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Abstract

We use random set theory to derive testable implications for revealed pref-

erence models in the presence of unobserved randomness. Our test requires

that a certain vector belongs to the Aumann expectation of a well defined ran-

dom set. We present a computationally fast and simple algorithm to obtain a

finite sample implementation of our test and we show how to use a subsampling

procedure to derive valid inference. We demonstrate the practical relevance of

our results by an application to the standard intertemporal consumption model

with idiosyncratic income risks and to a model of approximate expected utility

maximisation.

Keywords: Partial identification, revealed preferences, random set theory, column

generation.
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Over the years, there has been a steady increase of the use of revealed preference

(RP) models to test a wide variety of decision models.1 An RP analysis usually

starts from a finite data set on budgets and choices, for example, a dataset on linear
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1See Varian (2006), Crawford and De Rock (2014), Chambers and Echenique (2016) and De-

muynck and Hjertstrand (2020) for overviews of the literature.
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budgets and chosen bundles from these budgets. It then looks for conditions on

this dataset such that the observed choices are consistent with some given decision

model, like for example utility maximization. Usually the resulting RP tests take

the form of a set of combinatorial conditions or a set of (linear) inequalities. Well

known examples are the Weak, Strong or Generalized Axiom of Revealed Preference

(WARP, SARP or GARP).2 The most attractive feature of the RP methodology

stems from the fact that the method abstains from imposing specific functional forms

on the underlying utility (or production) functions, although shape restrictions, like

concavity or homogeneity can be imposed if desired. Much of the RP literature has

focused on settings without randomness, which excludes realistic and relevant features

like uncertainty or misperception regarding prices, income, wages or measurement

error. The absence of a general (nonparametric) RP method to incorporate such

features has been a severe restriction in terms of its acceptability within the broader

economic and econometric literature.

Our paper has two main contributions. First, we use the theory of random sets

to present a general framework that is able to analyse RP models with unobserved

randomness. We find that testing such RP models boils down to verifying whether a

certain vector belongs to the Aumann expectation of a random set. This random set

is characterized by the underlying RP model and a collection of moment conditions.

Our second contribution relates to the (finite sample) implementation of this test. For

this, we develop a fast and simple column generation algorithm. Building upon the

existing literature dealing with statistical inference on random sets, we also provide

a simple subsampling procedure that can be used for inference. We provide two

applications to demonstrate the practical relevance of our results.

Overview We start from a general framework with a given RP model. This RP

model consists of an observable component and an unobservable (latent) component.

Although the marginal distribution over the observable component is known (or can

be identified), the joint distribution over both components is inherently non observ-

able. The support of this joint distribution, however, is restricted by the conditions

imposed by the RP model. In addition, we assume that the model imposes some

moment conditions on the observable and unobservable variables. Due to its gener-

2See the seminal works by Afriat (1967), Diewert (1973) and Varian (1982) for early contributions
to RP theory.
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ality, this framework is able to capture a large set of applications. Interestingly, the

restrictions imposed by such setting can be expressed in terms of so-called random

sets. A random set is a generalization of a random variable to sets, or alternatively, a

set-valued random object. The theory of random sets has received a lot of attention

and has become a central toolkit in the literature on partial identification.3 In this

paper, we show that it also provides a very convenient and flexible framework for

the analysis of RP models with unobserved randomness. In particular, we show that,

under suitable regularity conditions, the testable restrictions of the model boil down

to checking whether or not a particular vector, ψ, which corresponds to the values for

the moment conditions, belongs to the Aumann-expectation of a particular random

set. The Aumann expectation is a generalization of the usual expectation of random

variables to the framework of random sets. This Aumann expectation is identified

from the observables, the underlying RP model and a set of moment conditions.

The second focus of this paper is to make this test useful for empirical applications,

i.e., when one has only access to a (finite) sample of the observable component. The

finite sample equivalent of the Aumann-expectation is given by the convex hull of the

Minkowski average, that is: an average of sets. The finite sample analogue of the

model’s testable implication then requires the same vector ψ to belong to this set.

We do this by verifying whether the distance between the vector ψ and the convex

hull of the Minkowski average equals zero. A hurdle towards operationalizing this

idea, is that in general, there is no closed form expression for this Minkowski average.

To overcome this problem, we propose an intuitive and fast column generating algo-

rithm. The algorithm is similar in spirit to the popular GJK-algorithm that is widely

used to determine the minimal distance between two convex sets in 2 or 3 dimensional

space (Gilbert, Johnson, and Keerthi, 1988). Next, using insights from the statistical

literature on random set theory, we also provide a simple subsampling procedure that

allows for valid statistical inference in our framework.

The final part of the paper illustrates our algorithm by means of two applications.

The first uses data from the consumer expenditure survey (CEX) to nonparametrically

test for consistency of observed consumption behavior with the exponential discounted

utility (EDU) model including idiosyncratic income shocks. Interestingly, we find that

3See, among many others, Beresteanu and Molinari (2008); Beresteanu, Molchanov, and Moli-
nari (2012, 2011); Molchanov (2017) and Li (2021). See also Molchanov and Molinari (2014) and
Bontemps and Magnac (2017) for an overview.
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consumption behavior of singles are more likely to be rationalized by the EDU model

with income shocks, compared to married couples (where both spouses work). In our

second application we revisit the problem of choice under risk and uncertainty within

the classic expected utility theory. We follow a recently suggested model of Echenique,

Imai, and Saito (2023) that allows for the possibility that experimental subjects are

prone to misperception error, e.g. misperception in the (objective) probabilities for

the different states, prices of the securities or due to the presence of a latent factor in

the underlying (Bernoulli) utility function. We use data from Choi, Kariv, Müler, and

Silverman (2014) to demonstrate how our method provides an estimate of the lower

bound on the variance of the error that is necessary to rationalize a collection of data

sets. This application also illustrates the usefulness of our subsampling procedure.

Literature overview There have been some earlier approaches to include stochas-

tic features in RP analysis. Most notably Varian (1985) and Epstein and Yatchew

(1985), develop a framework that allows for statistical hypothesis testing in RP tests

with measurement error on demand. Echenique, Lee, and Shum (2011) follow a simi-

lar approach but they introduce measurement error on prices, instead of measurement

error on demand. They further require the marginal utility to be constant at the ob-

served price levels. The strong limitation of these three studies is the assumption that

the econometrician needs to have knowledge regarding the distribution of measure-

ment error (e.g. normally distributed with known mean and variance), which seems

somewhat at odds with the nonparametric flavor of the RP methodology.

Recently, Aguiar and Kashaev (2021) analyzed RP problems in the presence of un-

observed randomness (measurement error). Their analysis follows the ELVIS ap-

proach of Schennach (2014). This approach uses ideas from information theory (i.e.,

I-projections and maximum entropy) to analyze models characterized via moment

conditions. In order to translate the RP model into this setting, one first translate all

revealed preference conditions to suitable moment conditions. Next, these conditions

are verified by integrating out the unobservable latent variables using a least infor-

mative maximum entropy distribution. For the latter Aguiar and Kashaev (2021)

use numerical integration based on an underlying hit and run procedure to obtain

random samples from the feasible region.

Our approach, on the other hand, is based on the theory of random sets. As the

Aumann Expectation of a random set is always convex, this approach has the great
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advantage that it enables us to use well known tools from convex analysis, like support

functions, to analyse the setting.4 Concerning the empirical implementation, our

approach further has the advantage that it avoids the need for numerical integration.

This means that it might be more more precise and requires less computing time. In

fact, all results in this paper were obtained by repeatedly solving a collection of linear

or quadratic programs, which can be done quite efficiently. All our computations were

obtained using a standard laptop in a time-span of less than 2 days (including the

subsampling procedure in subsection 5.2).5 Moreover, the inner loop of the algorithm

can easily be parallelized, so further efficiency gains are possible.

In the RP literature, stochastic revealed preference theory takes a related, yet quite

different viewpoint on stochastic features within a nonparametric framework (Mc-

Fadden and Richter, 1971; McFadden, 2005). This theory is based on the Random

Utility model and studies whether it is possible to rationalize a given distribution

of choices (from a repeated cross section of household consumption behavior) by a

(stable) distribution of preferences.6 On the other hand, in this paper we have a

cross section of individual datasets where each dataset consists of multiple decisions

of a single decision maker or household, and one imposes moment conditions across

individuals. Our framework is therefore more useful to analyze individual decision

models that include random features like uncertainty or measurement error rather

than randomness originating from individual heterogeneity.7

Structure of the paper Section 1 presents the random sets framework to test RP

models with unobserved heterogeneity and moment restrictions. Section 2 translates

this framework to a finite sample setting. Section 3 gives our column generation

algorithm and discusses its properties. Section 4 provides statistical inference. Section

5 contains two applications. Finally Section 6 contains a conclusion.

4See also, among others, Ekeland, Galichon, and Henry (2010); Beresteanu, Molchanov, and
Molinari (2011); Li (2021) who use insights of convex analysis and apply it to random sets. See also
Schennach (2014) for a more thorough discussion related to the difference between the random sets
and ELVIS approach.

5The laptop has an Intel(R) Core(TM) i5-10210U CPU with 2.11 GHz and 16.0 GB RAM.
6See Kawaguchi (2017), Kitamura and Stoye (2018), Cosaert and Demuynck (2018), Cherchye,

Demuynck, and De Rock (2019) and Hubner (2022) for recent contributions.
7See also Smeulders, Cherchye, and de Rock (2021) who uses a different column generating

algorithm to make computational gains for RP analysis in a stochastic revealed preference setting.
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1 Framework

Our framework is based on Jovanovic (1989) and inspired by the work of Li (2021).

