Can Apps Save the Planet? Tech adoption and Urban Mobility

2024 EEA Annual Conference 🕜 Erasmus University Rotterdam

Michael Guzzardi (LSE) Sefi Roth (LSE) Vincent Thorne (PSE) Hendrik Wolff (LSE) August 29rd, 2024

• Air pollution and congestion are critical challenges in cities around the world.

- Air pollution and congestion are critical challenges in cities around the world.
- Vehicle traffic emits large amounts of local air pollution

- Air pollution and congestion are critical challenges in cities around the world.
- Vehicle traffic emits large amounts of local air pollution
 - $\rightarrow~$ 40 to 80% of NO_x come from road transport, 25 to 45% of PM2.5 (US EPA)

- Air pollution and congestion are critical challenges in cities around the world.
- Vehicle traffic emits large amounts of local air pollution
 - $\rightarrow~$ 40 to 80% of NO_x come from road transport, 25 to 45% of PM2.5 (US EPA)
 - \rightarrow In the US, 100K–200K excess deaths annually are due to excess air pollution (Tessum et al., 2019; Lelieveld et al., 2019)

- Air pollution and congestion are critical challenges in cities around the world.
- Vehicle traffic emits large amounts of local air pollution
 - $\rightarrow~$ 40 to 80% of NO_x come from road transport, 25 to 45% of PM2.5 (US EPA)
 - $\rightarrow\,$ In the US, 100K–200K excess deaths annually are due to excess air pollution (Tessum et al., 2019; Lelieveld et al., 2019)
- $\bullet\,$ Transportation accounts for about 24% of CO_2 emissions, with a significant portion from urban traffic

- Air pollution and congestion are critical challenges in cities around the world.
- Vehicle traffic emits large amounts of local air pollution
 - $\rightarrow~$ 40 to 80% of NO_x come from road transport, 25 to 45% of PM2.5 (US EPA)
 - $\rightarrow\,$ In the US, 100K–200K excess deaths annually are due to excess air pollution (Tessum et al., 2019; Lelieveld et al., 2019)
- $\bullet\,$ Transportation accounts for about 24% of CO_2 emissions, with a significant portion from urban traffic
 - $\rightarrow\,$ In cities like New York, road transport can be responsible for up to 50% of $\rm CO_2$ emissions

- Cities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
- Nevertheless, parts of the transportation system remain polluting, create congestion, and are growing in scale: e.g., ride-hailing and taxis

- Cities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
- Nevertheless, parts of the transportation system remain polluting, create congestion, and are growing in scale: e.g., ride-hailing and taxis

- Cities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
- Nevertheless, parts of the transportation system remain polluting, create congestion, and are growing in scale: e.g., ride-hailing and taxis

The congestion costs of Uber and Lyft

Matthew Tarduno, 1 e b 🔍 😆

- Cities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
- Nevertheless, parts of the transportation system remain polluting, create congestion, and are growing in scale: e.g., ride-hailing and taxis

- Cities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
- Nevertheless, parts of the transportation system remain polluting, create congestion, and are growing in scale: e.g., ride-hailing and taxis

Bicycles as an alternative to motorised traffic

- Bicycles offer an environmentally-friendly alternative that has the potential to significantly reduce congestion, improve local air pollution, and lower the overall carbon footprint of urban transport.
- However, it may be costly to switch to cycling.

Bicycles as an alternative to motorised traffic

- Bicycles offer an environmentally-friendly alternative that has the potential to significantly reduce congestion, improve local air pollution, and lower the overall carbon footprint of urban transport.
- However, it may be costly to switch to cycling.
- Bike-sharing provides short-term bicycle access in cities.
 - ightarrow Over 2,000 programs running around the world
 - ightarrow 270 bike share programs in North America
 - ightarrow 102 million bike share trips in North America in 2023

Growth of bike-share

Shared Micromobility Ridership in the U.S. and Canada, 2010-2022

IN MILLIONS OF TRIPS

4/23

What made ride-hailing and bike-share possible?

