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Introduction: a Simple Motivating Case

Regression of interest (θi unobserved):

yij = β0 + β1θi + ϵij

IE[θiϵij ] = IE[ϵij ] = 0

The EB model:

θi ∼ N(µθ, σ
2
θ),

Xij | θi ∼ N(θi , σ
2
x)

θi : teacher i ’s quality

Xij : student j ’s test score

Our question: let β̂EB = OLS regression of yij on θ̂EBi . Is β̂EB consistent?



Background

Empirical Bayes (EB) is a popular method for estimating fixed effects

e.g., teacher quality, neighborhood effects, hospital effects, ...

challenge: each unit only has a few observations =⇒ shrinkage

EB estimates are often used as inputs to other statistical procedures

kernel density estimator, e.g., distribution of teacher quality

regression, e.g., effect of teacher quality on labor market outcomes

Despite its prevalence, a formal theoretical analysis of such two-step
procedure seems to be lacking



This Paper

We develop a two-step method that uses EB estimates in a regression:
“Post Empirical Bayes Regression”

allows general EB estimators, including nonparametric EB

allows both linear and nonlinear regression

We show that the estimator is consistent and asymptotically normal

Our method provides a coherent framework to estimate

the fixed effects (the θ′s)

the distribution of fixed effects

the regression model of interest



Outline of Today’s Talk

EB in a nutshell

A simple case: normal-normal EB + simple regression

General setup: nonparametric EB + (possibly nonlinear) regression

Simulation



EB in a Nutshell



EB in a Nutshell: the Bayesian Part

Suppose that we want to estimate the mean of a normal distribution

X ∼ N(θ, σ2
x),

in which the variance σ2
x is known

Bayesian imposes a prior distribution on the parameter θ, say,

θ ∼ N(µθ, σ
2
θ),

in which both µθ and σ2
θ are known



EB in a Nutshell: the Bayesian Part (Cont’d)

Upon observing the realization X = x , Bayesian updates the prior

θ | X = x ∼ N(·, ·),

where the posterior mean is

σ2
x

σ2
x + σ2

θ

· µθ +
σ2
θ

σ2
x + σ2

θ

· x

shrinkage: the empirical evidence X = x are shrunk to the prior
mean µθ based on the signal-to-noise ratio

Under the squared loss, the posterior mean is the Bayes rule of µθ



From Bayes to Empirical Bayes

EB methods tries to “estimate” the prior distribution from data

Then, proceed as Bayesian with the estimated prior

Given teacher quality θi , the test score Xij follows normal distribution

Xij | θi ∼ N(θi , σ
2
x),

and, as in the Bayesian approach, we impose

θi ∼ N(µθ, σ
2
θ)

However, the parameters (µθ, σ
2
x , σ

2
θ) are not assumed to be known



Estimating the Prior

The model:

θi ∼ N(µθ, σ
2
θ),

Xij | θi ∼ N(θi , σ
2
x).

How can we estimate (µθ, σ
2
θ, σ

2
x)? Notice that

µθ = average of teacher quality = average test score across teachers

σ2
θ = variation of teacher qualities

σ2
x = within teacher variation variation of test score

which can be estimated by their empirical analogues



The EB Estimator

Given (µ̂θ, σ̂
2
θ, σ̂

2
x), the EB estimator of teacher i ’s quality θi is

θ̂EBi =
σ̂2
x/m

σ̂2
x/m + σ̂2

θ

· µ̂θ +
σ̂2
θ

σ̂2
x/m + σ̂2

θ

· x̄i ,

where x̄i is the class average test score and m is the class size

EB estimator is the Bayes rule except the prior is estimated

θ̂EBi is x̄i but shrunk to the grand mean µ̂θ

But its target and amount of shrinkage are decided by the data
(instead of a prior imposed by the researcher)



A simple case:
normal-normal EB + simple regression



EB Estimates as Regressors

Suppose, in addition to θi , we are also interested in the regression

yij = β0 + β1θ + ϵij

e.g., effect of teacher quality θi on students’ wage yij

Can we regress yij on θ̂EBi ? In particular,

θ̂EBi is a noisy measurement of θi

θ̂EBi is biased for θi



Consistency: Attenuation Bias Perspective

β̂EB is in fact consistent. Recall that if we regress yij on x̄i

Attenuation Bias = Signal-to-Noise Ratio

=
σ2
θ

σ2
θ + σ2

x/m

= Shrinkage factor

Shrinkage happens to cancel out the attenuation bias

First noted by Whittermore (1989)

