Evolving Reputation for Commitment: The Rise, Fall and Stabilization of US Inflation

Robert G. King BU

Yang K. Lu **HKUST**

EEA-ESEM-2024

Consensus:

- Inflation expectations are important for inflation dynamics
- Inflation expectations respond to CB policy communication
- Managing expectations is central to inflation policy

This paper:

- \bullet A theory for interaction b/w inflation expectation and policy
- Quantitative theory validated by U.S. inflation history
- Testable implications supported by SPF forecast revision regressions
- Managing Expectations needs (perceived) commitment
	- Central Bank communicates intentions about inflation, output, etc
	- Macrotheory portrays CB as dominant player with *strategic power*
	- Strategic power derives from commitment capability

• What if private sector is *skeptical* about commitment capability?

- What is private sector's belief that policymaker can commit? – can that belief (reputation) be affected?
- What alternative policies expected by private sector? – can such perceived alternatives be affected?
- How important is evolving reputation for commitment?
	- conceptually, optimal policy path to promise or to implement
	- empirically, joint behavior of US expected and actual inflation.

Features of US inflation: private sector learning Quarterly PGDP inflation and prior quarter SPF forecast

- Lengthy runs of positive and negative forecast errors
- Croushore (2010), Coiboin et al (2018), Farmer et al (2023), Carvalho et al (2023).
- Augment a plain-vanilla NK model with:
	- Private agents learning which policy regime they are in
	- Committed regime policies: managing expectations
	- Opportunistic regime policies: responding to expectations
	- Interplay between agents learning and optimal policies
- New theoretical and numerical approaches:
	- Dynamic game with expectations linkages across periods
	- Mechanism design approach to solve equilibrium
	- **•** Recursive formulation
	- Model-consistent nonlinear Kalman filter with Markov-switching
- Extract latent states (reputation etc.) only from SPF1Q, SPF3Q
- Model-implied inflation tracks observed inflation
- Model-implied long-term expectation track surveyed forecast
- Nonlinear responses of forecast revision to forecast error in SPF consistent with theory

Contribution to the literature

Learning-based reputation approach: Milgrom and Roberts(1982), Kreps and Wilson(1982), Backus and Driffill(1983), Barro(1986), Phelan(2006), King et al.(2008), Lu(2013), Lu et al.(2016), Dovis and Kirpalani(2021), Morelli an Moretti (2023) etc.

new approach to solve equilibrium with expectation forward-looking and both types optimizing

• Reputation force as substitute for commitment capability: Barro and Gordon(1983), Chari and Kehoe(1990), Ireland(1997), Kurozumi(2008), Loisel(2008), Sunakawa(2015) etc.

richer reputation dynamics, punishment varies with deviation from plan

Literature on US inflation dynamics: Sargent(1999), Primiceri(2006), Bianchi(2013), Matthes(2015), Carvalho et al.(2023), Hazell et al.(2022) etc.

private sector beliefs and purposeful policymaking jointly determine expected and actual inflation

Policymaker: type and objective

- Committed type (τ_{a}) chooses and commits to contingent plan $\{ \mathsf{a}_t \}_{t=1}^\infty$ $t=0$
- **•** Opportunistic type (τ_{α}) chooses intended policy α_t
- Inflation deviates from policy intentions by i.i.d. error v*^π* ∼ N(0*, σ*v*,π*)

$$
\pi_t = \begin{cases} a_t + v_{\pi,t} & \text{with committed type } \tau_a \\ \alpha_t + v_{\pi,t} & \text{with opportunistic type } \tau_\alpha \end{cases}
$$
 (1)

Quadratic objective in inflation *π* and output gap x

$$
u(\pi, x) = -\frac{1}{2}\{(\pi - \pi^*)^2 + \vartheta_x(x - x^*)^2\}
$$
 (2)

- **•** Committed type ($τ_a$) patient with $β_a$
- **o** Opportunistic type (τ_α) patient with β_α

Private sector: information and NK inflation dynamics

o Information structure

- Policymaker is replaced $(\theta = 1)$ w/ prob q each period.
- Replacement event is observed by private agents.
- Policymaker type and policy intention not observed.
- Private agents must learn policymaker type from π_t .
- NK standard Phillips curve

$$
\pi_t = \underbrace{\beta E_t^p \pi_{t+1}}_{e_t} + \kappa x_t + \varsigma_t \tag{3}
$$