What made ride-hailing and bike-share possible?

Transportation data and aggregators

12.56 & 0 8	1 \$ 0 at al 2 10
< 🐥	CT D Leave: Now
LSE Old Building Houghton St, London Imperial College B South Kennington Car	WC2A 2AE, UK usiness School mpue, Exhibition Rd, Sout
\$ 257 cal 62	(4) 92 cal 23 Dites
Scotters	😭 🚥 ~32
Cambare CB.70 *35min	
Suggested	
/ in 3, 6, 8 min from Temple	\$2.70 [#] 30 min
E9	1.75 * 36 min
en 15, 19, 21 min from Holbe	62.70 *33 min
- 13 360	64.45 # 33 min
🛱 1 / 68 / 91 · 🚭	64.45 42 min
Casak Septres Day	Dator Work Less
• (

Transportation data and aggregators

Transportation data and aggregators

1256 8 8 8 4 4 1 1 2 56 8 8 8 4 4 4 1 1 1 2 56 8 8 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ED 1256 & B	(1) = 1 = 1 = (1)	1256 8 0 8 -	780-1-48 D
LSE Old Building Houghton St. London WC2A 2AE, LK Imperial College Results, Exholed South Kernington Campus, Exhibition Rd, South	PADUINGTON MARVLESS	COVENT GAIL	PADDINGTON	COVENT EX DE
1 287 cal 62 (4-) 92 cal 23 With 6500 729 6 619-~32 Southers Cain Cain Cain Cain 6	an Ouiet Reg Gib All Cycles	GO O westminister day Fast 92 ceil 23 res	Exercise Researcher Copplacista	westminster
Cashare	4% of delty intake or 0.33 p	ackets of pork scratchings	Cabs	£13-15 ~29 m
* In 3, 6, 8 min from Temple	walk to 🕫		Pickup in	~2 ···
9 £135 [#] 36 # in 3, 13, 23 min from Aldwych / Bush House	ein 🔹 🚯 My Cycle	WZ t1mm	🔹 📰 UberX	£13-15 #2 mm
6 in 11, 19, 21 min from Holborn	nin 🔿 💽 + 52 mi MUU	HKS £ 2 min	O 🛄 UberXL	£18-19 #5 mm
Ca · 8 360	nin 🔿 🛃 13 Cycles		O 🚥 Exec	£20-22 #3 mm
B1/68/91 C445 42	O 🐻 9 31% 6397	65 f 2 min		£29-32 #6 mm
💿 🗷 🖷 🖷 🔿	 ○ 55 9.48% 6331 ○ ● 91% 1712 	61 ± 2 min 9 ± 1 min	🔿 📻 Bolt	~5 min
Classic Stop-free Bus+ Train+ Work Less	Mb ○ ● 84% 1786	3 f 2 m	C 🔽 Ride	£13-14 #6 mm

One-stop shop for transportation

Removing information frictions

- Consumers have lot of available information on how to get from A to B, but comparing modes of transport involves a lot of frictions.
 - ightarrow Apps are still walled gardens and make it harder to compare options and book them.

Removing information frictions

- Consumers have lot of available information on how to get from A to B, but comparing modes of transport involves a lot of frictions.
 - ightarrow Apps are still walled gardens and make it harder to compare options and book them.
- What happens when the friction is removed?
- Is removing the information friction good for the environment?

• We investigate the effect of integrating bike-share information on a ride-hailing app on bike-share ridership in New York City (NYC).

- We investigate the effect of integrating bike-share information on a ride-hailing app on bike-share ridership in New York City (NYC).
- On May 22, 2019, Lyft integrated bike-share availability to all its ride-hail users.

- We investigate the effect of integrating bike-share information on a ride-hailing app on bike-share ridership in New York City (NYC).
- On May 22, 2019, Lyft integrated bike-share availability to all its ride-hail users.
- Lyft simplified bike-share rental and increased the visibility of the bike-share offering.