Gao and Ghosh (2012) calculates its MSE, proving consistency



Consistency: IV Perspective

Recall that we can address measurement errors by instrumental variable

Explanation II: note that EB is an estimate of the posterior mean

θ̂EBi = ÎE[θi |x1, x2, ..., xJ ]

which can be thought of as fitted value of the first-stage fitted value of θi

So regressing on θ̂EBi effectively constitutes a 2SLS regresion



Extension to Non-linear Case

Replacing θi with θ̂EBi in simple regression gives consistent estimates

Does it generalize to other cases?

e.g., can I plug in θ̂EBi into a probit?

also, what if the EB estimates come from EB models other than the
normal-normal specification



General Setup



Model Setup: the EB Part

Model for the EB estimator: write xi = (xi1, xi2, ..., xim)

θi
iid∼ π,

xi |θi iid∼ µθ(xi ; γ),

π is the distribution of fixed effects

µθ(xi ; γ) is the likelihood with unknown nuisance parameter γ

Example: beta-binomial models for hospital effects

θi = hospital effect. θi ∼ B(α, β)

xij = successful recovery. xij |θi ∼ Ber(θi )

We can allow π to be non-parametrically specified (but µθ(; γ) has to be
known up to γ)



Model Setup: the Regression

Model of interest:

yij = g1(θi ;β) + g2(zij ; δ) + ϵij

IE[ϵij |θi ] = IE[ϵij |zij ] = 0,

where zij is an (observed) covariate and g1(·) and g2(·) are the
conditional mean functions. Examples of g1(·):

g1(θi , β) = β0 + θiβ1 + θ2i β2

g1(θi , β) = Φ(θiβ)

We will view g2(·) and δ as nuisance

Can we replace θi with θ̂EBi and run (possibly non-linear) regression?

answer: no



EB as Regressors: Non-linear Models (Cont’d)

Replacing θi with θ̂EBi generally leads to inconsistent estimators.
Fundamental reason:

IE[g1(θi , β)|xi ] ̸= g1(IE[θi |xi ], β),

i.e., posterior mean of the transformation is NOT the transformation of
the posterior mean

Whereas in the linear model, g1(θi , β) = θiβ, and

IE[g1(θi , β)|xi ] = IE[θiβ|xi ] = IE[θi |xi ]β = g1(IE[θi |xi ], β)



Proper Post-EB Regression

The correct way is to calculate the posterior mean of g1(·)

ĝEB
1,i = IE[g1(θi , β)|xi ]

instead of incorrectly plugging in the posterior mean of θi in g1(·)

g1(θ̂
EB
i , β)

To calculate the posterior mean, we need to first estimate the prior
π and the nuisance parameter γ in the likelihood µθ(xi ; γ)



Step 1: Estimate the Nuisance Parameters

Recall the model:

θi
iid∼ π, xi |θi iid∼ µθ(xi ; γ),

yij = g1(θi ;β) + g2(zij ; δ) + ϵij

Step 1: estimate the nuisance parameters (γ, δ)

For γ, use MLE or method of moments (e.g., within-class variation)

For δ, run a regression of yij on zij with fixed effect θ̃i = g1(θi ;β)



Step 2: Estimate the Prior

The EB model:

θi
iid∼ π,

xi |θi iid∼ µθ(xi ; γ)

Note that we only observe xij , whose likelihood function depend on π:

f (xi ) =
∫

µθ(xi ; γ)dπ(θ)

MLE: estimate π by finding the distribution π that maximizes the
probability of observing x1, x2, ..., xn



Step 2: Estimate the Prior (Cont’d)

Likelihood function of xi :

f (xi ) =
∫

µθ(xi ; γ)dπ(θ)

Step 2: estimate the prior π with nonparametric (mixture) MLE:

π̂ = argmax
π∈Π

∑
i

ln

[∫
µθ(xi ; γ̂)dπ(θ)

]
,

where Π is the set of all possible distributions

Computation can be challenging. Modern convex optimization techniques
are needed for larger problems (# obs. ≥ 106)



Step 3: Running the Regression

Step 3: given the estimated prior π̂ and likelihood µθ(x ; γ̂), calculate the
posterior mean

