

H0 : θ∗
0 = 0, (17)

and construct the confidence interval based on

θ̂ ± Φ−1 (1 − α/2)
»“V (18)

In Section 5.2, we perform simulations that confirm the exact coverage rate of this confidence
interval when n is big enough.

4.3.2 Randomized-based Inference

We here study the properties of randomization-based inference when permuting treatment
status while satisfying balancing constraints. For these tests, we consider the stronger null
hypothesis:

H0 : (Yi(1), Xi) d= (Yi(0), Xi). (19)

Notice that testing this hypothesis, under Assumptions 1 and 2 is equivalent to testing
(Yi)n

i=1 ⊥⊥ (Di)n
i=1|X1, . . . Xn (Proof in Appendix B.4).

To explain the test, we introduce some new notation. Let Gn be the set of all possible 2n
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assignments. Then, we can define the set of assignments Gcube
n ⊆ Gn satisfying the constraints

imposed by the cube method. That is, with Assumptions 1 and 2,

Gcube
n =

ß
g ∈ Gn : ∆j,n = op

Å
q√
n

ã
for 1 ≤ j ≤ p

™
.

We note Pn = (Yi, Di, Xi)n
i=1 the observed values, and P(g)

n = (Yi, D
(g)
i , Xi)n

i=1, the new data
where we have reassigned treatment according to g ∈ Gcube

n . For computational facility, we
can replace Gcube

n by GB
n = {g1, . . . , gB}, such that g1 is the assignment really obtained and

(gi)B
i=1 are drawn independently from a uniform distribution on Gcube

n .
Then, for a given test statistic Tn(Pn),we consider the test

ϕrand(Pn) = 1 {Tn(Pn) > cn(Pn, 1 − α)}

with

cn(Pn, 1 − α) = inf
{

t ∈ R : 1
B

∑
g∈GB

n

1{Tn(P(g)
n ) ≤ t} ≥ 1 − α

}
.

Proposition 4 (Randomization-based Inference)
Under Assumptions 1 and 2, and the null hypothesis in (19),

E
[
ϕrand

n (Pn)
]

≤ α.

Proposition 4 indicates that if Tn(Pn) > cn(Pn, 1 − α), we reject the null hypothesis (19) at
the α level. The proof is similar to previous results on other covariate-adaptive assignment
mechanisms (Heckman et al., 2010, 2011; Lee and Shaikh, 2014; Bai et al., 2022), but it is
presented for completeness. This proposition ensures that we can compute Fisher’s p-values
by comparing our test statistic with those produced by other assignments made by the Cube
method.

5 Simulations

This section compares the cube method to other randomization methods by performing
Monte Carlo simulations. We are interested in examining the impact of introducing new co-
variates in the variance of treatment effect estimates. For this purpose, we evaluate different
randomization methods using one example from data following a simple DGP in the spirit
of Figure 1 and another using data-driven methods from an empirical application.
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5.1 Simple DGP

For k = 1, . . . , K the number of iterations, j = 1, . . . , p the number of covariates, and
i = 1, . . . , n, the number of observations, we independently draw Xjik ∼ U(0, 1) and εik(d) ∼
N (0, 1), for d = 0, 1. We then generate the potential outcomes Yik(0) = 1 + (Xik − 1/2)′β0 +
εik(0) and Yik(1) = 1 + X ′

ikβ1 + (Xik − 1/2)′A(Xik − 1/2) + εik(1), with A = (1/20) × (11′ −
diag(1)). Notice that, in this example, θ∗

0 = 0.

We consider n = 500, p = 30, β0 = (1, 0′)′, β1 = 2β0, so only one covariate explains varia-
tions in potential outcomes. We assume that the empiricist knows she should always balance
this covariate. Still, she does not have previous information about the (un)informativeness
of the 29 other covariates. In these simulations, the empiricist has to choose which simula-
tion method she uses and how many covariates to include. That choice corresponds to an
assignment design Π and generates treatment statuses DΠ

ik. We estimate the PATE using
the HT estimator θ̂Π

HT,k. To evaluate the precision entailed by the assignment design, we
perform K = 5, 000 simulations and compute the standard deviation of the estimator over
the simulations. Since the PATE is null, this is equivalent to estimating the root mean square
error (RMSE).

Figure 5 shows the RMSE of the HT estimator by number of covariates and random-
ization method. The simulations show that the cube method is always competitive. Since
including more covariates deteriorates balancing only very lightly, precision gains are main-
tained even when p = 30. This behavior is not present for other randomization methods.
Indeed, stratification using the median (quartile) leads to worse precision than complete
randomization as soon as p > 6 (p > 3) and converges to Bernoulli randomization for p > 12
(p > 6). Moreover, using a matched-pairs design improves from complete randomization
but, for p > 3, underperforms compared to the cube method: when p increases, precision
for matched-pairs design worsens, whereas it remains the same when using the cube. By
allowing an abundant set of covariates, the cube method improves the exploitation of bal-
ancing gains, even when the empiricist chooses to balance covariates that are not explicative
of potential outcomes. This behavior could arise if the empiricist is interested in several
treatment outcomes and collects their pre-treatment values. Then, she would ideally want
to balance them all, even if only one covariate is explicative of one outcome. As described
through these simulations, the cube method ensures precision gains for a particular outcome
variable, even when balancing another 29 baseline variables.
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Figure 5: Precision of HT Estimator by Randomization Design
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This figure depicts the precision of the HT estimator for each design (randomization
method + number of covariates). The DGP is as described in Section 5.1 and such that
only one covariate is informative of potential outcomes, which is always included by the
empiricist when performing covariate-adaptive randomization. We compute the RMSE
of the HT estimator by taking its standard deviation of 5,000 Monte Carlo iterations.

5.2 Empirical Data

We further illustrate the properties of the cube method by using experimental data from
Gerber et al. (2020). The authors investigate how informing potential voters about the
closeness of an election affects their beliefs and voting behavior. Since the experimental data
only represents one of many possible samplings, we proceed by generating a superpopulation.
We create a large dictionary with baseline outcomes, covariates, and demographics. We
consider all possible interactions and second-order polynomials. We thus generate a dataset
of 6,424 observations and 7,381 covariates (hereon denoted by X), with 3,193 individuals in
the treatment group. We consider beliefs about the closeness of the election as the main
outcome Y . We ran two lasso regressions separately for treated and control units to train two
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models, f1 and f0. We then estimate s2
1 = V̂(Y − f1(X)|D = 1) and s2

0 = V̂(Y − f0(X)|D =
0). To generate the superpopulation we draw N = 50, 000 individuals, with replacement
and we generate Yi(1) = f1(Xi) + εi(1) and Yi(0) = f0(Xi) + εi(0) for i = 1, . . . , N with
(εi(1); εi(0)) ∼ N ((0 , 0), (s2

1 0.5s1s0 , 0.5s1s0 s2
0)) . We thus obtain a superpopulation

(Xi, Yi(1), Yi(0))i)i=1,...,N .
We then run K = 10, 000 Monte Carlo simulations, where for every iteration, we draw

n ∈ (100, 256, 500, 1000)4 individuals, allocate them according to five treatment allocation
methods: complete randomization, stratified randomization using median values for continu-
ous variables, matched-pairs design using the Mahalanobis distance when balancing multiple
covariates, the cube method with the two first moments per variable, and complete random-
ization with ex-post double-lasso selection. For stratified designs, matched-pairs design, and
the cube method, we balance between 1 and 12 covariates. When balancing only one, we
use the pre-treatment value of Y . For the 12 covariates, we consider five pre-treatment
outcomes and seven baseline covariates. We always prioritize pre-treatment outcomes as
they are likely the most explicative variable for their post-treatment counterpart. We set
πi = 1

2 . For complete randomization, matched pairs, and the cube method, we compute
the HT estimator. For these methods, we compute confidence intervals using, respectively,
White standard errors, Equation (14) in Bai (2022), and Equation (16) in Section 4.3 above.
For stratification, since πi = 1

2 , we use an OLS regression with strata fixed-effects, which
gives consistent estimators and exact inference as shown by Bugni et al. (2018).) For the
double lasso, we use the same augmented dictionary as with imputation and proceed with
the double selection method described in Belloni et al. (2014).

Table 1 reports estimators of the effective sample size ESS = V(θ̂Π
HT )

V(θ̂CR
HT ) × n of each design,

based on the variance of the estimators across the K iterations. The ESS indicates, for
every allocation design, the experimental sample size required to estimate the treatment
effect with the same precision as with complete randomization. We see that almost every
covariate-adaptive method does better than complete randomization, as they allow to re-
duce the sample size, often substantially. The only exception is stratification with many
covariates. In general, if n < 2p, stratification becomes worse than complete randomization.
This phenomenon is due to the small strata issue and worsens with the strata fixed-effects
estimator. Across different n sizes, we see that the matched-pairs design does better than
the cube method when we balance a few covariates (up to three, in general). However, once

4We select 256 because exact inference methods for matched pair designs require a sample size divisible
by four (Bai et al., 2022).
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balancing more covariates, the cube method becomes more efficient. As expected, these
relative gains to the matched-pairs design are more apparent for smaller n since the curse of
dimensionality is more stringent. Notice there are clear gains from using the cube method
even when allowing for non-linearities in the imputation of Y (1) and Y (0). These results
and those in Section 5 constitute suggestive evidence for a possible relaxation of Assumption
4.

