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Abstract

I build an empirical model of the South American agricultural sector to show how environ-
mental policy is transmitted along a supply chain when regulation at the externality’s source
is infeasible. Given obstacles to a carbon tax on farmers, I show how alternative market-based
policies—downstream agribusiness taxes—reduce upstream emissions but their effectiveness
is limited by international leakage and domestic mistargeting, while also being regressive.
Agribusiness monopsony power worsens targeting by lowering pass-through to upstream
farmers in uncompetitive and emissions-intense regions, thus eroding the Pigouvian signal
where social cost is highest. By contrast, command-and-control tools perform robustly when
markets face pre-existing distortions.
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1 Introduction

Many of the major industries contributing to climate-change produce goods that are tradable and
are subject to pre-existing distortions beyond the environmental externality, market power being
a case in point. How can we regulate such industries efficiently, and what are the distributional
consequences of regulation? This paper provides an empirical framework to answer this question
in the context of the South American agricultural sector, a global agricultural powerhouse with
a major environmental impact, where the supply chain connecting farmers to consumers is inter-
mediated by a concentrated agribusiness sector. A key feature of this setting is that agricultural
emissions are mostly generated at the atomistic stage of the supply chain rather than at the con-
centrated stage—it is the millions of upstream farmers who make the environmentally-relevant
decisions, mostly through their land-use choices, and not the large agribusiness firms further
downstream. Given environmental policies are easier to implement and enforce at the concen-
trated end of the supply chain, this raises the question of how much of their Pigouvian signal is
eroded before reaching the upstream farmers whose incentives they ultimately aim to correct.

The main goal of this paper is to evaluate how environmental policy is transmitted along a sup-
ply chain, in particular when the stage where it can be feasibly implemented differs from where
emissions are generated. To do so, I combine a variety of data sources to build a county-level
panel of agricultural supply and demand, which I use to estimate an equilibrium model of the
South American agricultural sector. On the model’s supply side, I incorporate key margins de-
termining emissions: how much land farmers deforest, which commodity they produce, and the
geographic location where deforestation and production take place. On the demand side, I incor-
porate the funnel-like structure of agricultural supply chains: atomistic farmers at the upstream
stage sell their output to a concentrated sector of downstream agribusiness firms. After estimating
my model, I use its implied counterfactuals to compare the performance of feasible environmen-
tal regulations—both market-based and command-and-control—in terms of their efficiency and
distributional impact along the supply chain.

Despite being a crucial item on the sustainable development agenda, environmental policy
in developing world agriculture faces multiple obstacles. First, the distributional effects of an
agricultural carbon tax are regressive on both demand and supply: poor households spend a
larger share of their income on food, and farmers often lie at the bottom of the income distribu-
tion. Second, agricultural commodities are traded in highly integrated global markets, resulting
in substantial “leakage” risk: if one country unilaterally sanctions its imports from an emissions-
intense producer, the goods are diverted to non-regulated markets and the externality remains
uncorrected. Third, agricultural supply chains in developing countries are often fragmented and
funnel-shaped, with atomistic upstream farmers selling their output to a concentrated sector of
downstream intermediaries. Monopsony power of intermediaries over farmers, especially in re-
mote locations, introduces an additional market distortion on top of the environmental externality.
Hence, market-based policies such as carbon taxes may perform poorly if the markets they have
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to operate through are subject to such pre-existing distortions.
To incorporate the stylized features of developing world agriculture into my analysis, my em-

pirical model includes the following ingredients: (i) an upstream production stage with rich spa-
tial heterogeneity and the key margins driving agricultural emissions, (ii) a concentrated sector of
agribusiness intermediaries that hold market power over the farmers they source from, and (iii)
international trade to capture leakage effects across consumer markets. Agriculture provides an
ideal setting to study how environmental policy is transmitted along a supply chain because it is
characterized by having most of its emissions generated at the atomistic stage, where regulation
is most challenging to enforce. This naturally raises the question of how poorly targeted an en-
vironmental policy is if it cannot be imposed directly on the upstream farmers whose incentives
it aims to correct, but rather on the downstream agribusiness firms whose compliance is easier to
enforce. I now proceed to describe the main findings from my counterfactual policy analysis.

Main results. The first part of my counterfactual analysis shows how a feasible market-based
environmental policy is transmitted along the supply chain. While a carbon tax at the emissions
source, i.e., on upstream farmers, theoretically attains the first-best allocation through the text-
book Pigouvian mechanism, in reality this type of policy is largely absent in developing world
agriculture due to logistical enforcement challenges as well as its political infeasibility. Motivated
by these constraints, I evaluate a policy that is considered feasible among policymakers but which
is second-best: a downstream tax levied on agribusiness firms by consumer markets. An exam-
ple of this would be an environmental tariff imposed by trading partners on their imports from
South America, which would be levied at the port on downstream agribusiness firms instead of
directly on upstream farmers. In terms of the policy’s effectiveness, I show that if only a subset
of consumer markets implement the tax then there is substantial emissions leakage. If the tax is
implemented unilaterally by the European Union, 80% of the emissions reductions achieved by
the EU are undone by the re-routing of shipments to non-regulated consumer markets.

Apart from its ineffectiveness due to leakage across consumer markets, the downstream tax is
also poorly targeted across upstream producers. This occurs because farmers in the most remote
and emissions-intense regions have the least elastic supply. Therefore, the tax is spatially mistar-
geted because it leads production to drop least in the upstream locations where the environmental
cost is highest. Because of inelastic supply, these remote regions are also where farm-gate prices
drop most. Since these locations are among the poorest ones, the distributional effects of a down-
stream tax are regressive on the supply-side: the income of poor farmers is implicitly taxed at a
higher rate than that of rich farmers. Finally, because the tax needs to be passed-through to farmers
to shift their production incentives, agribusiness monopsony power plays a role. Specifically, mar-
ket power erodes the Pigouvian signal contained in the tax because of incomplete pass-through to
upstream farmers, resulting in muted emissions abatement.

The second part of my counterfactual analysis shows how a regulator’s optimal choice be-
tween a market-based and a command-and-control policy tool depends on two features of agri-
cultural supply chains: the degree of heterogeneity in carbon footprints across upstream farmers
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and the degree of intermediary market power. Market-based policies that are implemented down-
stream, such as the taxes from the first part of my analysis, are mistargeted because they do not
take into account the spatial heterogeneity in carbon footprints across upstream farmers. Natu-
rally, this mistargeting becomes worse as the degree of upstream heterogeneity increases. Fur-
thermore, the mistargeting is amplified by market power because the less competitive upstream
locations tend to be more emissions-intense. Therefore, the upstream pass-through of the policy
is especially incomplete in emissions-intense locations.

Overall, the results indicate that market-based policy can perform poorly when the market it
has to operate through is distorted in ways beyond the environmental externality. In such cases,
I show command-and-control policies such as conservation zones can be better targeted and ro-
bust to market structure, precisely because they do not operate through the market mechanism.
However, their main drawback is their high enforcement cost. Thus, the regulator faces a trade-off
between targeting and enforcement costs when choosing between market-based and command-
and-control tools, with the starkness of the trade-off depending on two model primitives: the
degree of upstream spatial heterogeneity and market structure. I now proceed to describe the
theoretical and empirical aspects of my analysis in further detail.

Theoretical and empirical methods in detail. First, I present a model of land use incorporating
two key margins driving the environmental impact of agriculture: an extensive margin of convert-
ing natural forested land into new agricultural land, and the choice of which specific agricultural
commodity is produced on existing agricultural land. Disentangling the two is critical to evaluate
policies operating through one margin but not the other, for example, commodity-specific taxes
versus commodity-blind deforestation fines. However, existing work typically focuses on a single
margin at a time. On the one hand, a recent trade literature uses the Ricardian framework of Eaton
and Kortum (2002) to study the determinants of the spatial distribution of agricultural activity, but
abstracts from the extensive margin since environmental consequences, such as those arising from
deforestation, are not their object of study (Costinot, Donaldson and Smith, 2016; Pellegrina, 2019;
Sotelo, 2020). On the other hand, a recent applied microeconomics literature on land-use change
addresses the extensive margin, but abstracts from which specific agricultural commodities are
produced on the cleared land (Scott, 2013; Souza-Rodrigues, 2019).

I simultaneously incorporate both margins by modeling the land use decisions of farmers as
a nested discrete choice problem, with a natural land use nest and an agricultural land use nest.
Within the agricultural nest, the model collapses to the Ricardian framework and the substitu-
tion patterns between commodities map to trade elasticities, while substitution patterns across
nests map to land-use change elasticities. Thus, my land use model incorporates two key margins
driving agricultural emissions within a single framework—how much land is cleared and what
gets produced on it—while delivering estimates that are consistent with existing work estimating
each margin separately. To estimate the model’s supply parameters, I address endogeneity by
constructing demand shifters from quasi-experimental variation in world commodity prices.

Second, I use granular data on domestic trade flows to document concentration among agribusi-
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ness firms, a feature which I embed into my model with a layer of oligopsonistic intermediaries
between farmers and final consumers. The farm-gate prices farmers receive are therefore marked
down from the marginal revenue they generate for the intermediary, with the size of the mark-
down depending on the supply elasticity of farmers and the degree of agribusiness concentration.
Therefore, spatial heterogeneity in supply elasticities and local concentration determine how sur-
plus is shared between farmers and agribusiness firms at each upstream market. Because carbon
tax proposals often suggest levying the tax at the concentrated stage of the supply chain due to
ease of logistical implementation, market structure matters for quantifying pass-through to the
upstream farmers who ultimately make the environmentally-relevant decisions.

Concretely, the intermediary part of my model consists of a simple oligopsony specification
that nests the perfectly competitive case in order to flexibly alternate between conduct assump-
tions, allowing me to evaluate how market structure alters the upstream transmission of environ-
mental policy. The final consumers at the end of the supply chain are located in domestic as well
as foreign markets, which opens the door for consumption leakage from incomplete regulation.
Although the focus of this paper is on the domestic transmission of downstream taxes to upstream
producers, the framework can also be used to analyze leakage across international consumer mar-
kets. Given much of the policy debate on agricultural carbon taxes is indeed at the international
level, with downstream taxes being implemented as tariffs, I also include results on international
leakage for the sake of completeness.

Third, after estimating the key elasticities in my model, I exploit its spatial structure to high-
light the unique challenges agriculture presents when it comes to emissions regulation, and the
implications for choosing between market-based and command-and-control policy tools. Market-
based tools such as carbon taxes are appealing because they achieve broad geographic coverage
while avoiding the enforcement costs of direct regulation. However, they can be poorly targeted
if not levied directly on the upstream farmers whose incentives they aim to correct, but rather
on the downstream agribusiness firms whose compliance is easier to enforce. My analysis shows
this mistargeted aspect of the market-based policy becomes worse as heterogeneity in carbon foot-
prints across upstream producers increases. Moreover, market power worsens the mistargeting
by lowering pass-through to the least competitive upstream markets, which happen to be the ones
with the highest emissions intensity. I conclude by showing how command-and-control policies
that target a subset of high-carbon locations can dominate market-based policies when upstream
heterogeneity is wide enough, and more so when market power is present.