ς Markov-chain cost-push shock

Reputation and Inflation Expectations

- **•** History within a regime $h_t = \{h_{t-1}, \pi_{t-1}, \varsigma_t\}$
- **Reputation** within a regime $\rho(h_t) = Pr(\tau_a|h_t)$

$$
\rho(h_{t+1}) = \rho(h_t, \pi_t) \equiv \frac{\rho(h_t) g(\pi_t | a(h_t))}{\rho(h_t) g(\pi_t | a(h_t)) + (1 - \rho(h_t)) g(\pi_t | \alpha(h_t))} \tag{4}
$$

• Private sector inflation expectations: [Detail](#page--1-0)

$$
e(h_t) = \beta E^p(\pi_{t+1}|h_t)
$$

= $\beta \rho(h_t) \underbrace{E\pi_{t+1}|(h_t, \tau_a)}_{\text{committed policy}} + \beta(1 - \rho(h_t)) \underbrace{E\pi_{t+1}|(h_t, \tau_\alpha)}_{\text{opportionistic policy}}$ (5)

- Reputation passes on to a new regime with prob *δ^ρ*
	- New policymaker's reputation $\rho_0 = \phi_t \rho(h_t) + (1 \phi_t) v_{0,t}$
	- ϕ *ϕ*_t ∼ Bernoulli(δ _{*ρ*})</sub> and v _{*ρ*,*t*} ∼ Beta($\bar{\rho}$, σ _{*ρ*}).

Optimal opportunistic policy: myopic

• Opportunistic type chooses α_t that generates $\pi_t = \alpha_t + \nu_{\pi,t}$

$$
\alpha_t = \underset{\alpha_t}{\text{argmax}} \int u(\pi_t, \frac{\pi_t - e_t - \varsigma_t}{\kappa}) g(\pi_t | \alpha_t) d\pi_t \tag{6}
$$

taking $e_t = e(h_t)$ as given

o Linear best response

$$
\alpha(h_t) = Ae(h_t) + B(\varsigma_t)
$$
 (7)

• Lower optimal $\alpha(h_t)$ if lower $e(h_t)$.

Inflation bias without commitment

contrasting two concepts

$$
\alpha(e)=Ae+B(\varsigma), A=.94, \beta=.995
$$

• Intrinsic inflation bias (small)

• Nash Eq inflation bias (BIG)

$$
\alpha(\mathbf{e} = \beta \pi^*) - \pi^* = 0.5\%.
$$

$$
\alpha(\mathbf{e} = \beta \alpha) - \pi^* = 8\%
$$

Optimal opportunistic policy: forward-looking

Opportunistic type chooses α_t that generates $\pi_t = \alpha_t + v_{\pi,t}$

- takes e_t as given but ... understands:
- future payoff depends on future expected inflation $e(h_{t+1})$
- $e(h_{t+1})$ depends on current inflation $h_{t+1} = \{h_t, \pi_t, \varsigma_{t+1}\}$
- **o** manages $e(h_{t+1})$ in a limited manner by controlling π_t

 $\alpha_t := \alpha(h_t)$ is sequentially rational if it satisfies the first-order condition

$$
0 = \int u(\pi_t, e_t, \varsigma_t) \frac{\partial g(\pi_t | \alpha_t)}{\partial \alpha_t} d\pi_t
$$
\n
$$
+ \beta_{\alpha} (1 - q) \int \sum_{\varsigma_{t+1}} \varphi(\varsigma_{t+1}; \varsigma_t) V(h_t, \pi_t, \varsigma_{t+1}) \frac{\partial g(\pi_t | \alpha_t)}{\partial \alpha_t} d\pi_t
$$
\n(8)

with

$$
V(h_t) = \int u(\pi_t, e_t, \varsigma_t) g(\pi_t | \alpha_t) d\pi_t
$$

+ $\beta_{\alpha} (1-q) \int \sum_{\varsigma_{t+1}} \varphi(\varsigma_{t+1}; \varsigma_t) V(h_t, \pi_t, \varsigma_{t+1}) g(\pi_t | \alpha_t) d\pi_t$ (9)

At start of his term, choose $\{a(h_t)\}_{t=1}^{\infty}$ $\sum_{t=0}^{\infty}$ to maximize

$$
U_0 = E_0 \sum_{t=0}^{\infty} \beta_a^t (1-q)^t \underline{u} (a(h_t), e(h_t), s_t)
$$

 $\mathsf{where}\,\, \underline{u}\, (a, e, \varsigma) \equiv \int u(\pi, \mathsf{x}(\pi, e, \varsigma)) g(\pi | a) d\pi$

