What determines unemployment: low productivity or high opportunity cost of employment?

Saman Darougheh^a

^aDanmarks Nationalbank (but not their views/opinions)

Why are "the unemployed" unemployed?

- High opportunity cost of employment
 - ▶ High consumption when unemployed (benefits, support from partner, parents, ...)
 - High utility differential (high joy from leisure, high disutility from working)
 - "they don't care enough to search"
- Low average productivity
 - "difficult to find productive job"

Why are "the unemployed" unemployed?

- High opportunity cost of employment
 - ▶ High consumption when unemployed (benefits, support from partner, parents, ...)
 - High utility differential (high joy from leisure, high disutility from working)
 - "they don't care enough to search"
- Low average productivity
 - "difficult to find productive job"

Implications for optimal social policy?

- Lower UI to make unemployment more painful
- Keep UI high, instead consider retraining

Why are "the unemployed" unemployed?

- High opportunity cost of employment
 - ▶ High consumption when unemployed (benefits, support from partner, parents, ...)
 - High utility differential (high joy from leisure, high disutility from working)
 - "they don't care enough to search"
- Low average productivity
 - "difficult to find productive job"

Implications for optimal social policy?

- Lower UI to make unemployment more painful
- Keep UI high, instead consider retraining

Why are "the unemployed" unemployed?

- ► Today: minority of workers ("marginal workers") makes up 2/3rd of unemployment
- How are these different?

- 1. Qualitative model that generates cross-sectional unemployment heterogeneity. Source of heterogeneity affects:
 - Cost of unemployment
 - Optimal social security (example: unemployment insurance)

- 1. Qualitative model that generates cross-sectional unemployment heterogeneity. Source of heterogeneity affects:
 - Cost of unemployment
 - Optimal social security (example: unemployment insurance)
- 2. Estimate unemployment heterogeneity in Denmark
 - ▶ 15% of Danes ("marginal workers") are responsible for 2/3rd of unemployment

- 1. Qualitative model that generates cross-sectional unemployment heterogeneity. Source of heterogeneity affects:
 - Cost of unemployment
 - Optimal social security (example: unemployment insurance)
- 2. Estimate unemployment heterogeneity in Denmark
 - ▶ 15% of Danes ("marginal workers") are responsible for 2/3rd of unemployment
- 3. Empirical evidence using administrative data: who are the marginal workers?
 - Marginal workers have worse outside options and worse productivity

- 1. Qualitative model that generates cross-sectional unemployment heterogeneity. Source of heterogeneity affects:
 - Cost of unemployment
 - Optimal social security (example: unemployment insurance)
- 2. Estimate unemployment heterogeneity in Denmark
 - ▶ 15% of Danes ("marginal workers") are responsible for 2/3rd of unemployment
- 3. Empirical evidence using administrative data: who are the marginal workers?
 - Marginal workers have worse outside options and worse productivity
- 4. Suggestive structural evidence
 - Extend model to include leisure and calibrate

Literature

Empirical estimation of worker types based on employment patterns

- ► Hall and Kudlyak (2019): Transition-rate heterogeneity (in CPS).
- Sahin et al (2022): HMS (in CPS)
- ▶ Gregory, Menzio, and Wiczer (2022): k-means (in CPS)
- This paper: k-means (in Danish administrative data). Suggestive evidence: worse outside-options, worse productivity

Small surplus needed to generate unemployment fluctuations

- Hagedorn and Manovskii (2008), ..., Ljunqvist (2009)
- Chodorow-reich and Karabarbounis (2016)
- **\triangleright** This paper: estimate separately b and z for both worker types

Macroeconomic policy and worker heterogeneity

- Monetary policy and marginalized workers (Carpenter et al, 2022)
- Minorities strong recovery post covid (Autor, Dube, and McGrew, 2023)
- ► This paper: Optimal UI very different when considering heterogeneity

A simple model

Estimation of worker types

Empirical evidence: who are the marginal workers

Structural evidence: productivity or outside options?

