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1 Introduction

Macroeconomic risk, often related to technology, consumption, or intermediary capital, is at

the heart of most equilibrium-based asset pricing models. Yet reliable detection of macroeco-

nomic risk premia remains elusive: 1) different time horizons often provide drastically different

estimates of the priced risk, 2) most empirical models are widely known to be misspecified,

calling for methods robust to the nature and number of risk factors, and 3) the weak contempo-

raneous link between macroeconomic factors and asset returns often leads to model parameters

being weakly identified at best, causing a fundamental inference problem. All of these issues

contribute to the empirical macrofinance disconnect.

We propose a new estimation framework that addresses all of the above. Unlike any existing

approach, it produces not only reliable risk premia estimates but also their whole term struc-

ture in an internally consistent framework. Our method, which leverages the fact that many

nontradable factors are persistent, relies on three key ingredients: 1) the moving average (MA)

representation of the persistent component of the factor, driven by either priced or non-priced

shocks, 2) an approximate factor structure for a wide cross-section of asset returns, which recov-

ers priced shocks and is robust to model misspecification (Chamberlain and Rothschild (1983)

and Giglio and Xiu (2021)), and 3) the hierarchical Bayesian inference method of Bryzgalova,

Huang, and Julliard (2023a), which recovers both time series and cross-sectional properties of

risk factors, and is by design robust to weak identification.

Our framework accurately identifies not only the joint comovement between nontradable fac-

tors and asset returns but also their propagation mechanism, and hence recovers the whole term

structure of risk premia. As we show, the latter is crucial in assessing the role of macroeconomic

risks in asset returns. We find that many macroeconomic variables (e.g., industrial production,

consumption, and GDP growth) have increasing unconditional term structures and carry large

and significant risk premia at business cycle frequencies (two–three years). Furthermore, their

term structure is particularly steep during expansions and inverted during recessions.

Our findings are not a simple byproduct of factor persistence. We find that similarly per-

sistent risk factors can have increasing (liquidity of Pástor and Stambaugh (2003)), flat (in-

termediary factor of He et al. (2017)), or decreasing term structures (VIX), or no significant
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risk premia at all (capital share growth of Lettau et al. (2019)). As we show, risk premia over

different horizons can be directly mapped into per-period Sharpe ratios of factor-mimicking

portfolios hedging multi-horizon priced innovations. The economic magnitude of our findings

is striking: At business cycle frequencies, risk premia carried by, for example, industrial pro-

duction, GDP, and consumption, are as large as that of the market. Crucially, all of our results

are not based on ad-hoc frequency-based procedures, but are instead fully determined by the

structural parameters of the model.

Our framework provides sharp identification of risk premia and reliable inference and is

rooted in economic theory: Equilibrium asset prices are jump variables. Hence, news about

current and future priced states should immediately be reflected into prices, albeit they might

manifest in nontradable variables only with delay. Similar to Giglio and Xiu (2021), we leverage

the fact that, while the actual drivers of asset returns are identifiable only up to a rotation,

conditional and unconditional risk premia of observable factors are not affected by this issue

and can, therefore, be reliably recovered from the data. As a result, our estimator is robust to

the omitted variable bias, measurement error, and weak identification. Contrary to the existing

literature, our method allows for the joint modeling of factor and return dynamics over different

horizons, providing coherent insights into the whole term structure of risk premia. Tackling an

inference problem in this setup would be challenging, if not infeasible, in frequentist estimation.

Instead, we develop a simple Gibbs algorithm for Bayesian posterior sampling, with all the

conditional posterior distributions available in closed form. Thus, we deliver not only point

estimates of risk premia and deep model parameters but also valid credible intervals for all the

objects of interest.

It is widely known that some nontradable factors have higher exposure to asset returns at

longer horizons. (See, e.g., Jagannathan and Wang (2007), Cohen et al. (2009), and Hansen

et al. (2008)) We uncover the mechanism generating this phenomenon and show that, in these

cases, risk premia at different horizons are driven by the same priced innovations that slowly

propagate through the nontradable risk factor. As a result, we also explain why many risk

factors are statistically weak at quarterly frequency, yet become strongly identified at longer

horizons. Consider GDP growth, for example. Although contemporaneous asset return shocks

account for only 4% of the variation in GDP growth, they contribute to over 20% of its time
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series variation at business cycle frequencies. In such a case, the term structure of risk premia

effectively boosts the signal-to-noise ratio of priced shocks in nontradable factors and sharply

identifies the common priced component (which would normally be weak at best).

The empirical asset pricing literature has long recognized the persistent nature of many

nontradable risk factors. As a result, researchers would usually first extract the AR(1) innova-

tion from a factor and then proceed with measuring its risk premia via Fama-MacBeth (FM)

regressions or the Generalized Method of Moments (GMM).1 However, as we show, this com-

mon procedure fails to recover the true sources of priced risk. First, the conditional mean of

the macroeconomic variable could follow a process different from AR(1). Second, the persistent

component of the variable does not need to be driven only by priced shocks. As we show, AR(1)

residuals do not recover actual priced innovations in many factors, leading to a significant bias

in risk premia estimates. Our approach, rooted in the Wold decomposition, relies on the flexible

MA representation of the risk factor. It efficiently separates priced and unpriced innovations

and restores reliable inference on risk premia.

We use a large cross-section of 275 equity portfolios to estimate the term structures of risk

premia of many nontradable risk factors. Contrary to the standard one-period inference, we find

that a large part of the factors’ conditional mean is driven by priced shocks, slowly propagating

through the time series. Their overall dynamics display clear business cycle patterns and are

common across many different macroeconomic factors.

Many risk factors are characterized by increasing term structures of risk premia. For exam-

ple, while the risk premium of GDP growth is only 0.02 at the quarterly horizon, it increases

to 0.14 at the two-year horizon and is strongly significant (while being spanned by the same

shocks). Furthermore, term structures of macro risk exhibit strong commonality in their busi-

ness cycle behavior: The average level is strongly procyclical, with larger risk premia during

expansion and significantly reduced, or even becoming negative, during recessions; the slope

of the term structures is also strongly procyclical, with longer (two- to three-year) maturities

characterized by high conditional Sharpe ratios immediately before economic contractions.

We also observe factors commanding flat or downward-sloping unconditional term structures

of risk premia. For example, the VIX risk premium is −0.11 at the monthly frequency, but

1See He et al. (2017), Pástor and Stambaugh (2003), and Giglio and Xiu (2021), among others.
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its two-year counterpart is only −0.03. This observation is reassuring since the sign of the

VIX risk premium, and its term structure, are mostly consistent with previous findings based

on VIX derivatives (Eraker and Wu (2014), Dew-Becker et al. (2017), and Johnson (2017)).

Intermediary factors (Adrian et al. (2014) and He et al. (2017)) carry significantly positive

unconditional risk premia with a flat term structure. Furthermore, our estimate of risk premia

for the intermediary factor of He et al. (2017) is rather close to the average return of its tradable

version, providing further validation to our findings.

When asset markets are fully integrated, a risk factor commands the same risk premia

across all of them. Recent empirical literature, however, provides growing support for partial

segmentation in financial markets. (See Brandt et al. (2006), Choi and Kim (2018), Sandulescu

(2022), and Patton and Weller (2022)) Motivated by this, we extend our framework to allow

for partially or completely segmented markets. Intuitively, systematic priced shocks that drive

asset returns could be (partially) different across market segments. As a result, the same

risk factor could carry different risk premia when estimated in different asset classes. Our

framework allows us not only to estimate the market-specific term structure of risk premia but

also to formally test for its equality across market segments.

We compare the term structures of risk premia of nontradable factors, spanned by a large

cross-section of equity returns, with those recovered from the cross-section of 40 corporate

bond portfolios of Elkamhi, Jo, and Nozawa (2023). We find that many factors indeed command

different risk premia in these asset classes. For example, since bonds typically have fixed nominal

payoffs, oil price shocks (leading to inflation) command a large and positive risk premium. At

the same time, equity markets provide a natural hedge against these shocks and produce a

negative risk premium. The TED spread, widely known to increase with lower funding liquidity

(Brunnermeier and Pedersen (2009) and Asness et al. (2013)), has a flat term structure of

negative risk premia in corporate bonds but is not priced in stocks.

While there are many examples of partial market segmentation, many factors carry very sim-

ilar risk premia across markets (both economically and statistically). The most striking example

is the VIX index, which has an almost identical term structure of risk premia in both stock

and bond markets. Other examples with nearly homogeneous risk premia estimates across the

two asset classes include GDP growth, industrial production growth, durable and nondurable
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consumption growth, and the intermediary factor of He et al. (2017). Our paper indicates that

despite growing evidence of market segmentation, there are many common fundamental risks

driving both asset classes.

To further highlight the strength and robustness of our estimation approach, we conduct

extensive simulations and study the empirical size and power of the procedure in detecting

the persistent priced component of nontradable factors. We find that the Bayesian credible

intervals provide proper posterior coverages of the pseudo-true risk premia and the risk premia

difference in the case of market segmentation. Moreover, we show that the MA-based approach

is essential in identifying the priced component in persistent factors and leads to a significant

boost in the power of detecting segmented risk premia. Finally, our Bayesian inference remains

valid even in the presence of persistent, yet weak, risk factors.

The remainder of the paper is organized as follows. In the next subsection we review the

most closely related literature and our contribution to it. Section 2 outlines our estimation

framework and its properties, while Section 3 provides simulation evidence on the power of the

method in realistically small samples. Section 4 presents our empirical findings, and Section 5

concludes. Additional results, proofs, derivations, and a detailed description of the data sources,

are reported in the Internet Appendix.

1.1 Closely Related Literature

Our paper naturally relates to the inference on risk premia in linear factor models. As shown by

the past literature (e.g., Kan and Zhang (1999a,b), Kleibergen (2009), and Kleibergen and Zhan

(2015)), weak factors invalidate risk premia estimates and cross-sectional fit of traditional FM

and GMM estimators. Several studies (e.g., Kan et al. (2013), Gospodinov et al. (2014, 2019),

Bryzgalova (2015), Kleibergen and Zhan (2020), and Bryzgalova et al. (2023a)) propose methods

that are robust to weak factors and misspecification. Giglio and Xiu (2021) further emphasize

that standard estimators of risk premia are biased if some priced factors are omitted and propose

a three-pass method to resolve the issue. Likewise, Giglio et al. (2023) propose a supervised

principal component analysis method to recover the risk premia of weak factors. Similarly, our

method aligns with the literature that relates to principal component analysis in asset pricing

(e.g., Chamberlain and Rothschild (1983), Connor and Korajczyk (1986, 1988), Kozak et al.
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(2018, 2020), and Kelly et al. (2019)). Unlike them, we incorporate the dynamics of factors

and returns to elicit the entire term structure of risk premia in an internally consistent manner.

This additional dimension is economically meaningful since many variables, particularly macro

variables, are significantly priced only at particular horizons.

Equilibrium macro-finance models have sharp and salient predictions for the term structures

of risk premia of macro factors. For instance, as shown in Figure A1, the habit model of

Campbell and Cochrane (1999) predicts flat term structures of risk premia for consumption

and dividend growth.2 Yet these same factors command upward-sloping term structures in the

long-run risk model of Bansal and Yaron (2004). However, these predictions rely on ad hoc

assumptions on cash flow dynamics and investors’ preferences. To obtain model-free estimates,

van Binsbergen et al. (2012) and van Binsbergen and Koijen (2017)) analyze traded dividend

claims and observe a downward-sloping term structure of dividend risk, which contradicts the

predictions of leading macro-finance models. Consequently, several equilibrium models (e.g.,

Belo et al. (2015), Hasler and Marfe (2016), Ai et al. (2018), and Kragt et al. (2020)) have

been developed to explain this phenomenon. However, traded dividend strips data suffer from

a short time series sample and liquidity concerns. Recent papers tackle these shortcomings by

estimating either a regime-switching model (Bansal et al. (2021)) or an affine term structure

model of expected returns and dividend growth (Giglio et al. (2023)). Both papers suggest an

unconditionally upward-sloping, and conditionally procyclical, term structure of dividend risk

– as we uncover for dividend growth risk premia. But crucially, our new method has much

broader applicability than solely dividends, as it delivers the term structure of risk premia for

all factors (traded and nontraded) of equilibrium models.

Our paper also connects to the large body of literature that emphasizes horizon-dependent

risk premia (see, e.g., Chernov et al. (2021)). Extensive empirical evidence shows that con-

sumption growth carries more significant premia at long horizons (Daniel and Marshall (1997),

Parker and Julliard (2005), Jagannathan and Wang (2007), Hansen et al. (2008), Malloy et al.

(2009), Ortu et al. (2013), Dew-Becker and Giglio (2016), and Bandi and Tamoni (2023)). In

contrast, VIX (Eraker and Wu (2014), Dew-Becker et al. (2017), and Johnson (2017)) carry

more sizable risk premia at short horizons. Our paper is motivated by these empirical facts and

2Calibration and derivation details can be found in Internet Appendix IA.4.

6



provides a much more extensive, and robust, investigation of the risk premia of more than 20

economic variables.

Furthermore, this paper contributes to the literature on market segmentation. Existing

works either study the comovement between stochastic discount factors (SDFs) across markets

(e.g., Chen and Knez (1995), Brandt et al. (2006), Kelly et al. (2023), Sandulescu et al. (2021),

and Sandulescu (2022)) or tests heterogeneous risk premia for the same factor in different

markets (e.g., Choi and Kim (2018), Chaieb et al. (2021), and Patton and Weller (2022)).

Our paper is more closely related to the latter strand of literature. However, our econometric

method accounts for both weak identification and omitted variable bias, which is essential to

avoid spurious rejection of homogeneous risk premia. Furthermore, we test heterogeneous risk

premia in the entire term structure, greatly increasing the power of the statistical test for

serially dependent factors.

Finally, our paper is related to the recent developments of Bayesian econometrics in asset

pricing (e.g., Barillas and Shanken (2018), Chib et al. (2020), Bryzgalova et al. (2023a), and

Avramov et al. (2023)). Unlike most papers, which emphasize Bayesian model selection and/or

aggregation, we estimate the posterior credible intervals of the term structure of risk premia.

2 Theory and Method

This section describes our Bayesian framework for estimating factors’ risk premia. We aim to

test whether a (covariance-stationary) factor gt, either tradable or nontradable, is priced in a

large cross-section of test assets. Throughout our analysis, we consider log variables; that is,

gt is the log growth rate of Gt between time t − 1 and t, where Gt can be, for example, the

portfolio value, GDP, or industrial production.

