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Abstract

Observing others’ actions can resolve strategic risk but may also result in second-

mover disadvantage and inefficiencies. For example, a high level of transparency

in workplaces may enhance operational control but stifle innovation. I theoretically

analyze 2-by-2 cyclical games in which a player(manager) selects a probability of

monitoring the other(employee)’s action. Employees know the probability but do

not know whether their actions are observed. The model predicts the conditions

for Transparency Paradox (Bernstein, 2012) in which an intermediate probability of

monitoring is optimal for the manager and for the firm’s efficiency. If innovation

exposes employees to greater potential exploitation by the manager, managers must

monitor and exploit with smaller probabilities. However, the laboratory experiment

finds that the subjects in the role of manager persistently over-monitor under such

a condition, and even those who do not over-monitor tend to over-exploit. In best

response, employees refrain from innovation irrespective of the monitoring proba-

bility, which incentivizes over-monitoring by managers. Under over-monitoring and

over-exploitation, employees bear most of the efficiency loss. The findings highlight

the incentive conditions and dynamic processes that make firms and organizations

particularly vulnerable to invasive surveillance/monitoring practices that lead to in-

efficiency and inequality.

1 Introduction

Observing others’ actions can provide a substantial strategic advantage in various con-
texts such as market competition, military conflicts, counter-terrorism, or criminal mon-
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itoring. In those contexts, the knowledge of others’ actions resolves strategic risk for the
observer and facilitates more informed decision-making. The knowledge also enables the
observer to influence or control the behavior of the observed: Online platforms collect ex-
tensive data on user behavior and profit from their predictive power through targeted ads
and recommendation algorithms. At workplaces, new technologies are facilitating ever
more pervasive and invasive monitoring and surveillance of employee activities, such as
collecting biometric data and remote monitoring and time-tracking (Mateescu & Nguyen,
2019). The digital technology-assisted practices that were adopted during the pandemic
have been normalized and stayed with us (Parker et al., 2022; van Dam, 2022). The scope,
the intensity, and the depth of surveillance in our markets and organizations raise seri-
ous concerns about our rights, freedom, democracy, and equal distribution of power and
control (Baiocco et al., 2022; Amnesty International, 2019), yet these concerns are typically
overruled by the high economic value and efficiency that can be unlocked by surveillance
(Zuboff, 2019).

However, this study will theoretically and experimentally show that unbridled mon-
itoring of others’ actions may in fact backfire for the observer as well as economic effi-
ciency. Specifically, observing others’ actions resolves strategic risk for the observer, but
may also induce second-mover disadvantage and inefficient actions by the observed. For
example, Bernstein (2012)’s field study at a mobile-phone manufacturing facility docu-
ments Transparency Paradox in which high visibility of employee behavior reduces pro-
ductivity by stifling innovation. Table 1 below shows a 2×2 game between an employee
and a manager at a firm as a stylized representation of the problem.

Table 1: Transparency Paradox as a 2×2 game

Manager

Employee

Exploit Status quo

Innovate x1, 190 190 , 100

Status quo 145 , 10 145 , 100

x1 < 145

An example: Transparency Paradox In this game, the employee decides whether to
innovate the production method or produce with the status quo method. The manager
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Figure 1: Ex-ante expected payoffs in perfect Bayesian equilibrium

decides whether to exploit1 the employee or not. Innovation increases efficiency, but the
employee is better off innovating only if the manager does not exploit (x1 < 145)2.

Suppose that the manager chooses a probability of monitoring the employee’s action
before deciding whether to exploit. The probability of monitoring is common knowledge
between the employee and the manager3, but the employee does not know whether he is
indeed monitored or not.

The game presents both incentives and disincentives for monitoring. With a zero prob-
ability of monitoring, the cyclical game has a unique Nash equilibrium in non-degenerate
mixed strategies, which poses strategic risk that could be resolved through monitoring.
Indeed, perfect Bayesian equilibrium (PBE) predicts the manager’s ex-ante expected pay-
off to linearly increase in the monitoring probability, as long as the probability is suffi-
ciently small. Figure 1 plots the expected payoffs for two cases: x1 = 10 and x1 = 130.
On the other hand, the manager might not want to monitor with certainty. If she did,
the game becomes a sequential-move game in which the employee moves first and the

1Exploitation can have multiple interpretations in practice, such as claiming the intellectual property
generated by innovation without proper compensation, raising production targets, micromanaging or hold-
ing employees accountable for using non-standard production methods (Bernstein, 2012). The example as-
sumes that such actions are likely to be somewhat costly to the manager and unlikely to deliver any benefit
unless there is innovation.

2The table shows an extreme case in which the employee captures the entire surplus from innovation if
the manager does not exploit, but this is not a critical assumption as to be shown in the general model.

3Footnote 5 in Section 3 discusses the validity of this assumption.
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manager follows. PBE predicts that both players choose status quo and fail to achieve
maximal efficiency.

In the unique PBE of this game, the manager maximizes her expected payoff by moni-
toring with a probability that is strictly between 0 and 1. Specifically, the manager chooses
the maximal probability of monitoring that partially resolves strategic risk and also pre-
serves employees’ incentives for innovation. The maximal probability of monitoring is
0.25 if x1 = 10, and 0.75 if x1 = 130 as shown in Figure 1.

This study investigates the strategic trade-off between resolution of strategic risk and
second-mover disadvantage as demonstrated in the example above. First, I theoretically
analyze a class of 2 × 2 games in which one of the two players (e.g. manager) costlessly
monitors the other player (e.g. employee)’s action before taking her own action, with a
probability of her choice. The probability is commonly known but the employee does
not know whether his action is observed or not. I find the conditions for transparency
paradox in which an intermediate probability of monitoring strictly between 0 and 1
is strategically optimal. As in the example, the monitoring player chooses the highest
probability that partially resolves the strategic risk without triggering the second-mover
disadvantage in the unique perfect Bayesian equilibrium.

Next, a laboratory experiment tests the theoretical prediction that if innovation ex-
poses the employee to greater exploitation by the manager (i.e., smaller x1 in Table 1), the
manager must monitor and exploit with lower probabilities. I find that subjects in the
role of manager tend to over-monitor under such condition: They monitor with higher
probability compared to the theoretical prediction, and even compared to the alternative
condition for which the theory predicted a higher monitoring probability. Furthermore,
even those who do not over-monitor tend to over-exploit. In their best response to the
over-exploitation, the subjects in the role of employee refrain from innovation irrespec-
tive of the monitoring probability. Such an indiscriminate strategy in turn provides strong
incentives for over-monitoring by the manager. Over-monitoring and over-exploitation
result in a modest but statistically significant efficiency loss, which is mostly borne by
the employees. Learning only reinforces over-monitoring. The elicited belief data and
play against automated equilibrium strategies suggest that subjects have greater difficulty
forming consistent beliefs about the managers’ strategy and taking sequentially rational
actions as the manager.