A simple model I

Two types of workers, $i \in \{m, s\}$

In segmented labor markets with directed search

In a shared assets market

That potentially differ on two aspects:

- Average productivity
- Average home production

A simple model II

Unemployed workers:

- $\blacktriangleright Produce at home <math>b_i$
- \blacktriangleright Search for wage w
- \blacktriangleright Meet with firms that offer w
- ▶ Draw productivity z from distribution $G(z_i, \sigma_z)$
- ▶ If z > w, become employed

Employed workers:

• Exogenous separation at rate δ

Savings

- \blacktriangleright Workers can save at rate r
- Asset in zero net supply

The problem of the unemployed worker

Worker of type i chooses consumption and wages

$$\rho U_i(a) = \max_{c,w} u(c) + f_i(w)(E_i(w,a) - U_i(a)) + \frac{\partial U_i(a)}{\partial a}(b_i + ra - c)$$

Two calibrations:

Low productivity: Workers differ in $z_i \Rightarrow f_i(w)$, but not in b_i High benefits: Workers differ in b_i , but not in z_i

Consumption of employed and unemployed

Results

- ▶ High benefits ⇒ marginal workers consume *more*
 - ► High benefits: marginal ≻ stable
 - ► Low productivity: marginal ≺ stable
- Consumption volatility always smaller for marginal workers
 - Unemployment insurance less valuable for marginal workers

Results

- ▶ High benefits ⇒ marginal workers consume *more*
 - ► High benefits: marginal ≻ stable
 - ► Low productivity: marginal ≺ stable
- Consumption volatility always smaller for marginal workers
 - Unemployment insurance less valuable for marginal workers

What does this mean for social security?

Introduction of simple UI:

- Unemployed workers receive g (additionally to b)
- Employed workers pay proportional tax au
- Result: if unemployment due to low productivity, optimal UI much higher
- Increasing UI:
 - Provides unemployment insurance
 - Provides redistribution (insurance against being marginal)
 - Lowers employment, particularly of marginal workers

A simple model

Estimation of worker types

Empirical evidence: who are the marginal workers

Structural evidence: productivity or outside options?

Estimation of worker types

Apply Gregory-Menzio-Wiczer (2021) to Danish administrative data

- Summarize a worker's employment history in 15 standardized moments Details
- Apply k-means clustering
 - \blacktriangleright 2 groups: out-of-sample error of 0.1%

Some details

- Universe of Danish wage payments 2008-2018 (BFL)
- Matched with unemployment benefits from DREAM
- Sample: core workforce with labor force attachment
 - Ages 30-65
 - Exclude workers with too long non-employment or unemployment
 - Final sample: roughly 1.5m workers Restrictions

- \blacktriangleright 15% of workers are marginal workers
- \blacktriangleright Share of marginal workers among unemployed: 60%

A simple model

Estimation of worker types

Empirical evidence: who are the marginal workers

Structural evidence: productivity or outside options?

	Worker type		
	Stable	Marginal	
# Obs.	1309763	208680	
Share	0.86	0.14	
Worker characteristics			
Male	0.52	0.52	
Age	46.72	45.42	
Education: HS or less	0.17	0.32	
Large city	0.61	0.61	
Rural municipality	0.18	0.20	
Danish citizen	0.94	0.88	
Non-Danish origin	0.10	0.19	

	Worker type		
	Stable	Marginal	
Share	0.86	0.14	
Worker wealth			
Net wealth ('000s)	286.61	69.54	
Ever delinquent	0.12	0.27	
Interest payments ('000s)	10.67	8.76	
Worker relationship			
Has partner	0.61	0.43	
L. earnings (partner)	12.52	12.25	
Partner worker type: Stable	0.91	0.77	
Partner worker type: Marginal	0.09	0.23	

Firm-level value added

▶ How does firm-level VA correlate with employment of marginal and stable workers?

$$va_{i,t} = \alpha + \beta_{\mathsf{stable}}\ell_{\mathsf{stable},i,t} + \beta_{\mathsf{marginal}}\ell_{\mathsf{marginal},i,t} + X_i + T_t + \epsilon_{i,t}$$

Firm-level value added

	(1)	(2)	(3)	(4)	(5)	(6)
	log_va	log_va	log_va	log_va	log_va	log_va
Stable: log hours	0.391***	0.247***	0.257***	0.126***	0.117***	0.276***
	(97.73)	(97.39)	(102.17)	(54.64)	(29.48)	(93.35)
Marginal: log hours	0.114*** (29.97)	0.0713*** (58.85)	0.0717*** (60.13)	0.0450*** (39.02)	0.0829*** (26.50)	0.0652*** (52.04)
Other: log hours	0.390***	0.260***	0.227***	0.102***	0.0954***	0.249***
	(100.50)	(104.68)	(95.76)	(43.59)	(26.22)	(85.59)
Log (firmsize)				0.580***		
				(86.09)		
Observations	1076480	1062513	1062513	1062513	133230	952088
Firm FE	No	Yes	Yes	Yes	Yes	Yes
Month FE	No	No	Yes	Yes	Yes	Yes
Firm size					Small	Large

t statistics in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Summary of marginal workers

- Less educated, lower wage
- Jobs: lower earnings, lower hours, more temporary jobs, more separations for economic reasons
- Less wealth, more debt, more delinquency
- Partners: Fewer, poorer and lower-income (assortative mating)
- Parents: Less educated, poorer, more in debt
- Employment correlates with lower value added at the firm

Mental health: WORSE

A simple model

Estimation of worker types

Empirical evidence: who are the marginal workers

Structural evidence: productivity or outside options?