We denote the vector of log returns on N assets, in excess of the log risk-free rate (rf ), by rt =

(r1t, . . . , rNt)
⊤. We further define the cumulative variable: gt−1→t+S = log(Gt+S) − log(Gt−1),

which measures the multiperiod growth rate of Gt. Similarly, rt−1→t+S denote the cumulative

log returns between time t− 1 and t+ S.

We assume a linear latent factor model for asset returns driven by K systematic factors, as

7



follows:

rt = µr + βṽṽt +wrt, ṽt
iid∼ N (0K , IK), wrt

iid∼ N (0N ,Σwr), ṽt ⊥ wrt, (1)

where ṽt are K uncorrelated latent factors with loadings βṽ, wrt are unpriced idiosyncratic

errors, and µr denote expected returns of test assets. We relax the assumption of uncorrelated

ṽt in Section 2.2. We impose an approximate factor structure among asset returns, following

Chamberlain and Rothschild (1983). Mathematically, the largest K eigenvalues of rt’s covari-

ance matrix will explode as the number of assets goes to infinity (equivalently, the eigenvalues

of βṽβ
⊤
ṽ will explode), while those of Σwr remain bounded. We allow for a certain degree of

cross-sectional dependence of wrt, as discussed later in the simulation study. The number of

latent factors, K, is assumed to be known in this section.

We further assume that factors’ loadings, βṽ, can partially explain expected returns,

µr = βṽλṽ +α, (2)

where λṽ denote risk premia associated with ṽt, and α is a vector of pricing errors. In addition,

we assume that each asset’s pricing error, αi, is independently and identically distributed (IID)

and cross-sectionally independent of factor loadings. This form of model misspecification has

been commonly used in the past literature (e.g., Kan et al. (2013), Gospodinov et al. (2014),

Giglio and Xiu (2021), and Bryzgalova et al. (2023a)) and has a clear economic interpretation.

Equation (2) is equivalent to a log SDF that is linear in latent factors ṽt, described as follows:

mt = 1− λ⊤
ṽ ṽt. (3)

Since ṽt have an identity covariance matrix, their risk prices are identical to risk premia.

The Wold decomposition implies that gt has an MA representation,3 as follows:

gt =
∞!

s=0

ρ̃s#g,t−s + µg,

∞!

s=0

ρ̃2s < ∞ (ρ̃0 = 1), (4)

where #g,t−s is a white noise process with bounded second moment. Furthermore, we model

the white noise innovation of gt as (potentially, since parameters will be estimated) partially

3The only requirement for this to hold is that gt be a covariance-stationary time series. Furthermore, µg

could also vary in time as long as it is a deterministic process.
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spanned by the contemporaneous asset return shocks ṽt, as follows:

#g,t−s = η̃⊤
g ṽt−s + eg,t−s, ṽt−s ⊥ eg,t−s. (5)

Taken together, equations (1)–(2) and (4)–(5) imply that the factor g might potentially react

over multiple periods, or with delay, to the priced shocks to asset returns.

Plugging equation (5) into (4), we can rewrite the data-generating process of gt as follows:

gt = µg +
"∞

s=0 ρ̃sη̃
⊤
g ṽt−s + w̃gt, where w̃gt =

"∞
s=0 ρ̃seg,t−s. Since estimating MA coefficients

with infinite lags is unrealistic, and the vector norms of η̃ and ρ̃ are unidentified, we truncate

the number of lags at S̄ and normalize η̃g such that

gt = µg +
S̄!

s=0

ρ̃sη̃
⊤
g ṽt−s# $% &
ft−s

+ wgt, η̃⊤
g η̃g = 1, (6)

so ft, which we call the spanned component, has a unit variance. Since ft is a white noise

innovation, we can interpret {ρ̃s}S̄s=0 as gt’s impulse responses to the asset returns’ shock ft.4

Several features of equation (6) are noteworthy. First, gt can react to both current and

lagged asset return shocks ṽt. This assumption is motivated by past literature showing that

asset returns can predict macro variables (e.g., Liew and Vassalou (2000), Ang et al. (2006), and

Bryzgalova et al. (2023b)). Second, when gt is a white noise process (ρ̃s = 0 for s > 0), the model

reduces to the setting studied in Giglio and Xiu (2021).5 However, many factors, particularly

macro variables, strongly deviate from the assumption of white noise processes. Past research

often extracts the AR(1) innovations of macro variables and estimates the innovations’ risk

premia. As we show in the empirical analysis, this standard practice often fails to identify

macro factors’ risk premia, whereas the MA representation in equation (6) does. Finally, we

allow for the measurement error of gt, denoted by wgt (which is unrelated to ṽt and wrt), to be

potentially autocorrelated.

We next define the risk premium of gt by extending the study of Giglio and Xiu (2021).

In their framework, gt’s risk premium is defined as the negative of the covariance between gt

4We do not interpret ft as a structural shock, so the impulse responses of gt to ft purely quantify the lead-lag
correlations rather than the causal relationship between asset returns and gt.

5Since their paper uses original rather than log returns, this statement is precise with the exception of the
log-linearization approximation error.
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and the SDF, λg = −cov(gt,mt).6 When gt is a traded excess return, the fundamental asset

pricing equation, E[mt · gt] = 0, directly implies that E[gt] = −cov(gt,mt) (since we normalize

E[mt] = 1). For a nontradable factor, one can interpret −cov(gt,mt) as the pseudo expected

excess return of gt as if it were tradable. In other words, −cov(gt,mt) is the risk premium on an

asset that delivers a payoff that grows at the rate of gt. We expand their definition by allowing

for an entire term structure of risk premia. Specifically, the (average per-period) risk premium

of g from t− 1 to t+S (0 ≤ S ≤ S̄) is defined as the multiperiod covariance between the factor

and the SDF, divided by the number of holding periods, as follows:

λS
g = −cov(mt−1→t+S, gt−1→t+S)

1 + S
=

"S
τ=0

"τ
s=0 ρ̃s

1 + S
· η̃⊤

g λṽ# $% &
λf

. (7)

There are two ways to interpret the definition in equation (7). First, λf is the risk premium

of the spanned component (ft = η̃⊤
g ṽt) driving both asset returns and gt, and

!S
τ=0

!τ
s=0 ρ̃s

1+S
is the

per-period loading of gt−1→t+S on multiperiod asset return shocks ft−1→t+S. Hence, λS
g , the risk

premium of g over an investment horizon of (1+S) periods, equals its loadings on f multiplied

by f ’s risk premium.

Second, as established below, we can interpret λS
g as the risk premium of gt−1→t+S’s mim-

icking portfolio, with portfolio weights w
MP = cov(rt−1→t+S)

−1cov(rt−1→t+S, gt−1→t+S). The

risk premium of this portfolio, normalized by the number of holding periods, is

λMP
g =

E[rt−1→t+S]
⊤
w

MP

1 + S
= E[rt−1→t+S]

⊤cov(rt−1→t+S)
−1 cov(rt−1→t+S, gt−1→t+S)

1 + S

= E[rt]⊤cov(rt)−1βṽ
cov(vt−1→t+S, gt−1→t+S)

1 + S
,

where the last equality uses the assumption that vt are serially uncorrelated and wr,t−1→t+S are

orthogonal to g. We relax the assumption of uncorrelated ṽt in Section 2.2.

Using Proposition A.1 in the Appendix, we can simplify the risk premium of gt’s mimicking

portfolio and show that, as the number of test assets goes to infinity, λMP
g → λ⊤

ṽ cov(ṽt−1→t+S ,gt−1→t+S)

1+S
=

− cov(mt−1→t+S ,gt−1→t+S)

1+S
, where mt−1→t+S =

"S
τ=0 mt+τ−1,t+τ = 1 + S − λ⊤

ṽ ṽt−1→t+S. Therefore,

our definition of gt’s risk premium in equation (7) is asymptotically equivalent to the risk

premium of the mimicking portfolio in a large cross-section.

6This definition is consistent with Cochrane (2009, Chapter 6).
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In the data, asset return factors, ṽt, are unidentified. That is, one can only estimate a

linear rotation of ṽt, denoted by vt = Hṽt, where H is a K × K nonsingular matrix. Since

ṽt
iid∼ N (0K , IK), we have that Σv ≡ cov(vt) = HH

⊤. Even though ṽt cannot be identified,

gt’s risk premium is well-defined. In particular, the identification of λS
g builds upon the rotation

invariance property emphasized in Giglio and Xiu (2021). The rotation invariance can be easily

seen by rewriting the model as follows:

rt = α+ βṽH
−1

# $% &
βv

Hλṽ# $% &
λv

+ βṽH
−1

# $% &
βv

Hṽt#$%&
vt

+wrt, gt = µg +
S̄!

s=0

ρ̃sη̃
⊤
g H

−1

# $% &
η⊤
g

Hṽt−s# $% &
vt−s

+ wgt, and

mt = 1− λ⊤
v (H

−1)⊤H−1
vt = 1− λ⊤

v Σ
−1
v vt, λS

g =

"S
τ=0

"τ
s=0 ρ̃s

1 + S
· η̃⊤

g H
−1

# $% &
ηg

Hλṽ# $% &
λv

.

(8)

Therefore, the most important quantity in our paper, λS
g , is well identified.

Estimating the confidence bands – or better, the statistical uncertainty – of λS
g is challenging

in the frequentist framework. Specifically, λS
g is a function of ρg, ηg, and λv, where the first

two parameters depend on each other. Hence, the frequentist asymptotic covariance matrix of

λS
g is quite complex despite its closed-form expression outlined above. Consequently, we adopt

a Bayesian framework to provide valid inference for all model parameters and present it in the

next subsection.

2.1 Bayesian Estimation of Risk Premia

This subsection describes our hierarchical Bayesian framework. We first consider the time series

dimension, which is needed to estimate the joint posterior distribution of asset returns’ latent

factors and their loadings, expected asset returns, gt’s loadings on the latent factors, and the

precision matrices of error terms. We make the following distributional assumptions:

gt = µg +
S̄!

s=0

ρsη
⊤
g (vt−s − µv) + wgt, wgt

iid∼ N (0, σ2
wg), vt

iid∼ N (µv,Σv), (9)

rt = µr + βv(vt − µv) +wrt, wrt
iid∼ N (0N ,Σwr), Σwr = diag{σ2

1,wr, . . . , σ
2
N,wr}, and (10)

vt ⊥ wgt ⊥ wrt, and let ρg = (µg, ρ0, . . . , ρS̄)
⊤
, (11)

11



where vt are linear and nonsingular rotations of the true K latent factors ṽt. Since these

rotations are arbitrary, we need to estimate their unconditional means (µv) and covariance

matrix (Σv). Direct modeling of µv is critical for obtaining a proper posterior distribution of

expected excess returns µr.7 According to equation (11), the error terms, wgt and wrt, are

orthogonal, which implies that we can estimate the model parameters in gt and rt separately.

The systems in (9) and (10) introduces a potential degree of misspecification relative to the

true data-generating processes described in equations (2) and (6). First, the error wgt could

be serially correlated. As Müller (2013) shows, posteriors are still asymptotically normal and

centered at the maximum likelihood estimate under this assumption, although the canonical

posterior covariance matrix of the model parameters is incorrect and should be replaced with

a sandwich covariance matrix. Therefore, we incorporate this correction within our method.

Second, Σwr is assumed to be diagonal. Our posterior characterization below does not

require this assumption, and indeed, we impose it only to avoid numerical problems when

considering very large cross-sectional dimensions (i.e., when the number of assets approaches or

exceeds the time series dimension) and relax it in all other instances. However, as we will show

through simulations, the diagonal assumption does not have material effects on the posterior

distributions. Hence, this assumption is harmless. This robustness result is not surprising

since, in a frequentist setting, this type of misspecification would affect only efficiency but not

consistency.

We assign the standard uninformative prior distributions to the time series parameters

π(ρg,ηg, σ
2
wg) ∝ (σ2

wg)
−1
, π(v) ∝ 1, π(µv,Σv) ∝ |Σv|−

K+1
2 , and

π(βv) ∝ 1, π(µr,Σwr) ∝ |Σwr|−
N+1

2 .

(12)

In the cross-sectional dimension, conditional on the recovered sources of risk vt in the time

series dimension, the SDF and its risk prices, λv, can then be recovered using the Bayesian-

SDF estimator (B-SDF) in Definition 1 of Bryzgalova et al. (2023a). That is, conditional on

the recovered vt being the sources of risk driving the cross-section, we have the SDF

mt = 1− λ⊤
v Σ

−1
v vt ⇒ µr = βvλv. (13)

7The sample average of rt is µr +βv
1
T

!T
t=1(vt−µv)+

1
T

!T
t=1 wrt. If we always demean the latent factors

to have zero sample averages, the first source of uncertainty about µr, originated from 1
T

!T
t=1(vt − µv), will

disappear. Consequently, the credible intervals for µr will be too tight if we do not directly model µv.
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Recall that we nevertheless allow for pricing errors as outlined in (2). With extensive simulation

studies, we show in Section 3 that this approach delivers valid posterior distributions.

Within the frequentist paradigm, constructing proper inference for the system in equations

(9)–(13) is, if not infeasible, at least a daunting task. As we are about to show in Proposition

1 below, this is both simple and transparent within the Bayesian paradigm.

There are two reasons for this. First, a joint distribution, say p(x, y), can be traced by

generating a Markov chain that sequentially samples from p(x|y) and p(y|x) – the so-called

Gibbs sampling.

Second, the hierarchical structure of the time series and cross-sectional layers of the es-

timation problem yields well-defined and well-understood conditional posterior distributions.

Specifically, if vt were known (i.e., conditioning on it), equation (9) would simply be an ordi-

nary linear regression problem with well-known properties: in a Bayesian setting, under diffuse

and/or conjugate priors, a normal-inverse-gamma posterior distribution (i.e., the analogous of

the t-distribution that would arise for frequentist inference in this case).

Similarly, if vt were known, equation (10) would simply be a canonical multivariate linear

regression, thereby yielding (under diffuse and/or conjugate priors) a well-known posterior

distribution: a normal-inverse-Whishart (the Bayesian analogous to the frequentist multivariate

t-distribution result).

Furthermore, conditional on knowing both the parameters in equation (10) and the data,

the distribution of the latent factors vt can be obtained by inverting its relationship with asset

returns. Finally, conditional on the parameters and latent factors in the time series layer, the

distribution of the risk prices, λv, simply follows from Definition 2 of Bryzgalova et al. (2023a).

Note that this layer is fundamental since it de facto selects which of (and how) the latent drivers

vt are actually sources of priced risk – the crucial stage for measuring the risk premia associated

with gt.

We formalize this hierarchal characterization of the posterior in the proposition below and

derive it in Internet Appendix IA.1.1.

