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Cities and air pollution

e Air pollution and congestion are critical challenges in cities around the world.
e Vehicle traffic emits large amounts of [ocal air pollution
— 4010 80% of NO, come from road transport, 25 to 45% of PM2.5 (US EPA)
— In the US, 100K—200K excess deaths annually are due to excess air pollution (Tessum et
al,, 2019; Lelieveld et al,, 2019)
e Transportation accounts for about 24% of CO, emissions, with a significant portion
from urban traffic

— In cities like New York, road transport can be responsible for up to 50% of CO,
emissions
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Urban transportation and the environment

e (ities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
e Nevertheless, parts of the transportation system remain polluting, create
congestion, and are growing in scale: e.g,, ride-hailing and taxis
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e (ities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
e Nevertheless, parts of the transportation system remain polluting, create
congestion, and are growing in scale: e.g,, ride-hailing and taxis

Journal of Urban Economics .
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Bicycles as an alternative to motorised traffic

e Bicycles offer an environmentally-friendly alternative that has the potential to
significantly reduce congestion, improve local air pollution, and lower the overall
carbon footprint of urban transport.

e However, it may be costly to switch to cycling.
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Bicycles as an alternative to motorised traffic

e Bicycles offer an environmentally-friendly alternative that has the potential to
significantly reduce congestion, improve local air pollution, and lower the overall
carbon footprint of urban transport.

e However, it may be costly to switch to cycling.

e Bike-sharing provides short-term bicycle access in cities.

— QOver 2,000 programs running around the world
— 270 bike share programs in North America
— 102 million bike share trips in North America in 2023
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Growth of bike-share

Shared Micromobility Ridership in
the U.S. and Canada, 2010-2022
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What made ride-hailing and bike-share possible?
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Transportation data and aggregators
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One-stop shop for transportation

Ign Get a ride DRIVER RIDER BUSINESS LOG IN

Ride. Bike. Scoot. Go bananas. «

We've got options to get you where you're going. Choose a ride” that sults your mood and budget.

Wait & Save Lyft Bikes & Scooters Priority Pickup
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-0 0 — | ¢ -0 O
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Removing information frictions

e Consumers have lot of available information on how to get from A to B, but
comparing modes of transport involves a lot of frictions.

— Apps are still walled gardens and make it harder to compare options and book them.
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Removing information frictions

e Consumers have lot of available information on how to get from A to B, but
comparing modes of transport involves a lot of frictions.

— Apps are still walled gardens and make it harder to compare options and book them.
e What happens when the friction is removed?

* |s removing the information friction good for the environment?
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This paper

e We investigate the effect of integrating bike-share information on a ride-hailing app
on bike-share ridership in New York City (NYC).
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This paper

e We investigate the effect of integrating bike-share information on a ride-hailing app
on bike-share ridership in New York City (NYC).

e On May 22, 2019, Lyft integrated bike-share availability to all its ride-hail users.

e Lyft simplified bike-share rental and increased the visibility of the bike-share
offering.

Research question

How did the integration of bike-share services into the Lyft app influence the
adoption behaviour of users?

Are the effects heterogeneous across (1) types of riders, (2) space and (3) time?
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How do we answer these questions?

e Difference-in-differences: NYC vs Philadelphia + pre vs post.

e But are all categories of riders equally likely to respond to the change?
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How do we answer these questions?

e Difference-in-differences: NYC vs Philadelphia + pre vs post.
e But are all categories of riders equally likely to respond to the change?
We don’t think so:

— bike-share subscribers already familiar with bike-share — expected low impact;
— bike-share day users less likely familiar with bike-share — expected high impact
+ very low cost to switch to bike-share on the same app

— Implement a triple-difference estimation using rider type as the third difference
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Data

e For each city, we collect the universe of trips made on the bike-share system.

e For the years 2018 and 2019, we use 40 million bike-share trips in NYC and
Philadelphia.