- We investigate the effect of integrating bike-share information on a ride-hailing app on bike-share ridership in New York City (NYC).
- On May 22, 2019, Lyft integrated bike-share availability to all its ride-hail users.
- Lyft simplified bike-share rental and increased the visibility of the bike-share offering.

Research question

How did the integration of bike-share services into the Lyft app influence the adoption behaviour of users?

Are the effects heterogeneous across (1) types of riders, (2) space and (3) time?

- Difference-in-differences: NYC vs Philadelphia + pre vs post.
- But are all categories of riders equally likely to respond to the change?

- Difference-in-differences: NYC vs Philadelphia + pre vs post.
- But are all categories of riders equally likely to respond to the change? We don't think so:
 - ightarrow bike-share subscribers already familiar with bike-share ightarrow expected low impact;

- Difference-in-differences: NYC vs Philadelphia + pre vs post.
- But are all categories of riders equally likely to respond to the change? We don't think so:
 - ightarrow bike-share subscribers already familiar with bike-share ightarrow expected low impact;
 - ightarrow bike-share day users less likely familiar with bike-share ightarrow expected high impact
 - + very low cost to switch to bike-share on the same app

- Difference-in-differences: NYC vs Philadelphia + pre vs post.
- But are all categories of riders equally likely to respond to the change? We don't think so:
 - ightarrow bike-share subscribers already familiar with bike-share ightarrow expected low impact;
 - ightarrow bike-share day users less likely familiar with bike-share ightarrow expected high impact
 - + very low cost to switch to bike-share on the same app
- ightarrow Implement a triple-difference estimation using rider type as the third difference

Treatment

- For each city, we collect the universe of trips made on the bike-share system.
- For the years 2018 and 2019, we use 40 million bike-share trips in NYC and Philadelphia.
- For each trip, we have orgin-destination data, including:
 - ightarrow timestamps;
 - ightarrow bike-share stations ID (including geographic coordinates);
 - $\rightarrow\,$ whether the rider holds a subscription (i.e., at least one month).

Raw data trends: Subscribing riders

Raw data trends: Day riders

Event study

$$ln(Trips_{itm}) = \alpha + \sum_{\tau = -10}^{-2} \beta_{\tau} \times Treat_{i\tau} + \sum_{\tau = 0}^{7} \beta_{\tau} \times Treat_{i\tau} + \phi_i + \gamma_m + \varepsilon_{itm}$$

- Trips_{itm}: bike-share trips in city *i*, date *t* and year-month *m*,
- $Treat_{i\tau}$: treatment dummy for city *i* and relative month to treatment τ ,
- $\phi_i + \gamma_m$: city *i* and month *m* fixed effects,
- ε_{itm} : error term,
- estimated separately for subscribers and day riders.

Event study

group - Non-subscribers - Subscribers

$$\begin{split} ln(\mathit{Trips}_{itmr}) &= \beta_0 + \beta_1 \mathit{Treat}_i + \beta_2 \mathit{Post}_t + \beta_3 \mathit{RiderType}_r \\ &+ \beta_4 \mathit{Treat}_i \times \mathit{RiderType}_r + \beta_5 \mathit{RiderType}_r \times \mathit{Post}_t \\ &+ \beta_6 \mathit{Treat}_i \times \mathit{Post}_t + \beta_7 \mathit{Treat}_i \times \mathit{RiderType}_r \times \mathit{Post}_t \\ &+ \beta'_8 \mathit{X}_{it} + \gamma_m + \varepsilon_{itmr} \end{split}$$

- $Trips_{itmr}$: bike-share trips in city *i*, date *t* and month *m*, by rider type *r*,
- *Treat*_i: treatment dummy for city *i*,
- *Post_t*: post period dummy for day *t*,
- *RiderType*_r: rider type dummy for type r,
- X_{it}: control variables for city i at day t,
- γ_m : month m fixed effects,
- ε_{itmr} : error term.