Proposition 1 (Gibbs sampler of the baseline model). Under the assumptions in equations

(9)–(13), the posterior distribution of the model parameters can be sampled from the following

conditional distributions:
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(1) Conditional on the data, {gt}Tt=1+S̄
, and latent factors, {vt}Tt=1, the parameters of the

gt process (σ2
wg, ρg, and ηg) follow the normal-inverse-gamma distribution in equations

(IA.1)–(IA.3) of Internet Appendix IA.1.1. For point identification purposes, draws of ρg

and ηg are normalized such that η⊤
g ηg = 1.

(2) Conditional on asset returns, {rt}Tt=1, and latent factors, the parameters of the rt process

(Σwr and B
⊤
r = (µr,βv)) follow the normal-inverse-Wishart distribution in equations

(IA.4)–(IA.5) of Internet Appendix IA.1.1.

(3) Conditional on asset returns and (µr,βv,Σwr), the latent factors, vt, their mean, and

covariance matrix can be sampled from

vt | rt,µr,βv,Σwr,µv,Σv ∼

N
'(

β⊤
v Σ

−1
wrβv

)−1*
β⊤
v Σ−1

wr

(
rt − µr + βvµv

)+
,
(
β⊤
v Σ−1

wrβv

)−1
,
,

(14)

Σv | {vt}Tt=1 ∼ W−1

'
T − 1,

T!

t=1

(vt − v̄)(vt − v̄)⊤
,
, and (15)

µv | Σv, {vt}Tt=1 ∼ N
'
v̄, Σv/T

,
, (16)

where N (·) and W−1(·) denote, respectively, the normal and inverse-Wishart distributions.

(4) Conditional on the posterior draws from the time series steps (1)–(3), the posterior dis-

tribution of λv is a Dirac distribution at (β⊤
v βv)

−1β⊤
v µr, yielding a Dirac conditional

posterior for the term structure of gt’s risk premia at λS
g =

!S
τ=0

!τ
s=0 ρs

1+S
· η⊤

g λv, where

0 ≤ S ≤ S̄.

Several features of our Bayesian Gibbs sampler are noteworthy. First, although we do not

know in closed-form the joint distribution of all parameters, all conditional distributions, such

as inverse-gamma, multivariate normal, and inverse-Wishart distributions, are well-defined and

standard.

Second, we follow Müller (2013) and adjust the posterior covariance matrix of ρg and ηg

for the autocorrelation in the residuals, wgt and wrt, using the Newey and West (1987) type of

sandwich estimator.8

8The number of lags is set to be S̄ since wgtxt and wg,t−lxt−l become serially uncorrelated for l > S̄, where
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Third, the posterior distribution of vt in Step 3 of Proposition 1 ignores the information

embedded in gt, balancing the trade-off between model simplicity and estimation efficiency.

Since gt depends on many lags of the latent factors, incorporating its information in estimating

vt is feasible but requires a more computationally demanding approach, such as the Kalman

filter. More importantly, we consider large cross-sections of test assets; hence, the discarded

information is negligible as N → ∞. Finally, in empirical applications, not conditioning on gt

in the extraction of vt provides a level playing field when comparing the estimated risk premia

of different variables gt.

Fourth, Proposition 1 does not require a diagonal Σwr. Nevertheless, for empirical applica-

tions where N is close to the time series sample size, we impose diagonality to avoid numerical

difficulties. Our simulation studies confirm that the assumption of a diagonal Σwr does not

result in invalid confidence intervals, even though wrt is cross-sectionally correlated in the hypo-

thetical true data-generating process. In contrast, in empirical applications where the number

of test assets is relatively small (i.e., N ≤ 50, such as in the cross-section of corporate bonds),

we use a nondiagonal Σwr in estimation.

Fifth, the cross-sectional dimension (Step 4 in Proposition 1) defines latent factors’ risk

premia as (β⊤
v βv)

−1β⊤
v µr and, via the sequential resampling, accounts for the uncertainty

about the expected returns, the factor loadings, and the latent factors’ means µv.

In addition to risk premia estimates, our Bayesian framework can produce valid posterior

distributions for other economic quantities of interest, including, but not limited to, the time

series fit in gt’s equation (R2
g), cumulative impulse responses of gt to the asset return shocks

({ρ̃s}S̄s=0), and the cross-sectional fit in explaining average returns.

Past literature often adopts the Fama-MacBeth regression to estimate factors’ risk premia.

In Proposition 1, steps 2–4 echo the time series and cross-sectional steps of the Bayesian Fama-

MacBeth in Bryzgalova et al. (2023a) for principal components of asset returns. Step 1 is the

additional step that models the joint dynamics of asset returns and gt. As Giglio and Xiu

(2021) argue, estimating factors’ risk premia using principal components of asset returns can

avoid the omitted variable bias and attenuation bias from measurement errors.

Finally, the traditional Fama-MacBeth regression suffers from weak identification (see, e.g.,

xt denote the regressors in gt’s equation and is the linear transformation of latent factors {vt−s}S̄s=0.
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Kan and Zhang (1999a,b)), particularly for macro factors. One contribution of our paper is

to use the factors’ cumulative loadings on asset returns, proxied by {ρ̃s}S̄s=0, to identify their

risk premia. In short, we will show in both simulation studies and real-world data that our

Bayesian estimates are not only robust to the weak identification but, more importantly, help

recover the risk premia of persistent macro factors.

2.2 Time-Varying Risk Premia and Their Term Structures

From an economic standpoint, a salient feature of macro-finance equilibrium models is the time

variation in risk premia. In this section, we extend our Bayesian framework for estimating time-

varying term structures and show that our unconditional formulation in the previous sections

is consistent even in the presence of time-varying risk premia.

We now require the SDF to price assets conditionally ; that is,

Et[mt+1 · ri,t+1] = 0, i = 1 . . . N, (17)

where Et denotes the conditional expectation at time t. Leveraging Hansen and Jagannathan

(1991), we focus on the conditional SDF projections on the space of returns as follows:

mt+1 = 1− b
⊤
t

(
rt+1 − Et[rt+1]

)
, where bt = covt(rt+1)

−1Et[rt+1]. (18)

The return process, as before, follows an approximate factor structure,

rt = µr + βṽṽt +wrt, ṽt ⊥ wrt, Et−1[wrt] = 0N , E[ṽt] = 0K , (19)

where, importantly, the priced systematic factors ṽt are potentially predictable. That is, ṽt =

µṽ,t−1 + &ṽt, where µṽ,t−1 ≡ Et−1 [ṽt]; hence µṽ,t−1 ⊥ &ṽt. We normalize the innovations to the

latent factors such that cov(&ṽt) = IK .

As previously, unconditional mean returns are partially explained by βṽ in equation (2). The

only additional assumption that we require is that the eigenvalues of cov(µṽ,t−1) are bounded.

This formulation yields the SDF9

mt+1 = 1− λ⊤
ṽ &ṽ,t+1 − µ

⊤
ṽt&ṽ,t+1, (20)

9Using equations (18) and (19), we can show that bt =
"
βṽβ

⊤
ṽ +Σwr

#−1"
α + βṽλṽ + βṽµṽ,t

#
and rt+1 −

Et[rt+1] = βṽ$ṽ,t+1 + wrt. Ignoring the unpriced idiosyncratic shocks wrt, we can represent the linear SDF
as mt+1 = 1 − α⊤"βṽβ

⊤
ṽ + Σwr

#−1
βṽ$ṽ,t+1 − (λṽ + µṽ,t)

⊤β⊤
ṽ

"
βṽβ

⊤
ṽ + Σwr

#−1
βṽ$ṽ,t+1. Following similar

derivations as in Appendix A.1, we can derive that mt+1 → 1− (λṽ + µṽ,t)
⊤$ṽ,t+1 as N → ∞.
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where µ
⊤
ṽt&ṽ,t+1 captures time-varying risk premia of asset return shocks.

Since the Wold representation requires the MA formulation to depend only on innovations,

the process for g is modified as follows:

gt = µg +
S̄!

s=0

ρ̃sη̃
⊤
g &ṽ,t−s# $% &
ft−s

+ wgt, η̃⊤
g η̃g = 1. (21)

That is, g is potentially driven by the innovations of the priced systematic factors ṽt. Hence,

defining the conditional risk premia analogously as the unconditional ones, we have that the

time-varying term structure of risk premia is given by

λS
g,t−1 = −covt−1(mt−1→t+S, gt−1→t+S)

1 + S
=

S!

τ=0

τ!

s=0

ρ̃sη
⊤
g (λṽ + µṽ,t−1)

1 + S
. (22)

Four important observations are in order. First, the dynamics of the conditional mean of

the priced systematic risks, µṽ,t−1, drive the time variation of the term structure of risk premia.

Second, since by construction E [µṽ,t−1] = 0, the implied unconditional term structure is the

same as that of equation (7), which was obtained with uncorrelated sources of systematic risk.

That is, the estimator derived in Section 2.1 is consistent even in the presence of time-varying

risk premia. Third, despite the added generality, the risk premia of g remain point-identified

due to the rotation invariance property of our setting.10 Fourth, to elicit the time-variation

of the term structure, we need to explicitly model the conditional mean process, that is, the

dynamics of ṽ.

We assume that ṽt are driven by some predictors, such as ṽt’s lags and p external variables

zt. Let xt = (ṽ⊤
t , z

⊤
t )

⊤, which follows a vector autoregressive (VAR) model of order q:11

xt = φ0 + φ1xt−1 + · · ·+ φqxt−q + &xt, &xt
iid∼ N (0K+p,Σ$x). (23)

The additional layer in equation (23) requires a minimal change to our Gibbs sampler to

characterize the posterior distribution. The only deviation from Section 2.1 is that vt follows

a VAR process rather than an IID normal distribution. In particular, using the canonical

diffuse prior π(φ0, . . . ,φq,Σ$x) ∝ |Σ$x|−
K+p+1

2 , the conditional posterior of the parameters in

10See Appendix A.2 for details.
11The VAR assumption is often adopted in past literature studying return predictability (e.g., Campbell and

Shiller (1988), Campbell and Vuolteenaho (2004), and Campbell et al. (2013)).
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this additional layer follows the usual normal-inverse-Wishart distribution and can be sampled

accordingly. We summarize the Gibbs sampler in Proposition A2 of Appendix A.2 and derive

it in Internet Appendix IA.1.2.

2.3 Risk Premia in Potentially Segmented Markets

The econometric framework in the previous subsection imposes market integration, which im-

plies that risk premia estimates are homogeneous across different asset markets. However,

market integration has been challenged by both theoretical and empirical work. Theoretically,

arbitrageurs are constrained by financial frictions (see, e.g., Shleifer and Vishny (1997), Gar-

leanu and Pedersen (2011), Gromb and Vayanos (2002, 2018), Duffie (2010), and Greenwood

et al. (2018)), so the law of one price can be violated across market segments. Empirically,

we have seen evidence suggesting market segmentation in (i) international stock and currency

markets and (ii) US equity and corporate bond markets.12

Motivated by past research, we extend the framework in Section 2.1 by allowing segmented

risk premia in unconditional models. We aim to test whether the factor gt carries the same risk

premium in two potentially segmented markets. There are two asset markets, such as equity

and corporate bond markets, with cross-sections of excess returns r
1
t and r

2
t . We assume the

approximate factor structure for two asset markets, so r
1
t and r

2
t are driven by possibly different

sets of latent factors ṽ
1
t and ṽ

2
t ,

r
j
t = µ

j
r + βj

ṽṽ
j
t +w

j
rt, ṽ

j
t

iid∼ N (0Kj
, IKj

), w
j
rt

iid∼ N (0Nj
,Σj

wr), and (24)

ṽ
1
t ⊥ w

1
t ⊥ w

2
t , ṽ

2
t ⊥ w

1
t ⊥ w

2
t , cov

(
ṽ
1
t , ṽ

2
t

)
= Σ1,2

ṽ . (25)

The conditions in equation (25) presume that idiosyncratic risks, w1
t and w

2
t , are uncorrelated

and orthogonal to all systematic shocks. However, we allow the systematic components to

correlate, so the correlation between ṽ
1
t and ṽ

2
t captures the comovement among asset returns

in the two markets.

12For the international stock and currency markets, see Brandt et al. (2006), Bakshi et al. (2018), and
Sandulescu et al. (2021). For corporate bond markets, see Schaefer and Strebulaev (2008), Kapadia and Pu
(2012), Choi and Kim (2018), and Kelly et al. (2023).
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Similar to equation (6), gt is driven by asset pricing shocks

gt =
S̄!

s=0

ρ̃sη̃
⊤
g ṽt−s + wgt, ṽt = (ṽ1,⊤

t , ṽ
2,⊤
t )⊤; (26)

therefore, the white noise innovation of gt, #g,t, is partially spanned by the contemporaneous ṽ1
t

and ṽ
2
t .

We further extend asset pricing models in equations (2)–(3) to the two-market scenario,

µ
j
r = αj + βj

ṽλ
j
ṽ, m

j
t = 1− (ṽj

t )
⊤λj

ṽ, (27)

where we assume that each asset’s pricing error, αj
n, is cross-sectionally IID and independent

of factor loadings βj
ṽ,n. Ex ante, we are agnostic as to whether the markets are integrated or

equivalently, whether the two SDFs m
1
t and m

2
t are perfectly correlated. Instead, we let the

data speak on the degree of segmentation.

The existing literature on market segmentation can be summarized into two strands. The

first one studies the correlation between the two SDFs and whether the SDF in one market can

explain asset returns in another market. (See, e.g., Chen and Knez (1995), Brandt et al. (2006),

Kelly et al. (2023), Sandulescu et al. (2021), and Sandulescu (2022)). Another strand of the

literature tests instead whether systematic factors carry the same risk premia across markets

(e.g., Choi and Kim (2018), Chaieb et al. (2021), and Patton and Weller (2022)).

Similar to the second strand of literature, we test whether gt’s risk premium, λS
g , is homo-

geneous in two asset markets. The risk premium of gt in market j is defined as

λS,j
g = −

cov(mj
t−1→t+S, gt−1→t+S)

1 + S
=

"S
τ=0

"τ
s=0 ρ̃s

1 + S
· η̃⊤

g cov(ṽt, ṽ
j
t )λ

j
ṽ. (28)

Formally, we aim to test whether the term structures of risk premia, λS,1
g − λS,2

g (0 ≤ S ≤ S̄),

are statistically different in two asset markets.

We again rely on the rotation invariance property with slightly different formulations to

identify risk premia. Let vj
t = Hjṽ

j
t , where j ∈ {1, 2} and Hj is a Kj ×Kj nonsingular matrix.