e For each trip, we have orgin-destination data, including:
— timestamps;
— bike-share stations ID (including geographic coordinates);
— whether the rider holds a subscription (i.e., at least one month).
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Raw data trends: Subscribing riders
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Raw data trends: Day riders
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Event study

-2 7
In(Trips;,,) = a + Z B; x Treat;; + Z B X Treat;; + ¢; + Ym + €itm
7=—10 =0

Trips j;,,,: bike-share trips in city 4, date t and year-month m,

Treat ;. treatment dummy for city 4 and relative month to treatment ,

® ¢; + vm: City e and month m fixed effects,

Eitm. €ITOr term,

estimated separately for subscribers and day riders.
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Event study

In(Trips;p,) = a + 2;3710 Br x Treat;; + ZZ:O Br x Treatir + ¢; + Ym + €itm
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Tripe-difference

In(Trips;i,) = Bo + B1 Treat; + PaPost; + B3 RiderType,
+ B4 Treat; x RiderType, + BsRiderType, x Post;
+ B¢ Treat; x Post; + B7 Treat; x RiderType, x Post;

+ ﬁéth + Ym + Eitmr

® Trips,.... bike-share trips in city 4, date ¢ and month m, by rider type r,
® Treat;: treatment dummy for city 1,

e Post: post period dummy for day ¢,

® RiderType,: rider type dummy for type r,

e X, control variables for city 7 at day ¢,

® ~,,: month m fixed effects,

® Citmel €ITOT term.
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Tripe-difference

log(trips)
Diff-in-diff Triple diff
()

Treated x Post-period 0.1317%+*
(0.0000)
Treated 3.3640%**
(0.0000)
Post-period -0.0209
(0.0179)
Treated x Post-period x Day rider

Treated x Day rider
Post-period x Day rider

Day rider

Weather controls

Month FE (12) Yes
Observations 1,460
Adjusted R? 0.952
Within Adjusted R? 0.950
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log(trips)
Diff-in-diff Triple diff
() ()
Treated x Post-period 01317***  01233**
(0.0000) (0.0022)
Treated 3.3640™"  3.4577°
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Tripe-difference

log(trips)
Diff-in-diff Triple diff
() (2) (3)
Treated x Post-period 01317***  01233**  0.0387**
(0.0000) (0.0022) (0.0018)
Treated 3.3640™" 345777 354247
(0.0000) (0.0060)  (0.0044)
Post-period -0.0209  -0.0482  -0.1596**
(0.0179)  (0.0300)  (0.0073)
Treated x Post-period x Day rider 0.7992***
(0.0000)
Treated x Day rider -0.2851%**
(0.0000)
Post-period x Day rider -0.1047%*
(0.0000)
Day rider -2.2606***
(0.0000)
Weather controls Yes Yes
Month FE (12) Yes Yes Yes
Observations 1,460 1,460 2,920
Adjusted R? 0.952 0.971 0.935
Within Adjusted R? 0.950 0.969 0.930

17/ 23



Tripe-difference: interpretation

e exp(0.799) — 1 = 1.22 — 122% increase in day rider trips in NYC following the
integration of bike-share on the Lyft app.

e Pre-treatment mean weekly trips by day riders 35K — treatment lead to +42K weekly
trips by day riders in the post-period.

e Robust to including only trips to/from pre-treatment stations.

— are these riders displacing Lyft trips?
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Heterogeneity: time of travel

log(trips)
Non-working day
©)
Treated x Post-period x Day riders 0.6360***
(0.0000)
Treated x Post-period -0.0062**
(0.0004)
Treated x Day riders -0.4047**
(0.0000)
Post-period x Day riders 0.0602***
(0.0000)
Treated 3.6535"*
(0.0170)
Post-period -01672**
(0.0096)
Day riders -1.5214%%*
(0.0000)
Weather controls Yes
Month FE (12) Yes
Observations 1,808
Adjusted R? 0.815
Within Adjusted R? 0797
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Heterogeneity: time of travel