Both of these papers study general (structural) economic environments or ‘models’.

To fix ideas, we first present the basic elements of this framework.

We assume the econometrician has access to a collection of observable variables, which

are collected in the random (finite dimensional) vector y ∈ Y ⊆ RdY . Next, there is a

random vector u ∈ U ⊆ RdU that provides the unobservable or latent variables (from

the point of view of the econometrician).

Example. In an RP framework, one can think of y as representing a finite (random)

dataset (pt, qt,mt)t≤T (with T ∈ N0) on prices pt ∈ Rk
++, budgets mt > 0 and choices

qt ∈ Rk
+ from the linear budgets {q ∈ Rk

+|〈pt, q〉 ≤ mt}. In this case, the stochastic

nature of y follows from the assumption that the dataset y is obtained from a random

individual in the population. The latent vector u might then, for example, correspond

to a collection (εt)t≤T of vectors in Rk representing the measurement error of the

bundles (qt)t≤T in the dataset y.

We denote by µ the (unknown) joint distribution of (y, u).8 This joint distribution

contains all the relevant information regarding the interaction between observable

variables and latent factors and is therefore a crucial object for any economic model.

With these in hand, we can formally define what we mean by a model:

Definition 1. A model consists of a tuple (µY ,Γ, f, ψ) where:

• µY is the marginal probability measure of µ with respect to the observable vari-

ables y,

• Γ ⊆ Y × U is a measurable set that gives all combinations (y, u) ∈ Y × U that

are consistent with the RP model.

• f : Y × U → RK gives a vector of measurable functions f = (f 1, . . . fK) that

govern the moment conditions imposed by the economic model.

• ψ = (ψ1, . . . , ψK) ∈ RK is a K-dimensional vector of moment values for these

functions.

8This distribution is defined on some underlying measure space (Y × U ,B) where B is the Borel
σ-algebra on Y × U ⊆ RdU+dY .
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Example. Going back to our RP setting, µY represents the distribution of the datasets

y = (pt, qt,mt)t≤T over the population of individuals. The set Γ captures all combi-

nations of observable data sets y = (pt, qt,mt)t≤T and measurement error u = (εt)t≤T

that jointly satisfy the RP conditions. For example we might want to impose that

consumption bundles arise from the maximisation of some well-behaved utility func-

tion but that bundles are measured with error. In this case, we then should re-

quire that the modified dataset (pt, qt + εt,mt)t≤T satisfies the Generalized Axiom

of Revealed Preference (GARP).9 As such, Γ consists of all combinations (y, u) =

((pt, qt,mt)t≤T , (εt)t≤T ) such that (pt, qt + εt,mt)t≤T satisfies GARP. Next, f repre-

sents a collection of moment conditions. Denoting by εt,j the measurement error on

good j ≤ k in at observation t, we could require, for example, that the mean mea-

surement error for all goods j should equal zero: E(εt,j) = 0 (j ≤ k, t ≤ T ). Another

additional condition could be that we assume that measurement error on good j is

uncorrelated with the price of the good E(εt,jpt,j) = 0 (j ≤ k, t ≤ T ). This would

specify a collection of K = 2(T + k) moment functions f = (f 1
t,j, f

2
t,j)t≤T,j≤k with

f 1
j,t(y, u) = εt,j and f 2

j,t(y, u) = pt,jεt,j. Finally, the vector ψ gives the values of the

right hand sides of these moment conditions, which in this example is a K dimensional

vector of zeros. We will tackle other (more elaborate) settings in Section 5.

Note that, strictly speaking, the set of moment conditions that one imposes are not

part of the underlying RP restrictions. In fact, we see this separation of moment con-

ditions and the underlying RP model as one of the attractive features of the framework

because it provides a clear conceptual distinction between the conditions imposed by

the RP restrictions (captured by the set Γ) and the additional moment restrictions

that the econometrician is willing to impose. This resembles the usual separation in

econometrics between functional form restrictions and the additional set of moment

conditions required to identify the model.

A model (µY ,Γ, f, ψ) imposes restrictions on the joint distribution µ of (y, u). In

particular, given that the random vector y is observed (in principle), any model must

satisfy the condition that the marginal distribution of µ with respect to y equals µY ,

i.e., for all measurable sets A in Y :

µY (A) = µ(A× U). (1)

9See, for example Varian (1982).
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Next, the set Γ puts a restriction on the support for the random vectors (y, u).

Prµ ((y, u) ∈ Γ) = 1. (2)

Finally, the functions f 1, . . . , fK and the values ψ1, . . . , ψK encode a (finite) set of

moment conditions:

Eµf(y, u) = ψ. (3)

To summarize, the aim is to find conditions for the existence of a joint probability

distribution µ such that (1), (2) and (3) are jointly satisfied.10

A crucial element in our further analysis is the following correspondence F : Y ⇒ RK :

F (y) =
{
f(y, u) ∈ RK

∣∣(y, u) ∈ Γ
}
. (4)

Notice that for a given y, F (y) is a subset of RK . In fact, as y is random, F (y) is a

random set.

Example. For our RP example, if y = (pt, qt,mt)t≤T , F (y) provides the set of all

possible vectors f(y, u) ∈ RK with components f 1
j,t(y, u) = εt,j and f 2

j,t(y, u) = pj,tεj,t

and where the value of u = (εt)t∈T is such that (pt, qt + εt,mt)t∈T satisfies GARP,

i.e., (y, u) ∈ Γ.

We impose some regularity conditions on F . In particular, we assume that the fol-

lowing is true throughout the paper:

Assumption 2.

(i) The sets F (y) =
{
f(y, u) ∈ RK : (y, u) ∈ Γ

}
are closed µY -a.s.

(ii) There is a measurable function υ : Y → R such that Eµυ(y) <∞ and:

υ(y) ≥ sup
(y,u)∈Γ

‖f(y, u)‖ µY − a.s.

10We could extend our framework to allow for a set of parameters, say θ ∈ Θ ⊆ Rr and make Γ
conditional on the value of θ. In that case, we would be interested in finding the identified set for
the parameters θ. This is the definition employed by, for example, Roehrig (1988), Li (2021) and
Ekeland, Galichon, and Henry (2010). Given, however, that our main focus is on testing models, we
will not explicitly include such (structural) parameters, so as to not overburden notation.
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Assumption 2 essentially imposes compactness on the sets F (y).11 Given that the

latter are contained in RK , this is equivalent to assuming they are closed and bounded

almost surely. Assumption 2 is very similar to the assumptions made in Li (2021)

and Beresteanu, Molchanov, and Molinari (2011).

Let µU |y be the conditional distribution of u given y. From conditions (2), (3), and

the definition of F (y), we can write:

ψ = Eµf(y, u) =

∫
Y

(∫
F (y)

f(y, u)dµU |y

)
dµY (5)

Now, consider the random vector s(y) that takes the value
∫
F (y)

f(y, u)dµU |y for all

y ∈ Y . This random variable is a mean of values in the compact set F (y), so its value

is in the closed convex hull of F (y), which we denote by co(F (y)). Note that EµY s(y)

equals ψ.

Aumann expectation An integrable random vector s(y) ∈ RK that takes values

in co(F (y)) with probability one is called a selection of the random set co(F (y)).

Above reasoning shows that our model requires the existence of at least one integrable

selection of the random set co(F (y)) with expectation ψ.

The set that collects all expecations of integrable selections of a random set is called

the Aumann expectation of the random set. We denote the Aumann expectation of

co(F (y)) by EF .12

EF = {EµY s(y)|s(y) is an integrable selection of co(F (y))}

As shown by Molchanov (2017, Theorem 2.1.26), if µY is non-atomic (which means

that it does not have a point mass) then EF is convex and closed.

Condition (5) implies that:

ψ ∈ EF. (6)

In fact, as we will see, this condition is not only necessary, but also sufficient.

11In practice, if the moment functions f are continuous, it is often convenient to enforce compact-
ness of F (y) by imposing that the universal set of latent variables U is compact.

12As shown by Molchanov (2017) under mild conditions, the Aumann expectation of co(F (y)) will
be equal to the Aumann expecation of F (y). This is why we use the notation EF instead of E co(F ).
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Support functions Instead of using Aumann expectations, it is also convenient

to reformulate the testable implications in terms of support functions. This strategy

is also used as part of the identification strategies in several other papers such as

Ekeland, Galichon, and Henry (2010), Beresteanu, Molchanov, and Molinari (2011)

and Li (2021).

For a compact set A ⊆ RK , we define the support function of A, hA : RK → R by:

hA(p) = sup
x∈A
〈p, x〉,

where 〈., .〉 denotes the inner product.13 Any convex and compact set can be uniquely

recovered from its support functions, so this offers a useful dual framework.

Let SK = {p ∈ RK |‖p‖ = 1} be the K-dimensional sphere. As shown by Li (2021),

the following holds.

Theorem 3. If Assumption 2 holds, then conditions (1), (2) and (3) are satisfied if

and only if:

sup
p∈SK

EµY
[
〈p, ψ〉 − hF (y)(p)

]
≤ 0. (7)

To see how this relates to condition (6) above, notice first that we can replace hF (y)(p)

by hco(F (y))(p) as the support function of a compact set equals the support function

of its convex closure. Next, we have the important result that the expectation of

the support functions over a random set equals the support function of its Aumann

expecations.

EµY hco(F (y)(p) = hEF (p).