The covariance matrix of vj
t is Σj

v = HjH
⊤
j . While the rotation invariant representations of

r
j
t , gt, and m

j
t are similar to those in equation (8), we need to modify the representation of risk
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premia as follows:

λS,j
g =

"S
τ=0

"τ
s=0 ρ̃s

1 + S
· η̃⊤

g H
−1

# $% &
η⊤
g

cov(Hṽt,Hjṽ
j
t )# $% &

cov(vt,v
j
t )

(H⊤
j )

−1
H

−1
j# $% &

(Σj
v)−1

Hjλ
j
ṽ# $% &

λj
v

, (29)

where H is a block diagonal matrix that contains H1 and H2 in the main-diagonal blocks.

One may notice that the formula of λS,j
g in equation (28) differs from that of equation (7),

in which we use only the latent factors in asset market j in the estimation. Proposition 2 shows

that, at the population level, estimating λS,j
g separately for each market j still leads to identical

risk premia estimates as in equation (29).

Proposition 2. Suppose that assumptions described in equations (24)–(28) hold, and we esti-

mate gt’s risk premium separately in each market j using the following model:

gt =
S̄!

s=0

ρs(η
j
g)

⊤
v
j
t−s + w

j
gt, v

j
t ⊥ w

j
gt, j ∈ {1, 2}.

Then ηj
g = (Σj

v)
−1cov(vj

t ,vt)ηg and

λS,j
g =

"S
τ=0

"τ
s=0 ρs

1 + S
· (ηj

g)
⊤λj

v =

"S
τ=0

"τ
s=0 ρs

1 + S
· η⊤

g cov(vt,v
j
t )(Σ

j
v)

−1λj
v.

Internet Appendix IA.1.3 provides a simple proof. One may be tempted to estimate the

posterior distribution of λS,j
g separately for each market j, following the algorithm in Proposition

1. This would lead to unbiased risk premia estimates of λS,j
g . However, to provide proper credible

intervals for λS,1
g −λS,2

g , we need to jointly model cov(gt,v1
t ) and cov(gt,v

2
t ), captured by η⊤

g Σv.

This is due to the fact that, if systematic factors are correlated, posterior draws of cov(gt,v1
t )

and cov(gt,v
2
t ) (and, hence, λS,1

g and λS,2
g ) will not be independent. We revise the Gibbs sampler

in Proposition 1 and present the new estimator in Proposition 3.

Proposition 3 (Gibbs sampler of the two-market model). Under the assumptions described

in equations (24)–(28), the posterior distribution of model parameters is given by the following

conditional distributions:

(1) Conditional on the data {gt}Tt=1+S̄
and latent factors {vt}Tt=1, we sample (σ2

wg,ρg,ηg) in

gt’s equation using equations (IA.1)–(IA.3). To identify ρg and ηg, we normalize ηg after

each posterior draw such that η⊤
g ηg = 1.
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(2) In each asset market j, conditional on asset returns and latent factors, we update (Σj
wr,µ

j
r,β

j
v)

in r
j
t ’s equation using equations (IA.4)–(IA.5).

(3) In each asset market j, conditional on asset returns r
j
t and (µj

r,β
j
v,Σ

j
wr), we first update

the latent factors v
j
t using equation (14). Let vt = (v1,⊤

t ,v
2,⊤
t )⊤. We next use equations

(15)–(16) to update (µv,Σv).

(4) Based on the posterior draws from the time series steps (1)–(3), the posterior distribution

of λj
v is a Dirac distribution at (βj,⊤

v βj
v)

−1βj,⊤
v µ

j
r in each asset market j. In addition, the

posterior distribution of the term structure of gt’s risk premia in market j is also a Dirac

distribution at λS,j
g =

!S
τ=0

!τ
s=0 ρs

1+S
· η⊤

g cov(vt,v
j
t )(Σ

j
v)

−1λj
v.

Using the Gibbs sampler in Proposition 3, we can obtain the joint posterior distribution of

λS,1
g −λS,2

g . In addition, we can provide the posterior distributions of other economic quantities

that have been studied in the market segmentation literature, such as the correlation between

m
1
t and m

2
t and the generalized correlation between v

1
t and v

2
t .

Note that even if we do not reject the null hypothesis of λS,1
g = λS,2

g , it does not necessarily

imply that two asset markets are integrated. A counterexample is that gt, m
1
t , and m

2
t are

uncorrelated, which implies that λS,1
g = λS,2

g = 0 for all S. Given the abundant empirical

evidence on market segmentation, it is unsurprising that we observe a correlation between m
1
t

and m
2
t much lower than one. Instead, it is insightful to learn whether different economic risk

factors play similar or distinct roles in the SDFs of two different markets, as such an analysis

can shed light on how to build economic models with market segmentation.

One limitation of the approach above is the lack of time-varying risk premia but, as explained

in Section 2.2, our method is generalizable to time-varying term structures. In contrast, Chaieb

et al. (2021) and Patton and Weller (2022) allow for time-variation in segmented risk premia

and build on the classical Fama-MacBeth regression. In particular, Patton and Weller (2022)

devise a novel approach that simultaneously groups portfolio returns in several clusters and

estimates the time-varying risk premia based on the clustered market segments. Unlike their

paper, our estimates come from prespecified market segments, such as equity versus corporate

bonds.

Our framework is novel in two aspects compared to the literature on market segmentation.
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First, we begin with latent factors extracted from asset returns and regress observable factors

onto them to obtain risk premia, which accounts for the omitted variable bias. In contrast,

previous papers mostly rely on notable factor models, such as the three-factor model in Fama

and French (1993). In this sense, we extend Giglio and Xiu (2021) into testing segmented risk

premia. Furthermore, we add one crucial ingredient into our framework: the term structure

of risk premia. As we show in empirical studies, many macro factors have negligible con-

temporaneous correlations with the SDFs, so their risk premia are close to zeros across asset

markets. However, their long-horizon loadings and risk premia tend to be much more sizable,

thereby enabling a more meaningful and powerful statistical test against the null hypothesis of

homogeneous risk premia.

3 Simulations

This section studies the finite-sample properties of our Bayesian estimates outlined in Propo-

sitions 1 and 3 via Monte Carlo simulations. Throughout the simulations, we consider two

sample sizes, T ∈ {200, 600}, matching the quarterly and monthly frequencies, respectively.

First, we simulate asset returns from a five-factor model as in equation (1). In the bench-

mark one-market simulations, we use the cross-section of Fama-French 275 portfolios (FF275),

described in Internet Appendix IA.3. Factor loadings are calibrated as the eigenvectors cor-

responding to the five largest eigenvalues of the sample covariance matrix of asset returns,

denoted as β̂ṽ. Since we always normalize latent factors such that they have an identify covari-

ance matrix, β̂⊤
ṽ β̂ṽ is a diagonal matrix containing the largest five eigenvalues.

Using the same eigen-decomposition, we estimate the variance of idiosyncratic shocks for

each asset, denoted by σ̂2
irt, i = 1, . . . , N . We allow for a non-diagonal covariance matrix of

idiosyncratic shocks. Following Bai and Ng (2002), we simulate wirt as follows:

wirt = σ̂irt ·
-
eit +

J!

j ∕=0,j=−J

βei−j,t

.
, eit

iid∼ N (0,
1

1 + 2Jβ2
), (30)

where J = max{10, int
(
N/20

)
} and β = 0.1.13

13β cannot be too large since we need to ensure that the largest eigenvalue of Σ̂wr is less than the smallest
eigenvalue of β̂⊤

ṽ β̂ṽ. Otherwise, some common factors cannot be identified.
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Expected returns are simulated via equation (2). Risk premia are estimated using the

observed data, with the estimates denoted by λ̂ṽ. To ensure that α and βṽ are orthogonal in

simulations, we regress the estimated α on βṽ and extract the residual term, denoted by α̂.

With all the calibrated parameters, asset returns are simulated as follows:

rt = α̂+ β̂ṽλ̂ṽ + β̂ṽṽt +wrt, ṽt
iid∼ N (0K , IK).

We consider both strong and useless factors. We first describe how we simulate a strong

factor. For T = 200, we use nondurable consumption growth to estimate impulse responses,

denoted by {ρ̂s}S̄s=0, assuming the true S̄ = 8 (quarters). For T = 600, we use monthly industrial

production growth to obtain the monthly impulse responses, and the true S̄ is 16 (months).

With these parameters, we simulate the strong gt as follows:

gt = c ·
S̄!

s=0

ρ̂sft−s + wgt, ft =
1√
6
(2ṽ1t + ṽ3t + ṽ5t), wgt

iid∼ N (0, σ2
wg). (31)

Equation (31) implies that the common component ft relates to both large and small prin-

cipal components (PCs) of asset returns. The first PC, ṽ1t, captures more variation in ft than

smaller PCs, consistent with the patterns that we observe in the data. We vary c and σ2
wg to

consider different signal-to-noise ratios summarized by the time series fit R2
g = 1− σ2

wg/var(gt).

When c is larger, or σ2
wg is smaller, the factor gt correlates more with asset returns, so identifying

its risk premium is ceteris paribus less challenging.

For the weak factor, we simulate ft independently from a normal distribution, that is,

ft
iid∼ N (0, 1), so gt is orthogonal to asset returns in this case. Nevertheless, the simulated weak

factor gt is autocorrelated, so we can use it to explore whether the Newey and West (1987) type

of sandwich covariance matrix can deliver proper Bayesian credible intervals for factors with

an autocorrelated measurement error.

3.1 Simulations in One Asset Market

First, we study the finite-sample performance of our Bayesian estimates in Proposition 1. We

consider three distinct signal-to-noise ratios, that is, R
2
g ∈ {30%, 20%, 10%}. The pseudo-

true number of latent factors is five; however, we explore three different numbers of factors in

estimation, K ∈ {4, 5, 7}, to study the performance of our approach when we erroneously omit
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some priced factors (K = 4) or include redundant ones (K = 7).

Tables A1 and IA.III of the Internet Appendix report the empirical size of our test for

strong factors in 1,000 simulations. We estimate the term structure of gt’s risk premia using

S̄ = 12 for T = 200 and S̄ = 24 for T = 600. The performance of our Bayesian estimator is

reassuring as long as we include all priced latent factors in the estimation (K ≥ 5). Specifically,

our method provides appropriate credible intervals for gt’s risk premia, even in an environment

with a low signal-to-noise ratio and a small sample size. However, if we omit some priced factors

(e.g., the number of factors is four), our Bayesian estimates are biased because the simulated

gt loads on the fifth PC of asset returns. For example, we observe over-rejections in the panels

of four-factor models; hence, omitting the priced factor leads to the risk premia estimates not

centering around the pseudo-true values. Nevertheless, including more latent factors than in

the pseudo-true model has no sizable detrimental effect – suggesting that such an approach is

conservative.

Can we recover the priced information embedded in gt if we consider only the contempo-

raneous correlation between gt and asset returns? To answer this question, we estimate the

models with different numbers of lags S̄. Figure 1 plots the average correlation between the

true ft and its estimate, f̂t = η̂⊤
g v̂t. When we project gt only on the current asset return

shocks (S̄ = 0 in equation (9)), corr(ft, f̂t) is small, ranging from 0.4 to 0.65. As we include

more lagged asset pricing information in gt, this correlation coefficient significantly increases;

hence, including the lagged asset return information is essential in identifying the priced shock

driving the nontradable factor. Notably, the detrimental effect of including more lags than in

the pseudo-true specification is generally very small.

Figure 2 reports the power of rejecting zero risk premia of strong factors.14 The model

with S̄ = 0 has low test power, even at the monthly frequency (T = 600) with R
2
g = 30%. In

contrast, as we include more lagged latent factors in gt’s estimation, we considerably increase

the test power. Hence, our proposed MA representation of gt is the key to detecting significant

risk premia in persistent factors.

Including more factors (e.g., in the seven-factor models) tends to be a conservative strategy

since it delivers proper yet wider credible intervals of risk premia estimates. Nevertheless, it

14We report the power for R
2
g ∈ {10%, 20%} in Figure IA.1 of the Internet Appendix.
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(a) T = 200 (b) T = 600

Figure 1: Posterior median of correlation coefficients between true and estimated ft

The figure plots the average corr(f̂t, ft) in 1,000 simulations, where corr(f̂t, ft) quantifies the correlation between
the true ft and its estimate, f̂t = η̂⊤

g v̂t. We consider strong factors, with R
2
g ∈ {10%, 20%, 30%}, and two sample

sizes, T ∈ {200, 600}. In each simulated scenario, we estimate several model configurations with different
numbers of factors and different S̄.

comes at the cost of lowering the power of the test and the correlation between the true and

estimated ft. In the empirical application, we will explore whether our risk premia estimates

are robust to adding more latent factors, acknowledging that more factors will increase the

estimation uncertainty mechanically. Another critical parameter driving test power is the signal-

to-noise ratio, R2
g. As R

2
g increases, our tests command larger power to reject the null of zero

risk premia for priced factors.

In Tables IA.IV and IA.V of the Internet Appendix, we investigate useless factors that do

not correlate with asset returns. The useless factors are assumed to be persistent, and a larger

R
2
g corresponds to a more persistent process. Past literature (e.g., Kan and Zhang (1999a,b))

points out the fragility of Fama-MacBeth and GMM estimates of risk premia in the presence

of useless factors. It is worth noting that our Bayesian estimates do not suffer from this issue.

The Bayesian credible intervals of useless factors’ risk premia tend to be conservative, leading

to a slight under-rejections of zero risk premia in small sample.

One potential concern is that including many lags of multiple latent factors might lead to

severe overfitting of the data. To alleviate this concern, we report in the Internet Appendix (see

Table IA.VI) the posterior means of R2
g in 1,000 simulations. Our simulation results suggest

that the posterior means of R2
g are reasonably close to their pseudo-true values, even in a small
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(a) R2
g = 30% & T = 200 (b) R2

g = 30% & T = 600

Figure 2: Power of identifying strong factors

The figure plots the frequency of rejecting the null hypothesis H0 : λS̄
g = 0, based on the 90%, 95%, and 99%

credible intervals based on our Bayesian estimates in Proposition 1. λS̄
g is defined in equation (7). We consider

strong factors, with R
2
g = 30%, and two sample sizes, T ∈ {200, 600}. In each simulated scenario, we estimate

several model configurations with different numbers of factors and different S̄. The number of Monte Carlo
simulations is 1,000.

sample with 200 quarters. Hence, our approach does not lead to significantly inflated time

series fits for gt.

Moreover, we explore the performance of our Bayesian estimates for factors that correlate

with only the contemporaneous asset return shocks (i.e., S̄ = 0 in the true data-generating

process of gt), which fits the model configuration studied in Giglio and Xiu (2021). In particular,

we simulate priced factors using equation (31) by setting S̄ = 0 and tuning the value of c

such that R
2
g ∈ {10%, 20%, 30%}. The simulation results are in Table IA.VII of the Internet

Appendix. We study both the size and power of the test statistics based on (1) our Bayesian

estimation in Proposition 1 (setting S̄ = 0) and (2) the frequentist test statistic in Theorem 1

of Giglio and Xiu (2021). Overall, our Bayesian test has almost identical size and power to the

frequentist test in Giglio and Xiu (2021) in the special case of S̄ = 0.