Finally, note that while the market-based tool is a price regulation, the command-and-control
tool is a quantity regulation. Therefore, the findings are reminiscent of the classic trade-off be-
tween regulating prices versus quantities in settings where regulators face producers with hetero-
geneous emissions intensities (Weitzman, 1974). The intuition behind the results follows classic
insights from public finance, as the degree of heterogeneity dictates which type of regulatory tool
is optimal, while adding the insight that pre-existing distortions such as market power can tilt the
trade-off towards the quantity regulation.
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Main contribution and relation to existing literature. This paper’s main contribution is to show
how market-based environmental policy is transmitted along a supply chain, especially when
the stage where it can be feasibly implemented differs from where the emissions are generated.
Hence, this paper quantifies the extent to which the Pigouvian signal of a policy is distorted along
the supply chain before reaching the market actors whose incentives it aims to correct. Agriculture
provides an ideal setting to study this mechanism because it is uniquely characterized by having
its emissions generated at the atomistic stage of its supply chain, rather than at the concentrated
stage where policy implementation and enforcement is easier. Apart from agriculture’s natural
fit with the paper’s research question, the South American agricultural sector in particular is of
major importance in and of itself due to its status as a global agricultural powerhouse with a major
emissions footprint. Over the next paragraphs, I break down the paper’s contributions in further
detail in terms of how they depart from the existing literature.

First, I link a trade literature that studies how comparative advantage shapes the spatial dis-
tribution of agriculture (Costinot et al., 2016; Pellegrina, 2019; Sotelo, 2020) to a recent land-use
change literature in agricultural economics and empirical IO (Scott, 2013; Souza-Rodrigues, 2019).
The trade literature studies how different commodities are allocated across existing agricultural
land, but abstracts from the extensive margin of land conversion. By contrast, the land-use change
studies typically model the land-use change margin as binary—land is either left in its natural
forested state, or used for agriculture broadly defined—but abstracts from which specific com-
modities are produced. The trade literature’s implied land-use change elasticities are significantly
higher than those from the land-use studies, in part because they are estimated from substitu-
tion patterns across commodities on already cleared land, where switching costs might be lower
than along the extensive margin. I incorporate both margins by modeling farmers’ decisions as a
nested discrete choice problem, and I show how this can reconcile the relatively high substitution
elasticities between commodities estimated by the trade literature with the relatively low land-use
change elasticities from the land-use studies.

Second, this paper relates to a growing literature at the intersection of trade and climate
change. I use similar modeling tools as a subset of studies quantifying adaptation mechanisms
to climate change, such as trade, migration, and sectoral reallocation (Conte, 2020; Conte, Desmet,
Nagy and Rossi-Hansberg, 2021; Nath, 2020; Alvarez and Rossi-Hansberg, 2021). Rather than tak-
ing the more macroeconomic approach of this literature, which tends to include multiple sectors
and factors, I focus on a single sector with a major impact on global emissions. This narrower
approach allows me to estimate the model’s relevant elasticities with plausibly valid instruments,
but comes at the cost of abstracting away from reallocation across factors or sectors in my counter-
factuals. Given land is the single most important factor driving emissions in agriculture, and even
more so in South America, the abstraction away from other factors such as labor or capital is less
consequential when studying the impact of agriculture on climate change relative to the opposite
direction—adaptation of agriculture to climate change. For this reason, my analysis is not on how
the damages from climate change can be mitigated by adaptation mechanisms such as trade, but
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instead considers the reverse direction: how trade policies in particular, and market-based tools
more generally, can be used to reduce agriculture’s contribution to climate change through its
primary channel, land use change.

Given the important role of trade for environmental outcomes in this setting, this paper con-
nects naturally to the extensive literature on the use of trade policy as environmental regulation,
recently reviewed in Copeland, Shapiro and Taylor (2022). There are two ways in which this paper
departs from most of this work, and in particular from recent studies within this literature (Kor-
tum and Weisbach, 2017; Farrokhi and Lashkaripour, 2021; Hsiao, 2021). The first is the emphasis
on how spatial heterogeneity in the effectiveness and incidence of environmental policy varies
at the sub-national level, which is important because agricultural productivity and carbon den-
sity vary widely within a country. Moreover, understanding incidence at the sub-national level
is important because it reflects the internal political constraints a government faces when design-
ing environmental policy. Furthermore, the sub-national analysis is necessary to address the key
questions in this paper, such as how mistargeted a flat downstream tax might be in terms of its
upstream pass-through to domestic producers. The second departure is the imperfectly competi-
tive setting, and in particular having market power on the demand side as opposed to the supply
side. I show how market power can affect the performance of market-based environmental pol-
icy in a qualitative sense, and not just quantitatively. The sign of the correlation between market
power and emissions intensity determines whether pass-through is higher or lower in the most
emissions-intense locations, and hence whether market power improves or worsens targeting.

Third, this paper contributes to a literature at the intersection of industrial organization and
environmental economics that goes back at least to Buchanan (1969), with modern approaches
typically leveraging empirical IO methods (Fowlie, Reguant and Ryan, 2016). In such studies,
firms typically exercise market power downstream on consumers, and the question is how to design
environmental policy along efficiency criteria. I contribute to this literature by considering the
case where firms exercise market power upstream on their suppliers: the farmers. This distinction
matters because over 80% of agricultural emissions are generated at the upstream stage before
the commodities leave the farm gate. This contrasts with fossil fuels, where upstream emissions
generated by extraction are small relative to downstream emissions generated by consumption
(i.e., the burning of fossil fuels for energy use). While agricultural emissions are mostly generated
upstream across atomistic farmers, fossil fuel emissions are more likely to be concentrated down-
stream across a few large utility companies. This makes direct regulation at the emissions source
logistically challenging in agriculture, which is why it is crucial to understand how policies which
can be easily implemented at the concentrated stage of the supply chain are transmitted to the
upstream farmers who make the environmentally-relevant decisions.

My emphasis on upstream transmission also opens a distributional channel on the supply-side,
whereas most work on environmental policy incidence typically focuses on downstream impacts
across consumers (Bento, Goulder, Jacobsen and Von Haefen, 2009; Fabra and Reguant, 2014).
Understanding supply-side distributional effects is first order in this setting because agricultural
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policy is often designed with redistribution toward farmers as an explicit goal, thus posing a
major barrier to advancing environmental regulation. Finally, the imperfectly competitive setting
relates to a recent literature on intermediaries and market power in the developing world, most
of which takes place in agricultural markets (Bergquist and Dinerstein, 2020; Chatterjee, 2019;
Rubens, 2019; Dhingra and Tenreyro, 2020; Zavala, 2021). While most of these studies focus on
the welfare impacts of market power per se, this paper only incorporates market power to show
how it interferes with the performance of market-based environmental policy. To the best of my
knowledge, I am unaware of work in this area studying this specific interaction.

2 Data

I construct a county-level panel of agricultural supply and demand from 1995-2017 by combining
various data sources from Argentina and Brazil. Throughout the paper, I use the term “South
America” when referring to the two countries jointly because they account for the bulk of the
continent’s environmentally relevant agricultural production, holding over 90% of its soybean
and maize output and over 75% of its cattle herd. The supply side data consists of a county-
level panel of land use, agricultural output, agronomic productivity, and farm-gate prices for the
following commodities: beef cattle, soybeans, maize, wheat, rice, sunflower, and sugarcane. These
commodities account for over 85% of all agricultural land in Argentina and Brazil. For the demand
side, I connect each county’s production to its nation-level destination markets using trade flow
data. A summary of each data source is listed below.

Geographic unit of analysis and temporal frequency. The smallest administrative unit at which
the data is available for Argentina is a department (“partido”), while for Brazil it is a munici-
pality (“municı́pio”). Given Brazilian municipality borders have changed over time, I use the
procedure from Ehrl (2017) to construct time-consistent spatial units, known as “Áreas Mı́nimas
Comparáveis” (AMC). Throughout the paper, I use the term “counties” when referring to Ar-
gentine departments and Brazilian AMCs. Given most of the data in this paper is from decadal
agricultural censuses, the time period used in the main estimation exercise is a decade. Therefore,
changes over time are to be interpreted as fairly long-run changes.

Agronomic productivity. Data on agricultural productivity for major crops is available from the
Food and Agriculture Organization’s Global Agro-Ecological Zones project (FAO-GAEZ) at 5 arc-
minute resolution for over one million grid cells around the globe (IIASA/FAO, 2012). Produc-
tivity is measured as potential yields predicted by an agronomic model based on agro-climatic
fundamentals. The model’s parameters are estimated from field and lab experiments in the agro-
nomic literature, and its specific inputs are: soil characteristics, land gradient, elevation, tempera-
ture, rainfall, and sun exposure. To obtain beef “yields per hectare” I construct a measure of cattle
productivity by combining the FAO-GAEZ pasture yield index with county-level data on cattle
stocking rates. The procedure is described in Appendix section C.1.

Land-use. County-level data on forested, agricultural, and pasture area are from the agricultural
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censuses of Argentina and Brazil. For Argentina, the source is the National Statistical Institute (IN-
DEC) and for Brazil it is the the Brazilian Institute of Geography and Statistics (IBGE). The Brazil-
ian census also reports acreage allocated to individual crops. For Argentina, I obtain individual
crop acreage from the Ministry of Agriculture’s “Datos Agroindustriales” database (DA-MAGYP).

Agricultural output. County-level crop and livestock output for Argentina is from the agricultural
census, DA-MAGYP, and the livestock registry at the National Food Safety Agency (SENASA). For
Brazil I use the agricultural census, which I complement with higher-frequency municipal survey
data from Produção Agrı́cola Municipal (PAM) and Pesquisa da Pecuária Municipal (PPM).

Trade flows. International trade flows of agricultural commodities at the nation-to-nation level
are obtained from FAOSTAT. To determine sourcing within Argentina and Brazil I use domestic
supply chain data from TRASE. This data is constructed from customs records and maps annual
trade flows (in physical quantities and port of export FOB values) from source counties to national-
level destination markets, as well as to the agribusiness firms intermediating the transactions.

Prices. Farm-gate prices of crops and cattle are obtained from production value and quantity data.
For Brazil, the sources are PAM and the agricultural census. For Argentina, I use cattle transac-
tion microdata from DA-MAGYP that directly reports transaction prices. Destination prices are
obtained from the TRASE data on values and quantities. Since the values are reported as port of
export FOB, the destination prices reflect the price the agribusiness firms receive for delivering
the goods to the port of export, but not to the final destination market. Therefore, the destination
prices include domestic transport costs from farm to port, but not the international transport costs
from port to overseas destination (which are paid by the final destination consumers).

Emissions. I compute land-use change emissions using biomass data at 300m spatial resolution
from the carbon density maps compiled by Spawn and Gibbs (2020), available at NASA Earthdata.
To compute emissions footprints across commodities I use data from Poore and Nemecek (2018)
and Clark, Domingo, Colgan, Thakrar, Tilman, Lynch, Azevedo and Hill (2020).

Weather shocks. Data on extreme temperatures at the nation-level are from FAOSTAT. I construct
county-level weather shocks from the National Centers for Environmental Prediction CFSR.

3 Stylized facts

First, I introduce the environmental science facts indicating which economic decision margins are
most relevant in determining agricultural emissions. Second, I introduce the main economic and
institutional features of the agricultural sectors of Argentina and Brazil. Finally, I describe how
these environmental and economic facts motivate the key ingredients of my model and how they
constrain the counterfactuals I run to a feasible subset of policies.
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Fact 1: Agricultural emissions are mostly generated at the upstream stage of the supply chain

I focus on three crucial decision margins that drive emissions in the agricultural sector, all of which
take place at the upstream stage of the supply chain:

i. How much land is cleared. Over 80% of agricultural emissions are generated upstream before
the commodities leave the farm-gate, mostly due to land-use change and on-farm sources
such as enteric methane (Figure 1). The land-use change share is especially high in South
America (above 70%) relative to the rest of the world (below 40%). The upstream nature of
agricultural emissions contrasts with fossil fuels, where upstream emissions generated by
extraction are small relative to downstream emissions generated by consumption (i.e., the
burning of fossil fuels for energy use).

ii. Which commodity is produced on the cleared land. Emissions footprints vary widely across agri-
cultural commodities, even after taking into account differing land requirements (Figure 1).
These large differences are robust to whether emissions footprints are specified on a per kcal
or per protein content basis. For example, beef contains 25 times more CO2e/kg of protein
than plant-based high-protein alternatives. Substantial variation exists even among plant-
based commodities, with rice generating twice as much CO2e/kcal than wheat.

iii. Where the clearing and producing takes place. Emissions footprints vary widely across space due
to the uneven geographic distribution of carbon stocks that would be potentially released
into the atmosphere from land clearing (Figure 2).