One contribution of this study is the simple theoretical model that cleanly captures
the strategic trade-off involved in monitoring. Monitoring as a strategic action that cre-
ates uncertainty regarding the order of moves has been theoretically explored in rela-
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tively few studies, despite its high relevance and broad applicability4. Most previous
studies consider observability as an exogenous perturbation in games, or in the context
of endogenous move games with only second-mover disadvantages but no strategic risk
in the theoretical sense. The model in the present paper makes an intuitive prediction
that under strategic risk some monitoring is still useful, but the monitoring party should
exercise greater discipline if monitoring can be particularly hurtful for the monitored.
On the other hand, the experiment show how the monitoring parties fail to show the
required discipline, precisely under those circumstances, triggering a chain of strategic
responses that strongly incentivizes over-monitoring. The findings suggest that markets
and organizations in which the observed party’s incentive for efficiency-enhancing action
is highly sensitive to over-monitoring may be particularly vulnerable to invasive surveil-
lance practices and resulting inefficiencies and inequality. Finally, this study’s findings
about managers’ monitoring strategy complements Bernstein (2012)’s findings about em-
ployees’ response to the exogenously varied levels of monitoring.

Although Transparency Paradox at workplaces will continue to serve as the primary
example, the class of games featuring both strategic risk and second-mover disadvantage
is applicable to other contexts. For example, the two players in Table 1 can be alternatively
interpreted as a criminal organization and law enforcement. The law enforcement is the
column player who chooses the level of patrol/surveillance. The criminal organization,
the row player, chooses between committing a crime and waiting, which respectively
correspond to innovating and status quo. The law enforcement chooses between a crack-
down and waiting, which respectively correspond to exploiting and status quo.

In what follows, Section 2 reviews relevant previous literature, and Section 3 analyzes
a general version of the transparency paradox model. Section 4 describes the experi-
mental design. Section 5 presents findings from the experimental data on behavior and
elicited beliefs.

2 Literature

Despite the rapidly growing capabilities of surveillance/monitoring technologies and
their broad applicability across contexts, there are relatively few theoretical analyses and
even fewer documentations of empirical evidence on monitoring as a strategic choice.
To clarify, the following review only covers monitoring of actions, which is distinguished
from monitoring of exogenous types. In particular, the former creates uncertainty about
the order of moves, whereas the latter does not.

4Section 2 provides review of the previous literature.
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Solan & Yariv (2004) is probably the most closely related study in analyzing the strate-
gic trade-off involved in endogenous monitoring. The authors consider normal-form
games in which the second-mover purchases an information device that generates sig-
nals about opponent action under a cost structure. Costless monitoring assumed in my
model is not precluded by those assumptions, but the choice of monitoring probability
for perfectly accurate signal violates their convexity assumption for the information de-
vice. Furthermore, in their model, the first-mover chooses his strategy and then second
mover makes simultaneous decisions on monitoring and strategy. This assumption im-
plies that the second-mover cannot commit to low-level monitoring, because she cannot
lose by purchasing a non-trivial information device if the device is costless. On the other
hand, my model examines the second-mover’s strategic commitment to low-probability
monitoring, and therefore is more relevant to setups where such commitment is credi-
ble due to irreversability of the commitment, visibility of monitoring effort (e.g., criminal
monitoring through surveillance cameras and partols) or transparency requirement for
monitoring policy.

Some previous theoretical studies demonstrated how the exogenous uncertainty in the
observability of actions can sharpen equilibrium predictions or offer new interpretations
for existing solution concepts (Bagwell, 1995; Van Damme & Hurkens, 1997). For two-
person non zero-sum games, Robson (1994) shows existence of Informationally Robust
Equilibrium (IRE), a refinement of NE that are robust to exogenous, commonly known
probability with which one’s pure or mixed strategy, but not the realized action, is re-
vealed to the opponent. Reny & Robson (2004) considers finite two-person games in
which the exogenous probability is private knowledge. They show that an equilibrium
mixed strategy in the unperturbed game can be approximated by some equilibrium dis-
tribution of a perturbed game. Penta & Zuazo-Garin (2022), similar to this study, assumes
monitoring that reveals the realized action of mixed strategy. They characterize Rational-
ity and Common Belief in Rationality (RCBR), a refinement of rationalizability that is ro-
bust to perturbations in first- or higher-order beliefs about such revelation. Furthermore,
they show that the empirical patterns found in asynchronous-move games are consistent
with RCBR’s equilibrium selection that are advantageous to the first mover.

This study concerns endogenous timing of moves in games, because monitoring can
be interpreted as a strategic choice to be a second-mover (follower). Most previous re-
search have studied endogenous timing of moves in the context of market competition
where commitment, a strategic choice to be the first-mover(leader), has strategic value.
Although theory typically predicts sequential-move Stackelberg outcome rather than simultaneous-
move Cournot outcome (Saloner, 1987; Robson, 1990; Hamilton & Slutsky, 1990; Mailath,
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Table 2: Game G

P2

P1
A B

A x1, y4 x4, y3

B x3, y1 x2, y2

x1 < x2 < x4, x1 < x3
y1 < y2 < y4, y3 < y4

1993; Ellingsen, 1995; Van Damme & Hurkens, 1999; Amir & Stepanova, 2006), the experi-
ments find more support for the simultaneous-move Cournot outcome (Huck et al., 2002;
Fonseca et al., 2006; Müller, 2006). Inequity aversion can explain the Cournot outcome but
cannot explain the choice to delay the decision (Santos-Pinto, 2008). Henkel (2002) ana-
lyzes a setup in which the first-mover announces its action (price) and simultaneously
sets its cost of deviating from the announcement. Under strategic complementarity, the
first-mover makes only partial commitment by setting a low cost of deviation, a finding
that is qualitatively similar to the intermediate probabilities of monitoring predicted by
my model.