	log(trips)			
	Diff-ii (1)	n-diff	Triple diff	
Treated \times Post-period	0.1317***			
Treated	3.3640***			
Post-period	-0.0209			
Treated \times Post-period \times Day rider	(0.01/9)			
Treated \times Day rider				
Post-period \times Day rider				
Day rider				
Weather controls				
Month FE (12)	Yes			
Observations	1,460			
Within Adjusted R ²	0.952 0.950			

		log(trips)	
	Diff-i	n-diff	Triple diff
	(1)	(2)	
Treated \times Post-period	0.1317***	0.1233**	
	(0.0000)	(0.0022)	
Treated	3.3640***	3.4577***	
	(0.0000)	(0.0060)	
Post-period	-0.0209	-0.0482	
	(0.0179)	(0.0300)	
Treated \times Post-period \times Day rider			
Treated Day sides			
Treated × Day rider			
Post-period × Day rider			
rost period x bay had			
Day rider			
,			
Weather controls		Yes	
Month FE (12)	Yes	Yes	
Observations	1,460	1,460	
Adjusted R ²	0.952	0.971	
Within Adjusted R ²	0.950	0.969	

	log(trips)				
	Diff-i	n-diff	Triple diff		
	(1)	(2)	(3)		
Treated \times Post-period	0.1317*** (0.0000)	0.1233** (0.0022)	0.0387** (0.0018)		
Treated	3.3640*** (0.0000)	3.4577*** (0.0060)	3.5424*** (0.0044)		
Post-period	-0.0209 (0.0179)	-0.0482	-0.1596** (0.0073)		
Treated \times Post-period \times Day rider	(())	0.7992***		
Treated \times Day rider			(0.0000) -0.2851***		
Post-period \times Day rider			(0.0000) -0.1047*** (0.0000)		
Day rider			-2.2606*** (0.0000)		
Weather controls		Yes	Yes		
Month FE (12)	Yes	Yes	Yes		
Observations	1,460	1,460	2,920		
Adjusted R ²	0.952	0.971	0.935		
Within Adjusted R ²	0.950	0.969	0.930		

Tripe-difference: interpretation

- $exp(0.799) 1 = 1.22 \rightarrow 122\%$ increase in day rider trips in NYC following the integration of bike-share on the Lyft app.
- Pre-treatment mean weekly trips by day riders $35K \rightarrow$ treatment lead to +42K weekly trips by day riders in the post-period.
- Robust to including only trips to/from pre-treatment stations.
- \rightarrow are these riders displacing Lyft trips?

		log(trips)	
	Non-working day (1)		
Treated \times Post-period \times Day riders	0.6360***		
	(0.0000)		
Treated \times Post-period	-0.0062**		
	(0.0004)		
Treated $ imes$ Day riders	-0.4047***		
	(0.0000)		
Post-period $ imes$ Day riders	0.0602***		
	(0.0000)		
Treated	3.6535***		
	(0.0170)		
Post-period	-0.1672**		
	(0.0096)		
Day riders	-1.5214***		
	(0.0000)		
Weather controls	Yes		
Month FE (12)	Yes		
Observations	1,808		
Adjusted R ²	0.815		
Within Adjusted R ²	0.797		

		log(1
	Non-working day (1)	Working day (2)
Treated \times Post-period \times Day riders	0.6360***	0.9707***
	(0.0000)	(0.0000)
Treated \times Post-period	-0.0062**	0.0526**
	(0.0004)	(0.0021)
Treated \times Day riders	-0.4047***	-0.2318***
	(0.0000)	(0.0000)
Post-period $ imes$ Day riders	0.0602***	-0.2086***
	(0.0000)	(0.0000)
Treated	3.6535***	3.4807***
	(0.0170)	(0.0024)
Post-period	-0.1672**	-0.1608*
	(0.0096)	(0.0212)
Day riders	-1.5214***	-2.8123***
	(0.0000)	(0.0000)
Weather controls	Yes	Yes
Month FE (12)	Yes	Yes
Observations	1,808	4,032
Adjusted R ²	0.815	0.915
Within Adjusted R ²	0.797	0.910