Finally, in Appendix IA.2, we repeat our simulation study to examine the time-varying

risk premia and their term structures as described in Section 2.2. Overall, size and power, as

well as the correlation between filtered and calibrated latent processes (see Tables IA.X–IA.IX

in the Appendix), are similar to those reported in this section. Despite the significant added

generality, modeling the latent systematic risk drivers as following a VAR(1) process, we observe

only a minimal degree of attenuation bias and increased posterior uncertainty for the estimated
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term structure of risk premia.

3.2 Simulations in Two Markets

This subsection explores the empirical performance of Proposition 3 in testing heterogeneous

risk premia of gt in two asset markets. In addition to the equity cross-section, we consider the

cross-section of 40 corporate bond portfolios in Elkamhi, Jo, and Nozawa (2023) (EJN40).15

We assume a five-factor model for the corporate bond portfolios. We calibrate the EJN40

factor loadings, risk prices of latent factors, expected returns, and covariance matrix of returns’

idiosyncratic errors, from the data in a method similar to the calibration of FF275.

We calibrate the data-generating process of gt such that it is priced in FF275 but carries

a zero risk premium in EJN40. In FF275, we assume that the correlation between its latent

factors ṽ
1
t and ft is corr(ṽ1

t , ft) = η̂1
g = 1√

6
(2, 0, 1, 0, 1)⊤, where ft is the common component

driving asset returns and gt. Under this calibration, gt is priced in FF275. In contrast, we

assume that corr(ṽ2
t , ft) = η̂2

g = 1√
(λ2

ṽ,1)
2+(λ2

ṽ,3)
2
(λ2

ṽ,3, 0,−λ2
ṽ,1, 0, 0)

⊤, where λ2
ṽ,1 and λ2

ṽ,3 are,

respectively, the risk prices of ṽ
2
1t and ṽ

2
3t. This assumption ensures that gt is not priced in

EJN40. ṽ
1
t and ṽ

2
t are correlated, with correlation matrix (Σ̂(1,2)

ṽ ) calibrated using the real

data. Under these assumptions, we calibrate ηg and simulate ft as follows:

η̂g =

/

0 IK1 Σ̂
(1,2)
ṽ

Σ̂
(2,1)
ṽ IK2

1

2
−1

·

/

0η̂
1
g

η̂2
g

1

2 , ft =

3
η̂g

|η̂g|

4⊤
ṽt, and gt follows equation (31).

We study in Tables IA.XI and IA.XII of the Internet Appendix the posterior coverage of our

Bayesian credible intervals for λS,1
g − λS,2

g . Similar to the observations in the one-market sim-

ulations, omitting priced factors biases the risk premia estimates, leading to the over-rejection

of the null hypothesis. However, in the five- and seven-factor cases, our Bayesian estimates

provide valid credible intervals for the risk premium difference, even when the signal-to-noise

ratio is low. Figures 3 and IA.2 in the Internet Appendix further explore the power of rejecting

identical risk premia in two asset markets. Overall, the power of the test increases i) if we in-

clude more lags (larger S̄) and do not use redundant latent factors and ii) if the signal-to-noise

ratio (R2
g) is larger.

15We thank the authors for generously providing us with the dataset. The detailed description of corporate
bond data is in Internet Appendix IA.3.
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(a) R2
g = 30% & T = 200 (b) R2

g = 30% & T = 600

Figure 3: Power of identifying heterogeneous risk premia in two markets

The figure plots the frequency of rejecting the null hypothesis H0 : λS,1
g = λS,2

g based on the 90%, 95%, and
99% credible intervals based on our Bayesian estimates in Proposition 3. λS̄

g is defined in equation (7). We
consider strong factors, with R

2
g = 30%, and two sample sizes, T ∈ {200, 600}. In each simulated scenario, we

estimate several model configurations with different numbers of factors and different S̄. The number of Monte
Carlo simulations is 1,000.

4 Empirical Analysis

In this section, we apply our Bayesian framework to estimate the risk premia of both tradable

and nontradable factors. We aim to investigate whether factors are priced, the term structure

of the factors’ risk premia, and whether the factors command heterogeneous risk premia in two

potentially segmented asset markets.

4.1 Risk Premia Estimates in Equity Markets

We begin our empirical investigation with the risk premia in equity markets. Our analysis

relies on a large cross-section of FF275, covering the period between Q3 1963 and Q4 2019.

Throughout our paper, we standardize factors and returns to have unit variances per period.

Definition, sample periods, and data sources of factors and test assets can be found in Internet

Appendix IA.3.

To conduct our Bayesian estimation in Section 2, we need to determine the number of latent

factors, K. We adopt the selection approach proposed by Giglio and Xiu (2021)16 and estimate

16We follow the method in Internet Appendix I.1 of Giglio and Xiu (2021). That is, the selected number of
factors is equal to K̂ = argmin1≤j≤Kmax

$
N

−1
T

−1γj(R̄
⊤R̄) + j × φ(n, T )

%
− 1, where R̄ is a T ×N matrix of
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that the number of factors is five in FF275 at monthly or quarterly frequencies.

Moreover, we find that the first several latent factors explain most of the time series and

cross-sectional variations. In the time series dimension, the first five PCs account for more than

92% of time series variations at monthly and quarterly frequencies. Adding the 6th and 7th

PCs only marginally improves the time series fit. In the cross-sectional dimension, the five-,

six, and seven-factor models explain 73.7%, 73.8%, and 74.6% (70.0%, 73.7%, and 73.9%) of

cross-sectional variations in average returns at the monthly (quarterly) frequency. Therefore,

the statistical test in Giglio and Xiu (2021), as well as time series and cross-sectional fit,

indicate that the five-factor model is a reasonable benchmark; we thus adopt it in our baseline

estimations (but also conduct robustness checks with K = 6 or 7).

We first explore Bayesian risk premia estimates of some canonical tradable factors and

compare them with their time series average excess returns. Figure 4 plots the term structure

of risk premia for Carhart (1997) four factors, whose risk premia are estimated using Proposition

1 (S̄ = 24 and K = 5). These tradable factors tend to have almost flat term structures of risk

premia. The Bayesian point estimates (solid blue lines) have similar magnitudes as the time

series Sharpe ratios (grey dotted lines), which are covered by the 68% Bayesian credible intervals

(purple dotted lines). Therefore, our approach provides estimates very close to the time series

averages of tradable factors in both economic and statistical sense.

Next, we study other economic variables and report their risk premia estimates in Table

1. For quarterly (monthly) variables, we conduct the Bayesian estimation as in Proposition

1, using a lag of 12 quarters (24 months) in gt’s equations. Several empirical findings are

noteworthy.

First, many macro factors carry significant risk premia, including IP growth, GDP growth,

durable and nondurable consumption growth, dividend growth, and macro PCs 1, 2, and 4 in

the FRED-QD dataset of McCracken and Ng (2020).17 More interestingly, most of them have

increasing term structures of risk premia, as shown in Figure 5. At quarterly frequency (S = 0),

demeaned asset returns, γj(R̄⊤R̄) is the j-th eigenvalue of R̄⊤R̄, φ(n, T ) = 0.5× γ̂× (log(N)+ log(T ))(N− 1
2 +

T
− 1

2 ), and γ̂ is the median of the first Kmax eigenvalues of R̄⊤R̄. We set Kmax to 20.
17Dividend growth is the quarterly growth of the smoothed aggregate dividend payments made in the previous

12 months. We consider the smoothed annual dividends of the S&P 500 index in order to remove the mechanical
seasonality in the dividend payments.
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Figure 4: Term structure of risk premia: Carhart four factors

Term structure of risk premia estimates (in Sharpe ratio units) using Proposition 1. The risk premium at horizon
S (λS

g ) is defined in equation (7). The cross-section of test assets consists of 275 Fama-French characteristic-
sorted portfolios. We consider five-factor models for asset returns. We study monthly Carhart (1997) four
factors, whose risk premia are estimated using a lag of 24 months in gt’s equations. We include their in-sample
monthly Sharpe ratios (grey dotted lines). In addition to the point estimates, we report the 68% and 90%
Bayesian credible intervals, highlighted in pink and blue, respectively. Definition and data sources of factors
and test assets can be found in Appendix IA.3. Sample: July 1963 to December 2019.

most macroeconomic factors are weakly identified at best. However, risk premia carried by these

macro factors are significant and as large as that of the market at business cycle frequencies

(two–three years). Therefore, these macro factors are riskier from the perspective of long-term

than short-term investors. The only exception among the priced macro factors is macro PC2,

where we detect an almost flat term structure.

Second, the observations in Table 1 have direct implications for leading macro-finance mod-

els. Figure A1 of the Appendix plots the term structure of risk premia in the habit (Campbell
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(d) Nondurable consumption growth
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(e) Macro PC1 (FRED-QD)
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(f) Macro PC4 (FRED-QD)

Figure 5: Term structure of factor’s risk premia: Some priced macro factors
This figure plots the term structure of risk premia estimates using Proposition 1, where the risk premium
over S horizons (λS

g ) is defined in equation (7). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. In addition
to the point estimates, we show the 68% and 90% Bayesian credible intervals based on five-factor models,
highlighted in pink and blue, respectively. Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.
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Table 1: Factors’ risk premia: Five-factor models

Panel A. Quarterly variables, S̄ = 12 quarters
S = 0 2 4 6 8 10 12 R

2
g

AEM intermediary 0.083*** 0.078** 0.078** 0.061 0.044 0.024 0.015 14.4%
Capital share growth 0.008 0.010 0.006 0.001 -0.004 -0.007 -0.012 7.6%
GDP growth 0.020 0.065** 0.102** 0.125** 0.137** 0.149** 0.155** 23.4%
IP growth 0.005 0.066** 0.109** 0.133** 0.147** 0.153** 0.154** 37.5%
Durable consumption growth -0.011 0.074** 0.112*** 0.130*** 0.136*** 0.141*** 0.146*** 18.3%
Nondurable consumption growth 0.034*** 0.085*** 0.117*** 0.148*** 0.170*** 0.186*** 0.202*** 22.4%
Service consumption growth 0.004 0.009 0.015 0.021 0.026 0.030 0.032 9.9%
Nondurable + service 0.022 0.054 0.078 0.099 0.117 0.130 0.141 18.6%
Labor income growth 0.000 0.002 0.002 0.004 0.004 0.005 0.008 5.2%
Dividend growth of S&P500 0.005 0.017 0.046 0.096** 0.157*** 0.218*** 0.273*** 51.1%
Macro PC1 (FRED-QD) 0.014 0.068** 0.122** 0.166** 0.197** 0.224** 0.244** 47.9%
Macro PC2 (FRED-QD) 0.076** 0.115** 0.115** 0.099* 0.082 0.066 0.051 37.1%
Macro PC3 (FRED-QD) -0.002 -0.003 -0.003 -0.002 -0.001 -0.001 0.000 10.9%
Macro PC4 (FRED-QD) -0.126*** -0.144*** -0.189*** -0.240*** -0.285*** -0.327*** -0.363*** 47.3%
Macro PC5 (FRED-QD) 0.033 0.034 0.024 0.013 0.005 0.001 -0.002 29.3%

Panel B. Monthly variables, S̄ = 24 months
S = 0 4 8 12 16 20 24 R

2
g

Oil price change -0.006 -0.029 -0.043 -0.048 -0.051 -0.051 -0.049 7.1%
TED spread change 0.000 0.000 0.002 0.002 0.002 0.003 0.003 8.9%
Nontraded HKM intermediary 0.075** 0.079** 0.076** 0.073** 0.072** 0.070** 0.069** 60.9%
Traded HKM intermediary 0.090*** 0.091*** 0.087*** 0.082*** 0.080*** 0.077*** 0.076*** 71.0%
PS liquidity 0.039** 0.059** 0.069** 0.077** 0.086** 0.094** 0.100** 15.0%
∆ log(VIX) -0.112*** -0.068*** -0.053*** -0.041*** -0.036*** -0.031*** -0.027** 51.6%

The table reports Bayesian estimates of factors’ risk premia using Proposition 1, where the risk premia over
S horizons (λS

g ) are defined in equation (7). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider a five-factor model for asset returns. Panel A tabulates the es-
timates of quarterly factors, using a lag of 12 quarters in gt’s equations. Panel B tabulates the estimates of
monthly factors, using a lag of 24 months in estimation. We use Bayesian credible intervals to conduct hypothe-
sis testing: If the 90% (95%, 99%) credible interval of gt’s risk premium does not contain zero, the risk premium
estimate will be highlighted by * (**, ***). Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.

and Cochrane (1999)) and long-run risk frameworks (Bansal and Yaron (2004)).18 Specifically,

the habit model implies a flat term structure of consumption risk premia, whereas it is upward-

sloping in the long-run risk model. With respect to dividend growth, we consider the quarterly

growth of the smoothed dividend payment (defined as the aggregate dividend payments made

in the previous 12 months) to be consistent with our empirical analysis. Even though both

models predict upward-sloping term structures of risk premia for smoothed dividend growth,

the magnitudes and slopes are much more sizable in the long-run risk model than in the habit

model. Overall, the long-run risk model tends to be more consistent with our estimates for

nondurable consumption and dividend growth.

Third, researchers often fail to identify priced macro risks when studying only the contem-

18We discuss the calibrations in detail in Internet Appendix IA.4.
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porary correlations between asset returns and macro factors, even when extracting their AR(1)

innovations. The first column of Table 1, and Figure 5, indicate that the risk premia of GDP

growth, IP growth, durable consumption growth, dividend growth, and macro PC1 are tiny

and insignificant at S = 0. One concern of the analysis in Table 1 and Figure 5 is that we

include many lags in the estimation, leading to noisier risk premia estimates. To alleviate this

concern we repeat the analysis using S̄ = 0. Panel A of Table 2 shows that among the eight

priced macro factors mentioned above, only macro PC2 and PC4 carry significant risk premia

in this case. Panel B further extracts the AR(1) innovations in macro factors and estimates

their risk premia by setting S̄ = 0. Similar to Panel A, we observe only macro PC2, PC4,

and dividend growth (significant only in the seven-factor model) being priced, while all other

macro factors have negligible and insignificant risk premia. Overall, these findings confirm our

simulation based evidence that the long MA representation is crucial for correctly recovering

the risk premia of persistent factors.