- "Strategic power" of $\{a(h_t)\}_{t=0}^{\infty}$ on $\{e(h_t)\}_{t=0}^{\infty}$
- **anchor expectation**: $e(h_t)$ anchored by $\rho(h_t)a(h_{t+1})$
- **manage perceived alternative**: $\alpha(h_t)$ affected by $e(h_t)$ and $e(h_{t+1})$
- $-$ **build reputation**: $ρ(h_t)$ affected by $a(h_{t-1})$ and $α(h_{t-1})$

Mechanism design approach for within-regime equilibrium

Committed type chooses $\{a_t, \alpha_t, e_t\}_{t=0}^\infty$ to maximize

$$
U_0 = E_0 \{ \sum_{t=0}^{\infty} \beta_a^t (1-q)^t \, \underline{u} \, (a_t, e_t, \varsigma_t) \} \tag{10}
$$

subject to 3 constraints each period:

1 Rational inflation expectations for private agents

$$
e_{t} = \beta \int \sum \varphi(\varsigma_{t+1}; \varsigma_{t}) \{ \rho_{t} [(1-q)a_{t+1} + qz_{t+1}] g(\pi_{t}|a_{t}) + (1-\rho_{t}) [(1-q)\alpha_{t+1} + qz_{t+1}] g(\pi_{t}|\alpha_{t}) \} d\pi_{t}
$$

² Sequential rationality conditions for opportunistic type

$$
0 = \frac{\partial \underline{u}(\alpha_t, e_t, \varsigma_t)}{\partial \alpha_t} + \beta_{\alpha} (1 - q) \int \sum \varphi(\varsigma_{t+1}; \varsigma_t) V_{t+1} \frac{\partial g(\pi_t | \alpha_t)}{\partial \alpha_t} d\pi_t
$$

$$
V_t = \underline{u}(\alpha_t, e_t, \varsigma_t) + \beta_{\alpha} (1 - q) \int \sum \varphi(\varsigma_{t+1}; \varsigma_t) V_{t+1} g(\pi_t | \alpha_t) d\pi_t
$$

Recursive formulation (Marcet and Marimon 2019)

Committed type chooses $\{a_t, \alpha_t, e_t\}_{t=0}^\infty$ to maximize

$$
U_0 = E_0 \left\{ \sum_{t=0}^{\infty} \beta_a^t \left(1-q\right)^t \underline{u} \left(a_t, e_t, \varsigma_t\right) \right\} \tag{11}
$$

subject to 3 constraints each period:

1 Rational inflation expectations for private agents

$$
\gamma_t: e_t = \beta \int \sum \varphi(\varsigma_{t+1}; \varsigma_t) \{ \rho_t [(1-q)a_{t+1} + qz_{t+1}] g(\pi_t | a_t) + (1-\rho_t) [(1-q)\alpha_{t+1} + qz_{t+1}] g(\pi_t | \alpha_t) \} d\pi_t
$$

² Sequential rationality conditions for opportunistic type

$$
\phi_t: 0 = \frac{\partial \underline{u}(\alpha_t, e_t, \varsigma_t)}{\partial \alpha_t} + \beta_{\alpha} (1-q) \int \sum \varphi(\varsigma_{t+1}; \varsigma_t) V_{t+1} \frac{\partial g(\pi_t | \alpha_t)}{\partial \alpha_t} d\pi_t
$$

$$
\chi_t: V_t = \underline{u}(\alpha_t, e_t, \varsigma_t) + \beta_{\alpha} (1-q) \int \sum \varphi(\varsigma_{t+1}; \varsigma_t) V_{t+1} g(\pi_t | \alpha_t) d\pi_t
$$

[Change of measure](#page--1-1)

Recursive formulation (Marcet and Marimon 2019)

Within-regime equilibrium is the solution to

$$
W(\varsigma, \rho, \mu, y) = \min_{\gamma, \phi, \chi \text{ a}, \alpha, \epsilon, V} \max_{u \in \mathcal{A}, \epsilon, \zeta} u(a, e, \varsigma) + (\gamma e - \mu \omega)
$$
(12)
+ $\phi \frac{\partial u(\alpha, e, \varsigma)}{\partial \alpha} + \chi u(\alpha, e, \varsigma) + (y - \chi)V$
+ $\beta_{a}(1 - q) \int \sum_{\varsigma'} \varphi(\varsigma'; \varsigma) W(\varsigma', \rho', \mu', y') g(\pi|a) d\pi$
the $\varsigma := (1 - q) \log_{10} \pi \pi + \frac{(1 - \rho) \chi(1 - q) \varsigma + q \pi}{\chi(1 - q) \chi(1 - q) \chi(1 - q)}$ (13)