log(trips)
Non-working day Working day
©) ()
Treated x Post-period x Day riders 0.6360*** 0.9707***
(0.0000) (0.0000)
Treated x Post-period -0.0062** 0.0526**
(0.0004) (0.0021)
Treated x Day riders -0.4047*** -0.2318™**
(0.0000) (0.0000)
Post-period x Day riders 0.0602*** -0.2086***
(0.0000) (0.0000)
Treated 3.6535*** 3.4807"**
(0.0170) (0.0024)
Post-period -01672** -01608*
(0.0096) (0.0212)
Day riders -1.5214%%* -2.8123"**
(0.0000) (0.0000)
Weather controls Yes Yes
Month FE (12) Yes Yes
Observations 1,808 4,032
Adjusted R? 0.815 0915
Within Adjusted R? 0797 0.910
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Heterogeneity: time of travel

()

log(trips)
Non-working day Working day Outside rush-hour

()

(3)

Treated x Post-period x Day riders 0.6360*** 0.9707*** 0.7899™**
(0.0000) (0.0000) (0.0000)
Treated x Post-period -0.0062** 0.0526** 0.0635™*
(0.0004) (0.0021) (0.0026)
Treated x Day riders -0.4047*** -0.2318*** -0.1710***
(0.0000) (0.0000) (0.0000)
Post-period x Day riders 0.0602*** -0.2086*** -01395***
(0.0000) (0.0000) (0.0000)
Treated 3.6535™* 3.4807*** 3.5095"*
(0.0170) (0.0024) (0.0016)
Post-period -01672** -01608* -01722**
(0.0096) (0.0212) (0.0028)
Day riders -1.5214%%* -2.8123"** -2.4496%**
(0.0000) (0.0000) (0.0000)
Weather controls Yes Yes Yes
Month FE (12) Yes Yes Yes
Observations 1,808 4,032 2,016
Adjusted R? 0.815 0.915 0.952
Within Adjusted R? 0797 0.910 0.949
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Heterogeneity: time of travel

log(trips)
Non-working day Working day Outside rush-hour Rush-hour
() () (3) (4)
Treated x Post-period x Day riders 0.6360*** 0.9707*** 0.7899*** 11515***
(0.0000) (0.0000) (0.0000) (0.0000)
Treated x Post-period -0.0062** 0.0526** 0.0635™* 0.0416™*
(0.0004) (0.0021) (0.0026) (0.0015)
Treated x Day riders -0.4047*** -0.2318*** -0.1710*** -0.2927***
(0.0000) (0.0000) (0.0000) (0.0000)
Post-period x Day riders 0.0602*** -0.2086*** -0.1395*** -0.2778***
(0.0000) (0.0000) (0.0000) (0.0000)
Treated 3.6535%* 3.4807*** 3.5095** 3.4519%*
(0.0170) (0.0024) (0.0016) (0.0063)
Post-period -01672** -01608* -01722** -0.1495
(0.0096) (0.0212) (0.0028) (0.0397)
Day riders -1.5214%** -2.8123*** “2.4496%** -32749%**
(0.0000) (0.0000) (0.0000) (0.0000)
Weather controls Yes Yes Yes Yes
Month FE (12) Yes Yes Yes Yes
Observations 1,808 4,032 2,016 2,016
Adjusted R? 0.815 0.915 0.952 0.955
Within Adjusted R? 0797 0.910 0.949 0.952
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Heterogeneity: space

» Whole city

Estimate
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Substitution: event study

In(Trips;p,,) = a + 2;374 Br x Treat;; + ZZ:O Br X Treatir + ¢; + Ym + Eitm
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Conclusion

We study the impact of bike-share information aggregation on a ride-hailing app on
bike-share ridership.