But why does including lagged asset return shocks in gt’s equation enable us to identify

the priced risk? The time series fit, R2
g, sheds light on this issue. For most traditional macro

factors, R2
g values in Table 1 are considerably larger than those in Table 2. For instance, the

contemporaneous five factors of asset returns explain only 2.8% of time series variations in

macro PC1, but its R2
g increases to 47.9% in the estimation with S̄ = 12 quarters, hence greatly

enhancing the signal-to-noise ratio and our ability to identify the risk premia.

Many macro variables are, in nature, persistent. The shocks to these variables are small

per period, but the cumulative impulse responses can be sizable. Although the AR(1) model

is often used in both empirical and theoretical works, extracting the AR(1) innovations is

insufficient to recover the risk premia of many macro variables, either because the AR(1) shocks

are inconsequential or the AR(1) assumption is questionable. Differently, the MA representation

does not take a stance on their exact data-generating processes. We use both the current and

lagged asset return innovations to extract the common priced component driving macro states

and asset returns, hence recovering the risk premia.

Fourth, intermediary factors are priced in the cross-section. Specifically, Adrian, Etula, and

Muir (2014) (AEM) intermediary factor commands a significantly positive risk premium at short

horizons (S ≤ 4 quarters). The nontraded He, Kelly, and Manela (2017) (HKM) intermediary
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Table 2: Factors’ risk premia: S̄ = 0

E[λg | D] E[R2
g | D]

Number of factors: 5 6 7 5 6 7
Panel A. Original factors

AEM intermediary 0.138*** 0.176*** 0.176*** 10.4% 12.2% 12.5%
Capital share growth 0.030 0.013 0.010 1.8% 2.7% 2.8%
GDP growth -0.004 0.007 0.009 4.2% 4.3% 4.3%
IP growth -0.031 0.005 0.005 2.9% 4.3% 4.3%
Durable consumption growth -0.024 -0.013 -0.014 7.7% 7.9% 8.2%
Nondurable consumption growth 0.030 0.047 0.047 3.7% 4.0% 4.1%
Service consumption growth 0.007 0.051 0.052 4.0% 6.4% 6.5%
Nondurable + service 0.021 0.061 0.061 4.0% 5.9% 6.0%
Labor income growth -0.010 0.033 0.026 1.5% 3.8% 8.7%
Dividend growth of S&P500 -0.004 -0.018 -0.013 5.0% 5.1% 6.8%
Macro PC1 (FRED-QD) -0.013 0.020 0.024 2.8% 3.9% 4.6%
Macro PC2 (FRED-QD) 0.114*** 0.087* 0.082* 21.3% 22.1% 23.0%
Macro PC3 (FRED-QD) -0.053 -0.068* -0.068* 4.3% 4.7% 4.8%
Macro PC4 (FRED-QD) -0.138*** -0.150*** -0.152*** 25.1% 25.4% 26.6%
Macro PC5 (FRED-QD) 0.040 0.078* 0.073 24.8% 25.5% 27.9%
Oil price change -0.021 -0.022 -0.021 2.6% 4.5% 4.5%
TED spread change -0.025 -0.029 -0.032 6.8% 10.9% 17.4%
Nontraded HKM intermediary 0.078** 0.081** 0.080** 60.4% 61.0% 61.2%
Traded HKM intermediary 0.088** 0.092*** 0.091*** 70.3% 71.0% 71.2%
PS liquidity 0.051*** 0.049*** 0.052*** 11.9% 12.2% 12.9%
∆ log(VIX) -0.100*** -0.100*** -0.099*** 42.8% 43.0% 43.1%

Panel B. AR(1) shocks of macro factors
GDP growth -0.004 0.007 0.009 4.2% 4.3% 4.3%
IP growth -0.025 -0.001 -0.003 3.6% 4.3% 4.9%
Durable consumption growth -0.022 -0.010 -0.012 7.4% 7.6% 7.8%
Nondurable consumption growth 0.030 0.048 0.048 3.7% 4.1% 4.1%
Service consumption growth 0.008 0.054 0.055 3.7% 6.3% 6.4%
Nondurable + service 0.021 0.064 0.065 3.7% 6.0% 6.0%
Labor income growth -0.011 0.031 0.024 1.4% 3.7% 8.2%
Dividend growth of SP500 0.039 0.063 0.067* 2.4% 3.6% 5.2%
Macro PC1 (FRED-QD) 0.002 0.006 0.003 6.1% 6.1% 7.1%
Macro PC2 (FRED-QD) 0.080* 0.051 0.046 23.9% 24.8% 27.6%
Macro PC3 (FRED-QD) -0.043 -0.044 -0.047 3.3% 3.3% 4.1%
Macro PC4 (FRED-QD) -0.130*** -0.142*** -0.147*** 26.8% 26.9% 28.7%
Macro PC5 (FRED-QD) 0.026 0.038 0.032 33.8% 33.1% 37.2%
Oil price change -0.030 -0.031 -0.030 3.2% 4.8% 4.8%

The table reports Bayesian estimates of (1) factors’ risk premia and (2) time series fit R2
g. Panel A considers the

original variables that are identical to those in Tables 1 and IA.XIV, whereas Panel B studies the AR(1) shocks
of some macro factors. We estimate model parameters using Proposition 1 by setting S̄ = 0. The cross-section of
test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider five-, six-, and seven-factor
models for asset returns. For risk premia estimates, we use Bayesian credible intervals to conduct hypothesis
testing: If the 90% (95%, 99%) credible interval of gt’s risk premium does not contain zero, the risk premium
estimate will be highlighted by * (**, ***). Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.
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factor is strongly identified, with R
2
g = 62%, and its risk premia estimates are significantly

positive at any horizon. Interestingly, the nontraded HKM factor commands almost the same

risk premium as its tradable version, whose risk premium is almost identical to its time series

average. Comparing the R
2
g of AEM and HKM factors in Table 1 with those in Table 2, we find

that lagged asset return innovations are not essential in driving intermediary factors.

Fourth, the term structure of VIX risk premia (more precisely, their absolute values) is

downward-sloping. The mimicking portfolio hedging against monthly VIX changes earns a

sizable risk premium of −0.11, but the two-year risk premium declines to only −0.03, although

still significant. This observation is fully consistent with the previous literature (Eraker and

Wu (2014), Dew-Becker et al. (2017), and Johnson (2017)), which estimates VIX risk premia

using derivative contracts with different expiration dates.

Perhaps the most surprising empirical finding is that macro variables carry much more

sizeable risk premia at long horizons (S = 8 to 12 quarters) than at quarterly frequency (S = 0).

What is the economic intuition behind this phenomenon? To help answer this question, we plot

in Figure 6 the MA component spanned by six priced macro variables and asset return factors,

that is,
"S̄

s=0 ρsη
⊤
g vt−s. Strikingly, the MA components of all these six macro variables present

clear business cycle patterns. The variables in Panels (a)–(e) are countercyclical, consistent

with their positive risk premia: Long-horizon investors hedge against lower realizations of these

macro factors. In contrast, macro PC4 is procyclical. As Panel (f) indicates, investors are

averse to the spikes in this macro factor, so its risk premium is significantly negative.

Are the MA components of the priced macro factors similar? Table 3 shows that macro PC1,

GDP growth, and IP growth have highly correlated MA components, often with correlation

coefficients larger than 0.85, and their correlation with nondurable consumption is 70% or

more. Nevertheless, the MA components of other macro variables, although correlated, seem

to contain considerably independent information. In short, we detect some string commonality

in the priced component of these macro variables, but they are not all alike.19

Which principal components of asset returns drive gt? Table IA.XIII in the Internet Ap-

pendix reports the posterior means of the squared correlation20 between the common component

19Table IA.XV and Figure IA.5 in the Internet Appendix repeat these analyses in six- and seven-factor
models, showing very similar empirical patterns.

20We do not report the correlation since we cannot identify the sign of η̂⊤
g v̂t.
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Figure 6: Moving average components of some macro factors

This figure plots the time series of (posterior means of) moving average components spanned by asset returns’ la-
tent factors:

!S̄
s=0 ρsη

⊤
g vt−s, with S̄ = 12 quarters. The cross-section of test assets consists of 275 Fama-French

characteristic-sorted portfolios. We consider five-factor models for asset returns. Additional plots (considering
six- and seven-factor models, other macro factors) are in Table IA.5. Definition and data sources of factors and
test assets can be found in Internet Appendix IA.3. Sample: Q3 1963 to Q4 2019.
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Table 3: Are MA components of macro factors similar in five-factor models?

GDP growth IP growth Durable Nondurable Service Dividend Macro PC1 Macro PC2 Macro PC4
GDP growth 1.00 0.90 0.69 0.70 0.62 0.16 0.90 0.43 -0.45
IP growth 0.90 1.00 0.73 0.70 0.58 0.04 0.85 0.41 -0.25
Durable 0.69 0.73 1.00 0.65 0.37 0.14 0.62 0.33 -0.19
Nondurable 0.70 0.70 0.65 1.00 0.60 0.32 0.73 0.34 -0.55
Service 0.62 0.58 0.37 0.60 1.00 0.27 0.73 0.14 -0.44
Dividend 0.16 0.04 0.14 0.32 0.27 1.00 0.38 -0.39 -0.59
Macro PC1 0.90 0.85 0.62 0.73 0.73 0.38 1.00 0.15 -0.51
Macro PC2 0.43 0.41 0.33 0.34 0.14 -0.39 0.15 1.00 -0.19
Macro PC4 -0.45 -0.25 -0.19 -0.55 -0.44 -0.59 -0.51 -0.19 1.00

The table reports the correlation among the moving average components spanned by asset returns’ latent
factors,

!S̄
s=0 ρsη

⊤
g vt−s, with S̄ = 12 quarters. The cross-section of test assets consists of 275 Fama-French

characteristic-sorted portfolios. We consider five-factor models for asset returns. Definition and data sources of
factors and test assets can be found in Internet Appendix IA.3.

estimates, η̂⊤
g v̂t, and the first seven PCs of asset returns, where the posterior distributions of

η̂g and v̂t are estimated using a seven-factor model. The first PC of asset returns is the most

important, particularly for the priced factors. Specifically, PC1 of asset returns accounts for

65–90% of the time series variations in the common components of GDP growth, IP growth,

nondurable consumption growth, dividend growth, macro PCs 1, 2, 4, HKM intermediary fac-

tors, the liquidity factor, and the VIX changes. Overall, the common component is spanned

mainly by the first five PCs of asset returns.

However, several variables are closely related to PC6 and PC7 of equity portfolio returns. For

example, these two small PCs explain 44% of the common component in labor income growth.

Furthermore, PC6 of asset returns accounts for 24%, 38%, and 10% of common components

in capital share growth, macro PC3, and oil price change. While labor income growth, capital

share growth, and macro PC3 are not priced in six- and seven-factor models, the risk premia

estimates of oil price change become significantly negative after we include PC6 of asset returns.

Therefore, it is important to conduct robustness checks by considering different numbers of

latent factors. We report the term structure of risk premia estimates based on six- and seven-

factor models in the Internet Appendix. (See Table IA.XIV and Figures IA.3 and IA.4) The

point estimates of most factors are nearly unchanged, but Bayesian credible intervals often

become wider, consistent with the observations in simulation studies.
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4.2 Time-Varying Term Structure of Macroeconomic Risk Premia

We now turn to the analysis of the time variation in the term structure of macroeconomic

factors’ risk premia, applying the method in Section 2.2. Since the dynamics of latent factors, vt,

determines the time variation in factor risk premia, we first investigate whether the five largest

PCs of asset returns can be predicted by their one-period lags and other external economic

variables. Following past literature (e.g., Campbell and Vuolteenaho (2004), Campbell et al.

(2013), and Gagliardini et al. (2016)), we include as external predictors the price-earning ratio

as well as term, default, and value spreads.

Table IA.XVI in the Internet Appendix shows that external predictors have limited pre-

dictive power. In Panel A, we consider only the four external predictors. Although value and

term spread can predict PC1 and PC5 to a certain extent, the adjusted R
2s are very smalll

or even negative in these specifications. We further include the lagged return PCs in Panel B

and observe economically sizable predictability. For example, the adjusted R
2 is above 6% for

PC4 at both monthly and quarterly frequencies. In contrast, all external predictors are almost

inessential in these regressions. Therefore, using them to model time-varying risk premia will

introduce huge estimation noise, which can lead to attenuation bias in risk premia estimates.

In the main text, we focus on the VAR(1) assumption for the latent factors without those

four external economic variables. We report the corresponding empirical results with external

predictors in the Internet Appendix.

Using the VAR(1) formulation for the latent systematic factors, we estimate the term struc-

ture of unconditional risk premia for the same set of variables as in Table 1. Figure IA.6 shows

the empirical results, in which the blue lines and shaded areas present the estimates based on

the conditional models. For comparison, we also include the previous estimates (the purple

lines and areas) in Table 1 based on the unconditional models. The point estimates are almost

identical in both conditional and unconditional models, although we occasionally detect some

minor attenuations and wider confidence intervals due to the additional parameters in the VAR

system. Overall, the risk premia estimates based on the unconditional models are able to deliver

consistent estimates even if the true model is time-varying.21

21In the Internet Appendix, we further include the four external variables mentioned above to model the
dynamics of latent factors, vt. Figures IA.7–IA.11 confirm that the term structures of unconditional risk premia

38



−0.4

0.0

0.4

0.8

1970 1980 1990 2000 2010 2020
date

λ g
tS

1Q 1Y 2Y 3Y NBER Recession

(a) Nondurable Consumption Growth

−1.0

−0.5

0.0

0.5

1970 1980 1990 2000 2010 2020
date

λ g
tS

1Q 1Y 2Y 3Y NBER Recession

(b) GDP Growth

−1.0

−0.5

0.0

0.5

1.0

1970 1980 1990 2000 2010 2020
date

λ g
tS

1Q 1Y 2Y 3Y NBER Recession

(c) Industrial Production Growth

Figure 7: Time-varying term structure of macroeconomic factor’s risk premia
This figure plots the time-varying term structure of risk premia following the method in Section 2.2 and a
VAR(1) for the latent systematic risk factors. Estimates are based on the composite cross-section of 275 Fama-
French characteristic-sorted portfolios. Definition and data sources of factors and test assets can be found in
Internet Appendix IA.3.
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Figure 8: Time-varying slope of the term structure of macroeconomic factor’s risk premia
This figure plots the time-varying slope of the term structure of risk premia following the method in Section 2.2
and a VAR(1) for the latent systematic risk factors. The slope is defined as the difference between three-year and
one-quarter conditional risk premia estimates. Blue solid lines show the posterior medians of the slopes, with the
90% posterior credible intervals denoted by the light blue shaded areas. Estimates are based on the composite
cross-section of 275 Fama-French characteristic-sorted portfolios. Definition and data sources of factors and test
assets can be found in the Internet Appendix IA.3.
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Having established the robustness of the unconditional risk premia estimates, we proceed

to explore the time-varying term structure of macro risk premia. Figure 7 reports the posterior

means of the risk premia at one-quarter to three-year horizons for nondurable consumption,

GDP, and industrial production growths (in Panels (a)–(c), respectively). The figure highlights

a clear commonality in the business cycle behavior of the term structures of macroeconomic

risk premia. Three observations are noteworthy.