with
$$
\omega = (1 - q)a + qz + \frac{(1 - \rho)}{\rho}[(1 - q)\alpha + qz]
$$
 (13)

$$
\rho' = b(\pi, a, \alpha, \rho) \tag{14}
$$

$$
\mu' = \frac{\beta}{\beta_a (1 - q)} \rho \gamma \text{ with } \mu_0 = 0 \tag{15}
$$

$$
y' = \frac{\beta_{\alpha}}{\beta_{a}} \frac{1}{g(\pi|a)} \left[\phi \frac{\partial g(\pi|\alpha)}{\partial \alpha} + \chi g(\pi|\alpha) \right] \text{ with } y_{0} = 0 \quad (16)
$$

Inflation policy as function of ρ : $\beta_{\alpha} = 0$ case

Linking the theory to the data: $\beta_{\alpha} = 0$ case

Model inputs

 3 structural shocks $v_t = (v_{\varsigma}, v_{\rho}, v_{\pi})$

• 3 state variables
$$
s_t = (\varsigma_t, \rho_t, \mu_t)
$$

 3 discrete states $\Theta_t = (\theta_t, \phi_t, \tau_t)$ ([Def and Trans](#page--1-2)

Model outputs:

- **•** committed and opportunistic policies $a(s_t)$ and $\alpha(s_t)$
- **o** inflation $\pi_t = \tau_t a(s_t) + (1 \tau_t) a(s_t) + v_{\pi} t$
- inflation forecasts at various horizons $E^p(\pi_{t+k}|s_t) = e(s_t, k)$

Data:

- SPF inflation forecasts at various horizons
- Inflation, food and energy price shock

State space model with Markov-switching

$$
X_t = [s_t, \rho_t, \mu_t, \pi_t]' = F(X_{t-1}, v_t | \Theta_t = (\theta_t, \phi_t, \tau_t))
$$

=
$$
\begin{bmatrix} \delta_{\varsigma} s_{t-1} + v_{\varsigma, t} \\ (1 - \theta_t + \theta_t \phi_t) b(s_{t-1}, \rho_{t-1}, \mu_{t-1}, \pi_{t-1}) + \theta_t (1 - \phi_t) v_{\rho, t} \\ (1 - \theta_t) m(s_{t-1}, \rho_{t-1}, \mu_{t-1}) \\ \tau_t a(s_t, \rho_t, \mu_t) + (1 - \tau_t) \alpha(s_t, \rho_t, \mu_t) + v_{\pi, t} \end{bmatrix}
$$

$$
Y_{t} = \begin{bmatrix} f_{t+1|t} \\ f_{t+2|t} \\ f_{t+3|t} \\ f_{t+4|t} \\ \frac{1}{40} \sum_{k=1}^{40} f_{t+k|t} \\ \frac{\tilde{\pi}_{t}}{\tilde{\zeta}_{t}} \end{bmatrix} = \begin{bmatrix} e(\varsigma_{t}, \rho_{t}, \mu_{t}, 1) + u_{1t} \\ e(\varsigma_{t}, \rho_{t}, \mu_{t}, 2) + u_{2t} \\ e(\varsigma_{t}, \rho_{t}, \mu_{t}, 3) + u_{3t} \\ e(\varsigma_{t}, \rho_{t}, \mu_{t}, 3) + u_{3t} \\ e(\varsigma_{t}, \rho_{t}, \mu_{t}, 4) + u_{4t} \\ \overline{e}(\varsigma_{t}, \rho_{t}, \mu_{t}, 40) + u_{40, t} \\ \pi_{t} + u_{\pi t} \\ \varsigma_{t} + u_{\pi t} \end{bmatrix} = H(X_{t}, u_{t})
$$

State space model with Markov-switching

$$
X_t = [\varsigma_t, \rho_t, \mu_t, \pi_t]' = F(X_{t-1}, v_t | \Theta_t = (\theta_t, \phi_t, \tau_t))
$$