Given this, (7) can be rewritten as:

sup
p∈SK

(〈p, ψ〉 − hEF (p)) ≤ 0.

Now assume that this condition is not satisfied. If µY is non-atomic, then EF is

convex and closed, so a reversal of the inequality would imply that there exists a

hyperplane separating EF and ψ, which effectively demonstrates that ψ /∈ EF . On

13We refer to Rockafellar (1970) for an in-depth treatment of the use of support functions in
convex analysis.
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the other hand if this condition is satisfied, there is no separating hyperplane that

separates EF from ψ. As EF is convex, this effectively demonstrates that ψ ∈ EF .

To finish the section, we want to make two remarks related to the verification of (7)

(or (6)). First, the expected value in the expression is over the marginal density µY .

Although the latter can in principle be identified through data, in practice it needs to

be estimated from a finite sample. Second, to compute the support function hF (y)(p)

we would be nice to have a succinct description of the random set F (y), which can

be challenging in practice. The next two sections will address both these issues.

2 Finite sample approximation

In this section, we assume that the econometrician has access to a (finite) i.i.d. sample

from µy, say {y1, ..., yn}. Using the standard finite sample analogue principle, we can

replace (7) by its finite sample analogue:

sup
p∈SK

[
1

n

n∑
i=1

〈p, ψ〉 − hF (yi)(p)

]
≤ 0, (8)

Condition (8) replaces the expectation operator by the sample average over the

n i.i.d. draws. The expression in (8) can be simplified even further. In particu-

lar, let us denote by F n = 1
n

∑
i F (yi) the Minkowski (sample) average of the sets

{F (y1), . . . , F (yn)} :14

F n =

{
1

n

n∑
i=1

fi

∣∣∣∣∣fi ∈ F (yi)

}
=

{
1

n

n∑
i=1

f(yi, ui)

∣∣∣∣∣ui ∈ U and (yi, ui) ∈ Γ

}
. (9)

Given that the sets F (yi) are compact (see Assumption 2), the set F n is also compact.

Moreover, as the support function is linear in the Minkowski sum, we have that (8)

is equivalent to:

sup
p∈SK

[
〈p, ψ〉 − hFn(p)

]
≤ 0. (10)

14Here and in the rest of the paper we will slightly abuse notation and also use f as a generic
element of F (y) (or sometimes co

(
Fn
)
).
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Condition in (10) can in principle be tested, although a direct implementation is

far from straightforward as it is known to be quite hard to compute the Minkowski

sum of a collection of sets. The following gives an easier, equivalent condition (see

Luenberger (1969, p.136) for a proof).

Proposition 4. Condition (10) is satisfied if and only if ψ ∈ co(F n). In particular,

If ψ /∈ co(F n) then

sup
p∈SK

[
〈p, ψ〉 − hFn(p)

]
= d(ψ, co(F n)).

where d(ψ, co(F n)) = inff∈co(Fn) ‖f−ψ‖ is the (Euclidean) distance between the vector

ψ and the set co(F n).

Proposition 4 provides an interesting geometric interpretation to condition (10).

Checking whether or not the latter is satisfied amounts to verifying if the vector

ψ is contained in the convex closed closure of the Minkowski average F n. This di-

rectly relates to condition (6) as co(F n) is the finite sample approximation of the

Aumann expectation EF . Furthermore, the criterion in expression (10) equals the

distance between ψ and F n. It therefore suffices to compute the latter and verify

whether it is equal to zero, i.e., condition (10) is equivalent to the condition:

d(ψ, co(F n)) = 0. (11)

The solution f̂ to the minimization problem (11) is the unique projection of ψ onto

the convex set co(F n). As this is a convex, closed set, we can use the following

(standard) result in convex analysis to characterize this projection (see, for example,

Luenberger (1969, p.69) for a proof)

Proposition 5. f̂ = arg minf∈co(Fn) ‖ψ − f‖ if and only if f̂ ∈ co(F n) and for all

f ∈ F n:

〈ψ − f̂ , f − f̂〉 ≤ 0. (12)

The geometric interpretation of lemma 5 is that the vector ψ − f̂ must make an

obtuse angle with f − f̂ for all f ∈ F n. Condition (12) provides a straightforward

12



condition to verify whether a certain element in co(F n) is the projection of ψ to

co(F n). In particular, it suffices to maximize the linear objective 〈ψ − f̂ , f〉 with

respect to f ∈ F n and to check whether it is smaller than (or equal to) 〈ψ − f̂ , f̂〉.

3 The column generating algorithm

In this section, we provide an algorithm to compute d(ψ, co(F n)). We do this using

a column generation procedure. The general idea of column generation as a method

to solve (complex) optimization problems is to start by solving a restricted version of

the latter, on a subset of the choice domain. In each iteration, this subset is expanded

until insufficient improvement in the objective function can be made.

In the context of the present paper, column generation will take the following form:

we start with a finite number of J draws from the Minkowski average F n.15 The

idea is that the number of elements J is initially relatively small (e.g., J = 1) but

will grow as the algorithm proceeds. The convex hull of these points, i.e., the set

co({f1, . . . , fJ}) can then be considered as an inner approximation of co(F n). At

each iteration, we find the projection of ψ on this inner approximation and add (if

necessary) a new informative element to the inner approximation to start the next

iteration.

3.1 The Master and Auxiliary programs

We now formalize the idea behind our column generating algorithm. The algorithm is

divided in an outer and inner optimization problem. The first one, called the Master

program, computes (for a given J) the smallest square distance between the vector

ψ and the inner approximation, co({f1, . . . , fJ}) of co(F n):

MASTER: vJ = min
f̂∈co({f1,...,fJ})

‖ψ − f̂‖2.

15In practice, we can obtain these by drawing random elements ui,j , i = 1, . . . , n; j = 1, . . . , J such
that (yi, ui,j) ∈ Γ for all j = 1, . . . , J . We can then define fj = 1

n

∑
i f(yi, ui,j) ∈ Fn.
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An equivalent, less succinct formulation is the following:16

MASTER: vJ = min
η∈RK
wj∈R

‖η‖2,

s.t. η = ψ −
J∑
j=1

wjfj,

J∑
j=1

wj = 1,

wj ≥ 0, ∀j = 1, . . . , J

The Master program is a quadratic minimization problem, which can be solved quite

efficiently using standard software.17

Given the solution to this MASTER problem, there are two possibilities. First, if the

optimal solution vJ equals zero, i.e., f̂ = ψ, then as co({f1, . . . , fJ}) ⊆ co(F n), we

know that (11) also has an optimal solution equal to zero, so d(ψ, co(F n)) = 0 and

(8) is satisfied. In the other case, vJ > 0. If so, we need to find out whether we should

continue the iteration using an enlarged inner approximation of co(F n), or whether

one can stop having effectively found the square distance between ψ and co(F n). The

following result provides a way to distinguish between these possibilities:

Proposition 6. Let vJ > 0 be the optimal solution of the MASTER program with

optimal solutions η and f̂ =
∑J

j=1wjfj. Then vJ = d(ψ, co(F n))2 if and only if:

1

n

n∑
i=1

hF (yi)(η) = hFn(η) = sup
f∈Fn
〈ψ − f̂︸ ︷︷ ︸

η

, f〉 ≤ 〈ψ − f̂︸ ︷︷ ︸
η

, f̂〉. (13)

Proposition 6 easily follows from the characterization of the convex projection in

Proposition 5. This proposition gives us a certificate of optimality that allows us to

decide when to stop the algorithm. Indeed, in case the inequality in (13) is satisfied,

we know that we have found the distance between ψ and co(F n). Note that (13) can

16To see that the two formulations are equivalent, you can use the transformation f̂ =
∑J
j=1 wjfj

and η = ψ − f̂
17Alternatively, more specialized algorithms are also available (Wolfe, 1976; Sekitani and Ya-

mamoto, 1993).
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be rewritten as

1

n

n∑
i=1

sup
f∈F (yi)

〈η, f〉 ≤ 〈η, f̂〉 (14)

This suggests the following procedure: as long as vJ > 0, within each iteration of the

master program, solve the following n auxiliary optimization problem:

AUX(i): ai = sup
f∈F (yi)

〈η, f〉 (15)

= sup
u∈U
〈η, f(yi, u)〉 s.t. (yi, u) ∈ Γ.

Given the optimal values ai verify whether
∑

i ai ≤ 〈η, f̂〉. In case it is, (14) is

satisfied which means that vJ = d(ψ, co(F n))2. On the other hand, if
∑

i ai > 〈η, f̂〉,
we return to the Master program and resolve the projection problem, but now with the

domain expanded to include an additional element fJ+1 to the inner approximation

co({f1, . . . , fJ}). For this additional element, we take fJ+1 = 1
n

∑n
i=1 fi where fi is a

solution to AUX(i). Note that by definition, fJ+1 ∈ F n so {f1, . . . , fJ+1} ⊂ F n.

Figure 1 depicts the idea behind the algorithm. There is a convex set co(F n), whose

shape is only implicitly defined via the set Γ and the functions defining the moment

restrictions, as summarized in f . We are interested in measuring the minimal distance

between ψ and co(F n). Assume the algorithm starts with J = 2, with elements

f1, f2 ∈ F n. The convex hull of these points co({f1, f2}) is the line segment between

f1 and f2. The first step is to solve the MASTER program, which computes the

projection of ψ onto co({f1, f2}). This projection is denoted by f̂ . The vector defined

by the difference between ψ and f̂ is the vector η. Subsequently, the AUXILIARY

programs will find the element f3 ∈ F n whose projection onto the vector η = ψ− f̂ is

largest. This is given by the vector that solves 〈η, f3〉 = hFn(η). Next, we update the

inner approximation to co({f1, f2, f3}) and repeat the procedure. It is clear to see

that at every iteration of the algorithm, this set will expand, and the new distance

‖η‖ = ‖ψ − f̂‖ will decrease.