First, the average level is strongly procyclical, with larger risk premia during expansion

and significantly reduced, or even negative, during recession episodes. Second, as Figure 8

demonstrates, the term structure’s slopes is also strongly procyclical, with the longer maturities

characterized by substantially larger time variation over the business cycle and extremely high

conditional Sharpe ratios immediately before recessions and at times of market crash episodes.

Interestingly, the pattern of inversion of the term structure of macro risks over the business

cycle and their unconditional positive slopes mirror the findings of Bansal et al. (2021) for

dividend strips with a two-state regime switching model estimated over a much smaller sample

(2004:12–2017:01), as well as those obtained in Giglio et al. (2023) with an affine model for

equity prices, dividends, and returns. These constitute two important external validations for

our method and findings. Although our paper does not directly study the pricing and term

structure of dividend strips, we can examine the risk premia of real dividend growth of the

S&P500 index. As Panel (b) of Figures IA.12–IA.13 show, the slope of the term structure of

dividend growth turns from positive to negative during the 2008 global financial crisis, consistent

with the regime shift documented in the previous literature.

Third, short maturity (e.g., one-quarter) macro risk premia exhibit very small time varia-

tion, confirming that macroeconomic variables are weak factors at best at short horizons, even

conditionally.

4.3 Segmented Risk Premia in Equity and Corporate Bond Markets

Equity and corporate bond securities are contingent claims on the same firms; hence, they

should be jointly priced in the cross-section. (See Merton (1974)) If these two markets are

fully integrated, we should observe that the same sources of risk carry identical compensations.

estimates are robust to different external variables.
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However, financial frictions (e.g., slow-moving capital and rigid investment mandates) can lead

to segmented risk premia of the same fundamental risk. In this subsection, we aim to answer

the following question: Does the same factor carry significantly distinct risk premia in equity

and corporate bond markets?

To address this question, we study the cross-section of 40 corporate bond portfolios in

EJN40. The data sample of asset returns in this subsection ranges from February 1977 (the

start date of corporate bond portfolios sorted by reversal) to December 2019. For quarterly

variables, the sample starts from Q2 1977. More details about the corporate bond portfolios and

their sources can be found in Internet Appendix IA.3. One caveat is that the point estimates

of risk premia estimates in FF275 in this section are slightly different from those in Section 4.1

due to the smaller data sample.

Using the selection procedure of Giglio and Xiu (2021), we estimate that the number of

latent factors is three in EJN40. We take a more conservative approach by studying five-,

six-, and seven-factor models for both FF275 and EJN40. How (dis)integrated are equity and

corporate bond markets? We estimate the generalized correlations among the largest five PCs

of FF275 and EJN40 at the monthly frequency, finding that they are around 0.66, 0.30, 0.22,

0.09, and 0.06.22 The low correlation coefficients (considerably smaller than ones) indicate that

equity and corporate bond markets are mostly driven by different sources of systematic factors

and, hence, disintegrated to a large extent.

Low correlations between equity and corporate bond systematic factors are not equivalent

to segmented risk premia for every factor. Therefore, we formally test whether the same factor

carries the same risk premium in these two markets and report in Table 4 and Figure 923 the

estimates of risk premia using Proposition 3. The estimation is based on five-factor models

for each of these two markets. For each factor, we report three quantities: the risk premia in

FF275 and EJN40, as well as their difference.

We detect significantly segmented risk premia for several factors. For example, macro PC2

has positive yet insignificant risk premia in FF275, but it is priced in corporate bond portfolios.

22Suppose that v̂1
t and v̂2

t are the top five PCs of FF275 and EJN40. The generalized correlations between
v̂1
t and v̂2

t are defined as the squared root of the eigenvalues of cov(v̂1
t , v̂

2
t )

⊤cov(v̂1
t )

−1cov(v̂1
t , v̂

2
t )cov(v̂

2
t )

−1. At
the quarterly frequency, the generalized correlation coefficients are 0.78, 0.45, 0.29, 0.17, and 0.04.

23Plots for factors omitted from this figure can be found in Figures IA.14–IA.15 of the Internet Appendix.
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As Table 4 demonstrates, its risk premia are significantly positive and upward-sloping in EJN40.

The TED spread change, a proxy for funding liquidity shocks, has a flat term structure of

significantly negative risk premia in EJN40, but it is not priced in FF275, which implies that

funding liquidity is more salient in corporate bond markets.

The risk premia estimates of some factors even have opposite signs. The oil price change

is one such example. While equity markets hedge against positive oil price changes, corporate

bonds are not effective hedging tools since they tend to perform poorly as oil prices increase.

Another example is macro PC3, which commands positive (negative) risk premia in FF275

(EJN40). Although the risk premia estimates are insignificant in both markets, the hypothesis

of homogeneous risk premium is strongly rejected.

Interestingly, many factors carry similar term structures of risk premia in these two markets,

both economically and statistically. Examples include GDP growth, IP growth, durable and

nondurable consumption growth, dividend growth, macro PC1 and PC4, the HKM intermediary

factors, and the VIX changes.24 Remarkably, even though VIX is constructed using equity

information (the risk-neutral variance of the equity index), it commands comparable risk premia

in corporate bond markets.25

Table IA.XVII of the Internet Appendix repeats the same analysis using S̄ = 0. We em-

phasize three key findings. First, most macro variables (e.g., durable, nondurable, service

consumption, and IP and GDP growth) do not carry significant risk premia in this table. This

observation is consistent with our previous finding in the single market. Second, risk premia

estimates based on contemporaneous correlations are sometimes counterintuitive. For instance,

macro PC1, estimated using five-factor models, commands a significantly negative risk pre-

mium in EJN40. However, macro PC1 is countercyclical; hence, we would expect a positive

risk premium, as seen in Table 4. Similarly, risk premia estimates of other countercyclical

macro variables are mostly negative (yet insignificant) in corporate bond markets. Finally, fac-

24Service consumption growth has an upward-sloping term structure of significantly positive risk premia in
FF275. This finding contradicts the previous observation based on the full sample (Q3 1963–Q4 2019), where
the risk premium of service consumption growth is negligible. The inconsistency is likely reconciled by the fact
that the relative importance of service industries has been increasing in the later subsample.

25We perform robustness checks by studying six- and seven-factor models and report the related results in
Tables IA.XIX–IA.XX of the Internet Appendix. Overall, the point estimates of risk premia are similar to the
results based on five-factor models, although with slightly wider credible intervals.
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Table 4: Segmented markets: Difference of risk premia in equity and corporate bonds
Panel A. Quarterly variables, S̄ = 12 quarters

S = 0 2 4 6 8 10 12 R
2
g

AEM intermediary FF275 0.046 0.053 0.054 0.046 0.034 0.023 0.020 16.9%
EJN40 0.000 0.001 0.001 0.001 0.001 0.000 0.001
Diff 0.044 0.052 0.053 0.044 0.032 0.021 0.018

Capital share growth FF275 0.003 0.001 0.001 0.001 0.001 0.001 0.001 20.9%
EJN40 0.003 0.001 0.001 0.001 0.000 0.000 0.000
Diff 0.000 0.000 0.000 0.000 0.000 0.001 0.001

GDP growth FF275 -0.022 0.003 0.036 0.061 0.079 0.094 0.105 40.8%
EJN40 -0.033 0.006 0.052 0.086* 0.108** 0.126** 0.141**
Diff 0.005 0.000 -0.006 -0.013 -0.018 -0.023 -0.027

IP growth FF275 0.000 0.047 0.080 0.104 0.119 0.129 0.137 46.9%
EJN40 0.000 0.068** 0.117** 0.152** 0.173** 0.186** 0.197**
Diff 0.000 -0.020 -0.037 -0.048 -0.055 -0.060 -0.063

Durable consumption growth FF275 -0.059** 0.030 0.070** 0.095*** 0.118*** 0.135*** 0.147*** 36.3%
EJN40 -0.041* 0.021 0.048** 0.066** 0.082** 0.094** 0.103**
Diff -0.015 0.007 0.019 0.026 0.033 0.039 0.042

Nondurable consumption growth FF275 0.013 0.056 0.098* 0.143** 0.175** 0.203** 0.231** 29.4%
EJN40 0.007 0.034* 0.059** 0.086** 0.105** 0.121** 0.139**
Diff 0.003 0.019 0.037 0.055 0.070 0.082 0.093

Service consumption growth FF275 0.028 0.103* 0.149* 0.182* 0.211** 0.248** 0.284** 29.1%
EJN40 0.007 0.035 0.052 0.064 0.075 0.088 0.101
Diff 0.016 0.061 0.090 0.110 0.127 0.149 0.172

Nondurable + service FF275 0.030 0.106** 0.166*** 0.218*** 0.260*** 0.301*** 0.344*** 36.6%
EJN40 0.013 0.050* 0.080** 0.106** 0.125** 0.146** 0.165**
Diff 0.013 0.050 0.080 0.108 0.130 0.152 0.174

Labor income growth FF275 -0.023 -0.006 0.000 0.007 0.015 0.021 0.028 20.2%
EJN40 -0.003 -0.001 0.000 0.001 0.002 0.003 0.004
Diff -0.016 -0.004 0.000 0.005 0.011 0.016 0.024

Dividend growth of S&P500 FF275 0.000 0.001 0.008 0.027 0.052 0.078 0.104 61.5%
EJN40 0.000 0.001 0.010 0.032 0.062 0.094 0.124
Diff 0.000 0.001 0.000 -0.001 -0.007 -0.012 -0.018

Macro PC1 (FRED-QD) FF275 0.023 0.093* 0.159* 0.217* 0.263* 0.300* 0.332* 64.6%
EJN40 0.021 0.085** 0.148** 0.202** 0.245** 0.280** 0.310**
Diff 0.001 0.005 0.010 0.013 0.016 0.018 0.020

Macro PC2 (FRED-QD) FF275 0.009 0.026 0.032 0.036 0.037 0.038 0.039 70.1%
EJN40 0.075*** 0.204*** 0.256*** 0.278*** 0.289*** 0.298*** 0.301***
Diff -0.065** -0.175** -0.221** -0.242** -0.252** -0.260** -0.263**

Macro PC3 (FRED-QD) FF275 0.000 -0.030 -0.064 -0.101 -0.134 -0.164 -0.191 43.2%
EJN40 0.001 0.021 0.042 0.061 0.079 0.094 0.107
Diff -0.002 -0.059 -0.115 -0.165* -0.211* -0.253* -0.288*

Macro PC4 (FRED-QD) FF275 -0.091** -0.104** -0.135** -0.175** -0.211** -0.246** -0.280** 50.2%
EJN40 -0.080** -0.093** -0.122** -0.156** -0.190** -0.224** -0.253**
Diff -0.008 -0.009 -0.012 -0.016 -0.021 -0.024 -0.028

Macro PC5 (FRED-QD) FF275 0.103** 0.132** 0.128* 0.116* 0.105 0.097 0.087 49.6%
EJN40 0.079* 0.100* 0.095* 0.087 0.077 0.070 0.063
Diff 0.023 0.029 0.027 0.024 0.019 0.015 0.012

Panel B. Monthly variables, S̄ = 24 months
S = 0 4 8 12 16 20 24 R

2
g

Oil price change FF275 -0.020 -0.044* -0.048* -0.049* -0.052* -0.056* -0.058* 17.8%
EJN40 0.021 0.046 0.049 0.049 0.053 0.056 0.059
Diff -0.042** -0.090*** -0.096*** -0.099*** -0.105*** -0.111*** -0.117***

TED spread change FF275 0.013 0.014 0.014 0.014 0.015 0.015 0.015 20.7%
EJN40 -0.099** -0.103** -0.108** -0.108** -0.111** -0.113** -0.117**
Diff 0.114** 0.117** 0.123** 0.124** 0.126** 0.128** 0.133**

Nontraded HKM intermediary FF275 0.095*** 0.098*** 0.096*** 0.093*** 0.090*** 0.087*** 0.086*** 62.6%
EJN40 0.081*** 0.084*** 0.081*** 0.079*** 0.077*** 0.075*** 0.074***
Diff 0.013 0.013 0.013 0.013 0.013 0.012 0.012

Traded HKM intermediary FF275 0.111*** 0.115*** 0.111*** 0.106*** 0.102*** 0.099*** 0.096*** 72.0%
EJN40 0.087*** 0.091*** 0.087*** 0.083*** 0.080*** 0.078*** 0.076***
Diff 0.024 0.025 0.023 0.022 0.022 0.021 0.021

PS liquidity FF275 0.022 0.027 0.034 0.038 0.043 0.047 0.049 10.7%
EJN40 0.015 0.018 0.023 0.025 0.029 0.032 0.033
Diff 0.006 0.007 0.009 0.011 0.013 0.014 0.015

∆ log(VIX) FF275 -0.110*** -0.065*** -0.051*** -0.039*** -0.033*** -0.028*** -0.025** 52.4%
EJN40 -0.057* -0.035* -0.027* -0.021* -0.017* -0.015* -0.013*
Diff -0.051 -0.031 -0.024 -0.018 -0.015 -0.013 -0.011

The table reports Bayesian estimates of segmented risk premia using Proposition 3, where the risk premia over
S horizons (λS

g ) is defined in equation (28). The first cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios (FF275), whereas the second cross-section contains 40 corporate bond portfolios
(EJN40) in Elkamhi et al. (2023). We also report the risk premia differences in these two asset markets. We
consider a five-factor model for both equity and corporate bond returns.
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(a) Oil price: FF275
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(d) TEDar1: FF275
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(f) TEDar1: Difference

0 5 10 15 20

S

λ gS

−0
.0

1
 0

.0
4

 0
.1

0
 0

.1
5

 0
.2

0

90% CIs 68% CIs

(g) HKMntr: FF275
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(h) HKMntr: EJN40
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(j) ∆ log(VIX): FF275
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(k) ∆ log(VIX): EJN40
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(l) ∆ log(VIX): Difference

Figure 9: Term structure of quarterly factor’s risk premia in two markets: Five factors
This figure plots the term structure of risk premia estimates using Proposition 3, where the risk premia over
S horizons (λS

g ) is defined in equation (28). The first cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios (FF275), whereas the second cross-section contains 40 corporate bond portfolios
(EJN40) in Elkamhi et al. (2023). We also report the risk premia differences in these two asset markets. We
consider five-factor models for asset returns. In addition to the point estimates, we show the 68% and 90%
Bayesian credible intervals, highlighted in pink and blue, respectively. Definition and data sources of factors
and test assets can be found in Internet Appendix IA.3.
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tors close to being serially uncorrelated seem to be estimated more precisely using S̄ = 0, such

as AEM/HKM intermediary factors, TED spread changes, and the nontraded liquidity factor.