3 Model

Consider the 2×2 game in Table 2 in which player 1 (P1) is the row player and player 2
(P2) is the column player. Suppose that before playing the game, P2 chooses a probability
of monitoring s ∈ [0, 1] with which she observes P1’s chosen action before P2 takes her
own action. With probability s, P2 monitors P1’s action, i.e., the game is played as a
sequential move game in which P2 is the second mover. If P1 chooses a mixed strategy,
P2 monitors the realized action. With the remaining probability 1− s, P2 does not monitor,
i.e., the game is played in simultaneous moves. P2’s choice of s is common knowledge5,
but only P2 knows whether she is informed or uninformed about P1’s action. P1 does not

5Alternatively, one could assume that s is private knowledge for P2. Under such an assumption, the
solution to the current model becomes trivial. There would be no equilibrium in which P1 plays a non-
degenerate mixed strategy: if P1 plays a non-degenerate mixed strategy, P2’s unique best response is to
monitor with certainty (s = 1). This is the case if s is assumed to be chosen before all actions but not revealed
to P1, or assumed to be chosen simultaneously with all actions. Whereas the private knowledge assumption
might better fit some strategic situations, the common knowledge assumption and the reasoning in the
present model would be applicable to other situations in which (1) the monitoring parties such as managers
and online platforms are required to disclose the extent of their monitoring activities (e.g. by law or to write
a contract/ agreement) or (2) the monitoring parties cannot effectively hide its extent of monitoring or (3)
the monitoring parties can overrepresent its extent of monitoring (e.g. installing fake speed cameras) but
cannot underrepresent it in the long run.
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observe P2’s action.

I make two assumptions on the payoffs that embody the strategic trade-off in monitor-
ing. First, the game is cyclical: without monitoring, its unique Nash equilibrium in non-
degenerate mixed strategy poses strategic risk that can be resolved by monitoring. With-
out loss of generality, assume x1 < x3, x2 < x4, y1 < y2, and y3 < y4. Second, monitoring
induces second-mover disadvantage: if P2 observes P1’s action with certainty (s = 1), the
resulting sequential-move game has a unique subgame perfect equilibrium which does
not yield the first-best outcome for P2. Given the first assumption, P2 matches P1’s ob-
served action in any subgame perfect equilibrium. Without loss of generality, assume that
P1 plays action B in the equilibrium (x2 > x1), which does not yield the first-best outcome
for P2 (y2 < y4). All assumptions introduced so far are summarized under Table 2. Now
I describe the perfect Bayesian equilibrium of this game and identify the condition for
transparency paradox.

Lemma
(a) A subgame following any s < s∗ = x4−x2

x4−x1
has a unique equilibrium in which

• P1 and non-monitoring P2 plays non-degenerate mixed strategies.

• monitoring P2 matches P1’s observed action.

• Π2(s), P2’s ex-ante expected equilibrium payoff, linearly increases in s.

(b) A subgame following any s > s∗ = x4−x2
x4−x1

has a unique equilibrium in which

• P1 and non-monitoring P2 take action B

• monitoring P2 matches P1’s observed action

• P1 and P2 respectively get ex-ante expected equilibrium payoffs Π1(s) = x2 and
Π2(s) = y2.

(c) The subgame following s = s∗ = x4−x2
x4−x1

has multiple equilibria in which Π1(s = s∗) =
x2. The set of ex-ante expected equilibrium payoffs for P2 includes the expected payoff
she would get in case (a) if s = s∗, her expected payoff in case (b), and the whole interval
between them.

Proposition (Transparency Paradox)
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If s∗ = x4−x2
x4−x1

> y2−y3
y4−y3

6,
(a) There exists a unique perfect Bayesian equilibrium in which P2 monitors P1’s action
with probability s∗ = x4−x2

x4−x1
∈ (0, 1).

(b) In the equilibrium, both P2’s ex-ante expected payoff and the sum of P1 and P2’s ex-
ante expected payoffs are strictly higher than those expected under P2 monitoring with
certainty. i.e., Π2(s∗) > Π2(1) and Π1(s∗) + Π2(s∗) > Π1(1) + Π2(1) = x2 + y2.

The proofs are provided in the appendix. The key example in the introduction pro-
vides intuitive explanations for the lemma. The proposition specifies the condition for
transparency paradox, i.e., the strategic optimality of monitoring with a probability strictly
between 0 and 1.

For an intuitive understanding of the condition, first note that the condition trivially
holds for any s∗ if y2 ≤ y3. That is, if action A by P1 strictly improves P2’s payoff regard-
less of P2’s action, P2 can earn a strictly higher expected payoff than y2 by monitoring
with any probability s < 1 as long as it induces P1 to take action A with a strictly positive
probability. For example, P2 can simply take action B when non-monitoring and match
P1’s observed action when monitoring. This strategy strictly improves P2’s expected pay-
off over y2 regardless of whether she monitors or not. On the other hand, if y2 > y3,
inducing P1 to take action A (reduction in second-mover disadvantage) can backfire if P2
often fails to match the action (increased strategic risk). For P2 to choose s∗ < 1 in the
equilibrium, P1 should be willing to play action A even at a relatively high probability of
monitoring s∗ = x4−x2

x4−x1
. This requires small x2 or large x1 relative to x4.

4 Experiment design

The experiment implements 12 rounds of the 2 × 2 game as shown in Table 3 below, with
a pre-game selection of monitoring probability by P2 at the beginning of each round7.

The experiment has a between-subject design with two treatments. In treatment 1, x1

set to be 10 such that the theoretically predicted monitoring probability is relatively low:
s∗ = 190−145

190−10 = 0.25. In treatment 2, x1 is set to be 130 such that the predicted monitoring
probability is relatively high: s∗ = 190−145

190−130 = 0.75.

6In the opposite case of s∗ = x4−x2
x4−x1

≤ y2−y3
y4−y3

, P2’s ex-ante expected equilibrium payoff weakly increases

in monitoring probability and plateaus at s ≥ s∗ = x4−x2
x4−x1

. Therefore, P2 does not face any strict incentive to
refrain from monitoring with certainty.

7Across the subjects, the two actions for each player are arranged and labeled in counterbalanced or-
der. P1 is always presented as the row player and P2 as the column player to ensure coherence with the
instructions.
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Table 3: Experimental game

P2

P1
A B

A x1, 190 190 , 100
B 145 , 10 145 , 100

At the beginning of each experimental session, 12 subjects are randomly selected with
equal probabilities to be assigned the role of P1. The remaining subjects are assigned the
role of P2. The assigned roles are fixed throughout the session.