The figure also makes it clear that the distance between ψ and F n will equal ‖ψ− f̂‖
if and only if it is impossible to find a vector f3 for which the projection of f3 − f̂
onto η = ψ − f̂ is positive, i.e., if the angle between η = ψ − f̂ and f3 − f̂ is obtuse

(or orthogonal).
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Figure 1: Illustration algorithm
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ψ

f̂
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In the next section, we explicitly formulate the algorithm and derive its convergence

properties.

3.2 Convergence properties

In this section, we will show that the algorithm presented in the previous section

indeed approximates the value of d(ψ, co(F n)) arbitrarily close, and show its conver-

gence properties.

Algorithm 1 gives the full the algorithm presented in the previous subsection. Lines

1-3 initialize the algorithm. Here we start with a singleton D0 = {f0}. In practice,

however, we might use any finite set of elements from F n. Then we start the loop.

Line 5 solves the Master program after which we defines the solution f̂J , ηJ and the

optimal value vJ . On line 8 we check if vJ is smaller than ε if so, the algorithm stops

having found a distance below the maintained threshold of ε.

If not, it solves the Auxiliary programs and saves its solution in fJ+1. Then we verify

whether the angle between ηJ and fJ+1− f̂J is close enough to satisfying the condition

of Proposition 5. If so, we quit the loop with optimal value ‖ηJ‖. Else, we update

DJ to DJ+1 = co(DJ ∪ {fJ+1}) and increment for the next iteration.

Remark that the auxilliary optimization problems on line 12 are independent of each

other and can therefore be run in parallel, which would speed up the running time.
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Algorithm 1 Column generation program

Require: 0 < δ < 1/2 and 0 < ε < 1
1: J ← 0
2: DJ = {f0} for some f0 ∈ F n

3: dist← 0
4: while True do
5: f̂J ← arg minf∈DJ ‖ψ − f‖2 . Master program

6: vJ ← ‖ψ − f̂J‖2

7: ηJ = ψ − f̂J
8: if vJ < ε then
9: Return 0

10: else
11: fJ+1 ← 1

n

∑n
i=1 fi where for all i ≤ n,

12: fi ∈ arg maxf∈F (yi) 〈ηJ , f〉 . Auxiliary programs

13: if 〈ηJ , fJ+1〉 > 〈ηJ , f̂J〉+ δ‖ηJ‖2. then
14: DJ+1 = co(DJ ∪ {fJ+1})
15: J ← J + 1
16: else
17: Return ‖ηJ‖
18: end if
19: end if
20: end while

17



Further, if at some iteration, for some fJ+1, we have 〈ηJ , fJ+1〉 < 〈ηJ , ψ〉, then we can

exclude the case d(ψ, co(F n)) = 0. Indeed, in such case, we have that the hyperplane

given by slope ηJ through fJ+1 is a supporting hyperplane of co(F n) that strictly

separates ψ from co(F n). In this case the true distance d(ψ, co(F n)) will be bounded

from below by the difference 〈ηJ , ψ〉−〈ηJ , fJ+1〉. So if the goal is to determine whether

ψ ∈ co(F n) or to obtain a lower bound on the distance (without computing the actual

distance) one can easily add this additional check to the algorithm.

Note that the algorithm depends on the two tuning parameters ε and δ. In practice,

we need these tuning parameters as our implementation will be naturally limited by

the tolerances set by the software package (or hardware) used.18

The following Theorem show that if the algorithm stops, then its solution approxi-

mates d(ψ, co(F n)) arbitrarily close for δ and ε sufficiently small.

Theorem 7. If Algorithm 1 stops (say at iteration J) then, either d(ψ, co(F n)) <
√
ε,

if it stops at line 9, or:

‖ψ − f̂J︸ ︷︷ ︸
ηJ

‖2 ≤
[
d(ψ, co(F n))

]2
1− 2δ

,

if it stops at line 17.

The following Theorem shows that, as long as the algorithm runs, the squared distance

‖ψ− f̂J‖2 decreases exponentially fast over the iterations. In particular, for any value

of ε > 0, our algorithm terminates in finite time.

Theorem 8. There is a θ ∈ (0, 1) such that if the algorithm runs at least J iterations,

then:

‖ψ − f̂J‖2 ≤ θJ‖ψ − f̂0‖2.

3.3 Solving the Auxiliary programs

The Master program is a simple quadratic minimization program which can be solved

efficiently using standard solvers. The auxiliary program, however, might be more

18This type of limitation is present in most maximisation routines. For example gradient based
maximisation need to set a tolerance to decide when to quit the loop and decide that an (approxi-
mate) maximum is found. Our algorithm simply make these tolerances explicit. In our implemen-
tation, we choose ε = 10−6 and δ = 10−3. Here we are guided by the default tolerances imposed by
the Gurobi solver which is 10−6.
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involved, depending on the underlying RP model and the moment conditions.

The auxiliary program consists of n maximization problems:

max
u∈U
〈η, f(yi, u)〉 s.t. (yi, u) ∈ Γ, ∀i = 1, . . . , n

The shape of the constraint set Γ is determined by the RP conditions while the

objective function is linear in f(yi, u) and therefore depends on the moment functions.

The most straightforward setting occurs when f(yi, u) is a linear function of u and

when Γ can be expressed as a set of inequalities, linear in u (conditional on yi).

For such instances, the problem turns into a simple linear program, which can be

solved using standard optimization software. Our first application fits this structure.

In fact, many RP models (based on Afriat inequalities) have the feature that they

take the form of a set of linear inequalities (see, for example, Diewert (2012) for an

overview). Other (more complicated) models can often be specified as a set of linear

inequalities where variables are either continuous or integer values.19 This transforms

above problems to a set of Mixed Integer programming problems, for which there

exists standard solvers.

Even if the moment functions f(yi, u) are quadratic (and concave) in u, it is still pos-

sible to use quadratic programming methods to efficiently solve the auxiliary problem

as we will demonstrate in our second application.

In settings where Γ takes on a more complicated structure or where f is highly

nonlinear, other optimization routines must be used. One solution might be to use a

nonlinear optimization solver that can also deal with non-linear constraints. Another

approach to such instances might be to sample for each observation i a large number of

elements u for which (yi, u) ∈ Γ. Such sampling can be done using MCMC methods

like the hit-and-run procedure. Here one starts from a feasible point u for which

(yi, u) ∈ Γ and one iteratively draws a random direction δ and moves u in the direction

δ if (yi, u + δ) ∈ Γ. If not, then depending on the specification of the hit and run

procedure, the direction δ might be reduced in length, reversed, or a new draw might

be taken. In this way, one moves over the region {u ∈ U|(yi, u) ∈ Γ} until one is

confident to have obtained a decent coverage of this space.20 Once such sample is

19See for example Cherchye, De Rock, and Vermeulen (2007); Cherchye, Demuynck, De Rock, and
Hjertstrand (2015); Demuynck and Rehbeck (2023).

20See, for example, Demuynck (2021) for applications of such MCMC methods in RP tests.
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obtained one chooses the maximal value of 〈η, f(yi, u)〉 over values u in this sample.

Note that in principle this sampling procedure only has to be conducted once, before

the main algorithm is run. Alternatively, one might consider a more directed search

based on the values of η and f̂ found in the previous round of the MASTER program,

as this might put additional constraints on the subregion of F (yi) where 〈η, f〉 is

maximized.

4 Statistical inference

Recall from section 1 that the test of our model takes the following form:

H0 : d(ψ,EF ) = 0,

H1 : d(ψ,EF ) > 0.

Inference is then based on the “estimate” d(ψ, co(F n)), determined by the output of

Algorithm 1. Using Proposition 4, we obtain:

d(ψ, co(F n)) =

{
sup
p∈SK
{〈p, ψ〉 − hco(Fn)(p)}

}
+

,

where {x}+ = max{x, 0}. This distance can be used as the basis for a test of H0.

Consider the following test statistic:

Tn =
√
nd(ψ, co(F n)).

The asymptotic distribution Define the functional φ : C
(
SK
)
→ R pointwise by

φ (g) = supp∈SK 〈p, ψ〉 − g (p) , where C
(
SK
)

denotes the set of continuous functions

defined on the unit sphere SK . We can write

Tn =
√
n
{
φ
(
hco(Fn)(p)

)}
+

One can show that φ is Hadamard (directionally) differentiable,21 with directional

21A map φ between two normed vector spaces, A and B is said to be Hadamard directionally
differentiable at g in the direction k if, for all sequences (tn)n∈N0

of positive numbers converging to

zero, and all sequences (kn)n∈N0 converging to k ∈ A, the limit φ′g(k) = limn
φ(g+tnkn)−φ(g)

tn
exists.
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derivative φ′g (k) = supp∈Λ0
−k (p) , where Λ0 = arg maxp∈SK 〈p, ψ〉 − g(p).22 In addi-

tion, the Central Limit Theorem for random variables that are C
(
SK
)
-valued of Jain

and Marcus (1975) implies:

√
n
(
hco(Fn)(p)− hEF (p)

)
d→ Z (p) ,

where Z is a Gaussian random process with EZ (p) = 0, and covariance EZ(p)Z(p′) =

EhF (y)(p)hF (y)(p
′) − EhF (y)(p)EhF (y)(p

′). Using this result and the fact that φ is

Hadamard directionally differentiable allows us to apply Lemma D.4 in Kaido (2016),

which yields that for all ψ on the boundary of EF

Tn
d→ sup

p∈Λ0

{−Z (p)}+ (16)

where now,

Λ0 = arg max
p∈SK
〈p, ψ〉 − hEF (p).