Figure 1: Emissions footprints and sources along the agricultural supply chain.

Notes: This figure shows emissions footprints at their global average, using data from Poore and Nemecek (2018). For
South America, the land use change share of total emissions is significantly higher, around 70% (FAOSTAT). For robust-
ness of results to emissions footprints specified on a per kcal or per protein content basis, see Figure 12 in Appendix B.
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Figure 2: Spatial distribution of carbon density (tC/ha) in South America.
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Notes: Figures are constructed using the carbon density dataset from Spawn and Gibbs (2020).

All told, agriculture accounts for 26% of anthropogenic emissions (Poore and Nemecek, 2018).
South America’s annual agricultural emissions have hovered around 3 Gt CO2e since 1990, roughly
27% of world agricultural emissions (FAOSTAT). Such magnitudes exceed those of any major sec-
tor of the US economy (EPA, 2018): industry (1.5 Gt), electricity (1.8 Gt), or transport (1.9 Gt).

Fact 2: International demand has played a major role in the evolution of South American land
use, both across time and space

One of the most salient developments in South American agriculture over recent decades has
been the dramatic expansion of soybean production. Before 1980, soybean acreage was the lowest
of any major crop, yet by 2005 it exceeded all other major crops combined (Figure 3). Growing
international demand, especially from Asia, has been a major driver behind such trends: over
70% of soybean output is exported and over 50% of exports go to Asia (FAOSTAT).

By crowding out other commodities, the soybean boom has resulted in a reallocation of agricul-
tural production across land markets. Cattle grazing has shifted from the most soybean-suitable
areas (central-south Brazil, mid-east Argentina) to cheaper land markets in frontier agricultural
regions, which is where the forests lie (northern Brazil and parts of the west and north of Ar-
gentina). Hence, although soybean expansion may not directly lead to deforestation, it may do
so indirectly by displacing land-intensive cattle grazing to the agricultural frontier (Figure 4). Ac-
counting for interactions between agricultural commodities is therefore crucial for understanding
deforestation in the South American context.1

1The extent to which these interactions matter for deforestation is context-specific. For example, Indonesian defor-
estation is driven almost entirely by palm oil, so abstracting from such interactions seems reasonable (Hsiao, 2021).

10



Figure 3: The South American soybean boom across time.
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Notes: The figure shows acreage allocated to major crops in Argentina and Brazil (1990-2017). By 2017, 91% of planted
land in Argentina was concentrated among 4 crops: soybeans (46%), maize (24%), wheat (16%), sunflower (5%). By
2017, 85% of planted land in Brazil was concentrated among 4 crops: soybeans (44%), maize (21%), sugarcane (11%),
beans (4%), wheat (3%), rice (2%). Sources: DA-MAGYP (Argentina), CONAB (Brazil).

Figure 4: The South American soybean boom across space.
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Notes: The figure shows changes in acreage allocated to soybeans, pasture, and forest (1995-2017). Maps are constructed
using land-use data from the decadal agricultural censuses of Argentina and Brazil.
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Fact 3: Agricultural supply chains are funnel-shaped, as atomistic upstream farmers face a con-
centrated sector of downstream agribusiness buyers

Farmers do not access consumer markets directly, but rather through intermediating agribusiness
firms. In Brazil there are 2.4 million upstream ranching establishments, 79% of which hold less
than 50 head of cattle, facing a concentrated sector of downstream agribusiness firms.2 In the
median county, the top three agribusiness firms account for 95% of sourced beef, with the top
firm accounting for over 60% (Table 1). JBS, the industry leader, accounted for 36% of purchases
nationwide, sourcing from 46% of all counties, and with a median market share of 28% (Table 2).

Table 1: Agribusiness concentration measures (2017).

Brazil Argentina

Beef Maize Soybean Soybean

Number of agricultural establishments (sellers) 2,457,512 1,619,880 236,141 42,428
Number of agribusiness firms (buyers) 118 110 181 34

Number of source counties 2,803 807 1,390 207
Number of destination countries 130 85 69 78

CR-1 (national market) 0.36 0.18 0.16 0.13
CR-3 (national market) 0.69 0.46 0.43 0.36

CR-1 (local market, median) 0.63 1.00 1.00 0.21
CR-3 (local market, median) 0.95 1.00 1.00 0.51

Share of source counties with 1 agribusiness firm 0.13 0.86 0.77 0.07

Notes: Local markets are defined at the county-level. Sources: 2017-2018 agricultural censuses and TRASE.

Table 2: Major agribusiness firms (2017).

Market share of firm Counties sourced by firm

Country Commodity Firm National Local* Number As share of all counties

Brazil Beef Jbs 0.36 0.28 1,284 0.46
Marfrig 0.18 0.30 1,146 0.41
Minerva 0.15 0.19 1,104 0.39

Maize Cargill 0.18 0.47 50 0.06
Bunge 0.16 0.32 45 0.06
Amaggi 0.12 0.32 34 0.04

Soybean Bunge 0.16 1.00 176 0.13
Cargill 0.14 1.00 194 0.14
Adm 0.13 0.93 100 0.07

Argentina Soybean Vicentin 0.13 0.13 168 0.81
Cargill 0.12 0.09 190 0.92
Bunge 0.12 0.11 182 0.88

∗Notes: The reported local market share is the firm’s median share across all the counties it sources from.

2Among Brazil’s ranching establishments, 73% hold less than 50 ha, 79% hold less than 50 head of cattle, and 76%
are family farms. See Appendix Figure 14. Sources: IBGE Table 6783, Table 6910, and Table 6783.
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Figure 5 shows how agribusiness concentration varies across space and how it correlates with
a crude accounting-based measure of a markdown—the ratio of the farm-gate price received by
the farmer with respect to the price the agribusiness firm receives at the port. Farm-gate prices
are subject to wider markdowns in production locations with a higher concentration of buyers,
even after taking into account differences in a location’s remoteness and implied transport costs.
Needless to say, these stylized facts should not be interpreted as a causal relationship from market
concentration to market outcomes. Concentration is itself a market outcome, and just like prices
and markdowns it is determined by supply and demand primitives (Bresnahan, 1989).3

Figure 5: Agribusiness concentration (beef markets, Brazil, 2017).
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0.6 0.7 0.8 0.9 1.0
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Notes: Maps are displayed at the mesoregion level for ease of visualization. For the scatterplot, each grey bubble is
a mesoregion (with size proportional to beef output), while dark bubbles are a binscatter overlay. The reported slope
and R2 are from an OLS regression of the farm-gate/agribusiness price ratio on the concentration ratio and a measure
of market access to control for remoteness. Appendix Table 8 shows the detailed results for these regressions.

Implications for model specification

Fact 1 suggests deforestation, commodity choice, and the geographic location of production are
the key margins driving agricultural emissions. Therefore, I propose a model where farmers make
decisions along two separate margins: first, how much land to clear, and second, which specific
commodity to produce on it. Furthermore, the model has high geographic resolution to incorpo-
rate rich spatial heterogeneity in agricultural productivity and emissions intensity.

Fact 2 suggests international demand shocks are a major driver of farmers’ land use decisions,
and hence trade policy can serve as environmental policy. I therefore allow for output to be pur-

3The correlation between concentration and markups can be positive or negative depending on how such prim-
itives are chosen (Syverson, 2019). Higher concentration is associated with higher profit margins in models with a
fixed number of firms, such as the standard Cournot model. However, allowing entry the relationship can be reversed:
markets with low profit margins can be highly concentrated because the gains for potential entrants are too small.
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chased by both domestic and foreign consumers, opening the door for consumption leakage from
incomplete regulation. Fact 2 also suggests different commodities compete with each other in lo-
cal land markets. Thus, a positive demand shock for a specific commodity raises land prices in
locations where its production is most suitable, displacing other commodities to locations with
cheaper land. I incorporate this mechanism by having farmers choose among different commodi-
ties, as mentioned previously, and by having commodity markets clear locally at the county-level.

Fact 3 suggests agribusiness firms may plausibly hold buyer market power over farmers, and
the extent of such power may vary across space. Therefore, I model agribusiness firms as oligop-
sonists in local upstream markets. I do so in a way that nests the perfectly competitive case in
order to alternate between conduct assumptions, and thus evaluate how market structure alters
the transmission of environmental policy to upstream farmers.

Implications for policy feasibility

Beyond the political constraints a government might face when considering a first-best carbon
tax on farmers, there are also logistical hurdles to enforcing such a tax that are unique to agricul-
ture. Many of these challenges stem from Fact 1: agricultural emissions are dispersedly generated
across millions of upstream farmers with heterogeneous carbon footprints. By contrast, in sectors
such as electricity generation the emissions from burning fossil fuels are concentrated downstream
among a few large firms, making enforcement at the emissions source logistically easier.

In our setting, a first-best carbon tax could be implemented as an output tax that varies by
origin of production due to the wide spatial heterogeneity in carbon intensity. For example, beef
from the Amazon would be subject to a higher tax per ton of output than elsewhere because of
the high carbon density of the land it was produced on. Levying such a tax directly on upstream
farmers would require enough state capacity to successfully enforce tax compliance at high spa-
tial resolution. Alternatively, the tax could be levied downstream on agribusiness firms, but this
would require reliable tracing of the commodity’s origin to determine its carbon content and set
the appropriate output tax rate, i.e., an effective certification scheme. Recent empirical work on
policy compliance suggests these requirements are unlikely to be met in our setting, rendering the
successful implementation of a first-best carbon tax infeasible.4 In reality, we observe a range of
command-and-control and market-based policies, all of which are second-best.

Command-and-control policies often take the form of conservation zones, which due to their
high enforcement costs typically only target a narrow geographic subset of high-carbon density
areas.5 By contrast, market-based tools such as carbon taxes are appealing because they avoid the

4For empirical evidence on the difficulties Brazilian environmental authorities have in effectively monitoring up-
stream farmers, as well as the practical challenges meat-packers face in tracing the ultimate origin (and hence, carbon
content) of their cattle purchases, see Barreto, Pereira, Jr. and Baima (2017); Pereira, Rausch, Carrara and Gibbs (2020);
Skidmore, Moffette, Rausch, Christie, Munger and Gibbs (2021), among many others. Among different agricultural
commodities, the beef supply chain is notorious for how long and fragmented it is, making certification across its
multiple stages and actors especially challenging. See Appendix section F.2 for more details.

5One of the better known command-and-control policies in our setting is Brazil’s “Priority Municipality List”. Un-
der this policy, IBAMA (the Brazilian environmental protection agency) increased monitoring and enforcement efforts
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implementation costs of direct regulation by working through the market mechanism, thus allow-
ing for broader geographic coverage. However, in practice such taxes are not levied directly on the
farmers whose incentives they aim to correct, for the reasons discussed in the previous paragraph.
Instead, second-best proposals typically suggest implementing the corrective tax where the sup-
ply chain becomes concentrated—downstream on the agribusiness firms at the port—because it
can be easily implemented at low administrative cost as an export tax. The shortcoming of such
proposals is that due to difficulties in certifying the origin of a given commodity once it arrives at
the port, a national average emissions footprint would be used to determine the size of the cor-
rective tax, regardless of whether the commodity was produced on land with high or low carbon
density. Hence, such downstream taxes can be poorly targeted.