In rounds 1 to 10, all subjects play the game against the population (i.e., all subjects
in the same session playing the opposite role, Mean-matching protocol - citation) by us-
ing the strategy method. Using a slider, P1 specifies a probability with which he would
take action A conditional on each possible probability of monitoring chosen by P2. P2
is first asked to select a probability with which she would like to observe P1’s action.
The instruction makes it clear to P2 that P1 can choose different probabilities of action
A depending on the monitoring probability chosen by P2. P2 can choose a probability
s ∈ {0.12i|i = 1, 2, ..., 8} ∪ {0, 1}, where 0.24 and 0.72 are the equilibrium predictions for
treatments 1 and 2, respectively8. The selected probability of monitoring is implemented
against all subjects in the role of P1. Once P2 submits the probability of monitoring, she
is then asked to specify the probability with which she would take action A in case she
does not observe P1’s action. In the opposite case where P2 observes P1’s action, the
experiment automates her best response - matching P1’s action.

In rounds 11 and 12, all subjects play against a computerized player that automates
the equilibrium strategy of the player in the opposite role. At the beginning of the ex-
periment, subjects are told that there are two additional rounds of the game after the
first ten rounds. However, the subjects are not told any other details about those addi-
tional rounds. The subjects receive the instructions for rounds 11 and 12 only after they
complete the first 10 rounds. The instructions in Appendix X state that the computerized
player maximizes the expected number of experimental points under the assumption that
all subjects also maximize their own expected number of points assuming computerized
player’s maximization.

In round 11, subjects play the same game without being told which strategy the com-
puterized player will play. In round 12, the computer screen shows the equilibrium strat-

8The discrete choice set ensures a unique equilibrium prediction and allows for elicitation of beliefs
conditional on the same set of monitoring probability across the subjects.
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egy to be used by the computerized player before the subjects play the game.
In addition to the strategies, the experiment elicits first- and second-order beliefs in

rounds 1, 10, and 11. For the first-order beliefs I ask P2[P1] to submit her best guess of
the average probability with which P1’s[non-observing P2’s] took Action A in that round,
conditional on each of the ten probabilities of observation P2 could possibly choose. For
the second-order, I ask P2[P1] to submit her best guesses about the 10 guesses that have
been submitted by one randomly selected P1[P2].

At the end of each round, all subjects receive feedback on their own decisions, the
average decisions of other participants in the opposite role, and the number of points
they earned in that round. In addition, P1 receive feedback on. P2 receive feedback.
The feedback from all previous rounds is displayed in a history table throughout the
experiment.

At the end of the experiment, subjects are paid in cash a participation fee of €15 and
additional cash prizes they might earn from the strategies and the beliefs they submit.

The strategies in the game are incentivized by a binary lottery with a €10 cash prize.
In each round, the subjects earn the expected number of points averaged across all op-
ponents in the session (including the sole computerized player in rounds 11 and 12). At
the end of the experiment, one of the 12 rounds is randomly selected for each subject. All
rounds are equally likely to be selected. The subject wins the 10 euros with a chance equal
to the number of points earned in the selected round divided by 200.

The beliefs are incentivized by the chance of winning a €5 cash prize. The chance of
winning determined by one randomly selected belief, according to the binarized scoring
rule(Hossain & Okui, 2013). Based on the Danz et al. (2022)’s findings, the instructions
simply state that subjects maximize their chance of winning the by truthfully submitting
their most accurate beliefs, and the details of the scoring rule is provided in the appendix
to the instructions which the subjects are not required to read.

5 Results

The experiment was programmed on Otree (Chen et al., 2016) and conducted at the Cen-
ter for Research in Experimental Economics and Political Decision-making at the Univer-
sity of Amsterdam. A total of 177 subjects were recruited from the student subject pool.
The three sessions in treatment 1 had 30, 28, and 30 subjects each. The other three sessions
in treatment 2 had 30, 25, and 34 subjects each.
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5.1 P2’s monitoring behavior

P2’s over-monitor when the theory predicts a low probability of monitoring. Figure 2
shows the mean probability of monitoring chosen by P2’s in each round by treatment. In
figure 2 and in all other figures to be presented, the intervals around the mean represent
95% confidence interval. The dashed lines represent the equilibrium predictions for each
treatment.

Figure 2: Mean probability of monitoring by P2

In the first ten rounds in which subjects play against the human population. In these
rounds, the mean probability of monitoring in treatment 1 is much higher than 0.25 that
was predicted by the equilibrium, and also higher than the observed mean in treatment
2 counter to the theoretical prediction. The mean probability diverges further away from
the prediction over the ten rounds (OLS regression of probability of monitoring on round,
clustered error at the subject level, β = .0117, p = 0.041). In treatment 2, P2’s probability
of monitoring is smaller than predicted. The probability is yet closer to the theoretical
prediction compared to treatment 1 and does not exhibit any clear time trend. The differ-
ence between the two treatments is statistically significant in round 10, or in all rounds
(OLS regression of probability of monitoring on dummy for treatment 1, clustered error
at the subject level, β = .0994, p = 0.039).

In rounds 11 and 12, subjects play against the automated equilibrium strategy. In
round 11 in which the automated is unstated, the monitoring probability is not signifi-
cantly different from that in round 10 in either treatment. In round 12 in which the auto-
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mated strategy is explicitly stated to subjects, P2’s in treatment 1 significantly reduce their
monitoring probability compared to round 10 (two-sided ranksum test, z = −4.002, p =

0.0001). This reduced probability is smaller than the corresponding probability in treat-
ment 2 (two-sided ranksum test, z = −2.094, p = 0.0363), as predicted by the theory.

The observations in rounds 11 and 12 rules out the explanation that P2’s over-monitoring
is a rational response to their perceived (lack of) rationality in other subjects. P2’s seem
to form misspecified beliefs about the equilibrium strategy in treatment 1, and correct-
ing those beliefs brings their behavior closer to the theoretical prediction. Appendix D
examines consistency of the elicited beliefs and sequential rationality of the behavior.

5.2 P1’s behavior and empirical optimality of over-monitoring

This subsection examines P1’s behavior and shows that P2’s over-monitoring in treatment
1 is best response to it.

5.2.1 P1’s aggregate-level behavior

Figure 3 shows P1’s probability of taking action A conditional on P2’s probability of mon-
itoring in round 1 and 10 (respectively the first and the last round of play against human
players). The step functions in dashed lines represent P1’s equilibrium strategy of tak-
ing action A only if P2 monitors with a sufficiently low probability, which is supposed to
disincentivize P2’s monitoring.