In theory, asymptotic inference can be based on (16) by finding the critical value c1−α

corresponding to the 1 − α quantile of supp∈Λ0
{−Z (p)}+. Doing this, however, is

complicated by the fact that Λ0 is not known. As such, we will consider an alternative

subsampling procedure.

Algorithm 2 Subsampling

Require: 0 < α < 1, 0 < b < n. Let Nn,b =
(
n
b

)
. A sequence (ζn)n∈N0

such that

limn ζn = +∞, and limn
ζn√
n

= 0.
1: for k = 1, . . . , Nn,b do
2: Collect the kth subsample of size b (without replacement) and let co(F n,b,k)
3: be the convex hull of the Minkowski average for this k’th subsample.
4: Compute d(ψ, co(F n,b,k)) = supp∈SK 〈p, ψ〉 − hco(Fn,b,k)(p).
5: end for
6: Compute cn,b,1−α as the (1− α)’th quantile of the subsampling distribution

Hn,b (z) =
1

Nn,b

Nn,b∑
k=1

1

{√
b

{
d(ψ, co(F n,b,k))− d(ψ, co(F n)) +

ζn√
n

}
+

≤ z

}

22A derivation of this is available from the authors upon request.
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Subsampling Algorithm 2 gives our subsampling procedure.23 For each subsample,

it determines the distance d(ψ, co(F n,b,k)) where co(F n,b,k) is the convex hull of the

Minkowski average over the sets F (yi) in the subsample. This distance can readily be

computed using Algorithm 1. The critical value for the null hypothesis is obtained

as the 1− α percentile of the subsampling distribution of√
b
{
d(ψ, co(F n,b,k))− d(ψ, co(F n)) + ζn√

n

}
+

.

The difference in distances accounts for the difference d(ψ, coF n)) − d(ψ,EF ) be-

tween the finite sample test statistic and the actual distance. The additional small

correction term ζn√
n

accounts for the fact that Λ0 is unknown and somehow needs to

be approximated. A test of H0 : d (ψ,EF ) = 0 based on the empirical distribution of

the test statistic, computed through this subsampling approach can be shown to be

consistent, in the following sense:

Theorem 9. Let (bn)n∈N be a sequence such that bn → +∞ and (bn/n)→ 0 and let

cn,bn,1−α be the 1−α quantile of the empirical distribution Hn,bn (z) as determined by

Algorithm 2. Consider ĉn,bn,1−α = cn,bn,1−α+ ε, where ε is an arbitrarily small positive

(real) number. Then, if ψ ∈ EF, and α ∈ (0, 0.5), it follows that:

lim sup
n

Pr (Tn > c̃n,b,1−α) ≤ α,

and for ψ /∈ EF and α ∈ (0, 1),

lim
n

Pr (Tn > c̃n,b,1−α) = 1.

The proof of this Theorem follows from Corollary 3.2 in Kaido (2016) together with

a modification of his bootstrap procedure (we refer to the proof in the Appendix for

more details).

5 Applications

In this section, we provide two RP applications of our results.

23We refer to Politis, Romano, and Wolf (1999) for a full treatment on subsampling.
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5.1 Intertemporal consumption with income uncertainty

Our first application revisits the classical setting of intertemporal consumption choice

under uncertainty. We consider the standard setting where a household decides be-

tween consumption and savings over time and that every household is an exponential

discounted utility (EDU) maximizer. The EDU model is clearly a workhorse for many

different economic settings. Although intertemporal consumption and savings has re-

ceived attention in the revealed preference literature, most of this literature focuses

on settings without uncertainty24 (Browning, 1989; Crawford, 2010; Demuynck and

Verriest, 2013; Adams, Cherchye, De Rock, and Verriest, 2014).

An important remark is that adding uncertainty to these models without additional

structure on the shocks yields extremely limited or even vacuous testable restric-

tions. Indeed, any consumer behavior that is rational in the sense of maximizing the

per period utility function, can then also be rationalized as an intertemporal utility

maximizer by appropriate incorporation of some random (large enough) unobserved

shocks. Therefore, it is necessary to impose some basic structure on latent income

shocks. To be specific, we will consider the following environment: consumers have

rational expectations, income shocks are i.i.d. over time and there are no aggregate

shocks.25 Furthermore, as standard for nonparametric analysis of consumer behavior,

we assume stable (but possibly heterogeneous) preferences for consumers over the

relevant time window.

To fix ideas, consider a random consumer (household) with a concave, continuous

and monotone instantaneous utility function U and discount rate β that chooses

consumption amounts according to the standard infinite horizon EDU model:

max
(ct)t=0,1,...

E

[
∞∑
t=0

βtU (ct)

∣∣∣∣∣I0

]
s.t. st+1 = mt + (1 + rt)st − 〈pt, ct〉,

s0 given.

24Aguiar and Kashaev (2021) is an exception.
25There is no generally agreed framework in the literature on how to deal with aggregate shocks

econometrically, and is beyond the scope of our paper. A recent contribution tackling estimation
and testing of models in the presence of aggregate shocks, within a parametric context is Hahn,
Kuersteiner, and Mazzocco (2020).
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Here, ct is the consumption vector at period t, (mt)t∈N is a random income stream,

pt are vectors of time varying (possibly individual specific) strictly positive prices, rt

denotes the interest rate at time t and st are savings at time t. Finally, It refers to

the information set at period t, i.e., all the information available to the consumer, at

the start of period t.

The Bellman equation for this problem is given by:

V (st) = max
ct
{U(ct) + βE [V (mt + (1 + rt)st − 〈pt, ct〉)|It]}

Using standard arguments, one can show that this value function is concave. The

first order and envelope conditions (for good j) are given by:26

∂U(ct)

∂cj
= βE

[
λ̂t+1|It

]
pt,j,

λ̂t = β(1 + rt)E[λ̂t+1|It].

where we used the notation λ̂t = dV (st)
dst

. If we define discounted prices ρt = pt
Πtk=1(1+rk)

and λt = βt+1λ̂t
∏t

k=0(1 + rk) and substitute the second condition into the first, we

obtain the following standard form:

∂U(ct)

∂cj
= β−tλtρt,j, (17)

E [λt − λt+1|It] = 0. (18)

Equation (17) gives the first order condition for consumption. Equation (18) is the

equivalent optimality condition for savings. Together they yield a standard set of

Euler equations for the intertemporal consumption model. Importantly, we note that

(18) is a (conditional) moment condition and implies that any element in It must be

orthogonal to the growth in marginal utility of income, λt+1 − λt. From this condi-

tional moment condition, we can derive a large set of implied unconditional moment

conditions. For example, for any variable xt ∈ It we need that E [(λt+1 − λt)xt] = 0.

To make the connection with the framework outlined in Section 1, we correspond the

observable component y to the (random) data set: y = (ρt, ct, It)t≤T . We specify the

26In case U i is not differentiable, we take corresponding subdifferentials.
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unobserved latent component of the model to be the collection of marginal utility of

income levels: u = (λt)t≤T . Next, we need to define the set Γ of all combinations

(y, u) that satisfy the model. In order to do this, we need to establish the relevant

RP conditions. First we define what it means to be rationalizable in our setting.

Definition 10. The pair (y, u) = ((ρt, ct, It)t≤T , (λt)t≤T ) is said to be rationalizable

by the EDU model if there exists a concave, locally non-satiated and continuous utility

function U such that (17) is satisfied given the values of ρt, ct and λt.

We define Γ as the collection of all (y, u) that are EDU rationalizable. The following

revealed preference characterization of the set will be helpful.27

Lemma 11. Let β ∈ (0, 1), the pair (y, u) = ((ρt, ct, It)t≤T , (λt)t≤T ) is EDU rational-

izable if and only if there are numbers (Ut)t≤T such that for all t, v ≤ T :

Ut − Uv ≤
λv
βv
〈ρv, (ct − cv)〉. (19)

The Lemma provides us with the following definition of the set Γ:

Γ =

{
(y, u) = ((ρt, ct, It)t≤T , (λt)t≤T )

∣∣∣∣∃(Ut)t≤T : Ut − Uv ≤
λv
βv
ρv (ct − cv) , for all t, v ∈ T

}
.

In order to make the correspondence Γ satisfy Assumption 2, we can further limit

λt ∈ [λL, λU ] for some lower bound λL and upper bound λU . As is clear from the Afriat

inequalities (19), imposing a lower or upper bound is without loss of generality as both

variables (Ut)t∈T and (λt)t∈T can be scaled by a common factor. Imposing both an

upper and lower bound, however, might put restrictions on the Afriat inequalities. In

our application, we will have T = 4 and so setting λL = 1 and λU = 10 seems to be

a sufficiently large margin.

The system of inequalities in (19) are known as Afriat inequalities and are obtained

from combining concavity of the utility function U , together with the first order

conditions. Obviously, in practice, we do not observe the realizations of u = (λt)t∈T .

One solution would be to study whether there exists for each realization yi of y at

least one one instance ui for which (19) holds. However, this amount of flexibility

limits the additional bite present in intertemporal models. Indeed, such a loosening

27We omit the proof as it is almost identical to the one in Browning (1989).
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of rationalizability would lead to the same testable implications as for static utility

maximization (i.e., GARP).28 In this sense, the dynamic intertemporal utility model

with uncertainty imposes no additional restrictions compared to per-period static

utility maximization. However, we can leverage the additional set of conditions given

by using the Euler conditions (18).