To conclude, first-best carbon taxes at the upstream source of the externality are not considered
feasible solutions in the context of South American agricultural emissions. Second-best policies,
both command-and-control and market-based, are more frequently proposed in policy circles and
are often traded-off against one another. The former are well-targeted, but come at a high enforce-
ment cost and only cover a narrow geographic area. The latter have broader coverage and face
low implementation costs because they operate through the market mechanism, but they can be
spatially mistargeted because they are not levied directly at the emissions source. Hence, there is a
trade-off between targeting and enforcement costs when choosing between command-and-control
and market-based tools. The features of my model allow me to show how this trade-off depends
on i) the degree of upstream heterogeneity in carbon footprints, and ii) whether the market faces
pre-existing distortions such as market power.

4 Model

On the supply side, atomistic farmers choose between leaving their land in its natural forested
state or converting it to agricultural use and producing a specific commodity. Final demand con-
sists of consumers distributed across domestic and foreign markets. However, farmers do not ac-
cess consumer markets directly, but instead sell their output to intermediating agribusiness firms.

4.1 Supply side: Upstream farmers

Land use decision. Each county i contains a continuum of fields indexed ω. Each field ω is owned
by a farmer, who chooses a land use from a discrete choice set consisting of a natural-use option
N and a nest of agricultural commodities C. Field ω’s output of commodity c ∈ C is,

Qc
i (ω) = Ac

i (ω)Lc
i (ω) with Ac

i (ω) = Ac
i exp(εc

i (ω)), (1)

where Ac
i (ω) is the field’s productivity in commodity c and Lc

i (ω) is its size. A field’s productivity
is decomposed into a county-level mean Ac

i and a field-level idiosyncratic shock εc
i (ω). If pc

i is

in a selected sample of high deforestation risk municipalities from the Amazon. Assunção, McMillan, Murphy and
Souza-Rodrigues (2019) find the policy reduced deforestation by 43 percent.
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the commodity’s farm-gate price, then the payoff per unit of land allocated to commodity c is
pc

i Ac
i (ω). Let AN

i (ω) denote the payoff per unit of land when left in its natural state, which is also
decomposed into a county-level mean AN

i and a field-level idiosyncratic shock εNi (ω).

Payoff from natural use. The payoff from allocating land to a commodity c is market-based and
observable from data: it is a dollar-value constructed from market prices and yields. This differs
from the payoff to natural use because farmers are generally not paid to keep their land forested,
and even in cases in which they are, we typically don’t have comprehensive data on such pay-
ments. Therefore, the interpretation of AN

i (ω) is that it captures the dollar-value of any incentives
farmers have to keep part of their land forested, and which are unobserved to the econometrician.
Such incentives may be pecuniary or non-pecuniary, and static or dynamic. Examples of static
incentives are: the aesthetic value of trees to landowners, unobserved forestation payments, or
non-pecuniary benefits (e.g., prevention of soil erosion), as in Souza-Rodrigues (2019). An exam-
ple of a dynamic incentive is the option value of deforesting in the future, as in Scott (2013).

Nesting assumption. The nesting assumption is that the field-level idiosyncratic shocks are cor-
related between agricultural commodities, but not between a commodity and the natural-use op-
tion. There are two crucial parameters to keep track of: θ governs the dispersion of shocks across
fields, while λ ∈ (0, 1) governs the correlation of shocks between commodities. Higher values of θ

correspond to lower dispersion across fields, and higher values of λ correspond to lower correla-
tion between commodities.6 Under these distributional assumptions, the probability commodity
c is chosen, conditional on the farmer choosing the agricultural nest C, is given by,

π
c|C
i =

(
pc

i Ac
i
) θ

λ

∑c′∈C
(

pc′
i Ac′

i

) θ
λ

, (2)

while the choice probability of the agricultural nest C is,

πC
i =

(
PC

i
)λ

(AN
i )θ +

(
PC

i

)λ
with PC

i ≡ ∑
c′∈C

(
pc′

i Ac′
i

) θ
λ

. (3)

PC
i is defined as the payoff of the agricultural nest as a whole, since it is an index comprising the

returns of all the nest’s commodities—technically, ln PC
i is the nest’s inclusive value in the nested

6Formally, we have a nested logit model of land-use with the following log returns per hectare of land,

rk
i (ω) =

{
θ ln

(
pc

i Ac
i
)
+ εc

i (ω)∗ if k = c ∈ C
θ ln

(
AN

i

)
+ εNi (ω)∗ if k = N .

εc
i (ω) is distributed type I EV with location parameter 0 and standard deviation σ π√

6
, which is equivalent to having

Ac
i (ω) distributed type II EV (Fréchet) with location parameter 0, scale parameter Γ (1 − σ)−1 Ac

i and shape parameter
θ ≡ σ−1. Either case implies E[Ac

i (ω)] = Ac
i . The type I EV formulation conveniently casts the nested choice problem

as a nested logit model. Notice that we have rescaled payoffs by σ−1, so that εk
i (ω)∗ is a standardized type I EV error:

its location parameter is 0 and its standard deviation is π√
6

.
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logit model. The share allocated to natural use is πN
i = 1 − πC

i . The nested structure implies
the unconditional choice probabilities, which map to land shares in the data, can be written as
πc

i = π
c|C
i πC

i . If the county’s total surface is L̄i, then the county’s total acreage of commodity c is
Lc

i = πc
i L̄i. Finally, we have a closed form expression for the county-level supply of commodity c,

Qc
i =

∫
ω

Qc
i (ω)dω = Ac

i

(
π

c|C
i

) λ
θ Lc

i . (4)

Notice that as λ → 1, correlation between commodities goes to zero and the nested model col-
lapses to a multinomial model, a common specification in Ricardian models of agricultural trade
(Costinot et al., 2016; Sotelo, 2020). The nested structure is important for my setting because a
multinomial model would restrict substitution between commodities to be just as easy as substi-
tution between natural and agricultural use.7 First, such restrictions are unrealistic if we expect
land clearing to be costlier than switching between commodities on existing agricultural land.
Second, disentangling the two margins allows for evaluation of policies operating through one
margin but not the other. For example, the substitution margin within the agricultural nest mat-
ters for evaluating commodity-specific policies, such as maize-ethanol subsidies. By contrast, the
impact of deforestation fines, which are commodity-blind because they disincentivize agriculture
as a whole, are determined by the across-nest substitution margin.

Key supply-side elasticities. From 4 we can derive the price-elasticity of output,

∂ ln Qc
i

∂ ln pc
i
=

(
θ

λ
− 1
)(

1 − π
c|C
i

)
+ θπ

c|C
i

(
1 − πC

i

)
. (5)

Notice supply becomes more elastic when θ → ∞ or λ → 0. To understand why, recall θ gov-
erns the dispersion of productivity across fields: as θ → ∞, marginal fields become identical to
inframarginal fields, so county-level supply curves become flat. On the other hand, λ governs the
correlation of productivity between commodities: as λ → 0 correlation becomes perfect, implying all
fields order their commodity choices in the same way (although the levels of payoffs may differ
across fields). Because all fields make the same commodity choice, heterogeneity across fields dis-
appears, and we obtain a flat supply curve at the county-level. Therefore, a highly elastic supply
curve can be explained by low dispersion of productivity across fields (high θ) or high correla-
tion of productivity between commodities (low λ). To separate the role of θ from λ it is useful to

7In the nested model, substitution patterns between commodities are stronger than between a commodity and

natural use:
∣∣∣∣ d ln πc

i

d ln pc′
i

∣∣∣∣ > ∣∣∣∣ d ln πN
i

d ln pc′
i

∣∣∣∣ for c ̸= c′. Notice the proportional substitution property holds within-nest C but not

across nests: d ln π
c|C
i

d ln pc′
i

= − θ
λ π

c′ |C
i . A multinomial model is more restrictive since it imposes proportional substitution

across all choices, including the natural-use option.
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consider the odds ratios within- and across-nests,

ln

(
π

c|C
i

π
c′|C
i

)
=

θ

λ
ln

(
pc

i Ac
i

pc′
i Ac′

i

)
and ln

(
πC

i

πN
i

)
= λ ln

∑c∈C
(

pc
i Ac

i
) θ

λ

(AN
i )

θ
λ

 . (6)

The elasticity of substitution within-nest, θ
λ , can be high because of low dispersion across fields

(high θ) or high correlation between commodities (low λ) for the reasons mentioned in the preced-
ing paragraph. The elasticity of substitution across nests, which we interpret as the deforestation
elasticity, is equal to λ. What is the intuition for why λ, the correlation of productivity between
commodities, is connected to the deforestation elasticity? As λ → 0 the correlation across com-
modities increases, hence the within-nest heterogeneity falls relative to the across-nest heterogene-
ity. As fields become relatively more heterogeneous along the across-nest margin, county-level
supply curves (of agriculture as a whole) become less elastic, i.e., the deforestation elasticity falls.8

To conclude, consider the deforestation elasticity in terms of levels rather than shares, i.e., how
the amount of land allocated to the agricultural nest, LC

i , responds to the payoff of agriculture as a
whole, rather than to the payoff of any individual commodity. To do so, we use PC

i from equation
3 as the “price” of the agricultural nest, and then derive the “price”-elasticity of agricultural land,

∂ ln LC
i

∂ ln PC
i
= λ(1 − πC

i ). (7)

Since increases in LC
i necessarily reduce natural land use, 7 can be interpreted as a deforestation

elasticity. As mentioned before, the parameter governing this across-nest adjustment margin is λ.

4.2 Demand side: Downstream agribusiness intermediaries and final consumers

The demand side consists of two stages along the supply chain. First, agribusiness intermediaries
buy commodities from upstream farmers in sources indexed i ∈ I . Second, these intermediaries
sell the commodity to final consumers in destinations indexed j ∈ J . Intermediaries hold market
power as buyers in the upstream market, but take prices as given in the downstream consumer
market. I abstract from market power of intermediaries in their role as sellers for two reasons.
First, the environmentally-relevant decisions are made by farmers that are upstream of the inter-
mediaries, not by downstream consumers. Hence, when considering environmental regulations
implemented on agribusiness firms, what matters is how market power affects the upstream trans-
mission of such policies rather than the downstream transmission. Second, my data is simply not
rich enough to also incorporate downstream market power.9

8The right hand side of equation 6 says that for a fixed elasticity of substitution within-nest θ
λ , an increase in λ

results in a higher deforestation elasticity. It is key to notice we are keeping θ
λ fixed when changing λ: an increase in

λ must therefore be matched with an increase in θ, which implies we are reducing heterogeneity across fields within
a county. As fields become more homogeneous, county-level supply becomes more elastic, and hence deforestation
elasticities increase.

9I observe how much of a commodity is purchased by agents in the first stage of the destination market’s sup-
ply chain, which are mostly food processing companies rather than final retail consumers. Understanding impacts on
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Agribusiness intermediaries. There are Nc
i identical intermediary firms, each purchasing qc

i units
of commodity c from source i. Farmers do not perceive the firms as differentiated buyers, hence all
firms buy the commodity at the same farm-gate price pc

i . Apart from transporting the commodities
from source to destination, we allow firms to add value by transforming the commodity into
a processed version (e.g., soybeans into soybean oil) by using a technology fc(qc

i ). Firms then
sell the processed version at the port closest to source county i, obtaining a free-on-board price
p̄c

i . Hence, the transport cost from the port to the final destination is paid by final consumers: a
destination j consumer pays pc

ij = p̄c
i τc

ij, where τc
ij is an iceberg trade cost. We can now pose each

firm’s maximization problem, taking demand of the other firms as given,

max
qc

i

p̄c
i fc(qc

i )− pc
i (Q

c
i ) qc

i ,

where qc
i is an individual firm’s demand, Qc

i is total demand from source i, and pc
i
(
Qc

i
)

is source
i’s inverse supply equation. From the first order conditions we obtain the farm-gate price is a
fraction µc

i of the marginal revenue it generates for the intermediary,

pc
i

p̄c
i f ′c(qc

i )
=

(
1 +

1
ϵc

i Nc
i

)−1

︸ ︷︷ ︸
≡µc

i

where
1
ϵc

i
≡

∂ ln pc
i

∂ ln Qc
i
. (8)

A farmer from source i obtains µc
i cents for every dollar the intermediary makes from the com-

modity. I define µc
i , the ratio of the input’s price to its marginal revenue, as the “markdown-

wedge”. Throughout the rest of the paper, when using the term “markdown” I am referring to
this “markdown-wedge”. Intuitively, markdowns follow an inverse-elasticity rule: sources with
inelastic supply (high 1

ϵc
i
) are subject to large markdowns (low µc

i ). Markdowns are also larger in
sources with few competing firms (low Nc

i ).
The setup of the intermediary problem is purposefully simple—firms are identical and there

is no entry—the goal being to obtain the smallest departure from the perfectly competitive setting
typically assumed by the agricultural trade literature as well as to parsimoniously nest it. Perfect
competition is obtained by imposing µc

i = 1, and trade of unprocessed commodities by imposing
fc(qc

i ) = qc
i . In these limiting cases, the farm-gate price is equal to the free-on-board price, and

the destination market price is simply the farm-gate price adjusted by trade costs, i.e., pc
ij = pc

i τc
ij.