We find that

— the integration increased day ridership by 122%,

— the increase was concentrated in working days and during rush-hour, consistent with
congestion patterns

— there is spatial heterogeneity in the impact of integration,

There is suggestive evidence that the integration reduced ride-hailing traffic

WIP: environmental damages, value of time, firm’s profitability
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Thank you

vincent.thorne@psemail.eu
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Raw data illustration

city start_time end_time start_lon start_lat end_lon end_lat subs
nyc 2018-01-16 20:21:12 2018-01-16 20:36:03 -73.98 40.74  -73.96 40.78 1
nyc 2018-05-24 06:59:50 2018-05-24 07:09:09 -74.01 40.71  -74.01 40.72 1
nyc 2018-07-30 17:57:49 2018-07-30 18:29:52 -73.96 40.72  -73.98 40.73 0
phil 2018-11-01 19:07:00 2018-11-01 19:13:00 -75.18 39.95 -75.18 39.95 1
nyc 2018-12-29 07:15:15 2018-12-29 07:22:48 -73.94 40.80 -73.96 40.81 1
nyc 2019-02-08 16:40:34 2019-02-08 16:44:39 -73.99 40.76  -73.99 40.76 1
nyc 2019-02-28 19:20:31 2019-02-28 19:30:19 -74.00 40.71  -74.01 40.70 1
nyc 2019-10-24 17:19:27 2019-10-24 17:58:56 -73.99 40.74  -73.98 40.68 1



Daily panel illustration

city date month subs trips sts_n_month wind [m/s] precip [mm]
nyc 2018-01-01 1 0 259 768 7.9 0
nyc 2018-01-01 1 1 5,241 768 7.9 0
phil 2018-01-01 1 0 30 123 4.7 0
phil 2018-01-01 1 1 168 123 4.7 0
nyc 2018-01-02 1 0 318 768 7.0 0
nyc 2018-01-02 1 1 18,500 768 7.0 0
phil 2018-01-02 1 0 9 123 5.9 0
phil 2018-01-02 1 1 640 123 5.9 0



Descriptive statistics: daily

Variable City Subs Mean Median SD Min Max
Trips (per day) NYC o 6,581.64 5,251.5 5,792.55 17.0  39,899.0
1 45,606.52 45,6945 1748014 19050 82,822.0

All 5218816 537350 20,90125 1,922.0 98,755.0

Phil o 232.97 159.5 230.59 2.0 1,441.0

1 1,538.94  1,484.0 673.97 108.0 2,917.0

All 177191 1,8295 76701 130  3,348.0

Wind [m/s] NYC - 517 47 196 1.3 13.4
Phil - 4.05 3.8 1.68 0.8 1.9

Precip [mm] NYC - 3.81 0.0 8.40 0.0 54.9
Phil - 379 0.0 9.48 0.0 115.3

Avgtemp [°C] NYC - 12.56 12.3 9.38 -12.8 31.9
Phil - 13.78 14.6 9.84 -11.9 32.4




Descriptive statistics: weekly

Variable City Subs Mean Median SD Min Max
Trips (per week) NYC o 45758.06 475570 3099461  1163.0 119,050.0
1 317,073.93 350,598.0 98,050.34 38,457.0 504,452.0

All 362,831.99 403,790.0 126,57474 43,648.0 620,895.0

Phil © 1,619.70 1,684.0  1,044.08 88.0 £4,079.0

1 10,699.31 11,599.0  3,691.58  1,304.0  16,405.0

All 12,319.02 13,577.0  4,588.68 1,413.0  19,866.0

Wind [m/s] NYC - 517 47 196 13 13.4
Phil - £4.05 3.8 1.68 0.8 1.9

Precip [mm] NYC - 3.81 0.0 8.40 0.0 54.9
Phil - 379 0.0 9.48 0.0 115.3

Avg temp [°C] NYC - 12.56 12.3 9.38 -12.8 319
Phil - 1378 14.6 9.84 -11.9 32.4




Heterogeneity: space
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Bike-share usage post-treatment: trip duration
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Bike-share usage post-treatment: trip duration
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