As the information sets It might be large, this condition contains indeed a large

(potentially infinite) number of implied moment conditions.

For the application, we impose several conditions of the following form:

E [(λt+1 − λt)xk,t] = 0. (20)

where xk,t is some variable in the information set It (k = 1, . . . ,m). As T = 4, this

gives for every k, 3 moment functions: fk,t(y, u) = (λt+1−λt)xk,t, so there are in total

K = 3m moment functions. Our algorithm is quite flexible to increase the number

of moment conditions as long as they are linear in the latent variables u = (λt)t≤T as

this means that the AUXILIARY programs (15) takes the form of a linear program

(conditional on β). A first, rather obvious choice is x1,t = 1, which gives:

E [λt+1 − λt] = 0, for all t ≤ T − 1, (21)

This requires that the mean difference between λt+1 and λt (over the population of

individuals) to be zero for all t ≤ T − 1.

To be specific, given the set {f1, . . . , fj, . . . , fJ} of elements in co(F n) ⊂ RK , our

MASTER program takes the following form:

MASTER: min
ηk,t
‖η2‖

s.t.
J∑
j=1

wjfj + η = 0 ∀k ≤ K, t ≤ T

J∑
j=1

wj = 1

wj ≥ 0, ∀j = 1, . . . J.

28See Varian (1982).
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Notice that here ψ = 0 as the right hand sides of all moment conditions equal zero.

Once we have solved this model, we first check if ‖η‖2 ≈ 0 and if so, we can immedi-

ately stop as then 0 ∈ co(F n). If ‖η‖2 > 0, then recall that we have to solve a number

of auxiliary problems, equal to the size of the cross-section. In particular, for each

dataset yi = (ρit, c
i
t)t≤T from the sample (y1, . . . , yi, . . . , yn), we solve the following

problem.

AUX(i): max
λit,U

i
t

T−1∑
t=1

K∑
k=1

ηk,t(λ
i
t+1 − λit)xik,t

s.t. U i
t − U i

v ≤
λiv
βv
ρiv(c

i
t − civ) ∀t, v ≤ T

λit ∈ [λL, λU ] ∀t ≤ T

Here we indexed all variables by i to convey that these differ for different observations

yi. It is easily to see that AUX(i) is a linear program (for a given β). In sum, every

iteration of the algorithm requires us to solve one quadratic (the MASTER) and n

linear programs (the AUXILIARY programs) and is therefore computationally quite

efficient.29

5.1.1 Data

We use the Consumer Expenditure Survey (CEX) for the period 1991Q1-2018Q4.

This dataset is constructed by the Bureau of Labor Statistics and contains a rich set

of measures for expenditures across detailed consumption categories, earnings and

demographic characteristics. The CEX has a rotating panel feature, in which about

20 % of the interviewed addresses is new to the sample. All households are selected

to be representative for the US population. Importantly for our purposes, the CEX

has a (restricted) panel dimension. In particular, respondents are interviewed for

a maximum of 5 times, including a preliminary interview in which essential CEX

recording procedures are explained. They are also asked to keep records of their

expenditures. Respondents are traced for a maximum of 4 consecutive quarters. In

each of these subsequent interviews, the respondents are asked to provide expenditure

29The quadratic and linear programs are solved using the commercial GUROBI software, which
can be used to solve large scale linear, quadratic and integer programming software. The software
is free for academic use.
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details regarding the last 3 months prior to the interview date. In our application, we

use data from the Interview part of the CEX, in particular the detailed consumption

expenditure (MTBI) files. These files consist of detailed monthly expenditures on a

plenitude of consumption categories, and records these expenditures for a span of 3

months before the interview date for the specific wave took place. We follow Blundell,

Browning, and Crawford (2008) and Cosaert and Demuynck (2018) in grouping the

different expenditure categories within three classes: food, nondurables and services.

For food, we consider both food away from home and food at home. For nondurables,

we aggregate expenditures on clothing, tobacco and alcohol. Finally, for services

we aggregate expenditures on fuel, oil, gasoline, other energy services and public

transport (fares). These expenditures are on a monthly frequency, whereas most of the

other available information regarding households (including salary etc.) is measured

at a quarterly frequency. Following Attanasio and Weber (1995) and Mazzocco (2007),

we scale these monthly expenditures to a quarterly frequency by considering the

monthly expenditures for the month just preceding the interview and multiply these

by 3. To obtain prices for these consumption categories, we first gathered associated

Consumer Price Indices published by the BLS at the most disaggregated level possible.

For each of our 3 consumption classes we then construct a price index which is a

geometrically weighted average of the CPI’s of its constituent consumption categories.

The weights attached to each category is its relative expenditure share within the

broader consumption class to which it is categorized. With regards to (gross) interest

rates, we used municipal bond rates as published in the economic reports to the

president.

In addition to the 3 consumption categories, we also include leisure as an additional

consumption good. In the CEX there is only information regarding (quarterly) labor

supply. To impute leisure, we use a similar procedure as in Mazzocco (2008) and set

quarterly available (productive) time to an individual 1,092 hours,30 and then subtract

the individual’s labor supply to obtain a measure of quarterly leisure. For wages,

we use the detailed member information (MEMI) files from the Interview Survey,

which contains salaries at different frequencies, which we first convert in a consistent

quarterly measure. Wages are then imputed by salaries divided by quarterly labor

supply.

30This amounts to around 15 productive hours per day.
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To obtain our final dataset, we impose the following sample selection restrictions:

we only keep respondents that are between 19 and 70 years old, who live in urban

areas and who have non-missing and non-zero consumption of all our consumption

categories. Note that, in contrast to many other papers that use the CEX to study

(intertemporal) consumption and savings behavior of individuals, we do not add any

further restrictions regarding family composition and/or marital status. There are

several reasons to allow for a wide range of (observed) heterogeneity across consumers

in our dataset. First, given that our setting is fully nonparametric, we do not require

any (parametric) structure on utilities. Moreover, our test allows each household to

have distinct preferences. Consequently, identification arguments are not based on

the plausibility of these parametric assumptions which are often dependent on further

sample restrictions. Next, our general framework as outlined in this paper (Section

1) relies on a set of moment restrictions. In our specific application these take the

form as in (20). Our test based on these restrictions will become stronger with its

length, and in that sense having more heterogeneity across observables is useful for

our purposes.

5.1.2 Results

In order to be able to apply our RP analysis, we first need to be sure that there is

at least one value u = (λt)t∈T for which the Afriat conditions in Lemma 11 hold. In

other words the sets F (yi) are non-empty. As this is not always the case, we first look

for the largest e ≤ 1 for Such that for some U i
t and λit > 0 (t = 1, . . . , T ):

U i
t − U i

v ≤
λiv
βv
〈ρiv, (cit − e · civ)〉 ∀t, v ≤ T.

This value corresponds to the so called Afriat critical cost efficiency index in RP

analysis. Then if e < 1 we conduct the test conditional on this value, replacing civ by

e · civ where necessary.

Concerning the moment conditions, recall that the moment functions fk,t(y, u) are of

the form:

fk,t(y, u) = (λt+1 − λt)xk,t. (22)

In our dataset, we observe households for 4 subsequent periods (T = 4), so t ranges

from 1 to 3 and for x we choose several covariates, known at period t. First, taking
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Table 1: Summary Statistics (means)

married one working singles

N 5496 3637 6136
expenditure share food 0.334 0.335 0.337
std 0.075 0.079 0.081
expenditure share nondurables 0.331 0.331 0.330
std 0.072 0.077 0.077
expenditure share services 0.335 0.333 0.333
std 0.074 0.075 0.079
leisure (hours/quarter) of hh head 540.32 883.01 546.39
std 128.27 280.51 121.28
wage of hh head 21.450 18.337 17.546
std 26.00 23.65 16.52

xk,t = 1 gives the usual condition that expected marginal utility should not change.

In addition we pick for xk,t also the period t prices and quantities of the 3 good

categories, the age of the hh-head, the education level of the hh head (0,1,2 according

to low, medium or highly educated) and the expenditure levels of the three categories.

This gives us a total of 3×12 = 36 moment conditions. We standardize all covariates

xk,t to make sure that all moment conditions get more or less equal weight in the

algorithm.

For the implementation, we first divide our sample of households according to their

status: single, married and both working and married and only one working. Table 1

gives some summary statistics. Consumption patterns are (on average) very equal

across the different household types. Expenditures on each category (food, services

and non-durables) are close to 1/3 of the total expenditure. Leisure time of the

household head is more or less equal between married (both working) and singles and

quite higher for couples where only one of the two spouses is working. The wage is

lowest for singles and highest for couples where both are working. For each of the

summary statistics, we see that there is considerable variation.

We conduct our RP test within each of the 3 categories: married and both working,

married and one working and singles, and according to the date of the first household

observations. This makes it that within each of the RP tests all time periods are

aligned. As we have data from 1991 until 2012, this gives us 84 samples per category.