Challenge from an empirical stand point

What is the worker's outside options?

- Unemployment benefits
- Home production
- Income/help from partner, parents
- Utility of leisure

Empirical evidence on these useful, but not conclusive.

 \Rightarrow Structural model

The problem of the unemployed worker, extended

$$\rho U_i(a) = \max_{c,w} u(c) + \frac{h_i}{h_i} + \frac{f_i(w)(E_i(w,a) - U_i(a))}{\partial a} + \frac{\partial U_i(a)}{\partial a}(b_i + ra - c)$$

- \blacktriangleright No leisure component h while employed
- Will normalize $h_s = 0$

(every parameter affects every moment, but:)

- **Consumption** informative about income difference employed vs unemployed (b_i)
- ▶ VA informative about productivity difference $z_s z_m$
- Assumption: matching market identical across types
- Vacancy cost c pins down u_s (normalizing $h_s = 0$)
- ▶ Given *c*: h_m pins down $u_m u_s$

Consumption moments

- Estimate in administrative data
- Annual data on consumption and unemployment
- Using within-person variation
- **b** By cluster, estimate:

$$c_{i,t} = \alpha u_{i,t} + X_i + T_t + \epsilon_{i,t}$$

Relevant joint moments

Preliminary calibration

Role of various dimensions

Conclusion

- Large unemployment risk heterogeneity in the population
- Determinants matter for social cost and optimal policy
- Empirical evidence: marginal workers less productive and worse monetary outside-options
- Structural evidence: marginal workers less productive and higher disutility from work

Work in progress

- Optimal UI under calibrated model
- Type-specific separation rates
- Room for firm-side heterogeneity?

	Worker type		
	Stable	Marginal	
# Obs.	1309763	208680	
Share	0.86	0.14	
Clustering			
Match: 1– 3M	0.11	0.17	
Match: 3– 6M	0.08	0.17	
Match: 6–12M	0.10	0.18	
Match: 12–24M	0.16	0.21	
Match: 24+M	0.56	0.27	
Nonemp: 0–1M	1.00	0.97	
Nonemp: 1–3M	0.00	0.00	
Nonemp: 3–6M	0.00	0.01	
Nonemp: 6–12M	0.00	0.01	
Nonemp: 12+M	0.00	0.01	
#Jobs per month	0.02	0.06	
Nonemployment rate	0.00	0.01	
Unemployment rate	0.03	0.35	
Back			

Sample restrictions

- $\# \mathsf{Obs}$
- Sample restriction
- 3 169 414 In labor force during sample time
- $1\,919\,490$ Within the age 30-60
- $1\,752\,138$ At least two years in labor force
- $1\,537\,248$ At least 12 months employed
- 1 518 443 Maximum nonemployment spell less than 2 years

The problem of the employed worker

$$\rho E(w,a) = \max_{c} u(c) + \delta(U(a) - E(w,a)) + \frac{\partial E(w,a)}{\partial a}\dot{a}(c)$$
$$\dot{a}(c) = w + ra - c$$

The problem of the firm

Value of the firm

$$J(z,w) = \frac{z-w}{\rho+\delta},$$

Denote by $G_i(z)$ the c.d.f. of productivity draws for type *i*.

Type-wage specific tightness
$$\rho V(i,w) = -c + q(\widetilde{\theta(i,w)}) \int_{w}^{\infty} J(z,w) d \underbrace{G_i(z)}_{\text{Type-specific productivity distribution}}$$

Matching

In equilibrium: $\theta(i, w)$ such that V(i, w) = 0.

$$f(w) = \overbrace{\theta(i,w)^{1-\alpha}}^{\text{Matching rate}} \underbrace{(1-G_i(w))}_{\text{Match productive enough}}$$

Comparing two calibrations

Common parameters		Value
Exogenous separation rate	δ	0.04
Discount rate	ho	0.01
Matching: elasticity	α	0.50
Productivity dispersion	σ_z	0.15
Log productivity (stable)	z_s	0.00
Income of unemployed (stable)	b_s	0.70