ĝEB
1 (θi , β) = ÎE[g1(θi , β)|xi ],

and run the regression

yij − g2(zij ; δ̂) = g1(θi ;β) + ϵij ,

i.e., solve

β̂ = argmin
β

1

nm

n∑
i=1

m∑
j=1

[
yij − g2(zij ; δ̂)− ĝEB

1 (θi ;β)
]2



Main Advantages of the Method

The main advantages of our method:

can handle non-classical measurement errors

requires no tuning parameter while being nonparametric for the π

has simple asymptotic distribution

and our method also deliver estimates of fixed effects and its distribution

Our analysis can be used to examine empirical practice. We show that
naive implementation of post-EB regression could be problematic

e.g., use EB estimates as regressors in a logit model



Main Assumption: Identification

Assumption (Identification of π)

Let F (x;π,γ) be the cumulative distribution function of x . For all γ ∈ Γ,
if F (x;π,γ) = F (x;π′,γ) for all x, then DKW (π, π′) = 0.

Assumption (Identification of β)

Let βo denote the true value of β. We have

E {E[g1(θi ;βo)− g1(θi ;β)|xi ]}2 = 0

if and only if β = βo .



Main Assumption: Nuisance Parameters

Assumption (Consistent Estimation)

We have consistent estimators γ̂, δ̂ for (γ, δ).

Assumption (Bounded Derivative for NPMLE)

Let Q(π,γ) = Ex[
∫
Θ
µθ(x;γ)dπ(θ)]. There exists a neighborhood Nγo of

γo such that supγ∈Nγo
|∂Q(π,γ)

∂γ | ≤ M for some M > 0.

Assumption (Bounded Derivative for NLS)

Let Qn(β; δ) denote the objective function of the regression. and βo be
the true value. We have (i) Qn(β; δ) is twice continuously differentiable
in a neighborhood N of βo ; (ii) there exists H(β) that is continuous at
βo and supβ∈N ||∇ββQn(β; δ)− H(β)|| < M for some M > 0; (iii)
H = H(β) is nonsingular.



Main Assumption: Regularity Conditions

Assumption (Contintuity)

For all γ ∈ Γ, the function f (x;π) is continuous in π ∈ Π.

Assumption (Moment Existence)

The expectations

E sup
β∈B

(g1(θi ;β))
2

E {yij − E[g1(θ;β)|xi ]}2

exist.



Theoretical Result

Under the aforementioned conditions and some other regularity
conditions, we can show that

The NPMLE π̂ converges to the true prior π

The estimated posterior mean ĝEB
1 (θi , β) converges to IE[g1(θi , β)|xi ]

Post-EB regression β̂ is consistent and asymptotically normal



Simulation



Proposed Method vs. Naive

Data generation process:

θi ∼ Beta(a, b)

10Xi | θi ∼ Bin(10, θi )

Yi = β0 + β1 ln θi + ei , ei ∼ N (0, η2)

We compare our proposed method to the naive method

naive method: regress y on ln θ̂EBi (biased for nonlinear models)

proposed method: regress y on ÎE[ln θi |Xi ]



Simulation Results: Naive vs. Proposed Method

Naive vs. proposed method
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Robustness against Nonparamtric Prior

Now we investigate our method’s robustness against different priors

Data generation process:

θi ∼ G

Xij | θi ∼ N (0, σ2)

Yij = β0 + β1θi + β2θ
2
i + αZij + eij , eij ∼ N (0, η2)

Estimate the prior G nonparametrically

Prior G = bimodal, skewed normal, uniform



Simulation Results: Nonparametric Prior
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Conclusion

We propose a two-step method that

allows nonparametric prior and nonlinear regression

provides a coherent way to estimate both fixed effects and regression

has consistency and asymptotic normality

Our results also serve as a benchmark to empirical practice regarding the
use of EB estimates



Empirical Application



Empirical Application: Tennesse STAR

We use the Tennessee STAR data to demonstrate our methods

panel data of students’ academic performance from kindergarten

gender, free lunch status, and teacher ID

We study the quality of kindergarten teachers

and their effects on 1st , 2nd and 3rd grade academic performance



Teacher Quality Distribution
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Long-Term Effects of Kindergarten Teachers
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Second Stage Linear Regression

y1 = 0.39Z y2 = 0.32Z y3 = 0.30Z



Long-Term Effects of Kindergarten Teachers
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