Column 5 shows the results of using the double-lasso procedure. The method is quite
effective in reducing the variance of the estimators, giving the same precision as the cube
method or the matched-pairs designs with slightly fewer observations. However, for small n,
the double-lasso procedure tends to give biased estimators (see Table D.2 in Appendix) and
is unstable to different methods for creating the augmented dictionary (Kolesár et al., 2024).

Tables D.1-D.4 in the Appendix show additional results for each design: standard devi-
ation and bias of the HT estimator, confidence coverage rate, and power for testing a null
PATE. In particular, Table D.3 verifies that the coverage rate is exact for n large enough.

6 Practical Considerations about RCTs

6.1 Randomization and Baseline Information: How Do Researchers
Randomize in Practice?

Bai (2022) indicates that among 5,000 RCTs in the AEA RCT Registry, more than 800 are
stratified (i.e., about 16%). We complement this insight by gathering information from 104
randomized controlled trials (RCTs) published in top-5 and AEA journals5 between 2019 and
2023. Specifically, we examined their collection of baseline information, baseline outcomes,
and randomization methods. Figure 1 summarizes these details. Our findings indicate a
lack of consensus among RCTs regarding the method used for allocating individuals to treat-
ment. Most published papers (54%) employ a stratified design for allocation, followed by
completely randomized designs (34%). A minority of researchers utilize alternative methods
such as matching or re-randomization. However, there is substantial agreement regarding
the collection of baseline data, with 90% of papers gathering information before treatment

5American Economic Review, AEJ: Applied Economics, AEJ: Economic Policy, AEJ: Macroeconomics,
AEJ: Microeconomics, Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and
Review of Economic Studies
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Table 1: Effect of number of covariates on effective sample size

Number of
covariates

Complete
Randomization

Stratified
Randomization

Matched
Pairs

Cube
Method

Double
Lasso

(1) (2) (3) (4) (5)

1 100.00 80.99 63.82 64.90 64.24
2 – 81.66 63.57 67.89 –
3 – 80.72 65.24 68.46 –

n = 100 5 – 90.57 67.28 67.37 –
7 – 113.60 69.10 67.70 –
9 – 160.25 73.14 65.31 –
12 – 523.57 75.08 65.40 –

1 256.00 215.49 162.69 167.76 163.12
2 – 212.66 162.92 170.79 –
3 – 215.07 163.50 169.53 –

n = 256 5 – 215.00 174.35 168.93 –
7 – 240.92 180.31 171.15 –
9 – 308.55 183.49 165.50 –
12 – 610.22 194.93 174.00 –

1 500.00 419.11 328.17 329.99 315.35
2 – 408.31 328.15 325.72 –
3 – 408.02 320.39 332.88 –

n = 500 5 – 418.08 326.86 331.19 –
7 – 445.93 329.81 332.37 –
9 – 514.09 349.28 334.98 –
12 – 847.19 363.50 330.05 –

1 1000.00 828.85 646.01 669.16 642.44
2 – 826.04 640.22 647.56 –
3 – 830.47 641.96 638.66 –

n = 1000 5 – 819.82 651.41 666.30 –
7 – 845.31 657.62 663.35 –
9 – 955.18 686.53 664.19 –
12 – 1329.51 717.35 656.39 –

This table shows the effective sample size (ESS) for different allocation designs and experimental sample sizes. For each alloca-
tion design, the ESS corresponds to the number of observations needed to have the same precision as under complete random-
ization, equal to n × (V̂(θ̂Π

HT )/V̂(θ̂CR
HT )), where we compute the variance estimates over 10, 000 simulations. For columns 1, 3,

and 4, the estimator used is the Horvitz-Thompson algorithm. Column 1 gives the size n, as the design used is complete ran-
domization. For column 3, we assign treatment using the matched-pairs design, pairing individuals to the closest unit and using
the Mahalanobis distance whenever more than one covariate is balanced. Column 4 shows the results for the cube method with
two moments for each variable. For column 2, we run stratified randomization. We use median values for continuous variables
and estimate the PATE using OLS with strata fixed-effects following Bugni et al. (2018). Finally, column 5 uses a double-lasso
selection procedure as described in Belloni et al. (2014).
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allocation. Nevertheless, this information is not always utilized during the randomization
process, as only 46% of the papers leverage it to achieve covariate balance ex-ante. The
remaining studies collect baseline data for balance tests, covariate adjustment in regression,
and/or heterogeneity analysis of treatment effects. If outcomes of interest are relatively
stable over time, empiricists should be interested in balancing their pre-treatment values,
as they are highly likely to be correlated with potential outcomes. In our sample, 65% of
researchers collect these variables, yet only 23% incorporate them into the allocation design,
indicating an area for improvement in experimental design and inference. When various out-
comes are considered in RCT, the curse of dimensionality arising in stratification, matched
pair design, or re-randomization (where computational time could become prohibitive) may
prevent empiricists from balancing on a large set of pre-treatment outcomes and sociodemo-
graphic covariates. The cube method could improve experimental randomization by allowing
balancing on more variables than other methods.

Figure 6: Distribution of Randomization Methods for 104 RCTs in Top-5
+ AEA Journals (2019-2023)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Total Complete
Randomization

Stratification Matching Re-randomization Stratification +
Re-randomization

Randomization Method

All

Collection of baseline data

Randomization using
baseline data

Collection of baseline
outcome

Randomization using
baseline outcome

31



In sum, researchers forgo some precision gains by not using available covariates. However,
we note that stratification and other covariate-adaptative methods seem to gain popularity
or be increasingly favored by top journals. Furthermore, as explained in the next section,
precision gains are a crucial reason, but there are others.

6.2 Removing the Back Luck

Researchers routinely provide “balance tables”, i.e., a comparison of the moments of avail-
able covariates between control and treatment. Due to bad luck, the empiricist can expect
a certain proportion of imbalances. As explained, the likelihood of imbalances increases
with the number of covariates used. There seems to be a grey area around the reporting of
balance checks. In particular, pre-analysis plans often report no clear justification regard-
ing the choice of the covariates to include in the balance table. Researchers are not very
comfortable with reporting substantial unbalances. Snyder and Zhuo (2024) analyzing a
large set of balance checks find that the editorial process removes an ample part of studies
reporting imbalances, perhaps as much as 30%. Imbalances increase the risk of rejection
by journals and, even worse, may provide incentives to engage in p-hacking (e.g., removing
some covariates from the balance table).

How can “bad luck” be mitigated? Stratification obviously mitigates back luck by avoid-
ing large imbalances. However, as explained, there is a limit to the number of covariates
the researcher can include when using stratification. The cube method stands out in two
respects. First, it allows using a large set of covariates, which is particularly relevant when
the number of units is limited or when researchers do not know which covariates are the
most important. But the second aspect is perhaps of greater interest. By construction, the
cube will balance selected covariates with probability one. Put differently, all selected co-
variates will pass balance checks with probability one. Under stratification, imbalances are
less likely than under completely randomized designs but would arise with a strictly positive
probability. A more systematic use of recent methods, e.g., matched-pair designs or the cube
method, will thus remove a clear publication bias and, as a result, make RCTs overall results
less conservative.
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6.3 Heterogenous Probabilities

The cube method can easily handle heterogeneous probabilities of assignment. This feature
could be particularly relevant for various reasons. First, in view to minimize the variance of
the estimator of the ATE, the optimal assignment probabilities corresponding to the so-called
Neyman allocation are π(X) = V(Y (1)|X)1/2 (V(Y (1)|X)1/2 + V(Y (0)|X)1/2)−1. However,
this optimal allocation is often not feasible without pilots and is irrelevant if the empiricist
has various outcomes of interest. Even if V(Y (1)|X) = V(Y (0)|X) and if the empiricist
wants to minimize the variance of estimates of E(Y (1) − Y (0)), she could also adapt some
assignment probabilities to heterogeneous costs c1(X), c0(X) of treatment and control to
fulfill a budget constraint. Third, the empiricist could be interested in treatment effects
on some subpopulations X = x that would not be precisely estimated if using a constant
assignment probability. More generally, in an armed bandit perspective, empiricists may
adapt assignment probabilities with respect to what they learned to maximize some objective,
explore treatment effects on some subpopulations, and minimize regret. The cube method
offers ample flexibility because empiricists could choose the probability of assignment of each
unit.