I discuss how the model can be extended to admit firm heterogeneity and exit/entry, and the
implications of doing so, in Appendix D.3. Most importantly, these extensions do not change the
qualitative insights of the paper.

Consumers. To interpret what destination market ”consumers” are in this model, it is worth clar-
ifying how we measure them in the data. The demand-side data measures how much of a com-

final consumers would require a host of assumptions about how food-processors transform the commodity into dif-
ferentiated retail food products (production function specification, conduct assumptions, mark-ups), all of which are
untestable with the available data and beyond the scope of this paper.
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modity arrives at the destination port, and not how much is purchased by final consumers at the
final retail stage. Therefore, “consumers” in this model should be interpreted as the agents in the
first stage of the destination market’s supply chain, which are mostly food processing companies
that transform the commodity into retail food products.

The modeling of consumers is the most standard part of the model: I use a three-level CES
demand system. In the upper level, they substitute between commodities (e.g., maize vs. wheat).
In the middle level, they substitute between source nations of a given commodity (e.g., Brazilian
maize vs. US maize). In the lower level, they substitute between counties within a nation (e.g.,
maize from Northern Brazil vs. maize from Southern Brazil). The lower level is necessary to
obtain demand at the county-level.

Given our interpretation of what a “consumer” is, the different levels of the CES system should
not be interpreted as the degree to which final retail consumers literally differentiate as a matter
of taste—indeed, it is unlikely final retail consumers perceive significant quality differences be-
tween maize from one county versus another. Instead, the different levels should be interpreted
as the degree to which a food processor substitutes inputs across different sources. Hence, the
lower-level reflects the degree to which food processors perceive the process of sourcing from one
county versus another as differentiated, even if the underlying product being sourced from both
counties is identical. Concretely, I assume each destination j has a representative consumer with
the following three-level CES utility function,

Uj =

(
∑

c
(ac

j )
1

ηu (Cc
j )

ηu−1
ηu

) ηu
ηu−1

, where Cc
j =

(
∑
n
(ac

nj)
1

ηm (Cc
nj)

ηm−1
ηm

) ηm
ηm−1

and Cc
nj =

(
∑
i∈n

(Cc
ij)

ηl−1
ηl

) ηl
ηl−1

.

Cc
j is consumption of good c aggregated across source nations indexed n. Cc

nj is consumption
of good c aggregated across source counties indexed i belonging to nation n. ηu is the upper
elasticity of substitution between goods, ηm is the middle elasticity of substitution between source
nations, and ηl is the lower elasticity of substitution between counties within a nation. The a’s are
preference shifters across goods and sources. These preferences deliver the following county-level
demand equation,

Cc
ij =

(
pc

ij

Pc
nj

)−ηl

ac
nj

(
Pc

nj

Pc
j

)−ηm

ac
j

(
Pc

j

Pj

)−ηu Xj

Pj
∀i ∈ n, (9)

where Xj is destination j income, and price indices for each level are defined as follows,

Pc
nj ≡

(
∑
i∈n

(pc
ij)

1−ηl

) 1
1−ηl

Pc
j ≡

(
∑
n

ac
nj(Pc

nj)
1−ηm

) 1
1−ηm

Pj ≡
(

∑
c

ac
j (Pc

j )
1−ηu

) 1
1−ηu

.

20



4.3 Equilibrium

An equilibrium is a set of farm-gate prices {pc
i }i,c such that supply in each county is equal to the

total demand from that county, and this holds for every commodity,

Qc
i (pc

i ) = ∑
j

Cc
ij(pc

ij)τij ∀i, c, where pc
ij =

pc
i

µc
i

τij

f ′c(qc
i )

.

It is worth stressing that market clearing occurs county-by-county, i.e., at a sub-national level. This
is key to allow for within-nation spatial heterogeneity in the effectiveness and incidence of envi-
ronmental policy. If the downstream carbon taxes are uniform, i.e., they cannot take into account
the sub-national origin of the commodity because of certification challenges, then they will be
spatially mistargeted because of the wide geographic heterogeneity in carbon density within a na-
tion. Quantifying the extent to which they are mistargeted requires understanding how quantities
differentially respond to policy across sub-national markets.

5 Estimation

In section 4, the model is presented for expositional purposes without time subscripts because it is
static. I now explicitly introduce time subscripts given I will combine cross-sectional and temporal
variation for estimation. A time period is a decade because that is the frequency of the census data.
The observed outcomes across time are therefore interpreted through the lens of the model as a
sequence of static equilibria separated by a substantial time lag.10 The static model is therefore
used as a first approximation for studying decisions with long time lags, in part because dynamic
considerations such as switching costs become less relevant the longer the temporal horizon is.
Examples of recent studies taking such an approach—estimating static discrete choice models
using data with decadal frequency—are Diamond (2016) and Donaldson (2018).

5.1 Supply elasticities

To understand the variation in the data that is used to estimate the supply-side parameters, it is
useful to consider the odds ratio between two commodities c and c′ within the agricultural nest,

ln

(
πc

it

πc′
it

)
=

θ

λ
ln

(
pc

it Ac
i

pc′
it Ac′

i

)
+ ucc′

it , (10)

where πc
it is county i’s land share in commodity c at time t, pc

it is the farm-gate price, Ac
i is the

county’s mean productivity, and ucc′
it is an unobservable error term. Given 10 is a supply equation

of commodity c relative to c′, we interpret ucc′
it as an unobservable supply shifter of c relative to

10Such an interpretation is common in the spatial economics literature, where having rich spatial heterogeneity is
the main priority when choosing a dataset, but which often comes at the cost of lacking the requirements for estimating
a fully dynamic model. This is common for census data, which has rich cross-sectional heterogeneity but individual
decision makers cannot be linked across time and the frequency of the data is too low to incorporate full dynamics.
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c′. The ratio of parameters θ
λ is the elasticity of substitution between commodities, i.e., within the

agricultural nest. A useful interpretation of θ
λ is as a supply elasticity of c relative to c′. This elas-

ticity is large when productivity dispersion across fields goes to zero (θ → ∞) because marginal
fields in a county become identical to infra-marginal fields, resulting in a flat supply curve. This
elasticity can also be large when productivity is perfectly correlated across commodities (λ → 0).11

Thus, knowing this supply elasticity is not enough to separately identify θ from λ. The additional
restriction that is needed for identification exploits variation across nests: it is the odds ratio be-
tween nest C and natural use N ,

ln

(
πC

it

πN
it

)
= λ ln

(
PC

i

)
− θ ln

(
AN

i

)
+ uCN

it with PC
i ≡ ∑

c∈C
(pc

it Ac
i )

θ
λ , (11)

where ln PC
i is the inclusive value of the agricultural nest in county i at time t, θ ln

(
AN

i
)

is unob-
servable and time-invariant so it is estimated as a county fixed effect, and uCN

it is an unobservable
supply shifter of agricultural land relative to forested land. The parameter λ is the substitution
elasticity across nests, i.e., the deforestation elasticity. Given the composite parameter θ

λ estimated
from 10, we can construct the inclusive value term in 11, and then λ is identified.

Instruments. OLS estimates will be biased towards zero due to simultaneity bias, specifically be-
cause the unobservable supply shocks ucc′

it will be correlated with relative land shares and relative
returns. For example, if the unobservable local productivity of commodity c increases relative to
c′, its relative land share would increase and its relative price would drop, biasing the estimate of
θ
λ downwards. Since we are estimating a supply equation, an appropriate instrument is a demand
shifter varying at the county-year it and commodity-pair cc′ level. I construct such an instrument
from the export network data as follows,

zcc′
it = ∑

j
scc′

ij dcc′
jt with scc′

ij ≡
sc

ij

sc′
ij

, dcc′
jt ≡

dc
jt

dc′
jt

, (12)

where sc
ij is the share of commodity c output from county i that historically goes to destination j,

and dc
jt is a time-varying measure of demand conditions for commodity c in destination j. Intu-

itively, if demand conditions for crop c relative to c′ increase in destination j, counties that histori-
cally supplied j are more exposed and receive larger demand shocks. I use destination j’s imports
from every nation except Argentina and Brazil as the demand measure dc

jt, thus purging away
supply-side effects in Argentina and Brazil that directly affect the imports of j. The identifying
assumption is that the exposure measure scc′

ij is uncorrelated with changes in the error term ∆ucc′
it ,

whereas correlation with levels ucc′
it is allowed (Goldsmith-Pinkham, Sorkin and Swift, 2020).12

11Zero field dispersion means all fields in a county are identical; that is, any two fields ω and ω′ satisfy Ac
i (ω

′) =
Ac

i (ω) ∀c. Perfect correlation across commodities is a weaker restriction because it allows any two fields ω and ω′ to be
different in the sense that Ac

i (ω) ̸= Ac
i (ω

′) ∀c, but it restricts every field to have the same ordering over commodities.
Because ordering is all that matters in discrete choice problems, all fields choose the same commodity, and within-
county heterogeneity in choices disappears.

12The assumption allows for counties with high unobservable productivity of c relative to c′ to selectively export
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We also need an instrument for equation 11 for the same reasons as for equation 10: if unob-
served agricultural productivity increases overall for all commodities, then the agricultural nest’s
share would increase and its price index PC

i would decrease, biasing the estimate of λ towards
zero. We now need a shifter of demand for agriculture overall. We construct it similarly to 12, but
now summing across all commodities,

zCit = ∑
j

∑
c∈C

sc
ijd

c
jt (13)

Results. OLS and IV estimates of θ
λ , the substitution elasticity between commodities, are shown in

columns 1 and 2 of Table 3. The values are comparable to trade elasticity estimates from Ricardian
models of agriculture, which are estimated from variation across commodities within the agricul-
tural nest and abstract from deforestation, typically ranging between 1.5-4 (Costinot et al., 2016;
Pellegrina, 2019; Sotelo, 2020). Columns 3 and 4 add interactions with a frontier region indicator to
allow for spatial heterogeneity. The negative sign of the interaction coefficients imply substitution
across commodities is costlier for farmers in frontier regions.

Estimates of λ, the deforestation elasticity, are shown in Table 4 and are broadly consistent
with the agricultural and empirical IO literature. Given the long time lags in my decadal data,
I interpret my estimates as long-run elasticities. Scott (2013) finds long-run elasticities of 0.3 by
estimating a dynamic model on annual data from the United States. Berry and Schlenker (2011)
and Roberts and Schlenker (2013) both estimate land-use change elasticities for Brazil between
0.2-0.4. Within Brazil and focusing on the Amazon biome, Souza-Rodrigues (2019) finds land-use
change elasticities near zero. My estimates for frontier regions such as the Amazon are in line with
these findings, given they are substantially lower than those from core agricultural regions.13

Role of the nesting structure. How important is the nesting structure? Estimating a non-nested
multinomial model amounts to imposing λ = 1 and estimating a single parameter θ from variation
between commodities and natural use simultaneously. Table 5 shows the results for such a model.
The multinomial model mixes variation within and across nests to deliver a single elasticity: notice
the multinomial OLS estimates are sandwiched between the nested model’s within- and across-
nest elasticities. In this case, the land-use change elasticity is restricted to equal the substitution
elasticity between commodities,

d ln πc
i

d ln pc
i
= θ(1 − πc

i ).