	log(trips)				
	Non-working day (1)	Working day (2)	Outside rush-hour (3)		
Treated \times Post-period \times Day riders	0.6360***	0.9707***	0.7899***		
	(0.0000)	(0.0000)	(0.0000)		
Treated \times Post-period	-0.0062**	0.0526**	0.0635**		
	(0.0004)	(0.0021)	(0.0026)		
Treated \times Day riders	-0.4047***	-0.2318***	-0.1710***		
	(0.0000)	(0.0000)	(0.0000)		
Post-period $ imes$ Day riders	0.0602***	-0.2086***	-0.1395***		
	(0.0000)	(0.0000)	(0.0000)		
Treated	3.6535***	3.4807***	3.5095***		
	(0.0170)	(0.0024)	(0.0016)		
Post-period	-0.1672**	-0.1608*	-0.1722**		
	(0.0096)	(0.0212)	(0.0028)		
Day riders	-1.5214***	-2.8123***	-2.4496***		
	(0.0000)	(0.0000)	(0.0000)		
Weather controls	Yes	Yes	Yes		
Month FE (12)	Yes	Yes	Yes		
Observations	1,808	4,032	2,016		
Adjusted R ²	0.815	0.915	0.952		
Within Adjusted R ²	0.797	0.910	0.949		

	log(trips)				
	Non-working day	Working day	Outside rush-hour	Rush-hour	
	(1)	(2)	(3)	(4)	
Treated \times Post-period \times Day riders	0.6360***	0.9707***	0.7899***	1.1515***	
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
Treated \times Post-period	-0.0062**	0.0526**	0.0635**	0.0416**	
	(0.0004)	(0.0021)	(0.0026)	(0.0015)	
Treated $ imes$ Day riders	-0.4047***	-0.2318***	-0.1710***	-0.2927***	
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
Post-period $ imes$ Day riders	0.0602***	-0.2086***	-0.1395***	-0.2778***	
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
Treated	3.6535***	3.4807***	3.5095***	3.4519***	
	(0.0170)	(0.0024)	(0.0016)	(0.0063)	
Post-period	-0.1672**	-0.1608*	-0.1722**	-0.1495	
	(0.0096)	(0.0212)	(0.0028)	(0.0397)	
Day riders	-1.5214***	-2.8123***	-2.4496***	-3.1749***	
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	
Weather controls	Voc	Vos	Voc	Voc	
Month EE (12)	Voc	Voc	Vos	Voc	
MOIITI FE (12)	165	Tes	165	165	
Observations	1,808	4,032	2,016	2,016	
Adjusted R ²	0.815	0.915	0.952	0.955	
Within Adjusted R ²	0.797	0.910	0.949	0.952	

Heterogeneity: space

Substitution: event study

$$ln(Trips_{itm}) = \alpha + \sum_{\tau=-4}^{-2} \beta_{\tau} \times Treat_{i\tau} + \sum_{\tau=0}^{7} \beta_{\tau} \times Treat_{i\tau} + \phi_i + \gamma_m + \varepsilon_{itm}$$

group 🔹 sample: lyft 📥 sample: uber 📼 sample: yellow

Conclusion

- We study the impact of bike-share information aggregation on a ride-hailing app on bike-share ridership.
- We find that
 - ightarrow the integration increased day ridership by 122%,
 - $\rightarrow\,$ the increase was concentrated in working days and during rush-hour, consistent with congestion patterns
 - ightarrow there is spatial heterogeneity in the impact of integration,
- There is suggestive evidence that the integration reduced ride-hailing traffic
- WIP: environmental damages, value of time, firm's profitability