For the analysis below, we discard samples with less than 40 observations.
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Table 2: Regression results: likelihood to reject model

β = 1 β = 0.99 β = 0.97 β = 0.95

constant 0.7145 0.7139 0.5711 0.5507
(0.1654) (0.1659) (0.1610) (0.1612)

married, both working 0.1403 0.1514 0.1234 0.1189
(0.0678) (0.0672) (0.0650) (0.0636)

married, one working -0.1060 -0.0977 -0.0824 -0.0692
(0.0935) (0.0933) (0.08820) (0.0879)

subsample size -0.0086 -0.0087 -0.0067 -0.0066
(0.0025) (0.0025) (0.0025) (0.0025)

R2 0.0837 0.0906 0.0620 0.0608
N 188 188 188 188

robust standard errors between brackets

For each of these samples we run our algorithm. The output gives for each of these

subsamples a pass or no pass depending on whether the subsample passes the test

or not (i.e. whether d(ψ, co(F n)) = 0 or not).31 Finally, we regress the incidence of

rejecting consistency with the model on a dummy indicating the category controlling

for the number of observations in the subsample. We do this for values of the discount

rate β ∈ {1, 0.99, 0.97, 0.95}.
Table 2 contains the results. First of all, a larger sample size significantly leads to less

rejections of the model. This might indicate that our sample size is somewhat too

small and that the model tends to reject a bit too much in small samples. Next, more

interestingly, it seems that for married couples where both are working, we reject the

model more often. This is in agreement with the literature on collective models of

household economics that states that multi-person households do not behave as single

individuals. Interestingly, we do not find this when looking at households where only

one of the two spouses is working.

5.2 Approximate expected utility maximization

For our second illustration, we study the testable restrictions implied by expected

utility theory (EUT), in a nonparametric RP framework. To be more precise, assume

31In practice we consider the test not rejected iff d(ψ, co(Fn)) ≤ 0.01. Here we do not use the
bootstrap inference as the number of observations in every sample is already quite low. Note,
however, that in the regression, we do control for the number of observations in each sample.
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a (radom) decision maker making choices over Arrow-Debreu securities over a finite

set of states, {1, . . . , S}. We assume that decision makers are risk averse and that

each one has a a C1 concave and strictly increasing Bernoulli utility function, U :

R+ → R. We will assume a (lab) experimental setting where the probabilities over

states are controlled by the econometrician (hence objective), however, the decision

maker is allowed to have some misperception of these probabilities, meaning that she

is maximizing subjective expected utility as in Savage (1954). The choice problem

for a certain (random) decision maker over the securities can then be represented as

follows:

max
(xs)s∈S

S∑
s=1

P̃sU(xs) s.t.
∑
s≤S

psxs ≤ m.

Here P̃s is the subjective probability attached to state s, and ps is the price of the

Arrow-Debreu securities for state s.32 The values (xs)s≤S give the amounts of the

Arrow-Debreu securities over the states in S. The first order conditions require:

dU(xs)

dx
=
λps

P̃s
∀s ≤ S,∑

s≤S

psxs = m.

where λ is the Lagrange multiplier for the budget constraint. Taking logs on both

sides of the first equation, we obtain:

ln

(
dU(xs)

dx

)
= µ+ ρs − π̃s ∀s ≤ S

where we used the notation µ = ln(λ), ρs = ln(ps) and π̃s = ln
(
P̃s

)
. From the point

of view of the econometrician, this framework includes unobserved randomness due to

the possibility of misperceptions in the (objective) probabilities by the experimental

subjects.

32Although the probabilities P̃s must add up to one, we will ignore this, as it is in fact a non-
testable restriction. Indeed, notice that we can always normalize the utility function to make sure
that probabilities add up to one without changing the optimal choices xs.
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This model is quite similar to Echenique, Imai, and Saito (2023), who studies the min-

imal error to perceived probabilities required to be able to rationalize choices by EUT.

In contrast to our setting, however, they consider a non-stochastic framework. Inter-

estingly though, they show that the model is formally equivalently to a model with

minimal (multiplicative) perturbations to prices or to the Bernoulli utility function.

In our framework, these different specifications could potentially be distinguished by

different sets of moment restrictions.

We will remain in the setting of allowing for errors in perceived probability, and

assume that there are (objective) true probabilities Ps that deviate from the subjective

ones in the following sense:

Ps = P̃s exp(εs).

In other words:

εs = π̃s − πs.

where πs = ln(Ps). We then get the convenient additive form:

ln

(
dU

dx
(x)

)
= µ+ ρs − πs − εs ∀s ≤ S (23)

We assume that the values εs are unobserved by the econometrician.

To make the connection to the setting of Section 1, we will relate the observed (ran-

dom) component y to the finite dataset y = (πs,t, ρs,t, xs,t)t≤T,s≤S, where t ≤ T

denotes an observation. The unobserved component is given by the set of errors

u = (εs,t)s≤S,t≤T , where εs,t gives the error at observation t for state s..

For defining the set Γ, we use the following notion of rationalizability:

Definition 12. We say that the pair (y, u) = ((πs,t, ρs,t, xs,t)s≤S,t≤T , (εs,t)s≤S,t≤T ) is

expected utility (EU) rationalizable if there exists a C1, strictly increasing and concave

utility function U such that condition (23) is satisfied for all t ≤ T and s ≤ S.

The set Γ then equals the collection of all pairs (y, u) that are EU rationalizable. The

following result provides its revealed preference characterization.

Lemma 13. The couple (y, u) = ((πs,t, ρs,t, xs,t)s≤S,t≤T , (εs,t)s≤S,t≤T ) is EU rational-

izable if and only if there exist values (µt)t≤T such that for all observations t, v ≤ T
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and all states s, w ≤ S:

if xs,t ≥ xw,v

then µt + ρs,t − πs,t − εs,t ≤ µv + ρw,v − πw,v − εw,v. (24)

A similar result has been derived and proven in Echenique and Saito (2015) and

Echenique, Imai, and Saito (2023).33 The Afriat-style inequalities in (24) are directly

related to the diminishing marginal utility of any Bernoulli map that EU-rationalizes

(y, u). Indeed, if consumption increases across two particular states and choice in-

stances, then the marginal utility of consumption decreases.

Using Lemma 13, we define Γ by all couples (y, u) for which we can find (µt)t≤T such

that condition (24) is satisfied.

To finalize, we can impose several moment conditions. One natural condition is that

the errors should have mean 0 over all states and observations:

E

[∑
t≤T

∑
s≤S

εs,t

]
= 0. (25)

Although this condition fixes the mean, by itself it is not very restrictive, as we can

always add a constant to all values εs,t without influencing the revealed preference

conditions (24). As an additional condition, we assume that these errors are uncor-

related with the prices which imposes that:

E

[∑
t≤T

∑
s≤S

εs,tps,t

]
= 0. (26)

Finally, we will add a restriction that bounds the error’s variance:34

E

[∑
t

∑
s≤S

(εs,t)
2

]
≤ TSσ2 (27)

If we translate this setup into our algorithm, we obtain a Master program, where one

of the moment conditions becomes an inequality. This, however is not a issue in the

33The proof of the result is omitted but almost similar to the proof of the main theorem in
Demuynck and Staner (ming).

34Notice that this uses the first mean zero moment condition.
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sense that the resulting feasibility set remains convex.

MASTER: min ‖η2‖

s.t.
J∑
j=1

wj(fj)k + ηk = 0 k = 1, . . . , K − 1

J∑
j=1

wj(fj)K + ηK ≤ TSσ2

J∑
k=1

wk = 1

wk ≥ 0.

The first K − 1 components of fj correspond to the moment functions related to

(25) and (26). The last component (fj)K relates to the variance condition (27). In

particular, fK(y, u) =
∑

t

∑
s≤S(εs,t)

2. Observe that the optimal solution will always

have ηK ≤ 0, which is relevant when going to the auxiliary programs:

AUX(i): max
εis,t

K∑
k=1

ηkfk(yi, ui),

s.t. (yi, ui) ∈ Γ.

Conveniently, Γ takes the form of a set of linear inequalities (given by (24)). All

moment functions fk(y, u) are linear in u except for the last one that gives a quadratic

term:

fK(yi, ui) =
∑
t≤T

∑
s≤S

(
εis,t
)2
.

However, given that ηK ≤ 0, the program AUXI(i) takes the form of a quadratic

(concave) maximization program, which can still be solved efficiently. As such, each

iteration in the program requires solving n+ 1 quadratic programs.

5.2.1 Data and Illustration

For our illustration, we use experimental dataset of Choi, Kariv, Müler, and Silverman

(2014). The dataset is from an experiment on the CentERpanel, which is representa-
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tive of the Dutch-speaking population in the Netherlands. The data is obtained from

an online experiment with 1182 CentERpanel adults (n = 1182).

Subjects were presented with a sequence of 25 decision problems under risk (T = 25).

Each decision problem consisted of making a choice from a two-dimensional budget

line representing the possible allocations over two Arrow-Debreu securities relating

to two states with equal probability (S = 2 and P i
1 = P i

2 = 0.5). The budget lines

selected for each subject and in each decision problems were independent of each

other and of the sets selected for any of the other subjects in their decision problems.

We refer to Choi, Kariv, Müler, and Silverman (2014) for more information on the

data set.

We run the algorithm for each value of σ2 in a grid. Figure 2 shows a plot of the

distance d(ψ, co(F n)) computed by the algorithm as a function of σ2. We also perform

the subsampling procedure outlined in section 4. In particular, for each value of σ2

in a grid we draw 500 subsamples (without replacement) of size 141 ≈ n0.7 and we

specify ζn = ln(n). The dashed line in the figure plots the value of d(ψ, co(F n)) as

a solid line and the critical value
cn,b,0.95√

n
as a dashed line. We see that the distance

linearly decreases until σ2 is around 0.12 after which it is indistinguishable from zero.