6.4 Experimenter Choices and Tuning Parameters

When choosing a randomization method, researchers still have to make a few choices, the
main one being which covariates to include. But there are also more subtle choices. For
instance, stratification involves some choices when transforming continuous variables (e.g.,
income, age, test score, etc) into discrete ones (e.g., should one use median or quartile
splits?). Similarly, generalization of matched-pairs design to heterogeneous probabilities in-
volves approximation of probabilities assignment (as for instance in Cytrynbaum, 2023). The
consequences of such choices are expected to be mild but may nonetheless cast doubts. In
re-randomization strategies, the empiricist makes many choices (balancing criteria, stopping
strategy, inferences). In the Gram-Schmidt random walk (Harshaw et al., 2024), the empiri-
cist has to choose a tuning parameter. In contrast, choices when using the cube method boil
down to selecting the set of covariates to be balanced. In that sense, the cube method is
more transparent.
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6.5 Computation and Packages

Packages in R for randomization are available here: https://rdrr.io/cran/BalancedSampling/
Interestingly enough, the cube method is not computationally demanding. While running
simulations included in the present paper, we systematically found the cube method to have
an order of magnitude faster than the algorithms we used to implement other presented
methods.

6.6 Ex-ante or Ex-post?

Economic intuition may suggest a set of covariates that might be important. However, there
is some residual uncertainty regarding which covariates to include. Furthermore, researchers
are often interested in several outcomes that might be affected by the treatment, expanding
the set of relevant covariates. Ideally, one would resolve uncertainty regarding which covari-
ates to include using the largest possible set of covariates, including available covariates, the
interaction terms, and so on and forth. Obviously, the number of covariates to include may
be large and even bigger than the number of observations. A possible strategy is thus to rely
on techniques that allow researchers to infer treatment effects by ex-post controlling for a
large set of covariates. For instance, (Belloni et al., 2014) propose a double-lasso approach to
select relevant covariates among a very large set so as to estimate treatment effects. In sharp
contrast, randomization ex-ante controls for some covariates. However, both approaches are
not mutually exclusive, as it is possible to use some covariates at the randomization stage
and implement still some ex-post estimation strategy. A more in-depth discussion would de-
rive a more formal comparison between estimators based on ex-ante and ex-post balancing,
respectively.

7 Conclusion

The cube method, first introduced for survey sampling by Deville and Tillé (2004), outper-
forms commonly used designs, especially when the number of covariates to be incorporated
is large. We provide a set of results formalizing these gains in the RCT context. We tackle
common issues empiricists face, such as balance, inference, sample size, and precision. Com-
pared to other covariate-adaptive mechanisms, the cube method allows for better balance
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and precision. More precise estimates significantly reduce the sample size needed for a min-
imum detectable effect and will make RCTs less conservative. By construction, the cube
method guarantees the balance between treatment and control groups. The cube method
thus makes balance tests unnecessary for covariates used at the randomization stage. By
providing more balanced control and treatment, the cube method helps reduce publication
bias and potential p-hacking.

A particular effort is devoted to comparing existing methods. We provide simulations and
derive analytical results regarding the behavior of commonly used methods. We clarified how
the number of covariates p to balance and the number of available units n affect balance for
various randomization methods. To the best of our knowledge, for all the methods but the
cube, imbalances grow as p/n. With the cube method, the imbalance is bounded by p2/n2.
Such a systematic comparison might be relevant to both empiricists interested in comparing
methods and researchers interested in the asymptotic behavior of randomization methods.
For instance, there is a consensus to balance pre-treatment outcomes. Next, there is a need
to simultaneously balance several variables when a single RCT is used to evaluate treatment
effects on various outcomes. The cube method could be particularly relevant in this setup.
Beyond the pre-treatment outcome, our review of pre-analysis plans of published papers in
top economics journals shows no clear consensus on the selection of variables to balance.
We understand this lack of consensus as a consequence of a trade-off between the balancing
adjustment and the number of variables to balance for methods that are not well-suited to
balance numerous variables. Because the cube method is more robust than the others when
the number of balanced variables is large, this randomization method better addresses this
trade-off.

At a more general level, we contribute to a recent stream of research on the usage of in-
formation available before randomization in RCTs. The information available to researchers
comes in various forms. Some covariates are usually available, notably through the system-
atization of baseline surveys. As explained, the researcher can incorporate baseline covariates
to improve balance and ensure some precision gains. Which covariates to select is often a
matter of intuition or an “educated guess”. Sometimes, a pilot study is also available. Pi-
lot studies allow insights into which covariates correlate the most with potential outcomes.
Last, some RCTs use a design with repeated experiments, allowing an increasing gain of
information across time. Reallocation of treated units among treatment arms via “armed-
bandits” algorithms, for instance, speeds up the identification of treatment effects. The
cube method is particularly well suited to take advantage of available information because
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it permits incorporating a large set of covariates. However, its statistical properties are not
yet fully explored for multiple treatment arms or repeated experiments, opening roads for
future research.
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A Imbalances in Randomization Methods

In this appendix, we prove the theoretical results discussed in Section 4.1.2.

We consider (D1, ...., Dn) ∈ {0; 1}n a random selection of some units among n. We will
consider the following schemes:

1. Bernoulli randomization (BR): for any (d1, ..., dn) ∈ {0; 1}n

P ((D1, ...., Dn) = (d1, ..., dn)|(Xi)1≤i≤n) = 2−n

2. Complete randomization (CR): for any (d1, ..., dn) ∈ {0; 1}n

P ((D1, ...., Dn) = (d1, ..., dn)|(Xi)1≤i≤n) =
Ç

n

n/2

å−1

1

®
n∑

i=1
di = n/2

´
3. Stratification (S-ℓ): we consider qk

p the empirical p-quantile of (Xki)i=1,...,n and the par-
tition Hn =

¶∏p
k=1[qk

jk/ℓ; qk
(jk+1)/ℓ] : ∀k ∈ {1, ..., p}, jk ∈ {0, 1, ..., ℓ − 1}

©
of [0; 1]k for

some ℓ ≥ 2 and Sn = {{i : Xi ∈ h} : h ∈ Hn such that ∃i : Xi ∈ h} a partition of
{1, ..., n}. For any (d1, ..., dn) ∈ {0; 1}n

P ((D1, ...., Dn) = (d1, ..., dn)|(Xi)1≤i≤n) =
∏

s∈Sn

Ç
|s|

⌊|s|/2⌋

å−1

1{⌊|s|/2⌋ ≤
∑
i∈s

di ≤ ⌊(|s|+1)/2⌋}.

4. Matched-pairs design (MP): we consider a partition Sn of {1, ..., n} such that

Sn := arg min
S:|s|=2 for any s∈S

∑
s∈S

∣∣∣∣∣
∣∣∣∣∣ ∑
i,j∈s2,i ̸=j

Xi − Xj

∣∣∣∣∣
∣∣∣∣∣
2

(A.1)

5. Cube method with landing phase using linear programming (CM) as described in
Section 3.

In all the previous designs, we have P(Di = 1|(Xi)i=1,...,n) = 1/2 and next, the estimator
Bn,p(X) = 2

n

∑n
i=1 XiDi − 2

n

∑n
i=1 Xi(1−Di) has expectation E(X|D = 1)−E(X|D = 0) = 0,

meaning that these assignments balance X on average. To compare the balancing of these
assignments, we will bound E(||Bn,p(X)||2) for each design.
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Proposition A.1
Suppose that Assumption 3 holds.

1. Under assignment design (BR) we have:

E
(
||Bn,p(X)||2

)
= 4

n

p∑
k=1

E
(
X2

k1
)

(A.2)

and 4C

3
p

n
≤ E

(
||Bn,p(X)||2

)
≤ 4C

3
p

n
. (A.3)

2. Under assignment design (CR) we have:

E
(
||Bn,p(X)||2

)
= 4

n

p∑
k=1

V
(
X2

k1
)

(A.4)

and C

3
p

n
≤ E

(
||Bn,p(X)||2

)
≤ C

3
p

n
. (A.5)

3. Under assignment design (S-ℓ), we have:

(a) if nℓ−p → ∞:

||Bn,p(X)||2 = B2
1 + op

(p

n

)
(A.6)

with C

6ℓ2C

p
n

(1 − o (1)) ≤ E (B2
1) ≤ 4

n

∑p
k=1 V(Xk1)

(b) if nℓ−p → 0:

||Bn,p(X)||2 = B2
2 + op

(p

n

)
. (A.7)

with E(B2
2) = 4

n

∑p
k=1 E (X2

k1).

4. Under assignment design (MP), we have:

p

n

(
1
3 −

 
2 ln(n − 1) + 4 ln C

p

)
≤ E

(
||Bn,p(X)||2

)
≤ 4

n

p∑
k=1

V(X1k) (A.8)

5. Under assignment design (CM), w have:

E
(
||Bn,p(X)||2

)
≤ 4(p + 1)2

n2
λmax(M)
λmin(M) , (A.9)

for λmax(M) and λmin(M) the largest and the smallest eigenvalues of M .
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Proof:
For all the assignment designs considered, we have

E
(
||Bn,p(X)||2

)
= 4

p∑
k=1

E

[Ç
1
n

n∑
i=1

Xki(2Di − 1)
å2]

= 4
p∑

k=1
E

[Ç
1
n

n∑
i=1

XkiDi

P(Di = 1|(Xj)j=1,...,n) − Xk

å2]

= 4
p∑

k=1
E
ñ
V
Ç

1
n

n∑
i=1

XkiDi

P(Di = 1|(Xj)j=1,...,n)

∣∣∣∣(Xj)j=1,...,n

åô
.