Because estimates of θ are well above 1 in the trade literature, the estimates from the multinomial
model are hard to reconcile with land-use change elasticities that are found to be well below 1 in
the agricultural and empirical IO literature. The trade elasticities are estimated from substitution

to specific destinations. It also allows counties that historically exported to specific destinations to experience faster
growth in their overall unobservable productivity, but not in their relative productivity of commodity c relative to c′.

13Souza-Rodrigues (2019) uses cross-sectional data, so his static framework is appropriate to estimate long-run elas-
ticities.
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Table 3: Nested model - substitution elasticity between commodities (within-nest).

OLS IV OLS IV

(1) (2) (3) (4)

θ
λ 0.768∗∗∗ 2.243∗∗∗ 0.641∗∗∗ 2.316∗∗∗

(0.080) (0.135) (0.093) (0.146)
θ
λ × frontier region 0.681∗∗∗ −0.844∗∗∗

(0.168) (0.198)

Time FE X X X X
Location FE X X X X
Observations 5,618 5,618 5,618 5,618
Adjusted R2 0.197 0.104 0.200 0.100

Notes: First stage F-statistic = 105.6. SE clustered at county level.

Table 4: Nested model - deforestation elasticity (substitution elasticity across nests).

OLS IV OLS IV

(1) (2) (3) (4)

λ −0.040∗∗ 0.281∗ −0.042∗∗ 0.341∗

(0.018) (0.155) (0.020) (0.185)
λ × frontier region 0.009 −0.298∗∗

(0.034) (0.152)

Time FE X X X X
Location FE X X X X
Observations 7,630 7,630 7,630 7,630
Adjusted R2 0.661 0.638 0.661 0.636

Notes: First stage F-statistic = 53.47. SE clustered at county level.

Table 5: Multinomial model - single substitution elasticity between all land uses.

OLS IV OLS IV

(1) (2) (3) (4)

θ 0.472∗∗∗ 0.517∗∗∗ 0.472∗∗∗ 0.535∗∗∗

(0.010) (0.010) (0.011) (0.011)
θ × frontier region −0.003 −0.065∗∗

(0.029) (0.030)

Time FE X X X X
Location FE X X X X
Observations 10,846 10,846 10,846 10,846
Adjusted R2 0.480 0.476 0.480 0.474

Notes: First stage F-statistic = 130.27. SE clustered at county level.
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between commodities on existing agricultural land, ignoring the extensive margin of switching
from non-agricultural to agricultural land. By contrast, the agricultural and empirical IO literature
often ignores substitution between commodities within agriculture in order to focus on the binary
extensive margin (Scott, 2013; Souza-Rodrigues, 2019). One would expect the extensive-margin
elasticities to be smaller if switching from forest to cropland is costlier than switching between
crops on already cleared land. The nested model’s objective is to allow changes in a commodity’s
acreage to be decomposed into both margins:

d ln πc
i

d ln pc
i

=
d ln π

c|C
i

d ln pc
i︸ ︷︷ ︸

commodity substitution: θ
λ (1−π

c|C
i )

+
d ln πC

i
d ln pc

i︸ ︷︷ ︸
land conversion: θ

λ π
c|C
i ×λ(1−πC

i )

.

The first term is identical to the land-use change elasticity implied by Ricardian models and indi-
cates how crop c acreage increases by stealing land shares from other crops. The second term tells
us how crop c land use increases by stealing land shares from natural land. Total agricultural land
responds to overall agricultural returns, measured as the price index PC

i , as follows:

d ln πC
i

d ln PC
i
= λ(1 − πC

i ),

By separating the two margins, the model can reconcile relatively high substitution elasticities
identified from variation within the agricultural nest (high θ

λ ) with relatively low land-use change
elasticities identified from variation across nests (low λ).

5.2 Trade costs and the geography of market power

To quantify trade costs in our imperfectly competitive setting we first need to obtain the geo-
graphic distribution of markdowns. We combine the estimated elasticities of substitution within
and across nests from the previous section with the land share data to obtain the price-elasticities
of supply, using equation 5. Next, we combine these supply elasticities with data on the number
of intermediaries to obtain the markdown µc

i for each location, using equation 8. The first and
second panel of Figure 6 show the results for beef markets. Supply is less elastic in in-land regions
on the agricultural frontier, resulting in wider markdowns on farm-gate prices.

Given our estimates for the spatial distribution of markdowns, we now proceed to quantify
trade costs. My approach is to back out trade costs from price gaps between an origin location i
and a destination location j, in the same spirit as Donaldson (2018). Implementing such a strategy
requires data on origin producer prices and destination consumer prices for the goods shipped from
that specific origin. I use county-level farm-gate prices from agricultural censuses as origin producer
prices pc

i , while origin-destination prices pc
ij are from the agribusiness sourcing data.
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Figure 6: Supply elasticities, markdowns, and model-implied trade costs (beef markets).

0.25 0.50 0.75 1.00

Supply elasticities dlog Q / dlog P

0.4 0.5 0.6 0.7 0.8 0.9

Markdowns µ

y = 1.4 + 0.628 x

R2 = 0.38

1

2

3

4

1 2 3 4

τij implied by imperfect competition

τij implied by perfect competition

Notes: For the purposes of the maps in this figure, the supply elasticities and markdowns are computed at the county-
level and then averaged at the state/province level for visualization purposes. The maps therefore show the average
supply elasticities and markdowns for each Brazilian state and Argentine province. For the scatter plot, each bubble
is an origin county-destination market pair. Bubble sizes are proportional to the number of agribusiness buyers at the
origin (i.e., smaller bubbles reflect less competitive upstream markets).

In perfectly competitive settings such as Donaldson (2018), the price gap between origin i and
destination j is sufficient to pin down bilateral trade costs,

pc
ij

pc
i
= τc

ij. (14)

However, if intermediaries hold market power, the price gap reflects a combination of trade costs
and markdowns (Atkin and Donaldson, 2015). Furthermore, if intermediaries are processing the
commodity rather than trading it raw, we also need to account for value added (i.e., the marginal
product of the commodity input to the processed good),

pc
ij

pc
i
=

τc
ij

µc
i f ′c(qc

i )
. (15)

Without further assumptions, trade costs τc
ij, markdowns µc

i , and marginal products f ′c(qc
i ) cannot

be separately identified from price gaps. The conduct assumption is therefore an identifying re-
striction: it pins down µc

i as a function of supply elasticities and the number of firms. By evaluating
15 only on trade flows of raw commodities (e.g., unprocessed soybeans) we can impose f ′c(qc

i ) = 1
and trade costs are identified.14 Notice different conduct assumptions will imply different trade
costs through µc

i . Hence, conduct assumptions can be tested by how reasonable their implied
trade costs are—for example, by how they compare to benchmark values from the gravity liter-

14Alternatively, we would need to estimate or calibrate fc(qc
i ) if dealing with trade flows of processed commodities,

such as soybean oil.
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ature (Anderson and Van Wincoop, 2003). This follows the same spirit as the “menu approach”
from the empirical IO literature, where a menu of alternative conduct assumptions are tested by
how reasonable their implied marginal costs are (Nevo, 2001).

Results. As equations 14-15 make clear, the markdown µc
i drives a wedge between the trade costs

implied by assuming market power or not. Hence, if the imperfectly competitive model is the
true one, incorrectly assuming perfect competition will inflate trade costs because the portion of
the price gap generated by markdowns is attributed to trade costs. In our case, this upward bias is
largest in inland regions because they have wider markdowns (i.e., lower values of µc

i , as shown
in Figure 6). Thus, imposing perfect competition will inflate trade costs more in the uncompetitive
(inland) regions than in the competitive (coastal) ones. The right panel of Figure 6 compares the
trade costs implied by each conduct assumption and quantifies the size of this upward bias.

5.3 Demand elasticities

We start at the lowest level of the CES demand system and move up. First, the lower-level elastic-
ity ηl is identified from expenditure variation across source origins i within a source nation n:

ln

(
Xc

ijt

Xc
njt

)
= (1 − ηl) ln

(
pc

ijt

)
+ λc

njt + εc
ijt ∀i ∈ n, (16)

where Xc
ijt is destination j’s expenditure on commodity c from county i and Xc

njt = ∑i∈n Xc
ijt.

15

Because 16 is a demand equation, the issue of classic simultaneity bias arises when estimating via
OLS. Therefore, I instrument for price with a supply shifter which I construct as zc

ijt ≡ sc
ij × wit,

where sc
ij is the share of origin i production that goes to destination j in a baseline year, and wit is

a local weather shock (measured as deviations from a historical average). The relevance condition
of the instrument is straightforward: given a negative supply shock caused by adverse weather in
origin i, the size of the supply shock effectively faced by destination j depends on how exposed it
is to i as reflected by its historic trading relationship. The exclusion restriction is that the origin’s
destination shares sc

ij are not predictive of changes in unobservable demand shocks—the shares
are allowed to be correlated with the contemporaneous demand shock εc

ijt, but not with its change
over time, ∆εc

ijt. Therefore, the assumption allows for an origin i that historically exported most
of its output to j to consistently experience large unobservable demand shocks from j, but not to
experience systematic changes in such demand shocks over time.

The middle-level elasticity ηm is identified from expenditure variation across nations:

ln

(
Xc

njt

Xc
jt

)
= (1 − ηm) ln

(
Pc

njt

)
+ λc

jt + εc
njt, (17)

15We treat λc
njt ≡ − ln

(
∑i′∈n(pc

i′ jt)
1−ηl

)
as a commodity-origin nation-destination-time fixed effect.
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where Xc
jt is destination j’s total expenditure on commodity c across all source nations.16 Since 17

is a demand equation just like 16, the simultaneity problem and its solution are the same, with the
only difference being the lower geographic resolution (origin locations are now nations instead
of counties). Hence, I again instrument for price by constructing a supply shifter, however at
the origin nation level rather than the origin county level. Finally, the upper-level elasticity ηu is
identified from expenditure variation across commodities,

ln

(
Xc

jt

Xjt

)
= (1 − ηu) ln

(
Pc

jt

)
+ λjt + εc

jt, (18)

where Xjt is destination j’s total expenditure on agricultural imports.17 The required instrument
is now a supply shifter varying across commodities, which I construct as supply shocks at the
destination-commodity level as zc

jt = ∑n mc
njwnt, where mc

nj is the share of destination j imports
coming from an origin nation n in a baseline year and wnt is the origin nation-level weather shock.

Table 6: Demand substitution elasticities.

Dependent variable: ln expenditure share

Lower level Middle level Upper level
(across counties) (across nations) (across commodities)

OLS IV OLS IV OLS IV

ln price 0.983∗∗∗ −12.624∗∗∗ −0.950∗∗∗ −4.118∗∗∗ −0.407∗∗∗ −1.486
(0.024) (0.920) (0.053) (0.595) (0.136) (2.601)

Observations 168,112 168,112 83,512 83,512 1,899 1,899

Notes: Lower, middle, and upper specifications include origin nation-destination-year-commodity fixed effects,
destination-year-commodity fixed effects, and destination-year fixed effects, respectively.