=
$$
\begin{bmatrix} \delta_{\varsigma} \varsigma_{t-1} + v_{\varsigma, t} \\ (1 - \theta_t + \theta_t \phi_t) b(\varsigma_{t-1}, \rho_{t-1}, \mu_{t-1}, \pi_{t-1}) + \theta_t (1 - \phi_t) v_{\rho, t} \\ (1 - \theta_t) m(\varsigma_{t-1}, \rho_{t-1}, \mu_{t-1}) \\ \tau_t a(\varsigma_t, \rho_t, \mu_t) + (1 - \tau_t) \alpha(\varsigma_t, \rho_t, \mu_t) + v_{\pi, t} \end{bmatrix}
$$

$$
\mathbf{Y}_{t} = \left[\begin{array}{c} f_{t+1|t} \\ f_{t+2|t} \\ f_{t+3|t} \\ f_{t+4|t} \\ \frac{1}{40} \sum_{k=1}^{40} f_{t+k|t} \\ \widetilde{r}_{t} \\ \widetilde{q}_{t} \end{array}\right] = \left[\begin{array}{c} e(\varsigma_{t}, \rho_{t}, \mu_{t}, 1) + u_{1t} \\ e(\varsigma_{t}, \rho_{t}, \mu_{t}, 2) + u_{2t} \\ e(\varsigma_{t}, \rho_{t}, \mu_{t}, 3) + u_{3t} \\ e(\varsigma_{t}, \rho_{t}, \mu_{t}, 4) + u_{4t} \\ \overline{e}(\varsigma_{t}, \rho_{t}, \mu_{t}, 40) + u_{40, t} \\ \pi_{t} + u_{\pi t} \\ \varsigma_{t} + u_{\pi t} \end{array}\right] = H(\mathbf{X}_{t}, \mathbf{u}_{t})
$$

Extracting states: term structure intuition about SPF

- SPF1Q more sensitive to temporary price shocks
- SPF3Q better reflects reputation

Calibration of parameters

• Implies $A = 0.94$, $\iota = 0.5\%$, NE bias = 8%

[Calibration](#page--1-3)

Untargeted: SPF2Q and SPF4Q

Untargeted: SPF40Q, Food and Energy Price Shock

Forecast error (FE) in our model:

$$
\pi_{t-1} - E_{t-1}\pi_{t-1} = \begin{cases} (1 - \rho_{t-1})(a_{t-1} - \alpha_{t-1}) + v_{\pi,t-1} & \text{if committed} \\ -\rho_{t-1}(a_{t-1} - \alpha_{t-1}) + v_{\pi,t-1} & \text{if opportunistic} \end{cases}
$$

FE is a noisy signal of policymaker type:

$$
\pi_{t-1} - E_{t-1}\pi_{t-1} < 0 \Rightarrow \Delta \rho_t = \rho_t - \rho_{t-1} > 0
$$
\n
$$
\pi_{t-1} - E_{t-1}\pi_{t-1} > 0 \Rightarrow \Delta \rho_t = \rho_t - \rho_{t-1} < 0
$$

with signal-to-noise ratio $\propto |a_{t-1} - a_{t-1}|$

Lower ρ_{t-1} \Rightarrow \uparrow $\vert a_{t-1} - \alpha_{t-1} \vert \Rightarrow$ larger $\vert \Delta \rho_t \vert$ and Forecast Revision

Higher *ς*t−¹ ⇒↑ |at−¹ − *α*t−1| ⇒ larger |∆*ρ*^t | and Forecast Revision

$$
E_t \pi_{t+h} - E_{t-1} \pi_{t+h} = \alpha + \beta F E_{t-1} + \gamma \mathbf{1}_{\text{low } \rho_{t-1}} \times F E_{t-1} + \lambda v_{\varsigma,t} + \varepsilon_t
$$

•
$$
\mathbf{1}_{\text{low } \rho_{t-1}} = 1
$$
 if $E_{t-1} \pi_{t+40Q} >$ its 75th percentile

$$
\bullet \ \varsigma_t = \delta \varsigma_{t-1} + \nu_{\varsigma,t} \ \text{array}
$$

$$
E_t \pi_{t+h} - E_{t-1} \pi_{t+h} = \alpha + \beta F E_{t-1} + \gamma \mathbf{1}_{\text{high } \varsigma_{t-1}} \times F E_{t-1} + \lambda v_{\varsigma,t} + \varepsilon_t
$$

- **1**high *^ς*t−¹ = 1 if *ς*t−¹ *>* its 75th percentile
- \bullet *ς_t* = δ *ς_{t−1}* + *v_c*,*t*

Summary and conclusions

A theory for interaction b/w inflation expectation and policy

- Private agents learns type and form expectations of future policy
- Committed policymaker manages expectations
- Opportunistic policymaker responds to expectations
- Interplay between agents learning and optimal policies
- New theoretical and numerical approaches
	- Dynamic game with expectations linkages across periods
	- Equilibrium via mechanism design approach
	- **Recursive formulation**
	- Model-consistent nonlinear Kalman filter with Markov-switching
- **Looking forward**
	- Long horizon opportunistic type
	- **Term structure of interest rates**
	- **Other applications**