Under assignment design (BR), we have Di ⊥⊥ Dj|(Xj)j=1,...,n and E (2Di − 1|(Xj)j=1,...,n) =
0. Next, expanding the square we have

E

[Ç
1
n

n∑
i=1

Xki(2Di − 1)
å2 ∣∣∣∣(Xj)j=1,...,n

]
= 1

n2

n∑
i=1

X2
ki.

Identical distribution across i ensures (A.2).
For any k ∈ {1, ..., p} we have:

C

3 ≤ 1
3

Å
C + (1 − C)3

(C − C)2

ã
=

∫ 1

0
u2
Å

C1{u ≤ 1 − C

C − C
} + C1{u ≥ 1 − C

C − C
}
ã

du

≤ E(X2
k1) ≤
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0
u2
Ç

C1{u ≤ C − 1
C − C

} + C1{u ≥ C − 1
C − C

}
å

du = 1
3

Ç
C − (C − 1)3

(C − C)2

å
≤ C

3 ,

and next (A.3) follows.

Under assignment design (CR), we have:

V
Ç

1
n

n∑
i=1

XkiDi

P(Di = 1|(Xj)j=1,...,n)
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for S2
k = 1
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∑n

i=1
(
Xki − Xk

)2 and Xk = 1
n

∑n
i=1 Xki. Because E(S2

k) = V(Xk1), A.4 follows.
A.5 is ensured by

C
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=
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= 1
12

Ç
C − (C − 1)3

(C − C)2

å
≤ C

12 .

Under assignment design (S-ℓ), for s ∈ Sn let ms the number of units assigned to the
treatment in strata s. Similarly, for h ∈ Hn let mh the number of units assigned to the
treatment in strata {i : Xi ∈ h} and m = ∑

s∈Sn
ms = ∑

h∈Hn
mh. Last, nh denotes

|{i : Xi ∈ h}| for h ∈ Hn. We have

V
Ç

1
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n∑
i=1

XkiDi

P(Di = 1|(Xj)j=1,...,n)
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( ∑
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Xks)2 for Xkh = 1
nh

∑
i∈{j:Xj∈h} Xki. (nh)h∈Hn

follows a multinomial distribution of parame-
ters (n, ℓp, (ph)h∈H) with C

C
ℓ−p ≤ C

C+C(ℓp−1) ≤ ph ≤ C
C+C(ℓp−1) ≤ C

C
ℓ−p. Then for any h ∈ Hn,

we have P (nh = 1) = nph(1 − ph)n−1 and P (nh ≥ 2) = 1 − (1 − ph)n − nph(1 − ph)n−1.
Moreover, (mh)h∈Hn ⊥⊥ (Skh′)h′∈Hn,k=1,...,p|(nh′′)h′′∈Hn , E(S2

kh|(nh′)h′∈Hn) = V(Xk1|X1 ∈ h) ∈î
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12Cℓ2 ; C
12Cℓ2

ó
and, conditional on (nh)h∈Hn , mh are independent across h with probability

distribution 1
2δ⌊ nh

2 ⌋ + 1
2δ⌊ nh+1

2 ⌋. It follows that E(mh|(nh′)h′∈Hn) = nh/2, V(mh|(nh′)h′∈Hn) =
(⌊(nh + 1)/2⌋ − ⌊nh/2⌋)2/4 ≤ 1/4, E(m|(nh′)h′∈Hn) = n/2, V(m|(nh′)h′∈Hn) ≤ ℓp/4. Cheby-
shev’s inequality implies P (|m − n/2| ≥ M) ≤ ℓp

4M2 . Next, m = n
2
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=

n
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If nℓ−p → ∞ as n and p increase, we have nph ≥ C

C
nℓ−p → ∞ and next suph∈Hn

P(nh =
1) ≤ suph∈Hn

nphe(n−1) ln(1−ph) ≤ suph∈Hn
nphe−(n−1)ph ≤ nℓ−p C

C
exp(−(n − 1)ℓ−pC/C) and

because |Hn| = ℓp and |X2
ki| ≤ 1, we have:
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We have P (|m − n/2| ≥ M) ≤ ℓp

4M2 , next m = n
2
(
1 + Op(1/(nℓp/2)

)
and
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Last, note that E(S2
kh|(nh′)h′∈Hn) = V(Xk|X ∈ h) and E(nh/n) = ph ensuring that E

(∑
h∈Hn

nh

n
S2

kh

)
=

E (V(Xk|(1{X ∈ h})h∈Hn)) ≤ V(Xk). Next for B2
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. It follows that op(B2

1) =
op

(
p
n

)
and this prove (A.6) and the upper bound of E (B2

1). It remains to show the lower
bound for E (B2
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If nℓ−p → 0, for any h ∈ Hn we have P (nh ≥ 2) ≤ 1 − (1 − ph)n − nph(1 − ph)n−1 ≤ 1 − (1 −
nph) − nph(1 − (n − 1)ph) ≤ n2p2

h ≤ C
2

C2 (nℓ−p)2. This ensures that suph∈Hn
P(nh ≥ 2) = o(1).

Next, we have:
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We have S2
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This proves (A.7).

Under assignment design (MP), partition Sn is adaptive to the sample and S\ is (Xi)i=1,...,n-
measurable. All element of Sn are of size 2 and in each strata s one unit over two is randomly
assigned to the treatment. Next, the formula of the variance of the Horwitz-Thompson es-
timator of an average for a stratified sampling ensures
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s = {i, i′}. According to Lemma 2 in Bai (2022), complete randomization could be im-
plemented as a two-stage random process. In a first step, a random partition S∗

n is se-
lected with uniform probability among all the partitions such that |s| = 2 for any s ∈
S∗

n. In a second stage, stratified sampling is used in each strata s ∈ S∗
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diam2(s,Rp) = sup(i,j)∈s2 ||Xi − Xj||2. Let di the distance in Rp of the unit i to its nearest
neighbor di = minj∈{1,...,n}\{i} ||Xj − Xi||. We have diam2({i, i′},Rp) ≥ max(d2
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6 for (Uki)k=1,...,p,i=1,...,n some indepen-
dent uniform variables on [0; 1]. For any k and any i ̸= j, the Z̃kij are zero mean variables
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with bounded support [−1/6; 5/6]. A zero mean variable Z is sub-Gaussian with parameter
ν > 0 if for any λ ∈ R, E

(
eλZ
)

≤ eλ2ν2/2. Hoeffding’s lemma ensures that a zero mean
variable with bounded support included in [a; b] is sub-Gaussian with parameter (b − a)/2.
It follows that Z̃kij and −Z̃kij are sub-Gaussian with parameter 1/2. Moreover, because
fX(x1i, ..., xpi)fX(x1j, ..., xpj) ≤ C

2 and because (Z̃kij)k=1,...,p are independent across k, we
have for any i ̸= j:
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For any i ∈ {1, ..., n}, by Jensen inequality, we have
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ä
≤

∑
j ̸=i

E
Ä
e−λ

∑p

k=1 Zkij

ä
≤ (n − 1)C2

eλ2p/8.

Next, E (maxj ̸=i(−
∑p

k=1 Zkij)) ≤ ln(C2(n−1))
λ

+λp
8 for any λ > 0. Choosing λ =

√
8 ln(C2(n−1))

p
,

we have E (maxj ̸=i(−
∑p

k=1 Zkij)) ≤
»

p ln(C2(n − 1))/2 or equivalently E (minj ̸=i
∑p

k=1 Zkij) ≥
−
»

p ln(C2(n − 1))/2. From what precedes, we have

E
(
||Bn,p(X)||2

)
≥ p

3n
+ 2

n2

n∑
i=1

E
Ç

min
j∈{1,...,n}\{i}

p∑
k=1

Zkij

å
≥ p

3n
− 2

n

√
p ln
Ä
C

2(n − 1)
ä

/2

= p

n

(
1
3 −

 
2 ln(n − 1) + 4 ln C

p

)
.

This achieves the proof of (A.8).

Concerning assignment (CM), let Zi = (1, X ′
i)′. Then, we have ||Bn,p(X)||2 ≤ ||Bn,p(Z)||2.

At the end of the flying phase of the cube method, all units of a A ⊂ {1, ..., n} such
that |A| = n − dim(Z) = n − p − 1 have been allocated. This means that Di has been
drawn for any i ∈ A. For i /∈ A, some random variables π⋆

i have been generated such that
E(π⋆

i |(Zi)i=1,...,n) = 1/2 and∑
i∈A

Zi(2Di − 1) +
∑
i/∈A

Zi(2π∗
i − 1) = 0,
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or equivalently:

Bn,p(Z) = 4
n

∑
i/∈A

Zi(Di − π∗
i ).

