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Cities and air pollution

• Air pollution and congestion are critical challenges in cities around the world.

• Vehicle tra�c emits large amounts of local air pollution

! �� to ��� of NOx come from road transport, �� to ��� of PM�.� (US EPA)
! In the US, ���K–���K excess deaths annually are due to excess air pollution (Tessum et

al., ����; Lelieveld et al., ����)

• Transportation accounts for about ��� of CO� emissions, with a significant portion
from urban tra�c

! In cities like New York, road transport can be responsible for up to ��� of CO�
emissions
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Urban transportation and the environment

• Cities are tackling air pollution with several policies (e.g., LEZs, congestion charges).
• Nevertheless, parts of the transportation system remain polluting, create
congestion, and are growing in scale: e.g., ride-hailing and taxis
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Bicycles as an alternative to motorised tra�c

• Bicycles o�er an environmentally-friendly alternative that has the potential to
significantly reduce congestion, improve local air pollution, and lower the overall
carbon footprint of urban transport.

• However, it may be costly to switch to cycling.

• Bike-sharing provides short-term bicycle access in cities.
! Over �,��� programs running around the world
! ��� bike share programs in North America
! ��� million bike share trips in North America in ����
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Growth of bike-share
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What made ride-hailing and bike-share possible?
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Transportation data and aggregators

6/23



Transportation data and aggregators

6/23



Transportation data and aggregators

6/23



One-stop shop for transportation
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Removing information frictions

• Consumers have lot of available information on how to get from A to B, but
comparing modes of transport involves a lot of frictions.
! Apps are still walled gardens and make it harder to compare options and book them.

• What happens when the friction is removed?

• Is removing the information friction good for the environment?
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This paper

• We investigate the e�ect of integrating bike-share information on a ride-hailing app
on bike-share ridership in New York City (NYC).

• On May ��, ����, Lyft integrated bike-share availability to all its ride-hail users.
• Lyft simplified bike-share rental and increased the visibility of the bike-share
o�ering.

Research question

How did the integration of bike-share services into the Lyft app influence the
adoption behaviour of users?
Are the e�ects heterogeneous across (�) types of riders, (�) space and (�) time?
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How do we answer these questions?

• Di�erence-in-di�erences: NYC vs Philadelphia � pre vs post.
• But are all categories of riders equally likely to respond to the change?

We don’t think so:

! bike-share subscribers already familiar with bike-share! expected low impact;
! bike-share day users less likely familiar with bike-share! expected high impact

� very low cost to switch to bike-share on the same app

! Implement a triple-di�erence estimation using rider type as the third di�erence
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Treatment
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Data

• For each city, we collect the universe of trips made on the bike-share system.

• For the years ���� and ����, we use �� million bike-share trips in NYC and
Philadelphia.

• For each trip, we have orgin-destination data, including:
! timestamps;
! bike-share stations ID (including geographic coordinates);
! whether the rider holds a subscription (i.e., at least one month).
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Raw data trends: Subscribing riders
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Raw data trends: Day riders
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Event study

ln(Trips itm) = ↵+
�2X

⌧=�10

�⌧ ⇥ Treat i⌧ +
7X

⌧=0

�⌧ ⇥ Treat i⌧ + �i + �m + "itm

• Tripsjtm: bike-share trips in city i, date t and year-month m,

• Treat i⌧ : treatment dummy for city i and relative month to treatment ⌧ ,

• �i + �m: city i and month m fixed e�ects,

• "itm: error term,

• estimated separately for subscribers and day riders.
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Tripe-di�erence

ln(Trips itmr) = �0 + �1Treat i + �2Post t + �3RiderTyper

+ �4Treat i ⇥ RiderTyper + �5RiderTyper ⇥ Post t

+ �6Treat i ⇥ Post t + �7Treat i ⇥ RiderTyper ⇥ Post t

+ �0
8Xit + �m + "itmr

• Tripsitmr : bike-share trips in city i, date t and month m, by rider type r,
• Treat i: treatment dummy for city i,
• Post t: post period dummy for day t,
• RiderTyper : rider type dummy for type r,
• Xit: control variables for city i at day t,
• �m: month m fixed e�ects,
• "itmr : error term.
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Tripe-di�erence
log(trips)
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Tripe-di�erence: interpretation

• exp(0.799)� 1 = 1.22 ! ���� increase in day rider trips in NYC following the
integration of bike-share on the Lyft app.

• Pre-treatment mean weekly trips by day riders ��K! treatment lead to ���K weekly
trips by day riders in the post-period.

• Robust to including only trips to/from pre-treatment stations.

! are these riders displacing Lyft trips?
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Heterogeneity: time of travel
log(trips)
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�,���

Adjusted R2 �.��� �.��� �.���

�.���

Within Adjusted R2 �.��� �.��� �.���

�.���
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Heterogeneity: time of travel
log(trips)

Non-working day Working day Outside rush-hour Rush-hour
(�) (�) (�) (�)

Treated ⇥ Post-period ⇥ Day riders �.����⇤⇤⇤ �.����⇤⇤⇤ �.����⇤⇤⇤ �.����⇤⇤⇤
(�.����) (�.����) (�.����) (�.����)

Treated ⇥ Post-period -�.����⇤⇤ �.����⇤⇤ �.����⇤⇤ �.����⇤⇤
(�.����) (�.����) (�.����) (�.����)

Treated ⇥ Day riders -�.����⇤⇤⇤ -�.����⇤⇤⇤ -�.����⇤⇤⇤ -�.����⇤⇤⇤
(�.����) (�.����) (�.����) (�.����)