Results. Table 6 shows the substitution elasticity estimates for each level of the demand system.
At all levels, IV estimates are larger (in absolute value) than OLS estimates, consistent with simul-
taneity bias. Intuitively, the results confirm lower substitutability across commodities than across
commodity sources, and lower substitutability across nations than across counties. At the nation
and commodity levels, the implied CES parameter values are ηm = 5.12 and ηu = 2.49. These
results are of similar magnitude to those in the related literature: Costinot et al. (2016) estimate
demand substitution elasticities across nations and commodities, finding ηm = 5.40 and ηu = 2.82.

16The term λc
jt ≡ − ln

(
∑n′ ac

n′ jt(Pc
n′ jt)

1−ηm
)

and εc
njt ≡ ln

(
ac

njt

)
.

17To construct the price indices required for the upper-level estimation I use the residuals from the middle-

level equation 17. That is, Pc
jt ≡

(
∑n âc

njt

(
Pc

njt

)1−ηm
) 1

1−ηm
, where âc

njt = exp
(

ε̂c
njt

)
. Furthermore, λjt ≡

− ln
(

∑c′ ac′
jt

(
Pc′

jt

)1−ηu
)

is treated as a destination-time fixed effect and âc
jt = exp

(
εc

jt

)
.
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6 Policy counterfactuals

6.1 Efficiency and distributional impacts of a downstream carbon tax

Motivated by the obstacles to implementing a first-best carbon tax directly on upstream farmers,
I use my model to simulate a second-best tax levied at the downstream stage of the supply chain,
i.e., on the agribusiness firms. The tax is second-best because of the limitations regulators have
in tracing the emissions content of beef shipments once they arrive at the downstream stage—a
well documented challenge in the South American beef industry due to its unique multi-stage and
vertically unintegrated supply chain. Hence, I assume regulators use a national average footprint
of CO2e per tonne of finished beef, which is then multiplied by the social cost of carbon (assumed
to be 30 USD/t CO2e) to obtain an output tax per tonne of beef. This output tax is levied on
all beef arriving at the downstream stage, independently of its upstream location of production.
Therefore, the tax is spatially mistargeted because beef produced in high-emission locations is
taxed at the same rate as beef produced in low-emission locations.

I implement the downstream tax in two ways. First, I consider the case where only a subset
of trading partners implement the tax on their imports from South America. This is motivated by
recent EU proposals to veto potential free trade agreements with the South American trade bloc,
with the stated goal of reducing deforestation. Second, I compare this “incomplete regulation”
case to a “complete regulation” scenario where all downstream consumer markets impose the tax,
including the domestic market. Implementation details are in Appendix E.

Efficiency I: Emissions leakage across downstream consumer markets. The top panel of Figure
7 shows the equilibrium effects of an EU-only tax on South American beef. Since regulation is
incomplete across consumer markets, the drop in shipments to the EU is offset in equilibrium
by increased consumption in non-EU markets, including the domestic market. The tax’s correc-
tive potential is therefore substantially limited by this consumption “leakage” effect: over 80% of
the emissions reductions attributed to the drop in EU consumption are offset by increased con-
sumption elsewhere. The bottom panel of Figure 7 displays the case with complete regulation. In
this case there is no re-routing of shipments, so emissions drop across all destination markets. It
is important to note that the emissions changes in Figure 7 take into account substitution away
from beef and into crops, i.e., domestic production leakage from beef (which is taxed) to crops
(which are not). Specifically, the emission changes reported in the figure include the growth in
crop-related emissions generated by substitution from beef into crops. Therefore, the fact that all
bars in the bottom right panel of Figure 7 are negative indicate the drop in emissions from beef
production more than offsets any increase in emissions from crop production.
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Figure 7: Emissions abatement potential of downstream carbon taxes.

Incomplete regulation: unilateral EU tax on its South American imports.
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Complete regulation: downstream tax by all consumer markets.
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Notes: on the left, each matrix cell shows the change in output (reported as percentage point changes) shipped from
an origin South American region to a destination consumer market (including the domestic market) as a result of the
tax. For reference, regions are mapped in Appendix Figure 13. To go from output changes to emissions changes, the
matrix is overlayed with the emission footprints of each origin. This is done for both beef and crops, in order to take
into account emissions from the substitution of beef to crops. The resulting emissions from changes on all commodity
flows (both beef and crops) are then aggregated up to the destination level, thus delivering the changes in emissions
attributed to the changes in consumption of each destination (shown on the right in grey, with the total emissions
impact across all destinations in black).

Efficiency II: Spatial mistargeting across upstream farmers. We now move beyond the inter-
national leakage effects to analyze how efficiently the downstream tax is domestically transmit-
ted up the supply chain to farmers. From now on, we focus on the complete regulation case to
isolate inefficiencies due to international leakage from inefficiencies due to the tax’s lack of do-
mestic targeting. The first thing to note is that the bottom trade matrix in Figure 7 shows larger
changes in production for some upstream locations than others. The middle panel of Figure 8
maps these locations, showing that production drops least in regions on the agricultural frontier:
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Central/Northern Brazil and the Argentine periphery. Because these regions have the highest
emissions intensities, the downstream tax is spatially mistargeted upstream. This mistargeting
occurs for two reasons. First, our empirical estimates indicate supply is less elastic in frontier re-
gions, hence quantities drop less in response to the portion of the downstream tax that ends up
getting passed through. Second, pass-through is lowest in the upstream locations most subject to
agribusiness market power, which happen to be the frontier regions (left panel of Figure 8). Thus,
while the spatial mistargeting result is independent of market structure assumptions (since it re-
lies solely on the spatial pattern of supply elasticities), market power amplifies the mistargeting
by reducing pass-through most to the highest-emissions locations.

Figure 8: Upstream heterogeneity in policy effectiveness and distributional incidence.
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Notes: the maps show the difference between the baseline equilibrium and the downstream tax equilibrium. All values
correspond to the beef cattle sector and are displayed at the state-level.

Redistribution: Supply-side regressivity across upstream farmers. Beyond the limited effective-
ness of the downstream tax in terms of abatement potential, what are its distributional effects?
The right panel of Figure 8 shows the impact on farm-gate prices expressed as percentage point
declines, i.e., the policy’s implied income tax on farmers. It is in the frontier agricultural regions of
Northern Brazil—which are also the poorest regions—where farmer income is taxed at the highest
rate. Although pass-through rates are lower in these regions, the implied income tax is higher be-
cause of lower farm-gate prices at baseline.18 Since the implied income tax is highest for farmers
in the poorest regions, the policy is regressive across space. Hence, apart from increasing food
prices for consumers, the downstream tax has an extra layer of regressivity on the supply side.

18The pass-through rate is defined as the change in the farm-gate price relative to the downstream tax. The implied
income tax is the defined as the change in the farm-gate price relative to the initial farm-gate price.
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Role of market structure: Market power erodes the Pigouvian signal. We already discussed
how pass-through rates are lower in frontier agricultural regions, resulting in smaller quantity
responses and muted abatement relative to other regions. I now quantify by how much the down-
stream tax’s corrective signal is eroded away by market power. To do so, I run my counterfactual
simulation under two market structure assumptions: perfectly competitive and imperfectly com-
petitive agribusiness intermediaries. Results are shown in Figure 9.

Market power results in pass-through rates being cut by more than than half in most locations,
with substantial heterogeneity driven by regional variation in supply elasticities and intermediary
concentration. The Brazilian Norte region—home to most of the Amazon biome and holder of the
highest emissions intensity—has pass-through rates that are only a third of what they would be if
markets were competitive. Thus, the Pigouvian signal of the tax is most eroded by market power
precisely in the upstream locations with the highest social cost.

Figure 9: Role of market structure for pass-through from downstream firms to upstream farmers.
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Notes: the figure shows the upstream effects of the downstream tax under each market structure assumption. All values
correspond to the beef cattle sector. Box-and-whisker plots show the distribution of effects across locations within each
region. For reference, regions are mapped in Appendix Figure 13.

It is important to stress the reason the mistargeting of the downstream tax is worsened by
market power is because of the positive correlation between market power and emissions inten-
sity, i.e., the most remote upstream locations are both uncompetitive and emissions-intense. The
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sign of this correlation is what determines whether pass-through is higher or lower in the most
emissions-intense locations. If the correlation is positive, pass-through is lowered in the most
emissions-intense locations and the mistargeting is amplified, while if the correlation is negative,
the mistargeting is partially corrected. Thus, market power can affect the performance of market-
based environmental policy in a qualitative sense, and not just quantitatively.

6.2 Market-based vs. command-and-control policy tools in agricultural supply chains

The funnel-like structure of agricultural supply chains, with millions of atomistic farmers up-
stream and a few large agribusiness firms downstream, has implications for which kind of policy
tool is most effective at reducing emissions. The downstream tax from the previous section is an
example of a market-based policy, as it aims to shift farmer incentives by changing the market
prices they receive. Motivated by the implementation constraints regulators face, I simulated the
policy as a flat tax per output on downstream agribusiness firms. This implies the tax fails to target
the heterogeneity in carbon footprints across upstream farmers, making it blunt and second-best.
In contrast to the market-based policy, a command-and-control policy in my model would take
the form of a conservation zone in a high-carbon density area, where the quantity of deforestation
is directly enforced at a specified monitoring cost. The appeal of the command-and-control policy
is it is perfectly targeted, but only to a narrow geographic area due to its high enforcement cost.
Hence, choosing between a market-based tool (downstream tax) and a command-and-control tool
(conservation zone) involves a trade-off between targeting and enforcement costs. Through coun-
terfactuals, this section shows this trade-off depends on the degree of heterogeneity in carbon
footprints across upstream producers as well as market structure. If heterogeneity is high enough
and market power is significant enough, the market-based tool becomes very mistargeted, allow-
ing the command-and-control tool to achieve larger emissions reductions.

Implementation details. The counterfactual exercise involves the following four steps:

1. Simulate the market-based counterfactual: I use my downstream tax counterfactual from the
previous section (with complete regulation) as my market-based counterfactual.

2. Simulate the command-and-control counterfactual: I simulate an equilibrium where direct
enforcement is tightened for the counties in the top 10% of the carbon density distribution.
In the model, this is implemented by changing the non-pecuniary returns, AN

i .

3. I compute the emissions abated by 1. and 2. relative to the baseline laissez-faire, denoting
the emissions abated by each type of policy tool as AMB and ACC, respectively.

4. I repeat steps 1-3 under an alternative spatial distribution of carbon density which is mean-
preserving. The baseline distribution is the one observed in the data and displayed in Figure
2, with a mean denoted µ and a standard deviation denoted σ. Hence, the alternative distri-
bution also has mean µ, but an alternative standard deviation denoted σ̃. At the end of this
step I obtain AMB(σ̃) and ACC(σ̃). I repeat this for various values of σ̃.
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Targeting and robustness to market structure. Figure 10 shows how well-targeted each policy is
at the baseline level of spatial heterogeneity σ. It plots the relationship between emissions intensity
and changes in upstream production—a stronger negative correlation implies better targeting. For
the market-based policy under perfect competition there is a positive relationship between emis-
sions intensity and upstream production changes: regions with higher emissions-intensity expe-
rience smaller declines in production because their supply elasticities are lower. Under imperfect
competition, the intercept of the relationship jumps because pass-through is weaker across all lo-
cations once market power is introduced. The slope also rises, because the most emissions-intense
locations are the least competitive, hence their pass-through rates are lowered most.

For the command-and-control policy, there is a very clear negative relationship: production
drops most in the most emissions-intense regions precisely because they are directly regulated.
In equilibrium, production in non-regulated locations responds by increasing, although this is
hardly visible from the figure because the total growth is distributed among many locations, while
the command-and-control regulation is only imposed on a few locations. The most important
takeaway is that the command-and-control results are nearly identical with or without market
power. The command-and-control policy is robust to market structure precisely because it does
not operate through the market mechanism.