In the landing phase of the cube algorithm, given W = (A, (Di)i∈A, (π∗
i )i/∈A, (Zi)i=1,...,n), the

cube method samples (Di)i/∈A such that for any i /∈ A, Dj|W follows a Bernoulli of mean π∗
j .

But the sampling of (Di)i/∈A is not independent across i /∈ A. Indeed, sampling probabilities
are correlated in view to minimize

E
Ç∑

i/∈A

Z ′
i(Di − π∗

i )M
∑
i/∈A

Zi(Di − π∗
i )
∣∣Wå

where M is a symmetric-positive matrix dim(Z) × dim(Z). When M = Id, this means
that sampling probabilities of (Di)i/∈A during the landing phase are coordinated to minimize
E (|| ∑

i/∈A Zi(Di − π∗
i )||2|W ). Next, this means that

E
Ç

||
∑
i/∈A

Zi(Di − π∗
i )||2|W

å
≤ E
Ç

||
∑
i/∈A

Zi(D̃i − π∗
i )||2|W

å
where (D̃i)i/∈A|W are sampled as some independent Bernoulli of mean π∗

i . If M ̸= Id, we
have

E
Ç

||
∑
i/∈A

Zi(Di − π∗
i )||2|W

å
≤ 1

λmin(M)E
Ç

||M1/2 ∑
i/∈A

Zi(Di − π∗
i )||2|W

å
≤ 1

λmin(M)E
Ç

||M1/2 ∑
i/∈A

Zi(D̃i − π∗
i )||2|W

å
≤ λmax(M)

λmin(M)E
Ç

||
∑
i/∈A

Zi(D̃i − π∗
i )||2|W

å
.

To conclude, note that

E
Ç

||
∑
i/∈A

Zi(D̃i − π∗
i )||2

∣∣Wå =
p+1∑
k=1

E

[Ç∑
i/∈A

Zki(D̃i − π∗
i )
å2 ∣∣W]

=
p+1∑
k=1

E
ñ∑

i/∈A

Z2
kiπ

∗
i (1 − π∗

i )
∣∣Wô

≤ (p + 1)|A|
4 = (p + 1)2

4 .
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B Proofs of Propositions

B.1 Proof of Balancing Approximations for the Cube Method
(Proposition 1)

From Assumption 2 and Proposition 4 in Deville and Tillé (2004), we have:∣∣∣∣∣ 1n n∑
i=1

XjiDi

πi

− 1
n

n∑
i=1

Xji

∣∣∣∣∣ ≤ q

n
max

i=1,...,n

∣∣∣∣Xji

πi

∣∣∣∣ ≤ q maxi=1,...,n |Xji|
cn

.

If Assumption 1 holds and if moments of order r exist for Xj1, from Proposition 1.5 and
Theorem 2.1 in Chapter 6 in Gut (2013), we have maxi=1,...,n |Xji| = op(n1/r). If Xji sub-
Gaussian maxi=1,...,n |Xji| = Op

Ä√
ln(n)

ä
and if Xji is bounded by K, maxi=1,...,n |Xji| ≤ K.

B.2 Proof of Asymptotic Normality for the SATE (First part of
Proposition 3)

We want to prove
√

n
Ä
θ̂HT − θ0

ä
d−→ N (0, V0)

and
√

n
Ä
θ̂H − θ0

ä
d−→ N (0, V0)

where V0 = E
[
πi (1 − πi)

Ä
εi(1)

πi
+ εi(0)

1−πi

ä2]
.

We first show that it is sufficient to prove asymptotic normality for one of the two estimators.
Proposition 1 ensures that if the empiricist includes a constant in the set of covariates to
balance, one has ∑n

i=1
Di

πi
= n + op

Ä
1√
n

ä
and ∑n

i=1
1−Di

1−πi
= n + op

Ä
1√
n

ä
. Then, the Hájek

estimator in (6) is given by

θ̂H = 1
n + op

Ä
1√
n

ä Ç n∑
i=1

YiDi

πi

− Yi(1 − Di)
1 − πi

å
= n

n + op

Ä
1√
n

ä θ̂HT

=
Å

1 + op

Å 1√
n

ãã
θ̂HT .
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Then,
√

n
Ä
θ̂H − θ0

ä
=

√
n
Ä
θ̂HT − θ0

ä
+ op (1)

Ä
θ̂HT − θ0

ä
.

By Slutsky’s theorem, if
√

n
Ä
θ̂HT − θ0

ä
d−→ N (0, V0), then

√
n
Ä
θ̂H − θ0

ä
d−→ N (0, V0). It

is thus sufficient to prove asymptotic normality of the Horvitz-Thompson estimator, i.e.,
√

n
Ä
θ̂HT − θ0

ä
d−→ N (0, V0) .

Under Assumptions 1 and 2, Proposition 1 ensures

√
n
Ä
θ̂HT − θ0

ä
= 1√

n

n∑
i=1

(Di − πi)
Å

εi(1)
πi

+ εi(0)
1 − πi

ã
+

√
n

Ç
1
n

n∑
i=1

DiZ
′
1i

πi

−
n∑

i=1
Z ′

1i

å
β1

−
√

n

Ç
1
n

n∑
i=1

(1 − Di)Z ′
0i

1 − πi

−
n∑

i=1
Z ′

0i

å
β0

= 1√
n

n∑
i=1

−
Å

εi(1)
πi

+ εi(0)
1 − πi

ã
πi +

Å
εi(1)

πi

+ εi(0)
1 − πi

ã
Di + op(1)

Then, we have
√

n
Ä
θ̂HT − θ0

ä
= 1√

n

n∑
i=1

fi + giDi + op(1)

with fi := f (Xi, εi(0), εi(1)) = −
Ä

εi(1)
πi

+ εi(0)
1−πi

ä
πi and g (Xi, εi(0), εi(1)) = εi(1)

πi
+ εi(0)

1−πi
.

Slutsky’s theorem ensures that we have to prove

1√
n

n∑
i=1

fi + giDi
d−→ N (0, V0) .

By Assumption 4 E[f |X] = E[g|X] = 0. Then, Conjecture 1 and Lemma C.2 give that,
conditional on (Xi)i≥1, 1√

n

∑n
i=1 fi + giDi

d−→ N (0, V0), with V0 = E[f 2
i + (2gifi + g2

i )πi] =
E
î
πi(1 − πi)

Ä
εi(1)

πi
+ εi(0)

1−πi

äó
, in the sense of Definition C.1. Notice that V0 does not depend

on (X1)i≥1, so convergence in distribution is unconditional. This concludes the proof.

Comparison with Poisson randomization
If treated units are selected through Poisson randomization and Assumptions 1 and 2 hold,
then (Yi(1), Yi(0), Xi, Di)i=1,...,n are i.i.d., and by the CLT,

√
n(θ̂HT − θ0) d−→ N (0, W0)

with

W0 = E
ñ
(Di − πi)2

Å
Yi(1)

πi

+ Yi(0)
1 − πi

ã2ô
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= E
ñ
πi(1 − πi)

Å
Yi(1)

πi

+ Yi(0)
1 − πi

ã2ô
= E
ñ
πi(1 − πi)

Å
Z ′

1iβ1

πi

+ Z ′
0iβ0

1 − πi

ã2ô
+ E
ñ
πi(1 − πi)

Å
εi(1)

πi

+ εi(0)
1 − πi

ã2ô
= E
ñ
πi(1 − πi)

Å
Z ′

0i

β1 + β0

1 − πi

ã2ô
+ V0 = Σ0 + V0.

B.3 Proof of Asymptotic Normality for the PATE (Second part
of Propositions 3)

As shown in Proof B.2, if
√

n
Ä
θ̂HT − θ∗

0

ä
d−→ N (0, V ∗

0 ), we have
√

n
Ä
θ̂H − θ∗

0

ä
d−→ N (0, V ∗

0 ),
we thus restrict ourselves to proving asymptotic normality for the Horvitz-Thompson esti-
mator, i.e,

√
n
Ä
θ̂HT − θ∗

0

ä
d−→ N (0, V ∗

0 )

where V ∗
0 = V(Z ′

1iβ1 − Z ′
0iβ0) + E

î
εi(1)2

πi

ó
+ E
î

εi(0)2

1−πi

ó
.

Let us consider fi := f(Xi, εi(1), εi(0)) = − εi(0)
1−πi

, gi := g(Xi, εi(1), εi(0)) = εi(1)
πi

+ εi(0)
1−πi

,
and hi := h(Xi) = (Z1i − E[Z1i])′β1 − (Z0i − E[Z0i])′β0.
Under Assumptions 1 and 2, Proposition 1 ensures

√
n
Ä
θ̂HT − θ∗

0

ä
= 1√

n

n∑
i=1

Å
Z ′

1iDi

πi

− E[Z1i]′
ã

β1

− 1√
n

n∑
i=1

Å
Z ′

0i(1 − Di)
1 − πi

− E[Z0i]′
ã

β0

+ 1√
n

n∑
i=1

εi(1)Di

πi

− εi(0)(1 − Di)
1 − πi

= 1√
n

n∑
i=1

fi + giDi + 1√
n

n∑
i=1

hi + op(1).