Comparing two calibrations

Common parameters		Value
Exogenous separation rate	δ	0.04
Discount rate	ho	0.01
Matching: elasticity	α	0.50
Productivity dispersion	σ_z	0.15
Log productivity (stable)	z_s	0.00
Income of unemployed (stable)	b_s	0.70
Specific parameters		Low prod.
Vacancy search cost	c	0.00
Income of unemployed (marginal)	b_m	0.70
Log productivity (marginal)	z_m	-0.60

•

Comparing two calibrations

Common parameters			Value
Exogenous separation rate	δ		0.04
Discount rate	ho		0.01
Matching: elasticity	α		0.50
Productivity dispersion	σ_{z}		0.15
Log productivity (stable)	z_s		0.00
Income of unemployed (stable)	b_s		0.70
Specific parameters		Low prod.	High out. opt.
Vacancy search cost	С	0.00	0.00
Income of unemployed (marginal)	b_m	0.70	1.29
Log productivity (marginal)	z_m	-0.60	0.00

0

Optimal policy

Optimal policy: unemployment

Optimal policy: output

The relevance of household heterogeneity

Low productivity versus high outside options: what drives high unemployment?

- $\downarrow \mu_z$: downwards shift in finding rate, f(w)
 - Lowers U(a) unemployment is more costly
- ▶ $\uparrow b$: lower opportunity cost of waiting, E(w, a) U(a)
 - ▶ Raises U(a) unemployment is less costly

Welfare cost of unemployment depends on determinant of unemployment.

Wages and job characteristics

	Worker type		
	Stable	Marginal	
Share	0.86	0.14	
Worker earnings			
Monthly hours worked	132	113	
Annual earnings ('000s)	3651	1661	
Part time	0.17	0.21	
Part time: cannot find fulltime	0.18	0.20	
Temporary	0.04	0.18	
Mincer resid.	-0.02	-0.12	
AKM worker FE	0.02	-0.09	
Separation: economic reason	0.06	0.15	

Parents

	Work		
	Stable	Marginal	
Share	0.86	0.14	
Father			
Education: High school or less	0.21	0.24	
Net wealth ('000s)	1030.78	667.34	
Ever delinquent	0.12	0.17	
Age difference	29.18	29.04	
Worker type: Stable	0.90	0.84	
Worker type: Marginal	0.10	0.16	

Parents

	Worker type		
	Stable	Marginal	
Share	0.86	0.14	
Mother			
Education: High school or less	0.36	0.41	
Net wealth ('000s)	549.36	358.98	
Ever delinquent	0.08	0.14	
Worker type: Stable	0.91	0.84	
Worker type: Marginal	0.09	0.16	

Parents

	Work	er type	
	Stable	Marginal	
Share	0.86	0.14	
Worker health			
Any hospital visit	0.51	0.57	
Hospital visit: mental illness	0.03	0.04	
Visit: psychiatrist	0.04	0.09	
Visit: psychologist	0.11	0.15	

Results

	Low prod	luctivity	High be	enefits	
Interest rate	-0.02	-0.0215		218	•
Cost of being marginal	69.44	69.4416		345	
By worker type	Marginal	Stable	Marginal	Stable	
Welfare cost of unemployment	0.001	-0.008	0.002	-0.008	
Unemployment rate	0.353	0.028	0.339	0.029	•
Asset holdings	0.000	0.118	0.000	0.118	
Consumption (employed)	0.730	1.265	1.343	1.265	
Consumption (unemployed)	0.700	0.814	1.292	0.812	
Savings (employed)	0.000	0.003	0.000	0.003	
Savings (unemployed)	0.000	-0.114	0.000	-0.113	
Wages	0.730	1.271	1.343	1.271	

Number of workers

	(1)	(2)	(3)	(4)	(5)	
	log_va	log_va	log_va	log_va	log_va	
Stable: log workers	0.544***	0.338***	0.0297***	0.270***	0.355***	
	(88.97)	(95.19)	(5.51)	(25.29)	(95.76)	
Marginal: log workers	-0.0503***	0.0998***	-0.0000796	0.233***	0.102***	
	(-4.88)	(33.20)	(-0.02)	(15.65)	(34.33)	
Other: log workers	0.414***	0.386***	-0.0286***	0.226***	0.342***	
	(75.12)	(111.71)	(-4.57)	(24.39)	(89.86)	Back
Log (firmsize)			0.868***			
			(64.02)			
Observations	1080779	1066827	1066827	134187	955511	
Firm FE	No	Yes	Yes	Yes	Yes	
Month FE	No	No	Yes	Yes	Yes	
Firm size				Small	Large	

t statistics in parentheses

 $^{\ast}~p<0.05$, $^{\ast\ast}~p<0.01$, $^{\ast\ast\ast}~p<0.001$