P1’s indeed decrease their probability of action A in P2’s probability of monitoring, as
Figure 3 shows9. However, P1’s mean empirical strategy in treatment 1 is less discrim-
inating than theoretically predicted, and experience only reinforces such a pattern. In
round 10, P2’s can increase P1’s probability of action A by at most 25% points, even if P2
monitors with a zero probability.

5.2.2 Empirical optimality of P2’s over-monitoring

The indiscriminating strategy of P1 incentivizes P2 to monitor with a high probability in
treatment 1. Specifically, P2’s empirical mean payoff increases in her probability of mon-
itoring only in treatment 1. Figure 4 and 5 show the two players’ empirically observed
mean payoffs in round 8 to 10, conditional on P2’s probability of monitoring. P2’s mean

9OLS regression of P1’s probability of action A on P2’s probability of monitoring(controlling for round),
clustered error at the subject level; β = −.1963, p = 0.004 in treatment 1; β = −.4916, p = 0.000 in treatment
2
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Figure 3: Mean probability of action A by P1 conditional on monitoring probability

payoffs are represented by the round markers whose values are indicated in the verti-
cal axis on the left. Figure 4 shows a positive relationship between P2’s probability of
monitoring and her mean payoff in treatment 1, whereas Figure 5 does not show such a
relationship in treatment 210. Appendix B applies alternative definitions of mean payoffs
to show that qualitatively similar results hold in both early and later rounds.

5.2.3 P1’s individual-level behavior

P1’s behavior is highly heterogeneous across individual subjects. Figure 9 and 10 in Ap-
pendix C provide graphical representation of individual P1’s strategy. Although few P1’s
use a step function-like strategy as theory predicts, some P1’s use qualitatively similar
strategies. For analytical purpose, define Discriminating Decreasing Strategy (DDS) to be a
strategy in which the probability of action A weakly decreases in the probability of mon-
itoring, and the average probability of action A conditional on s < s∗ is higher than the
average probability of action A conditional on s > s∗ by a difference of 0.25 or higher.
By round 10, 8 out of 36 subjects in treatment 1 and 14 out of 36 subjects in treatment 2
use a DDS. The opposite strategy that is similarly defined (i.e., Discriminating Increasing
Strategy) is rarely used in either treatment11.

10OLS regression of P2’s payoff on probability of monitoring controlling for round, clustered error at the
subject level; β = 22.3971, p = 0.000 in treatment 1; β = 2.1392, p = 0.401 in treatment 2

11None in treatment 1, round 10; two subjects in treatment 2, round 10
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Figure 4: Mean payoff conditional on probability of monitoring, treatment 1

Figure 5: Mean payoff conditional on probability of monitoring, treatment 2
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5.2.4 Beliefs about P1’s strategy

Both P2’s first-order beliefs and P1’s second-order beliefs are largely consistent with P1’s
empirical strategy. Both mean and individual beliefs relate to the monitoring behavior in
predicted ways. Appendix D.1 provides graphs and further analyses.

5.3 P2’s behavior

Figure 6: Mean probability of action A by P2 conditional on monitoring probability

The dashed lines in the figure represent the equilibrium predictions, i.e., the maximum
probabilities with which P2 can play action A without triggering P1 to play action B with
certainty. Compared to treatment 2, treatment 1 requires a stronger discipline for P2: the
non-monitoring type P2’s who choose low probabilities of monitoring need to play action
A with a much smaller probability in treatment 1 to preserve the incentives for P1 to play
action A with a positive probability.

The connected dots in the figure show P2’s mean probabilities of action A in the first
three and the last three rounds of play against human subjects.

In the first three rounds, the probabilities are similar between the treatments, condi-
tional on low probabilities of monitoring. These probabilities meet the requirement in
treatment 1 but not in treatment 2. Even the P2’s who choose to monitor with low prob-
abilities in treatment 1 overplay A as the non-monitoring type. This incentivizes P1’s to
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refrain from action A even under a low probability of monitoring, hence the indiscrimi-
nate strategy of P1 as shown in figure 3. In treatment 2, the mean strategy by P2 does not
count as an overplay of action A.

Figure 6 also shows some indication of learning. By the last three rounds, the mean
strategies used by non-monitoring P2’s have converged towards the equilibrium predic-
tions in each treatment. The strategies are substantially differentiated between the two
treatments conditional on low probabilities of monitoring. In treatment 1, the probability
of monitoring conditional on s < s∗ = 0.25 is not statistically different from the equilib-
rium prediction.

5.3.1 Beliefs about P2’s strategy

Subjects hold onto the inconsistent beliefs about P2’s strategy. The mean beliefs are largely
constant around 0.5 in both treatments, the individual beliefs are quiet heterogeneous,
and there is no sign of learning. The inconsistent beliefs rationalize the non-equilibrium
behavior by P1 but do not rationalize over-monitoring or over-exploitation by P2. Ap-
pendix D.2 provides graphs and further analyses.

5.4 Efficiency and welfare outcome

Finally, I examine the efficiency and welfare implications. The non-equilibrium behavior
observed in the experiment leads to modest efficiency loss in both treatments. In treat-
ment 1 where P2 over-monitors and over-exploits, the efficiency loss is slightly greater
and largely borne by the non-monitoring player P1.

First, P1’s are less likely to take the efficiency-enhancing action A (”innovate”) in treat-
ment 1. As Table 4 shows, P1’s take action A with an average probability of 0.16 in treat-
ment 1, and 0.42 in treatment 2, counter to the equilibrium prediction that they would
take action A with a half chance in both treatments.