Slutsky’s theorem ensures that we have to prove

1√
n

n∑
i=1

fi + giDi + 1√
n

n∑
i=1

hi
d−→ N (0, V ∗

0 ) . (B.1)

By Assumption 4, E[f |X] = E[g|X] = 0. Then, Conjecture 1 and Lemma C.2 give that,
conditional on (Xi)i≥1,

√
n
Ä
θ̂HT − θ∗

0

ä
d−→ N (0, V ∗

01) with V ∗
01 = E[f 2

i + (2gifi + g2
i )πi] =

E
î

εi(1)2

πi

ó
+E
î

εi(0)2

1−πi

ó
. Moreover, by the central limit theorem, 1√

n

∑n
i=1 hi

d−→ N (0, V ∗
02) with

V ∗
02 = V(Z ′

1iβ1 −Z ′
0iβ0). Theorem 2 in Chen and Rao (2007) ensures that 1√

n

∑n
i=1 fi +giDi +
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1√
n

∑n
i=1 hi

d−→ N (0, V ∗
01 + V ∗

02) . This concludes the proof.

Comparison with Poisson randomization
If treated units are selected through Poisson randomization and Assumptions 1 and 2 hold,
then (Yi(1), Yi(0), Xi, Di)i=1,...,n are i.i.d., and by the CLT,

√
n(θ̂HT − θ∗

0) d−→ N (0, W ∗
0 )

with

W ∗
0 = E

ñÅ
Yi(1)Di

πi

− Yi(0)(1 − Di)
1 − πi

− E [Yi(1) − Yi(0)]
ã2ô

= E
ï

Yi(1)2

πi

ò
+ E
ï

Yi(0)2

(1 − πi)

ò
− E [Yi(1) − Yi(0)]2

= E
ï(Z ′

1iβ1)2

πi

ò
+ E
ï

εi(1)2

πi

ò
+ E
ï(Z ′

0iβ0)2

(1 − πi)

ò
+ E
ï

εi(0)2

1 − πi

ò
− E [Z ′

1iβ1 − Z ′
0iβ0]2

= E
ï(Z ′

1iβ1)2

πi

ò
+ E
ï(Z ′

0iβ0)2

(1 − πi)

ò
− E

[
(Z ′

1iβ1)2]− E
[
(Z ′

0iβ0)2]+ 2E [(Z ′
1iβ1)(Z ′

0iβ0)] + V ∗
0

= E
ï(Z ′

1iβ1)2(1 − πi)2 + (Z ′
0iβ0)2π2

i + 2(Z ′
1iβ1)(Z ′

0iβ0)πi(1 − πi)
πi(1 − πi)

ò
+ V ∗

0

= E
ï

πi

1 − πi

(Z ′
0i(β1 + β0))2

ò
+ V ∗

0 = Σ0 + V ∗
0 .

B.4 Proof of Randomized-based Inference (Proposition 4)

For completeness, we show first, as in Bai et al. (2022), that the strong null hypothesis (19)
(Yi(1), Xi) d= (Yi(0), Xi) is equivalent to stating Y1, . . . , Yn ⊥⊥ D1, . . . , Dn|X1, . . . , Xn.
Let us consider random allocations generated by the cube method d and d′ in the support
of D1, . . . , Dn|X1, . . . , Xn and any set A. Then we have,

P [(Y1, . . . , Yn) ∈ A|(D1, . . . , Dn) = (d1, . . . , dn), X1, . . . , Xn)]

=P [(Y1(d1), . . . , Yn(dn)) ∈ A|(D1, . . . , Dn) = (d1, . . . , dn), X1, . . . , Xn)]

=P [(Y1(d1), . . . , Yn(dn)) ∈ A|(D1, . . . , Dn) = (d1, . . . , dn), X1, . . . , Xn)]

=P [(Y1(d1), . . . , Yn(dn)) ∈ A|X1, . . . , Xn)]

=P [(Y1(d′
1), . . . , Yn(d′

n)) ∈ A|X1, . . . , Xn)]

=P [(Y1(d′
1), . . . , Yn(d′

n)) ∈ A|(D1, . . . , Dn) = (d′
1, . . . , d′

n), X1, . . . , Xn)]
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=P [(Y1, . . . , Yn) ∈ A|(D1, . . . , Dn) = (d′
1, . . . , d′

n), X1, . . . , Xn)] ,

so both hypothesis are equivalent. Then, under Assumptions 1 and 2, and the strong null
hypothesis (19),

(Yi, Di, Xi)i≥1
d= (Yi, D

(g)
i , Xi)i≥1.

We thus have

E

[ ∑
g∈GB

n

ϕrand
n

Ä
P(g)

n

ä]
=

∑
g∈GB

n

E
î
E
î
ϕrand

n

Ä
P(g)

n

ä ∣∣X1, . . . , Xn

óó
=

∑
g∈GB

n

E
[
E
[
ϕrand

n (Pn)
∣∣X1, . . . , Xn

]]
= BE

[
ϕrand

n (Pn)
]

(B.2)

Moreover, cn (Pn, 1 − α) = cn

(
P(g)

n , 1 − α
)

for any g ∈ GB
n ensures by definition of cn (Pn, 1 − α)

∑
g∈GB

n

ϕrand
n

Ä
P(g)

n

ä
≤ Bα (B.3)

Combining equations (B.2) and (B.3) we get E
[
ϕrand

n (Pn)
]

≤ α, which concludes the proof.
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C Lemmas for the Cube Method

Lemma C.1 (Exchangeability)
For any permutation σ of {1, ..., n} we have:

(Dσ(i), π∗
σ(i)Xσ(i))i=1,...,n

d= (Di, Xi)i=1,...,n

Proof:
For any value of n, the Cube algorithm ensures there exists a finite collection of independent
uniform random variables (U1, ..., UK) independent of (X1, ..., Xn) such that (D1, ..., Dn, π∗

1, ..., π∗
n) =

f(X1, ..., Xn, U1, ..., UK). Because the X are iid and independent of the U , we have:

(Xσ(1), ..., Xσ(n), U1, ..., UK) d= (X1, ..., Xn, U1, ..., UK).

The result follows.

Definition C.1
Wn

d−→ N (0, σ2) conditional on (Xi)i≥1 if and only if for any h bounded Lipschitz E (h(Wn)|(Xi)i≥1)
converges almost surely to

∫
h(u) 1√

2πσ2 exp
Ä
− u2

2σ2

ä
du.

Usual criteria (e.g, Portmanteau’s lemma or Lévy’s continuity theorem) to prove conver-
gence in distribution could be adapted to prove the convergence in distribution conditional
on (Xi)i≥1 apply if the usual expectations and probabilities are replaced by conditional ex-
pectations and probabilities and usual convergence of sequences is replaced by almost sure
convergence of random variables. More concretely, we will use the fact that if for any k ≥ 1,
E((Wn)k|(Xi)i≥1) converges almost surely to the kth-raw moment of a Gaussian distribution
of variance σ2 then Wn

d−→ N (0, σ2) conditional on (Xi)i≥1. This is an adaptation of the
theorem of Takacs (1991) that states that if for any k ≥ 1, E((Wn)k) converges to the kth-
raw moment of a Gaussian distribution of variance σ2 then Wn

d−→ N (0, σ2). Moreover,
Wn

d−→ N (0, σ2) conditional on (Xi)i≥1 if and only if ∀t ∈ R, P (Wn ≤ t|(Xi)i≥1) converges
almost surely to Φ( t√

σ2 ) for Φ the c.d.f. of the standard Gaussian.

Lemma C.2 (Asymptotic normality)
Let f and g be two functions such that for fi = f(δi(1), δi(0), Xi) and gi = g(δi(1), δi(0), Xi)
we have E(f 2

i + g2
i ) < ∞ and E[fi|Xi] = E[gi|Xi] = 0.

If Assumptions 1 and 2 and Conjecture 1 hold. Then, conditional on (Xi)i≥1,
1√
n

n∑
i=1

fi + giDi
d−→ N (0, V0) (C.1)

with V0 = E [f 2
1 + (2g1f1 + g2

1)π1] .
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Proof:
First step: |fi| + |gi| bounded implies (C.1)
Let us assume it exists K > 0 such that |f1| + |g1| < K for any k ∈ N. This ensures that all
the moments of fi + giDi exist. Let Mn,k = E

[Ä
1√
n

∑n
i=1 fi + giDi

äk
|(Xi)i≥1

]
.

We have
Mn,k = E

ñ
n−k/2 ∑

1≤i1,...,ik≤n

k∏
ℓ=1

(fiℓ
+ giℓ

Diℓ
) |(Xi)i≥1

ô
.