In particular, AEM and nontraded liquidity factors are priced in FF275 using S̄ = 0 but not in

Table 4. We also detect significantly segmented risk premia for the AEM intermediary factor

in Table IA.XVII. It is apparent that the time series fits of AEM and TED spread changes,

quantified by R
2
g, do not significantly improve after including lagged return shocks. A rule of

thumb is that one can check whether the lagged asset pricing shocks {vt−s}S̄s=1 can significantly

enhance the time series fit R
2
g.

In summary, we detect some market segmentation between equity and corporate bond mar-

kets: These two markets are driven by considerably different systematic latent factors according

to the low generalized correlations, and several factors indeed carry significantly different risk

premia across asset classes. However, many factors have remarkably similar risk compensations,

implying that they play similar roles in the marginal utility functions of investors in these two

asset classes.

5 Conclusion

We propose a novel estimator of factors’ risk premia, their term structure, and their time

variation in a large cross-section of asset returns. The asset returns follow an approximate

factor structure, whereas the tested factor can slowly adjust to the asset return systematic

shocks, motivated by the Wold decomposition. The latter assumption allows the tested factors

and asset returns to have rich dynamics but poses a challenge for the frequentist estimation. We

tackle this challenge by taking a Bayesian perspective. Specifically, we derive a Gibbs sampler

in which all conditional distributions of model parameters have standard closed forms, so our

Bayesian estimator is straightforward to implement.

Our Bayesian framework has the frequentist three-pass procedure in Giglio and Xiu (2021)

as a particular, unconditional and single-period, case. More precisely, we adopt their rotation

invariance property but also show that both the conditional and unconditional term structures

of risk premia of observable variables are invariant to arbitrary rotation of the latent factors.

We show that risk premia of an economic state variable over multiple periods can be interpreted
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as the per-period Sharpe ratios of the mimicking portfolios that hedge against its multi-horizon

innovations. In addition to the term structure and its time variation, we extend our framework

to test for segmented risk premia across asset classes. Since the canonical paradigms (e.g., the

two-step Fama-MacBeth estimator) can suffer from extreme bias due to weak factors, measure-

ment errors, and omitted factors, an appropriate estimator and test should adequately account

for these issues so that it does not over-reject the null hypothesis of homogeneous risk premia

– and that is exactly what we deliver.

We first apply our method to a large equity cross-section. Our results suggest that, un-

conditionally, most macro variables have significantly upward-sloping term structures of risk

premia. Although they are almost unpriced at quarterly horizons, their risk premia, measured

over two- to three-year holding horizons, are comparable to many tradable anomalies in equity

markets. In other words, macro risk strikes back at business cycle frequencies.

Meanwhile, we observe flat or downward-sloping unconditional term structures for other

factors, such as VIX and intermediary factors. We go on to investigate the heterogeneous

risk premia in equity and corporate bond markets. While we detect significant risk premia

heterogeneity for, for example, oil price inflation, TED spread shocks, and two macro PCs in

FRED-QD, most macro observables and intermediary factors command very similar risk premia

in these two markets.

Furthermore, conditionally, the term structure of macro risk premia has a clear business

cycle pattern: It is upward sloping during expansions and inverted during most recessions

and at times of market crashes. In addition, average risk premia are strongly procyclical and

particularly high at the onset of economic contractions.

Theoretical asset pricing models predict which economic state variables should be priced in

the cross-section of asset returns. Given the rich set of new empirical facts that we uncover,

we argue that when researchers evaluate their models, they should consider the heterogeneous

factor risk premia across horizons, asset classes, and states of the business cycle.
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Appendices

Appendix A Additional Propositions and Proofs

Proposition A1. As N → ∞, E[rt]⊤cov(rt)−1βṽ → λ⊤
ṽ under the following assumptions:

i. The eigenvalues of β⊤
ṽ βṽ explode as N → ∞, whereas Σwr has bounded eigenvalues:

γmin(β
⊤
ṽ βṽ) = Op(N) and γmax(Σwr) = Op(1);

ii. βṽ and Σwr are of full rank;

iii. Asset returns and their expectations follow equations (1) and (2).

A.1 Proof of Proposition A1

Assumptions in equation (2) imply that E[rt]⊤cov(rt)−1βṽ = α⊤cov(rt)
−1βṽ# $% &

(I)

+λ⊤
ṽ β

⊤
ṽ cov(rt)

−1βṽ# $% &
(II)

.

Since we assume that αi is cross-sectionally independent of βṽ,i, (I) will disappear as N → ∞,

as follows:

(I) =
1

N
α⊤* 1

N
cov(rt)

+−1
βṽ → 0⊤

K .

Assumptions in equation (1) imply that cov(rt) = βṽβ
⊤
ṽ +Σwr. Using the Woodbury matrix

identity, we can rewrite the inverse of cov(rt) as follows:

cov(rt)
−1 = Σ−1

wr −Σ−1
wrβṽ(IK + β⊤

ṽ Σ
−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wr .

=⇒ (II) = λ⊤
ṽ β

⊤
ṽ

*
Σ−1

wr −Σ−1
wrβṽ(IK + β⊤

ṽ Σ
−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wr

+
βṽ

= λ⊤
ṽ

*
β⊤
ṽ Σ

−1
wrβṽ − β⊤

ṽ Σ
−1
wrβṽ(IK + β⊤

ṽ Σ
−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wrβṽ

+
(let A = (β⊤

ṽ Σ
−1
wrβṽ)

−1)

= λ⊤
ṽ

*
A

−1 −A
−1(IK +A

−1)−1
A

−1
+
= λ⊤

ṽ (A+ IK)
−1
.

Since we assume that the eigenvalues of β⊤
ṽ βṽ will explode as N → ∞, whereas Σwr has

bounded eigenvalues, A → 0 as N → ∞. This further implies that (II) → λ⊤
ṽ .
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A.2 Estimating Time-Varying Risk Premia in Section 2.2

In estimation, we identify a linear rotation of ṽt: vt = Hṽt = Hµṽ,t−1 +H&ṽt = µv,t−1 + &vt,

which implies that Σ$v = cov(&vt) = HH
⊤. We generalize the rotation invariance to identify

the time-varying risk premia as follows:

rt = α+ βṽH
−1

! "# $
βv

Hλṽ! "# $
λv

+ βṽH
−1

! "# $
βv

Hṽt!"#$
vt

+wrt, gt = µg +

S̄%

s=0

ρ̃sη̃
⊤
g H

−1

! "# $
η⊤
g

H%ṽ,t−s! "# $
$v,t−s

+ wgt,

mt = 1− λ⊤
v (H

−1)⊤H−1%vt − µ
⊤
v,t−1(H

−1)⊤H−1%vt = 1− λ⊤
v Σ

−1
$v %vt − µ

⊤
v,t−1Σ

−1
$v %vt, and

λS
g,t−1 =

&S
τ=0

&τ
s=0 ρ̃s

1 + S
· η̃⊤

g H
−1

! "# $
η⊤
g

H(λṽ + µṽ,t−1)! "# $
λv+µv,t−1

;

(A1)

therefore, the time-varying risk premia, λS
g,t−1, are well-defined.

Proposition A2 (Gibbs sampler of the time-varying model). Under the assumptions in equa-

tions (19)–(23), the posterior distribution of the model parameters can be sampled from the

following conditional distributions:

(1) Conditional on the data, {gt}Tt=1+S̄
, and shocks to latent factors, {&vt}Tt=1, the parameters

of the gt process (σ2
wg, ρg, and ηg) follow the normal-inverse-gamma distribution in equa-

tions (IA.1)–(IA.3) of Internet Appendix IA.1.1. The only difference is that we replace

vt with &vt in equations (IA.1)–(IA.3). For point identification purposes, draws of ρg and

ηg are normalized such that η⊤
g ηg = 1.

(2) Conditional on asset returns, {rt}Tt=1, and latent factors, {vt}Tt=1, the parameters of the

rt process (Σwr and B
⊤
r = (µr,βv)) follow the normal-inverse-Wishart distribution in

equations (IA.4)–(IA.5) of Internet Appendix IA.1.1.

(3) Conditional on asset returns and (µr,µv,βv,Σwr), the latent factors, vt, can be sampled

from the normal-inverse-Wishart distribution in equation (IA.6).

(4) Conditional on latent factors, {vt}Tt=1, the model parameters in the VAR(q) system of vt

can be obtained from equations (IA.9)–(IA.10). The conditional mean of vt equals the

first K elements of φ0+φ1xt−1+ · · ·+φqxt−q, and the first K variables in &xt are shocks
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to priced systematic factors, &vt. We can also obtain the unconditional mean of vt as the

first K elements in (I − φ1 − · · ·− φq)
−1φ0.

(5) Conditional on the posterior draws from the time series steps (1)–(4), the posterior dis-

tribution of λv is a Dirac distribution at (β⊤
v βv)

−1β⊤
v µr, yielding a Dirac conditional

posterior for the term structure of gt’s risk premia at λS
g,t−1 =

"S
τ=0

"τ
s=0

ρsη⊤
g (λv+µv,t−1)

1+S
,

where 0 ≤ S ≤ S̄.

Appendix B Additional Figures and Tables

Figure A1: Term Structure of Risk Premia in Habit and Long-Run Risk Models

The figure plots the term structure of risk premia implied by the habit model of Campbell and Cochrane (1999)
(left panel) and the long-run risk model (right panel) of Bansal and Yaron (2004). We consider three macro
variables: (1) quarterly consumption growth, (2) quarterly dividend growth, and (3) quarterly growth in the
smooth dividend payment (the aggregate dividend payments made in the previous 12 months). Risk premia are
normalized by the quarterly volatility of the macro variables. Calibration and derivation details can be found
in Internet Appendix IA.4.
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Table A1: Testing risk premia of strong factors at quarterly frequencies (T = 200)

S = 0 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: R2
g = 30%

Number of Factors = 5
10% 0.114 0.101 0.101 0.100 0.104 0.102 0.104 0.101 0.102 0.098 0.104 0.102 0.104
5% 0.059 0.049 0.050 0.054 0.049 0.051 0.051 0.050 0.053 0.053 0.052 0.054 0.052
1% 0.011 0.011 0.009 0.010 0.010 0.011 0.012 0.010 0.010 0.008 0.009 0.009 0.009

Number of Factors = 4
10% 0.297 0.278 0.292 0.298 0.288 0.281 0.292 0.288 0.286 0.289 0.288 0.290 0.295
5% 0.190 0.197 0.192 0.185 0.187 0.191 0.187 0.190 0.187 0.191 0.191 0.195 0.191
1% 0.062 0.078 0.075 0.080 0.078 0.078 0.073 0.072 0.074 0.068 0.066 0.074 0.074

Number of Factors = 7
10% 0.110 0.092 0.089 0.089 0.092 0.098 0.096 0.097 0.094 0.091 0.092 0.098 0.099
5% 0.054 0.045 0.046 0.047 0.045 0.045 0.042 0.042 0.043 0.043 0.042 0.045 0.046
1% 0.009 0.011 0.010 0.010 0.009 0.008 0.008 0.007 0.008 0.007 0.008 0.009 0.008

Panel B: R2
g = 20%

Number of Factors = 5
10% 0.128 0.136 0.141 0.143 0.143 0.141 0.140 0.142 0.143 0.147 0.144 0.138 0.139
5% 0.062 0.074 0.077 0.073 0.075 0.076 0.073 0.072 0.070 0.075 0.073 0.071 0.071
1% 0.007 0.016 0.015 0.017 0.017 0.017 0.014 0.017 0.020 0.016 0.017 0.014 0.014

Number of Factors = 4
10% 0.278 0.296 0.296 0.305 0.296 0.298 0.290 0.298 0.299 0.304 0.305 0.300 0.296
5% 0.163 0.206 0.211 0.210 0.209 0.203 0.205 0.211 0.201 0.208 0.207 0.207 0.202
1% 0.028 0.079 0.077 0.074 0.079 0.075 0.078 0.079 0.078 0.079 0.078 0.081 0.077

Number of Factors = 7
10% 0.117 0.132 0.135 0.130 0.130 0.130 0.133 0.131 0.135 0.138 0.140 0.136 0.136
5% 0.054 0.075 0.071 0.069 0.066 0.068 0.071 0.065 0.061 0.064 0.075 0.069 0.067
1% 0.007 0.017 0.014 0.012 0.015 0.014 0.014 0.018 0.017 0.019 0.018 0.018 0.019

Panel C: R2
g = 10%

Number of Factors = 5
10% 0.073 0.138 0.136 0.127 0.134 0.137 0.133 0.134 0.139 0.140 0.136 0.134 0.139
5% 0.033 0.072 0.070 0.064 0.070 0.073 0.076 0.081 0.075 0.080 0.076 0.075 0.071
1% 0.003 0.006 0.014 0.012 0.013 0.012 0.012 0.010 0.013 0.013 0.012 0.009 0.013

Number of Factors = 4
10% 0.138 0.258 0.252 0.252 0.260 0.258 0.253 0.251 0.258 0.269 0.263 0.259 0.253
5% 0.059 0.148 0.154 0.138 0.157 0.158 0.156 0.158 0.156 0.155 0.145 0.150 0.147
1% 0.009 0.039 0.039 0.037 0.046 0.050 0.045 0.044 0.043 0.039 0.043 0.040 0.035

Number of Factors = 7
10% 0.071 0.145 0.137 0.125 0.134 0.138 0.140 0.139 0.136 0.141 0.129 0.140 0.144
5% 0.018 0.068 0.057 0.054 0.056 0.070 0.062 0.066 0.071 0.068 0.071 0.071 0.064
1% 0.002 0.009 0.012 0.007 0.017 0.013 0.013 0.010 0.011 0.009 0.009 0.008 0.008

The table reports the frequency of rejecting the null hypothesis H0 : λS
g = λS,!

g based on the 90%, 95%, and
99% credible intervals of our Bayesian estimates in Proposition 1. λS

g is defined in equation (7), and λS,!
g is λS

g ’s
pseudo-true value. We consider strong factors, with R

2
g ∈ {10%, 20%, 30%}. We simulate quarterly observations

of gt and rt by assuming that i) the true number of latent factors is 5, ii) the time series sample size is 200
quarters, and iii) the true S̄ = 8. We estimate several model configurations with different numbers of factors
(4, 5, and 7) and S̄ = 12. The number of Monte Carlo simulations is 1,000.

55