Figures 4 and 5 that were previously introduced plot both players’ mean payoffs con-
ditional on P2’s probability of monitoring in each treatment. The round markers represent
P2’s payoffs whose values are indicated on the vertical axis on the left. The triangle mark-
ers represent P1’s payoffs whose values are indicated on the inverted vertical axis on the
right. The perfect Bayesian equilibrium predicts that the two payoffs meet on the dashed
line at s = s∗. The thick solid lines represent the two player’s actual mean payoff ag-
gregated over all probabilities of monitoring. Table 4 summarizes the mean payoffs and
comparisons between the two treatments.
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Table 4: Efficiency outcome: round 8-10

Role Outcome Treatment 1 Treatment 2 Ranksum test comparison

P1

probability of action A 0.16 0.42 p=0.000
[prediction] [0.50] [0.50]

mean [prediction] 131.6 [145] 144.0 [145] p=0.000
(share in %) (91%) (99%) p=0.000

P2
mean [prediction] 105.1 [110.8] 119.5 [132.4] p=0.000

(share in %) (95%) (90%) p=0.070

Total
mean [prediction] 236.7 [255.8] 263.5 [277.4] p=0.000

(share in %) (93%) (95%) p=0.009

The figures and the table show efficiency loss that amounts to 7% of the total equi-
librium payoffs (i.e., sum of two players’ payoffs) in treatment 1, and 5% in treatment 2.
Whereas the efficiency loss in treatment 2 is almost entirely driven by P2’s loss relative to
the equilibrium prediction, the loss in treatment 1 is largely driven by P1 who on average
suffer a 10% loss. Note that this loss is entirely borne by the small number of P1’s who
take the efficiency-enhancing action A.

6 Conclusion

This study theoretically and experimentally investigated the strategic trade-off involved
in monitoring other’s actions. The theoretical analysis identify the conditions for trans-
parency paradox in which monitoring with an intermediate probability is strategically
optimal. The laboratory experiment finds the evidence of such strategic suppression of
monitoring. However, when the strategic situation requires a lower probability of moni-
toring to preserve the incentives for efficient actions by the other, the monitoring player
fails to show sufficient discipline. The population consequently converges to the inef-
ficient and un non-equilibrium outcome in which the monitoring player over-monitors
and the other player refrains from the efficient action.

The findings suggest that certain markets and organizations might be more suscepti-
ble to invasive surveillance practices and resulting inefficiencies. Specifically, institutions
that rely on the efficiency-enhancing act of those under surveillance, and those acts are
performed at greater risk, might be more likely to end up with inefficient invasive prac-
tices.
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Future studies could consider alternative strategic situations such as those with bi-
lateral monitoring, costly monitoring, or simultaneous choice of monitoring and other
strategic actions.
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Appendix A Proofs

A.1 Proof of Lemma

(a) First, rule out all equilibria in which P1 plays a pure strategy. If P1 takes action A with
probability 1, P2 best responds with action A regardless of whether she monitors of not,
and P1 gets a payoff of x1. Then P1 can strictly increase his expected payoff by deviating
to action B, regardless of whether P2 monitors or not. If P1 plays B with probability 1,
P2 best responds with action B regardless of whether she monitors of not, and P1 gets a
payoff of x2. If P1 deviates to action A, his expected payoff is sx1 + (1 − s)x4, which is
strictly greater than x2 given that s < x4−x2

x4−x1
.

Next, consider equilibria in which P1 plays a non-degenerate mixed strategy. Suppose
that P1 and non-monitoring P2 play action A with probabilities p ∈ (0, 1) and q ∈ [0, 1]
respectively. Recall that monitoring P2’s best response is to match the observed action of
P1.

P1 plays a non-degenerate mixed strategy if and only if

sx1 + (1 − s)(qx1 + (1 − q)x4) = sx2 + (1 − s)(qx3 + (1 − q)x2), (1)

which implies that non-monitoring P2’s probability of action A is

q =
x4 − x2 − s(x4 − x1)

(1 − s)(x4 − x2 + x3 − x1)
. (2)

This mixed strategy of non-monitoring P2 is non-degenerate. First, q > 0, given the
payoff assumptions and s < x4−x2

x4−x1
< 1. Next, q < 1 if and only if s(x3 − x2) < x3 − x1.

If x3 − x2 ≤ 0, this condition is trivially met. If x3 − x2 > 0, any s < x4−x2
x4−x1

meets the
condition because x4−x2

x4−x1
< x3−x1

x3−x2
, or equivalently, x3 + x4 > x1 + x2. This condition is met

due to the assumptions x3 > x1 and x4 > x2.
On the other hand, non-monitoring P2 uses a non-degenerate mixed strategy if and

only if
py4 + (1 − p)y1 = py3 + (1 − p)y2, (3)

which implies P1’s probability of action A:

p =
y2 − y1

y4 − y3 + y2 − y1
. (4)

Given the payoff assumptions, both y2 − y1 and y4 − y3 are strictly positive, ensuring that
this mixed strategy of P1 is also non-degenerate.
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The proof so far shows the existence of a unique equilibrium in each subgame fol-
lowing s < x4−x2

x4−x1
. Note that q, the equilibrium strategy of non-monitoring P2 decreases

in s while p does not. Intuitively, a high-probability of monitoring makes action A less
appealing to P1. P1’s indifference between the two actions require that P2 decreases her
probability of action A when she does not monitor.

P2’s ex-ante equilibrium payoff is

Π2(s) = s(py4 + (1 − p)y2) + (1 − s)(py3 + (1 − p)y2)

= y2 + p(y3 − y2) + sp(y4 − y3)

=
y4y2 − y3y1

y4 − y3 + y2 − y1
+ s

(y4 − y3)(y2 − y1)

y4 − y3 + y2 − y1
.

(5)

Given the assumptions on the payoffs, both y2 − y1 and y4 − y3 are strictly positive, en-
suring that the coefficient for s is strictly positive. In other words, Π2(s) linearly increases
in s.

(b) Note that q in part (a) is positive if and only if s ≤ x4−x2
x4−x1

. In particular, if s >
x4−x2
x4−x1

, then sx1 + (1 − s)(qx1 + (1 − q)x4) < sx2 + (1 − s)(qx3 + (1 − q)x2) holds for all
q ∈ [0, 1]. Therefore, P1 playing action B with probability 1 and both monitoring and
non-monitoring P2 doing the same constitutes the unique equilibrium for any s > x4−x2

x4−x1
.

In this case, Π1(s) = x2 and Π2(s) = y2.
(c) First, there is no equilibrium in which P1 takes action A with probability 1. If he

did, and if P2 best responded by taking action A, P1’s payoff would be x1. Then P1 can
strictly increase his payoff by deviating to action B, regardless of whether P2 observes his
action of not.

Second, there exists an equilibrium in which P1 takes action B with probability 1.
Given P2’s best response, P1’s payoff is x2. A deviation to action A would yield s∗x1 +

(1 − s∗)x4, which is equal to x2 given s∗ = x4−x2
x4−x1

. In this equilibrium, Π1(s) = x2 and
Π2(s) = y2 as in (b).