Let us order the indices i1, . . . , ik as j1, . . . , jm for some 1 ≤ m ≤ k with each jℓ occurring
with multiplicity aℓ. Let Ak,m := {a = (a1, . . . , am) ∈ N∗m : ∑m

ℓ=1 aℓ = k} and for a ∈ Ak,m,
ck,a = k!∏m

ℓ=1 aℓ! . We have:

Mn,k =
k∑

m=1
n−k/2 ∑

1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

k∏
ℓ=1

(fjℓ
+ gjℓ

Djℓ
)aℓ |(Xi)i≥1

ô
.

In order to prove the convergence of moments, we will focus on the summands

Bn,k,m = n−k/2 ∑
1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

k∏
ℓ=1

(fjℓ
+ gjℓ

Djℓ
)aℓ |(Xi)i≥1

ô
.

Notice that |Bn,k,m| ≤ n−k/2(n
m

)∑k
m=1

∑
a∈Ak,m

ck,aKk = O
(
nm−k/2). For m < k/2, we thus

have limn Bn,k,m = 0.
We focus now in the case m > k/2. For K ⊆ {1, . . . , m}, we note Kc = {1, . . . , m} \ K.
Then, the binomial theorem and the expansion ∏m

ℓ=1(xℓ + yℓ) = ∑
K⊆{1,...,m}

∏
ℓ∈K xℓ

∏
ℓ′∈Kc yℓ′

and identity Da = D for a ≥ 1 ensure

Bn,k,m

= n−k/2 ∑
1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

k∏
ℓ=1

(fjℓ
+ gjℓ

Djℓ
)aℓ

∣∣∣(Xi)i≥1

ô
= n−k/2 ∑

1≤j1<...<jm≤n

∑
a∈Ak,m

ck,aE
ñ

m∏
ℓ=1
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faℓ

jℓ
+
Ç

aℓ∑
r=1

Ç
aℓ

r

å
faℓ−r

jℓ
gr

jℓ

å
Djℓ

ô ∣∣∣(Xi)i≥1

ô
= n−k/2 ∑

1≤j1<...<jm≤n

∑
a∈Ak,m

ck,a

∑
K⊆{1,...,m}

E
ñ∏

ℓ∈K
faℓ

jℓ

∏
ℓ′∈Kc

Ç
aℓ′∑
r=1

Ç
aℓ′

r

å
f

aℓ′ −r
jℓ′ gj

jℓ′

å ∏
ℓ′′∈Kc

Djℓ′′

∣∣∣(Xi)i≥1

ô
Then, independence of (fi, gi)i≥1 across i and conditional independence (fi, gi) ⊥⊥ Di|(Xi′)i′≥1

ensure

Bn,k,m

= n−k/2 ∑
1≤j1<...<jm≤n

∑
a∈Ak,m

ck,a

∑
K⊆{1,...,m}

∏
ℓ∈K

E
[
faℓ

jℓ
|Xjℓ

] ∏
ℓ′∈Kc

Ç
aℓ′∑
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Ç
aℓ′

r
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E
î
f

aℓ′ −r
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E
ñ ∏

ℓ′′∈Kc

Djℓ′′

∣∣∣(Xi)i≥1

ô
.

Because m > k/2, for any a ∈ Ak,m there exists s such that as = 1. For any K, if
s ∈ K, then ∏

ℓ∈K E
[
faℓ

jℓ
|Xjℓ

]
= E [fjs|Xjs ]

∏
ℓ∈K\{s} E

[
faℓ

jℓ
|Xjℓ

]
= 0, else s ∈ Kc and∏
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(

aℓ′
r

)
f
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(

aℓ′
r

)
f

aℓ′ −r
jℓ′ gj

jℓ′

ä
= 0. It follows that

if m > k/2 we have Bn,k,m = 0.
Let now consider the last case m = k/2. For a ∈ Ak,k/2 either there exists s such that as = 1
and by the previous reasoning, we have ∏

ℓ∈K E
[
faℓ

jℓ
|Xjℓ

]∏
ℓ′∈Kc

Ä∑aℓ′
r=1
(

aℓ′
r

)
E
î
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jℓ′ gr

jℓ′ |Xjℓ′

óä
=

0 for any K, either a = (2, ..., 2) and it follows

Bn,k,k/2 = n−k/2 ∑
1≤j1<...<jk/2≤n
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ô
Conjecture 1 and the fact that max(|fi|2, |2figi + g2

i |) ≤ 3K2 ensure

Bn,k,k/2 =n−k/2 ∑
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Factorization formula ∑
K⊆{1,...,m}

∏
ℓ∈K xℓ

∏
ℓ′∈Kc yℓ′ = ∏m

ℓ=1(xℓ + yℓ) ensures

Bn,k,k/2 = k!
2k/2 n−k/2 ∑

1≤j1<...<jk/2≤n

k/2∏
ℓ=1

E
[
f 2

jℓ
+
(
2fjℓ
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+ o(1)
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Ç
n
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åÇ
n

k/2

å−1 ∑
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h(Xj1 , ..., Xjk/2) + o(1)

for h(u1, ..., uk/2) = ∏k/2
i=1 E(f 2 + (2fg + g2)π|X = ui). Strong law of large numbers for

U-statistics (Aaronson et al., 1996) ensures that
(

n
k/2
)−1 ∑

1≤j1<...<jk/2≤n h(Xj1 , ..., Xjk/2) con-
verges almost surely to E(h(X1, ..., Xk/2)) = (V0)k/2 and limn n−k/2( n

k/2
)

= 1
(k/2)! . Then,

limn Mn,k = 0 for k odd, and limn Mn,k = k!
2k/2(k/2)!V

k/2
0 for k even. By the adapted form of

the theorem in Takacs (1991), if fi and gi, are bounded, we have that, conditional on (Xi)i≥1
1√
n

∑n
i=1 fi + giDi converges almost surely to a Gaussian of variance V0.
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Second step: E(Y (0)2 + Y (1)2 + ||X||2) < ∞ implies (C.1)
Assumption 1 ensures only that fi and gi admit moments of order 2. Then, for M > 0,
let f≤M,i, f>M,i, g≤M,i and g>M,i the truncated variables f≤M,i = fi1{|fi| ≤ M}, f>M,i =
fi1{|fi| > M}, g≤M,i = gi1{|gi| ≤ M} and g>M,i = gi1{|gi| > M}. We define f̃≤M,i =
f≤M,i − E[f≤M,i|Xi], f̃>M,i = f>M,i − E[f>M,i|Xi], g̃≤M,i = g≤M,i − E[g≤M,i|Xi] and g̃>M,i =
g>M,i − E[g>M,i|Xi]. We have:
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The second equality holds because (f1, . . . , fn, g1, . . . , gn) ⊥⊥ (D1, . . . , Dn)|X1, . . . , Xn. by
Assumption 2. The third equality holds because (fi, gi, Xi)i≥1 are independent across i by
Assumption 1 and E [Di|(Xℓ)ℓ>1] = πi by Assumption 2. The fourth equality holds because
E
[
f̃>M,ℓ|Xℓ

]
= E [g̃>M,ℓ|Xℓ] = 0.

The SLLN ensures that 1
n
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. It follows that by Cauchy-Schwarz inequal-

ity:
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n

E

∣∣∣∣∣ 1√
n

n∑
i=1

(f̃>M,i + g̃>M,iDi)
∣∣∣∣∣
2
∣∣∣∣∣∣ (Xℓ)ℓ≥1

1/2

= E
[
f̃ 2

>M,1 +
(
2f̃>M,1g̃>M,1 + g̃2

>M,1
)

π1
]1/2 (C.2)

which, by dominated convergence, is arbitrarily small for a sufficiently large M .
Let h a bounded Lipschitz function of constant ch, V (M) = E
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and N ∼ N (0, 1). We have by triangle and Lipschitz inequlities, and the fact that fi+giDi =
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The first step of the proof and (C.2) ensure that for any value of M > 0:
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This achieves the proof.
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D Additional Tables

Table D.1: Empirical application: Standard deviation of ATE estimators

Number of
covariates

Complete
Randomization

Stratified
Randomization

Matched
Pairs

Cube
Method

Double
Lasso

(1) (2) (3) (4) (5)

1 2.958 2.662 2.363 2.382 2.371
2 – 2.673 2.357 2.438 –
3 – 2.658 2.390 2.448 –

n = 100 5 – 2.816 2.427 2.428 –
7 – 3.153 2.459 2.434 –
9 – 3.745 2.530 2.389 –
12 – 6.770 2.563 2.391 –

1 1.825 1.675 1.455 1.478 1.457
2 – 1.664 1.456 1.491 –
3 – 1.673 1.459 1.485 –

n = 256 5 – 1.673 1.506 1.483 –
7 – 1.771 1.532 1.492 –
9 – 2.004 1.545 1.468 –
12 – 2.818 1.593 1.505 –