We cannot reject the null hypothesis that d(ψ,EF ) = 0 at the 5% significance level

for values of σ2 above 0.113. This gives a minimal standard deviation of around 0.34.

This gives a value of about 1.4 when exponentiated, which is quite sizable.
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Figure 2: d(ψ, co(F n) as a function of σ2
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Note: the solid line gives the value of d(ψ, co(Fn)) for various values of σ2. The dashed curves

gives the critical value for the null that d(ψ,EF ) = 0.

6 Conclusion

We presented a conceptual framework based on random sets to test revealed preference

models with unobserved randomness. To be more precise, we have shown that a test

of an RP model with randomness boils down to testing whether or not a vector, ψ,

summarizing the restrictions, is contained in the Aumann expectation of a particular

random set.

To operationalize this test towards realistic empirical settings, we replaced the Au-

mann expectation by the Minkowski average. As a final step in our theoretical con-

tribution, we showed that checking whether ψ lies in the Minkowski average can be

done efficiently using a column generating method. We further provide a subsampling

procedure to conduct inference.

The second half of the paper illustrate how our algorithm can be applied to test

models nonparametrically using both survey datasets and experimental data. In par-

ticular, we conducted a nonparametric test of a standard intertemporal consumption

model with uncertain income using the consumer expenditure survey (CEX). We find

that inconsistency with the model is more often observed for married couples where

both are working, which is in line with the collective model of household behavior.
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Interestingly, this pattern is not found for married couples where only one spouse is

working. Finally, we also tested rationalizability of choices by approximate expected

utility using experimental data.

Though we have focused on testing models using revealed preference analysis, it

should be noted that it might be possible for our algorithm to be fruitfully applied

to more general inference of set-identified (structural) parameters. We already il-

lustrated this in our application studying approximate expected utility, where we

provided a set-identification for the maximum variance of errors, σ2. Similarly, in the

application with the EDU intertemporal consumption model, we conditioned on β,

so this could also provide a manner to set-identify the discount factor. We leave a

fuller treatment of such extensions as a promising avenue for future research.
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A Proofs

A.1 Proof of Theorem 7

If the Algorithm stops at line 9, then d(ψ, co(F n)) ≤ ‖ψ − f̂J‖2 ≤
√
ε, which shows

the first claim. Next assume that the algorithm stops at line 17 at iteration J . Let

f̂ = arg minf∈co(Fn) ‖ψ − f‖2 be the projection of ψ onto co(F n). We have that:

‖ψ − f̂‖2 = ‖ψ − f̂J + f̂J − f̂‖2,

= ‖ψ − f̂J‖2 + ‖f̂J − f̂‖2 + 2〈ηJ , f̂J − f̂〉.

As such:

‖ψ − f̂J‖2 = ‖ψ − f̂‖2 − ‖f̂J − f̂‖2 + 2〈ηJ , f̂ − f̂J〉,

≤ ‖ψ − f̂‖2 − ‖f̂J − f̂‖2 + 2〈ηJ , fJ+1 − f̂J〉,

≤ ‖ψ − f̂‖2 + 2δ‖ψ − f̂J‖2

The first inequality follows from the fact that:

max
f∈co(Fn)

〈ηJ , f − f̂J〉 = max
f∈Fn
〈ηJ , f − f̂J〉 = 〈η, fJ+1 − f̂J〉.

as all extreme points of co(F n) are in F n. The second inequality follows from the fact

that if the algorithm stops (at line 17) then:

〈η, fJ+1 − f̂J〉 ≤ δ‖ψ − f̂J‖2.

This gives:

‖ψ − f̂J‖2 ≤ ‖ψ − f̂‖
2

1− 2δ
=
d(ψ, co(F n))2

1− 2δ

A.2 Proof of Theorem 8

Assume that the algorithm does not terminate before iteration J , which means that

for all j < J , 〈ηk, fj+1 − f̂j〉 > δ‖ψ − f̂j‖2 and ‖ψ − f̂j‖2 ≥ ε.

Notice that for all λ ∈ [0, 1], λfj+1+(1−λ)f̂j ∈ co({f1, . . . , fj+1} (as f̂j ∈ co({f1, . . . , fj})).
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As such, for all λ ∈ [0, 1]:

‖ψ − f̂j+1‖2 ≤ ‖ψ − (λfj+1 + (1− λ)f̂j)‖2,

= ‖ψ − f̂j‖2 + λ2‖f̂j − fj+1‖2 + 2λ〈ψ − f̂j, f̂j − fj+1〉,

= ‖ψ − f̂j‖2 + λ2‖f̂j − fj+1‖2 − 2λ〈ηj, fj+1 − f̂j〉,

The idea is to take the minimum of the right hand side over λ ∈ [0, 1].

It is clear to see that the right hand side is convex in λ and the derivative is strictly

negative for λ = 0 as the last term is strictly negative by construction of fj+1. As

such, the optimal value is either interior or equal to 1. If it is interior, the the first

order condition gives:

2λ‖fj+1 − f̂j‖2 − 2〈ηj, fj+1 − f̂j〉 = 0,

→λ =
〈ηj, fj+1 − f̂j〉
‖fj+1 − f̂j‖2

≥ δ‖ψ − f̂j‖2

‖fj+1 − f̂j‖2
≥ δε

A
.

Here we used the fact that ‖ψ − f̂k‖2 ≥ ε and we set A to be the maximum of the

diameter of the set F n:

A = max

{
sup

f,f ′∈Fn
‖f − f ′‖2

}

Notice that A is well defined as every set F (yi) is compact (and n is finite). Also

notice that, if necessary further increasing A, we can guarantee that, 0 <
δε

A
< 1

Next, if λ = 1 is optimal, then:

2‖fj+1 − f̂j‖2 − 2〈ηj, fj+1 − f̂j〉 ≤ 0,

→‖fj+1 − f̂j‖2 ≤ 〈ηj, fj+1 − f̂j〉.
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Now, if λ is interior, then:

‖ψ − f̂j+1‖2 ≤ ‖ψ − f̂j‖2 + λ2‖f̂j − fj+1‖2 + 2λ〈ηj, f̂j − fj+1〉,

= ‖ψ − f̂j‖2 − λ〈ηj, fj+1 − f̂j〉,

≤ ‖ψ − f̂j‖2 − λδ‖ψ − f̂j‖2,

= (1− λδ)‖ψ − f̂j‖2,

≤ (1− δ2ε

A
)‖ψ − f̂j‖2.

If λ = 1 then:

‖ψ − f̂j+1‖2 ≤ ‖ψ − f̂j‖2 + ‖f̂j − fj+1‖2 − 2〈η, fj+1 − f̂j〉,

≤ ‖ψ − f̂j‖2 − 〈ηj, fj+1 − f̂j〉,

≤ (1− δ)‖ψ − f̂j‖2.

Setting θ = max {1− δ, 1− δ2ε/A} < 1, we have that:

‖ψ − f̂j+1‖2 ≤ θ‖ψ − f̂j‖2.

As this holds for all j < J we get:

‖ψ − f̂J‖2 ≤ θJ‖ψ − f̂0‖2.

which proves the result.

A.3 Proof of Theorem 9

Let

Λ̂n =

{
p ∈ SK : 〈p, ψ〉 − hco(Fn)(p) ≥ sup

p′∈SK

(
〈p′, ψ〉 − hco(Fn)(p

′)
)
− ζn√

n

}
,

Set,

Z̃n,b,k(p) =
√
b
(
hco(Fn,b,k)(p)− hco(Fn)(p)

)
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and define,

H̃n,b (z) =
1

Nn,b

Nn,b∑
k=1

1

{
sup
p∈Λ̂n

{−Zn,b,k(p)}+ ≤ z

}

Let c̃n,b,1−α be the 1−α quantile of the empirical distribution H̃n,b(z). From Corollary

3.2 and the subsampling procedure proposed in Kaido (2016), we have that Theorem 9

holds when we replace for the statement of the theorem the critical value cn,b,1−α by

the critical value c̃n,b,1−α of H̃n,b(z). For the proof to hold, this means that we only

need to show that c̃n,b,1−α is no larger than cn,b,1−α.

First, from the construction of Λ̂n we have that for all p ∈ Λ̂n:

d(ψ, co(F n))− ζn√
n
≤ 〈ψ, p〉 − hco(F̄n)(p).

Then

Z̃n,b,k(p) ≥
√
b

(
d(ψ, co(F̄n))− 〈ψ, p〉+ hco(F̄n,b,k)(p)−

ζn√
n

)
So

sup
p∈Λ̂n

{
−Z̃n,b,k(p)

}
+
≤
√
b sup
p∈Λ̂n

{
〈ψ, p〉 − hco(F̄n,b,k)(p)− d(ψ, co(F̄n)) +

ζn√
n

}
+

,

≤
√
b sup
p∈SK

{
〈ψ, p〉 − hco(F̄n,b,k)(p)− d(ψ, co(F̄n)) +

ζn√
n

}
+

,

=
√
b

{
d(ψ, co(F n,b,k))− d(ψ, co(F n)) +

ζn√
n

}
As such,

H̃n,b(z) ≥ 1

Nn,b

Nn,b∑
k=1

1

{√
b

{
d(ψ, co(F n,b,k))− d(ψ, co(F n)) +

ζn√
n

}
+

≤ z

}
,

= Hn,b(z).

By definition Hn,b(cn,b,1−α) = (1 − α) = H̃n,b(c̃n,b,1−α) ≥ Hn,b(c̃n,b,1−α). As Hn,b is a

weakly increasing function, we have that cn,b,1−α ≥ c̃n,b,1−α.
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