Lastly, there are equlibria in which P1 plays a non-degenerate mixed strategy. Note
that q in part (a) which induces P1’s indifference between the two actions is zero, given
that s∗ = x4−x2

x4−x1
. In other words, non-monitoring P2 takes action B with probability 1 in

these equilibria. For action B to be incentive compatible for P2,

py4 + (1 − p)y1 ≤ py3 + (1 − p)y2, (6)
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or equivalently,

p ≤ y2 − y1

y4 − y3 + y2 − y1
. (7)

Therefore, in these equilibria, P1 takes action A with any probability p ∈ [0, y2−y1
y4−y3+y2−y1

],
non-monitoring P2 takes action B with probability 1, and monitoring P2 matches the ob-
served action by P1. Then P2’s ex-ante equilibrium payoff is

Π2(s∗) = s∗(py4 + (1 − p)y2) + (1 − s∗)(py3 + (1 − p)y2)

= y2 + p(y3 − y2) + s∗p(y4 − y3)

∈ [y2, y2 +
y2 − y1

y4 − y3 + y2 − y1
(y3 − y2) + s∗

y2 − y1

y4 − y3 + y2 − y1
(y4 − y3)]

∈ [y2,
y4y2 − y3y1

y4 − y3 + y2 − y1
+ s∗

(y4 − y3)(y2 − y1)

y4 − y3 + y2 − y1
].

(8)

y2 is P2’s expected payoff in case (b), and y4y2−y3y1
y4−y3+y2−y1

+ s∗ (y4−y3)(y2−y1)
y4−y3+y2−y1

is the expected
payoff she would get in case (a) if s = s∗.

A.2 Proof for Proposition

(a) First, the strategy profile described below is a perfect Bayesian equilibrium:

• P2 monitors with probability s∗ = x4−x2
x4−x1

∈ (0, 1).

• If s∗ < x4−x2
x4−x1

, the players play according to the unique equilibrium prediction in
Lemma (a).

• If s∗ > x4−x2
x4−x1

, the players play according to the unique equilibrium prediction in
Lemma (b).

• If s∗ = x4−x2
x4−x1

, the players select the equilibrium described in the proof of Lemma (c)
in which P1 takes action A with probability p = y2−y1

y4−y3+y2−y1
.

Note that P2’s ex-ante equilibrium payoff y4y2−y3y1
y4−y3+y2−y1

+ s∗ (y4−y3)(y2−y1)
y4−y3+y2−y1

and is strictly
greater than y2. To prove it,
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s∗ =
x4 − x2

x4 − x1
>

y2 − y3

y4 − y3

s∗(y4 − y3)(y2 − y1) > (y4 − y3)(y2 − y1)
y2 − y3

y4 − y3

s∗(y4 − y3)(y2 − y1) > (y4 − y3 + y2 − y1)y2 − (y4y2 − y3y1)

(y4y2 − y3y1) + s∗(y4 − y3)(y2 − y1) > (y4 − y3 + y2 − y1)y2

y4y2 − y3y1

y4 − y3 + y2 − y1
+ s∗

(y4 − y3)(y2 − y1)

y4 − y3 + y2 − y1
> y2.

(9)

Furthermore, P1’s ex-ante equilibrium payoff is equal to x2:

Π1(s∗) = s∗(x1) + (1 − s∗)(qx1 + (1 − q)x4)

= x4 + q(x1 − x4) + s∗(1 − q)(x1 − x4)

= x4 + 0 · (x1 − x4) +
x4 − x2

x4 − x1
(1 − 0)(x1 − x4)

= x2

(10)

Therefore, Proposition (b) holds if (a) holds. Given Lemma (a) and (c), P2 also maximizes
her ex-ante equilibrium payoff at s∗ = x4−x2

x4−x1
.

It remains to show the uniqueness of the equilibrium. First, there exists no equilibrium
in which P2 chooses s = s∗ but the players selects a different equilibrium in the ensuing
subgame. That would mean that P2 earns a strictly lower expected payoff than the one
described above. Then, given Lemma (a), P2 can be strictly better off by deviating to a
s < s∗ that is sufficiently close to s∗. For a similar reason, there exists no equilibrium
in which P2 chooses s < s∗. In this case, P2 can be strictly better off by deviating to
another s < s∗ that is closer to s∗. Lastly, there exists no equilibrium in which P2 chooses
s > s∗. Given that y4y2−y3y1

y4−y3+y2−y1
+ s∗ (y4−y3)(y2−y1)

y4−y3+y2−y1
is strictly greater than y2, there exists

s < s∗ sufficiently close to s∗ to which P2 can profitably deviate.
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Appendix B Empirical optimality of over-monitoring: al-

ternative definitions

Figure 7: P2’s expected payoff conditional on probability of monitoring, assuming P1’s
empirical strategy and P2’s best response

Figure 8: P2’s mean empirical payoff conditional on probability of monitoring, given both
players’ empirical strategy.

26



Appendix C P1’s individual strategy

Figure 9: Individual P1’s strategy, treatment 1
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Figure 10: Individual P1’s strategy, treatment 2

Appendix D Elicited beliefs: further analyses

D.1 Beliefs about P1’s strategy

P2’s first-order beliefs are largely consistent with P1’s empirical strategy on average. Fig-
ure 11 shows P2’s mean first-order belief and P1’s mean second-order belief about P1’s
probability of action A in treatment 1. Figure 12 shows the corresponding beliefs in treat-
ment 2. Specifically, in both treatments, P2’s believe that P1’s probability of action A de-
creases in P2’s probability of monitoring (OLS regression of belief in round 10 on probabil-
ity of monitoring, clustered error at the subject level, β = −.1860, p = 0.005 in treatment
1; β = −.2931, p = 0.000 in treatment 2). P1’s second-order beliefs show a similar pattern,
although it is not statistically significant only in treatment 1 (β = −.1102, p = 0.135 in
treatment 1; β = −.2472, p = 0.021 in treatment 2 ).

Comparing the beliefs between the two treatments help us understand the over-monitoring
observed in treatment 1. For example, compared to treatment 2, P2’s in treatment 1 are
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less likely to hold first-order beliefs that rationalizes low-probability monitoring. Figures
13 and 14 in the appendix show individual P2’s first-order beliefs about P1’s strategy. The
figures show that P2’s in treatment 1 are less likely to believe that P1’s use strategies sim-
ilar to those predicted by the equilibrium (DDS as described in section 5.2.3). 10 out of 52
P2’s in treatment 1, and 17 out of 53 P2’s in treatment 2 hold such beliefs in round 10. Fur-
thermore, such beliefs correlate to low-probability monitoring in treatment 2 (two-sided
ranksum test, p ≤ 0.0368 in round 10 and 11), but not in treatment 1 (p ≥ 0.6437 in round
1, 10, and 11).