Thank you

vincent.thorne@psemail.eu

Raw data illustration

city	start_time		end_time		start_lon	start_lat	end_lon	end_lat	subs
nyc	2018-01-16	20:21:12	2018-01-16	20:36:03	-73.98	40.74	-73.96	40.78	1
nyc	2018-05-24	06:59:50	2018-05-24	07:09:09	-74.01	40.71	-74.01	40.72	1
nyc	2018-07-30	17:57:49	2018-07-30	18:29:52	-73.96	40.72	-73.98	40.73	0
phil	2018-11-01	19:07:00	2018-11-01	19:13:00	-75.18	39.95	-75.18	39.95	1
nyc	2018-12-29	07:15:15	2018-12-29	07:22:48	-73.94	40.80	-73.96	40.81	1
nyc	2019-02-08	16:40:34	2019-02-08	16:44:39	-73.99	40.76	-73.99	40.76	1
nyc	2019-02-28	19:20:31	2019-02-28	19:30:19	-74.00	40.71	-74.01	40.70	1
nyc	2019-10-24	17:19:27	2019-10-24	17:58:56	-73.99	40.74	-73.98	40.68	1

Daily panel illustration

city	date	month	subs	trips	sts_n_month	wind [m/s]	precip [mm]
nyc	2018-01-01	1	0	259	768	7.9	Θ
nyc	2018-01-01	1	1	5,241	768	7.9	Θ
phil	2018-01-01	1	Θ	30	123	4.7	Θ
phil	2018-01-01	1	1	168	123	4.7	Θ
nyc	2018-01-02	1	0	318	768	7.0	Θ
nyc	2018-01-02	1	1	18,500	768	7.0	Θ
phil	2018-01-02	1	Θ	9	123	5.9	Θ
phil	2018-01-02	1	1	640	123	5.9	Θ

Descriptive statistics: daily

Variable	City	Subs	Mean	Median	SD	Min	Max
Trips (per day)	NYC	0	6,581.64	5,251.5	5,792.55	17.0	39,899.0
		1	45,606.52	45,694.5	17,480.14	1,905.0	82,822.0
		All	52,188.16	53,735.0	20,901.25	1,922.0	98,755.0
	Phil	0	232.97	159.5	230.59	2.0	1,441.0
		1	1,538.94	1,484.0	673.97	108.0	2,917.0
		All	1,771.91	1,829.5	767.01	113.0	3,348.0
Wind [m/s]	NYC	-	5.17	4.7	1.96	1.3	13.4
	Phil	-	4.05	3.8	1.68	0.8	11.9
Precip [mm]	NYC	-	3.81	0.0	8.40	0.0	54.9
	Phil	-	3.79	0.0	9.48	0.0	115.3
Avg temp [°C]	NYC	-	12.56	12.3	9.38	-12.8	31.9
	Phil	-	13.78	14.6	9.84	-11.9	32.4

Descriptive statistics: weekly

Variable	City	Subs	Mean	Median	SD	Min	Max
Trips (per week)	NYC	0	45,758.06	47,557.0	30,994.61	1,163.0	119,050.0
		1	317,073.93	350,598.0	98,050.34	38,457.0	504,452.0
		All	362,831.99	403,790.0	126,574.74	43,648.0	620,895.0
	Phil	0	1,619.70	1,684.0	1,044.08	88.0	4,079.0
		1	10,699.31	11,599.0	3,691.58	1,304.0	16,405.0
		All	12,319.02	13,577.0	4,588.68	1,413.0	19,866.0
Wind [m/s]	NYC	-	5.17	4.7	1.96	1.3	13.4
	Phil	-	4.05	3.8	1.68	0.8	11.9
Precip [mm]	NYC	-	3.81	0.0	8.40	0.0	54.9
	Phil	-	3.79	0.0	9.48	0.0	115.3
Avg temp [°C]	NYC	-	12.56	12.3	9.38	-12.8	31.9
	Phil	-	13.78	14.6	9.84	-11.9	32.4

Heterogeneity: space

Bike-share usage post-treatment: trip duration

Bike-share usage post-treatment: trip duration