Post-period ⇥ Day riders �.����⇤⇤⇤ -�.����⇤⇤⇤ -�.����⇤⇤⇤ -�.����⇤⇤⇤
(�.����) (�.����) (�.����) (�.����)

Treated �.����⇤⇤⇤ �.����⇤⇤⇤ �.����⇤⇤⇤ �.����⇤⇤⇤
(�.����) (�.����) (�.����) (�.����)

Post-period -�.����⇤⇤ -�.����⇤ -�.����⇤⇤ -�.����
(�.����) (�.����) (�.����) (�.����)

Day riders -�.����⇤⇤⇤ -�.����⇤⇤⇤ -�.����⇤⇤⇤ -�.����⇤⇤⇤
(�.����) (�.����) (�.����) (�.����)

Weather controls Yes Yes Yes Yes
Month FE (��) Yes Yes Yes Yes

Observations �,��� �,��� �,��� �,���
Adjusted R2 �.��� �.��� �.��� �.���
Within Adjusted R2 �.��� �.��� �.��� �.���
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Heterogeneity: space
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Substitution: event study
ln(Trips itm) = ↵+

P�2
⌧=�4 �⌧ ⇥ Treat i⌧ +
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Conclusion

• We study the impact of bike-share information aggregation on a ride-hailing app on
bike-share ridership.

• We find that
! the integration increased day ridership by ����,
! the increase was concentrated in working days and during rush-hour, consistent with

congestion patterns
! there is spatial heterogeneity in the impact of integration,

• There is suggestive evidence that the integration reduced ride-hailing tra�c

• WIP: environmental damages, value of time, firm’s profitability
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Thank you

vincent.thorne@psemail.eu
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Raw data illustration

city start_time end_time start_lon start_lat end_lon end_lat subs

nyc 2018-01-16 20:21:12 2018-01-16 20:36:03 -73.98 40.74 -73.96 40.78 1
nyc 2018-05-24 06:59:50 2018-05-24 07:09:09 -74.01 40.71 -74.01 40.72 1
nyc 2018-07-30 17:57:49 2018-07-30 18:29:52 -73.96 40.72 -73.98 40.73 0
phil 2018-11-01 19:07:00 2018-11-01 19:13:00 -75.18 39.95 -75.18 39.95 1

nyc 2018-12-29 07:15:15 2018-12-29 07:22:48 -73.94 40.80 -73.96 40.81 1
nyc 2019-02-08 16:40:34 2019-02-08 16:44:39 -73.99 40.76 -73.99 40.76 1
nyc 2019-02-28 19:20:31 2019-02-28 19:30:19 -74.00 40.71 -74.01 40.70 1
nyc 2019-10-24 17:19:27 2019-10-24 17:58:56 -73.99 40.74 -73.98 40.68 1
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Daily panel illustration

city date month subs trips sts_n_month wind [m/s] precip [mm]

nyc 2018-01-01 1 0 259 768 7.9 0
nyc 2018-01-01 1 1 5,241 768 7.9 0
phil 2018-01-01 1 0 30 123 4.7 0
phil 2018-01-01 1 1 168 123 4.7 0

nyc 2018-01-02 1 0 318 768 7.0 0
nyc 2018-01-02 1 1 18,500 768 7.0 0
phil 2018-01-02 1 0 9 123 5.9 0
phil 2018-01-02 1 1 640 123 5.9 0
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Descriptive statistics: daily

Variable City Subs Mean Median SD Min Max

Trips (per day) NYC � �,���.�� �,���.� �,���.�� ��.� ��,���.�
� ��,���.�� ��,���.� ��,���.�� �,���.� ��,���.�
All ��,���.�� ��,���.� ��,���.�� �,���.� ��,���.�

Phil � ���.�� ���.� ���.�� �.� �,���.�
� �,���.�� �,���.� ���.�� ���.� �,���.�
All �,���.�� �,���.� ���.�� ���.� �,���.�

Wind [m/s] NYC – �.�� �.� �.�� �.� ��.�
Phil – �.�� �.� �.�� �.� ��.�

Precip [mm] NYC – �.�� �.� �.�� �.� ��.�
Phil – �.�� �.� �.�� �.� ���.�

Avg temp [�C] NYC – ��.�� ��.� �.�� -��.� ��.�
Phil – ��.�� ��.� �.�� -��.� ��.�
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Descriptive statistics: weekly

Variable City Subs Mean Median SD Min Max

Trips (per week) NYC � ��,���.�� ��,���.� ��,���.�� �,���.� ���,���.�
� ���,���.�� ���,���.� ��,���.�� ��,���.� ���,���.�
All ���,���.�� ���,���.� ���,���.�� ��,���.� ���,���.�

Phil � �,���.�� �,���.� �,���.�� ��.� �,���.�
� ��,���.�� ��,���.� �,���.�� �,���.� ��,���.�
All ��,���.�� ��,���.� �,���.�� �,���.� ��,���.�

Wind [m/s] NYC – �.�� �.� �.�� �.� ��.�
Phil – �.�� �.� �.�� �.� ��.�

Precip [mm] NYC – �.�� �.� �.�� �.� ��.�
Phil – �.�� �.� �.�� �.� ���.�

Avg temp [�C] NYC – ��.�� ��.� �.�� -��.� ��.�
Phil – ��.�� ��.� �.�� -��.� ��.�
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Heterogeneity: space
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Bike-share usage post-treatment: trip duration
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Bike-share usage post-treatment: trip duration
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