P1’s second-order beliefs also fit into a coherent picture. Figures 15 and16 show indi-
vidual P1’s second-order beliefs about P2’s first-order beliefs. In treatment 1, P1’s often
report belief that is constant across the probability of monitoring. Few P1’s in treatment
1 (2 out of 36 in round 10) believe that P2’s first-order beliefs are consistent with DDS,
whereas a substantial number of P1’s in treatment 2 (12 out of 36 in round 10) hold such
beliefs. Furthermore, P1’second-order beliefs in DDS correlate to actual use of DDS in
treatment 2 (two-sided ranksum test, p ≤ 0.0288 in round 1 and 11; p = 0.3404 in round
10).

Figure 11: P2’s first-order belief & P1’s second-order belief about P1’s strategy, treatment
1
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Figure 12: P2’s first-order belief & P1’s second-order belief about P1’s strategy, treatment
2
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Figure 13: Individual belief about P1’s strategy: P2’s first-order belief, treatment 1
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Figure 14: Individual belief about P1’s strategy: P2’s first-order belief, treatment 2
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Figure 15: Individual belief about P1’s strategy: P1’s second-order belief, treatment 1
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Figure 16: Individual belief about P1’s strategy: P1’s second-order belief, treatment 2

D.2 Beliefs about P2’s strategy

Figures 17 and 18 show the mean beliefs about non-monitoring P2’s strategy in each treat-
ment. Unlike the beliefs about P1’s strategy that assume a negative relationship between
the monitoring probability and action A (”innovate”), the beliefs about P2’s strategy are
constant across the monitoring probabilities in both treatments (OLS regression of belief
in round 10 on probability of monitoring, clustered error at the subject level; P1’s mean
first-order beliefs β = .0591527, p = 0.417 in treatment 1; β = −.0054354, p = 0.962 in
treatment 2; P2’s mean second-order beliefs β = −.0714784, p = 0.255 in treatment 1;
β = .007024, p = 0.924 in treatment 2). Furthermore, the mean beliefs fail to reflect the
fact that P2’s strategy converges towards its respective equilibrium prediction in each
treatment.

The mean beliefs are similar between the two treatments yet they have opposite impli-
cations for subjects’ behavior. The equilibrium predictions, as shown in dashed lines in
figures 17 and 18, requires P2 to play action A with much lower probability in treatment 1
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Figure 17: Mean belief about non-monitoring P2’s strategy: P1’s first-order belief and P2’s
second-order belief, treatment 1

Figure 18: Mean belief about non-monitoring P2’s strategy: P1’s first-order belief and P2’s
second-order belief, treatment 2
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compared to treatment 2, to preserve P1’s incentive to play action A (”innovate”). There-
fore, a sequentially rational P1 who holds the mean beliefs would play action A under the
low probability of monitoring in treatment 2, whereas he would not in treatment 1 even
under a low probability of monitoring.

Similar observation can be made from the individual beliefs shown in figures 19 and
20 in the appendix. In treatment 1, a majority of P1’s believe that the non-monitoring P2
overplay action A conditional on s < s∗ = 0.25 (64.81%, 70 out of 108 observations in
round 10). In treatment 2, less than half of P1’s hold such beliefs conditional on s < s∗ =

0.75 (43.65 %, 110 out of 252 observations in round 10). The data also suggest that P1’s
who hold such beliefs are less likely to take action A under low probability of monitoring
(s < s∗) in both treatments. (OLS regression of probability of action A on dummy variable
for the belief that non-monitoring P2 overplays A, round 10; clustered error at the subject
level; β = −.1911579, p = 0.088 in treatment 1; β = −.1338067, p = 0.077 in treatment 2)

P2’s mean second-order beliefs closely approximates P1’s mean first-order beliefs, ex-
cept under the low probabilities of monitoring in treatment 1. In those exceptional cases,
P2’s slightly overestimate P1’s first-order beliefs (two-sided ranksum test, p ≤ 0.0416
for each s < s∗ = 0.25 in treatment 1, round 10: p ≥ 0.1575 for each s > s∗ = 0.25
in treatment 1, round 10). In those cases, most P2’s also believe that P1’s anticipate the
non-monitoring P2’s to overplay A (82.69%, 129 out of 156 observations, s < s∗ = 0.25 in
treatment 1, round 10).

The second-order beliefs of P2’s imply that they would hold relatively pessimistic
first-order beliefs about P1’s chance of playing action A in treatment 1. Such pessimistic
beliefs, which were confirmed in section D.1, would imply action B under sequential
rationality. However, Figure 6 in Section 5.3 showed that P2’s tend to overplay action A
in treatment 1. Further analyses show that P2’s second-order belief is not a statistically
significant predictor of her monitoring behavior or the probability of action A:

• OLS regression of monitoring probability on second-order beliefs conditional on
s < s∗; clustered error at the subject level; β = −.0676, p = 0.686 in treatment 1,
round 10; β = −.0559, p = 0.766 in treatment 2, round 10

• OLS regression of monitoring probability on dummy variable for second-order be-
lief of overplayed action A conditional on s > s∗; clustered error at the subject level;
β = .0007, p = 0.992 in treatment 1, round 10; β = −.0099, p = 0.888 in treatment 2,
round 10

• OLS regression of probability or action A on second-order beliefs conditional on
s > s∗; clustered error at the subject level; β = −.0676, p = 0.686 in treatment 1,
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round 10; β = −.0559, p = 0.766 in treatment 2, round 10

• OLS regression of monitoring probability on dummy variable for second-order be-
lief of overplayed action A conditional on s > s∗; clustered error at the subject level;
β = .0007, p = 0.992 in treatment 1, round 10; β = −.0099, p = 0.888 in treatment 2,
round 10
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Figure 19: Individual belief about non-monitoring P2’s strategy: P1’s first-order belief,
treatment 1
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Figure 20: Individual belief about non-monitoring P2’s strategy: P1’s first-order belief,
treatment 2
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Figure 21: Individual belief about non-monitoring P2’s strategy: P2’s second-order belief,
treatment 1

40



Figure 22: Individual belief about non-monitoring P2’s strategy: P2’s second-order belief,
treatment 2
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