1 1.299 1.189 1.052 1.055 1.031
2 – 1.174 1.052 1.048 –
3 – 1.173 1.040 1.060 –

n = 500 5 – 1.188 1.050 1.057 –
7 – 1.227 1.055 1.059 –
9 – 1.317 1.085 1.063 –
12 – 1.691 1.107 1.055 –

1 0.918 0.836 0.738 0.751 0.736
2 – 0.835 0.735 0.739 –
3 – 0.837 0.736 0.734 –

n = 1000 5 – 0.832 0.741 0.750 –
7 – 0.844 0.745 0.748 –
9 – 0.898 0.761 0.748 –
12 – 1.059 0.778 0.744 –

This table shows the standard deviation of PATE estimators for different allocation designs and experimental sample sizes. For
each allocation design, the standard deviation estimates are computed over 10, 000 simulations. For columns 1, 3, and 4, the
estimator used is the Horvitz-Thompson algorithm. In column, 1 the design used is complete randomization. For column 3,
we assign treatment using a matched pairs design, pairing individuals to the closest unit and using the Mahalanobis distance
whenever more than one covariate is balanced. Column 4 shows the results for the cube method with two moments for each
variable. For column 2, we run stratified randomization. We use median values for continuous variables and we estimate the
PATE using OLS with strata fixed-effects in accordance with Bugni et al. (2018). Finally, column 5 uses a double-lasso selec-
tion procedure as described in Belloni et al. (2014).
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Table D.2: Empirical application: Average bias of ATE estimators

Number of
covariates

Complete
Randomization

Stratified
Randomization

Matched
Pairs

Cube
Method

Double
Lasso

(1) (2) (3) (4) (5)

1 0.046 -0.065 -0.007 0.032 0.256
2 – -0.025 -0.028 0.023 –
3 – -0.047 -0.058 -0.031 –

n = 100 5 – -0.040 -0.064 -0.051 –
7 – -0.010 -0.011 -0.003 –
9 – 0.115 -0.036 0.008 –
12 – 0.359 -0.008 -0.043 –

1 -0.016 -0.028 -0.006 -0.038 0.112
2 – -0.010 -0.019 -0.027 –
3 – -0.014 -0.019 -0.019 –

n = 256 5 – -0.032 -0.022 -0.004 –
7 – -0.015 -0.010 -0.025 –
9 – 0.048 -0.033 -0.030 –
12 – 0.222 -0.030 -0.018 –

1 -0.010 -0.005 0.009 0.007 0.088
2 – 0.011 -0.027 0.000 –
3 – -0.013 0.005 -0.011 –

n = 500 5 – 0.028 -0.002 0.006 –
7 – 0.003 -0.007 0.002 –
9 – 0.074 -0.019 -0.005 –
12 – 0.146 -0.024 -0.015 –

1 -0.015 -0.008 -0.013 -0.002 0.056
2 – -0.000 0.002 -0.006 –
3 – -0.002 -0.008 -0.002 –

n = 1000 5 – 0.003 -0.006 0.002 –
7 – 0.004 -0.009 0.004 –
9 – 0.021 -0.010 -0.003 –
12 – 0.064 -0.004 -0.008 –

This table shows the average bias of PATE estimators for different allocation designs and experimental sample sizes. For each
allocation design, the average bias estimates are computed over 10, 000 simulations. For columns 1, 3, and 4, the estimator
used is the Horvitz-Thompson algorithm. In column 1, the design used is complete randomization. For column 3, we assign
treatment using a matched pairs design, pairing individuals to the closest unit and using the Mahalanobis distance whenever
more than one covariate is balanced. Column 4 shows the results for the cube method with two moments for each variable. For
column 2, we run stratified randomization. We use median values for continuous variables and we estimate the PATE using
OLS with strata fixed-effects in accordance with Bugni et al. (2018). Finally, column 5 uses a double-lasso selection procedure
as described in Belloni et al. (2014).
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Table D.3: Empirical application: Coverage Rates

Number of
covariates

Complete
Randomization

Stratified
Randomization

Matched
Pairs

Cube
Method

Double
Lasso

(1) (2) (3) (4) (5)

1 0.945 0.943 0.948 0.940 0.941
2 – 0.937 0.949 0.932 –
3 – 0.937 0.950 0.931 –

n = 100 5 – 0.910 0.953 0.927 –
7 – 0.884 0.956 0.924 –
9 – 0.865 0.956 0.928 –
12 – 0.776 0.955 0.927 –

1 0.951 0.946 0.951 0.944 0.946
2 – 0.947 0.953 0.939 –
3 – 0.943 0.954 0.943 –

n = 256 5 – 0.938 0.952 0.943 –
7 – 0.918 0.952 0.939 –
9 – 0.902 0.955 0.941 –
12 – 0.858 0.955 0.930 –

1 0.952 0.951 0.949 0.950 0.952
2 – 0.950 0.948 0.949 –
3 – 0.951 0.954 0.950 –

n = 500 5 – 0.943 0.955 0.945 –
7 – 0.931 0.957 0.946 –
9 – 0.919 0.957 0.941 –
12 – 0.883 0.958 0.944 –

1 0.955 0.952 0.953 0.945 0.949
2 – 0.953 0.953 0.950 –
3 – 0.952 0.954 0.947 –

n = 1000 5 – 0.947 0.954 0.947 –
7 – 0.939 0.957 0.948 –
9 – 0.927 0.959 0.946 –
12 – 0.902 0.955 0.946 –

This table shows the coverage rate of 95%-confidence intervals of PATE estimators for different allocation designs and experi-
mental sample sizes. For each allocation design, the coverage rate estimates are computed over 10, 000 simulations. For columns
1, 3, and 4, the estimator used is the Horvitz-Thompson algorithm. In column 1, the design used is complete randomization
and the confidence intervals are constructed using White standard errors. For column 3, we assign treatment using a matched
pairs design, pairing individuals to the closest unit and using the Mahalanobis distance whenever more than one covariate is
balanced. Confidence intervals are constructed as described in (Bai, 2022). Column 4 shows the results for the cube method
with two moments for each variable. Confidence intervals follow the asymptotic-based procedure described in Section 4.3. For
column 2, we run stratified randomization. We use median values for continuous variables and we estimate the PATE using
OLS with strata fixed-effects in accordance with Bugni et al. (2018). Finally, column 5 uses a double-lasso selection procedure
as described in Belloni et al. (2014) with White standard errors for the post-lasso estimation.
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Table D.4: Empirical application: Test Power

Number of
covariates

Complete
Randomization

Stratified
Randomization

Matched
Pairs

Cube
Method

Double
Lasso

(1) (2) (3) (4) (5)

1 0.151 0.191 0.223 0.226 0.192
2 – 0.194 0.215 0.234 –
3 – 0.207 0.209 0.249 –

n = 100 5 – 0.233 0.197 0.256 –
7 – 0.235 0.181 0.257 –
9 – 0.220 0.180 0.255 –
12 – 0.251 0.171 0.262 –

1 0.325 0.385 0.465 0.477 0.440
2 – 0.389 0.464 0.475 –
3 – 0.393 0.457 0.476 –

n = 256 5 – 0.416 0.448 0.478 –
7 – 0.429 0.423 0.486 –
9 – 0.382 0.403 0.496 –
12 – 0.288 0.394 0.499 –

1 0.552 0.638 0.740 0.739 0.719
2 – 0.637 0.749 0.743 –
3 – 0.642 0.735 0.7491 –

n = 500 5 – 0.640 0.725 0.743 –
7 – 0.663 0.714 0.750 –
9 – 0.605 0.692 0.752 –
12 – 0.483 0.681 0.754 –

1 0.847 0.907 0.961 0.957 0.953
2 – 0.904 0.960 0.958 –
3 – 0.904 0.959 0.959 –

n = 1000 5 – 0.912 0.957 0.959 –
7 – 0.914 0.951 0.956 –
9 – 0.893 0.945 0.961 –
12 – 0.810 0.932 0.959 –

This table shows the rejection power of 95%-confidence intervals of PATE estimators for different allocation designs and ex-
perimental sample sizes. For each allocation design, the power estimates are computed over 10, 000 simulations. For columns
1, 3, and 4, the estimator used is the Horvitz-Thompson algorithm. In column 1, the design used is complete randomization
and the confidence intervals are constructed using White standard errors. For column 3, we assign treatment using a matched
pairs design, pairing individuals to the closest unit and using the Mahalanobis distance whenever more than one covariate is
balanced. Confidence intervals are constructed as described in (Bai, 2022). Column 4 shows the results for the cube method
with two moments for each variable. Confidence intervals follow the asymptotic-based procedure described in Section 4.3. For
column 2, we run stratified randomization. We use median values for continuous variables and we estimate the PATE using
OLS with strata fixed-effects in accordance with Bugni et al. (2018). Finally, column 5 uses a double-lasso selection procedure
as described in Belloni et al. (2014) with White standard errors for the post-lasso estimation.
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