Figure 10: Robustness to market structure (market-based vs. command-and-control policy).
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Notes: each marker represents a state, with sizes proportional to baseline production levels. Lines indicate the fit of a
linear model to the markers, with observations weighted by baseline production levels. All results are from simulations
that use the baseline level of spatial heterogeneity σ.

Choosing between market-based and command-and-control policy tools. For our concluding
exercise we consider a regulator choosing between the two policy tools with the goal of maximiz-
ing abatement net of enforcement costs. Given a baseline level of heterogeneity σ, denote AMB(σ)

and ACC(σ) as the emissions abated under each policy, C as the additional enforcement cost of
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the command-and-control tool relative to market-based tool, and SCC as the social cost of carbon.
The regulator will choose the command-and-control tool if the social value of abated emissions
net of enforcement costs exceeds the social value of abated emissions by the market-based tool,

SCC × ACC(σ)− C > SCC × AMB(σ) ⇐⇒ C < SCC ×
A(σ)︷ ︸︸ ︷

(ACC(σ)− AMB(σ)) . (19)

We define A(σ) as the additional emissions abated under the command-and-control tool relative
to the market-based tool, and C(σ) = SCC × A(σ) as its dollar value. One interpretation of the
right hand side of 19 is that enforcement costs cannot exceed a threshold C(σ) for the command-
and-control tool to be chosen. As enforcement costs C decline, for example due to improvements
in satellite image technology, command-and-control becomes more desirable. We can think of
A(σ) as the abatement premium of the command-and-control tool over the market-based tool—
the larger this premium is, the larger the enforcement cost the regulator is willing to tolerate to
implement the command-and-control tool. Figure 11 plots A(σ) under the assumption of imper-
fect competition on the left panel, and compares it to perfect competition on the right panel.

Figure 11: Abatement performance of command-and-control policy over market-based policy.
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Notes: The vertical axis shows the command-and-control abatement premium—the difference between the emissions
abated by the command-and-control tool relative to the market-based tool, for a given degree of heterogeneity σ̃. The
horizontal axis shows the deviation of the counterfactual degree of heterogeneity σ̃ from the observed degree of het-
erogeneity σ, reported as the ratio σ̃2/σ2. Hence, σ̃2/σ2 = 1 corresponds to the degree of heterogeneity observed in
the data. The figure on the left reports the results for the specification with imperfect competition, while the one on the
right compares it to perfect competition.

The left panel of Figure 11 shows that at the baseline level of heterogeneity (a value of 1 on
the figure’s horizontal axis) we have A(σ) < 0: the command-and-control tool delivers less abate-
ment than the market-based tool. More importantly though, the crucial observation is that the
command-and-control premium is increasing in the degree of spatial heterogeneity σ. The rea-
son is that the more heterogeneity there is among upstream farmers, the more mistargeted the
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market-based tool is and the more valuable command-and-control becomes.
The right panel of Figure 11 shows that the command-and-control premium is larger under

imperfect competition, and more so when spatial heterogeneity is at its highest. The reason is
that the remote locations where markets are least competitive are also the ones with the high-
est emissions intensities. Hence, market-based policy, being subject to incomplete pass-through
under imperfect competition, is especially incomplete in these high-emissions locations, while
command-and-control policy remains robust, as we had seen in Figure 10. Thus, market-based
policy can perform poorly when the market is has to operate through is distorted in ways be-
yond the environmental externality. In such cases, targeted command-and-control policies can be
especially valuable precisely because they avoid the market mechanism.

To conclude, note that while the market-based tool is a price regulation, the command-and-
control tool is a quantity regulation. Therefore, the findings are reminiscent of the classic trade-off
between regulating prices versus quantities in settings where regulators face uncertainty about
the emissions intensities of producers (Weitzman, 1974). In our setting, the trade-off arises be-
cause the regulator is uncertain about the carbon content of the commodity upon arriving at the
downstream stage, due to the absence of a certification mechanism. Moreover, in our setting
the heterogeneity across producers is manifested across geography through the carbon density of
land. The intuition behind the results follows classic insights from public finance, as the degree of
heterogeneity dictates which type of regulatory tool is optimal, while adding the insight that pre-
existing distortions such as market power can tilt the trade-off towards the quantity regulation.

7 Discussion

The empirical model is parsimonious, with the main goal of showing how market-based envi-
ronmental policy is transmitted along a supply chain, especially when the stage where it can be
feasibly implemented differs from the one where the emissions are generated. Given I have ab-
stracted away from modeling features that would distract from this goal, this section outlines the
limitations of my analysis and the implications of re-introducing such features.

No reallocation across sectors, nor of factors other than land. The model has a single factor and
a single sector: land and agriculture. I abstract from reallocation of land across sectors because it
is not a quantitatively relevant margin for environmental purposes: agriculture uses 50% of the
world’s habitable land, while the urban and built-up areas where the manufacturing and service
sectors reside represent less than 1%.19 Modern-day deforestation is driven by agriculture, not by
manufacturing nor services. I also abstract from reallocation of other factors such as capital and
labor because land use is the first order determinant of agricultural emissions—how much land
is deforested and which commodity is produced on it. In my South American setting, over 70%
of agricultural emissions are attributed solely to land use change. As mentioned in the literature
review in section 1, allowing for sectoral and factor reallocation would have been more important

19Source: OWID.
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if this paper’s research question would have been about the agricultural sector’s adaptation to
climate change, instead of agriculture’s contribution to climate change. In this sense, I view this
paper as complementary to the adaptation literature.

Robustness of results to market structure. It is important to stress that most of the qualitative
results of the paper also hold with perfect competition, so the default assumption of market power
is not crucial to deliver the main insights. First, the mistargeted aspect of the market-based policy
also holds in the perfectly competitive case because it only relies on supply being less elastic in the
more emissions-intense areas. Second, the same is true for the regressivity results, which only rely
on principle of incidence: farmers with less elastic supply face a larger implied tax on their income.
Third, the trade-off between market-based and command-and-control policy from section 6.2 is
qualitatively the same with perfect competition: the command-and-control tool is preferred at
high levels of spatial heterogeneity. The additional qualitative insight we obtain from introducing
market power is that it amplifies the mistargeting of the market-based tool by reducing pass-
through most to the emissions-intense regions, thus tilting the trade-off towards the command-
and-control option. Throughout the paper, market power is therefore used as a counterfactual
market structure within each counterfactual policy exercise, rather than as a necessary assumption
to deliver specific outcomes in the baseline equilibrium.

Assumptions on firm conduct. Conditional on having an imperfectly competitive structure, there
are many types of conduct one could choose from (e.g., Cournot, collusion, to name a few). The
purpose of this paper is not to provide definitive evidence on the specific conduct of agribusiness
firms, nor the welfare implications of their market power per se. Instead, the goal of introducing
market power is to understand how it interferes in the transmission of market-based environ-
mental policy relative to a perfectly competitive setting. For this reason, the intermediary part
of the model is as simple as possible, following a standard Cournot specification that nests the
perfectly competitive case in order to flexibly alternate between market structure assumptions
when evaluating a given policy counterfactual. The baseline model does not have entry/exit
nor firm heterogeneity, and while I discuss how to include these extensions in Appendix D.3, I
ultimately do not include them in my baseline analysis because this would require a host of ad-
ditional assumptions to estimate the new parameters that would need to be introduced: entry
costs and elasticities of substitution across firms. Finally, and as already mentioned in section 4.2,
I abstract away from market power of agribusiness firms over consumers because (i) data limita-
tions on the consumer side prevent me from incorporating two-sided market power, and (ii) the
environmentally-relevant decisions are made by farmers, so the key object of interest is the firm’s
upstream, not downstream, transmission of policy. Therefore, this paper is careful to avoid any
statements on the welfare impact of market power per se, given such a statement would indeed
depend on entry/exit, firm heterogeneity, and the extent of market power over consumers. In-
stead, this paper simply reports how market power changes the impact of environmental policy
on key observables such as land use, farm-gate prices, and emissions. Importantly, the qualitative
insights from introducing market power only rely on incomplete pass-through to upstream farm-
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ers, which in turn depends on the curvature of supply. Appendix D.2 provides a discussion on
curvature and pass-through, adapting the standard analyses of Bulow and Pfleiderer (1983) and
Weyl and Fabinger (2013) to the case of buyer market power. In short, to the extent that adding
entry/exit, firm heterogeneity, and two-sided market power continues to deliver incomplete pass-
through, the qualitative results of the paper would remain the same.

Static framework. I have chosen to use decadal census data because the priority for my research
question is to have rich cross-sectional variation in variables such as land use and farm-gate prices,
and linking these to agribusiness concentration. However, this comes at the cost of lacking the
temporal requirements for estimating a fully dynamic model, since individual decision makers
cannot be linked across time and the temporal frequency of the data is too low. Therefore, I opt for
a static framework because of the long time lags in my decadal data, with the observed outcomes
being interpreted through the lens of the model as a sequence of static equilibria separated by
a substantial time lag. The static model is used as a first approximation for modeling long-run
decisions, given dynamic considerations such as switching costs become less relevant the longer
the temporal horizon is. The static framework’s main implication for measurement is that my
supply elasticities should be interpreted as long-run elasticities. Typically, the main reason for
explicitly incorporating dynamics is for measurement purposes because the frequency of the data
being used is annual (Scott, 2013; Araujo, Costa and Sant’Anna, 2020). At such a high frequency,
switching costs need to be accounted for to correctly estimate land use change elasticities. While
it is hard to predict how much my estimates would change if I had the data to estimate a fully
dynamic model, my current estimates are at least broadly in line with long-run elasticities from
the literature, as discussed in section 5.1. In short, abstracting from dynamics is more likely to
be of quantitative than qualitative consequence for this paper, since the mechanisms driving the
main insights are not of an inherently dynamic nature. This brings me to the static framework’s
main implication for policy analysis, which is that my counterfactual results should be viewed as
long-run responses to policies that are permanently implemented, similar to the static analysis of
Souza-Rodrigues (2019). Hence, I do not tackle policy questions that would require simulating a
transition path, nor dynamic mechanisms such as commitment (Hsiao, 2021). I therefore view this
paper as complementary to the work that does choose to tackle such issues.

8 Final remarks

This paper’s main goal has been to show how a Pigouvian policy is transmitted along a supply
chain, in particular when the stage where it can be feasibly implemented differs from where the
externality is generated. Agricultural supply chains provide an ideal setting to study this mecha-
nism because they are uniquely characterized by having the externality generated at the atomistic
stage, where policy is more challenging to enforce than at the concentrated stage. Therefore, un-
derstanding how a corrective tax is transmitted from downstream agribusiness firms, where en-
forcement is feasible, to the upstream farmers who ultimately make the environmentally-relevant
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decisions is a first order issue for this setting.
The general interest takeaway of this paper is that market-based policies such as corrective

taxes can be poorly targeted if they cannot be feasibly levied at the source of the externality. This
lack of targeting is especially severe under two conditions. First, when there is wide heterogeneity
in the intensity of the externality across its sources. Second, when pre-existing market distortions
weaken the correlation between policy pass-through and externality intensity. Thus, market-based
tools can perform poorly when the markets they operate through face distortions beyond the main
externality they aim to correct. In such cases, targeted command-and-control tools can be robust
to such distortions, precisely because they avoid the market mechanism.

The empirical application of this paper has been to a specific industry and externality: South
American agriculture and its greenhouse gas emissions. While the industry is ideal for the re-
search question and is important in and of itself due to its global environmental footprint, the
overall message of this paper may resonate with other industries and other externalities as well.
The garment industry has long struggled with the issue of labor exploitation in developing coun-
tries. The oil and gas industry is plagued with economic sanctions that aim to punish and deter
the non-democratic actions of rogue states. While there is a common thread running through these
examples, there are also key differences in terms of (i) the length and shape of the supply chain, (ii)
the type of incentives that intend to be corrected (often related to an externality, but not always),
and (iii) the pre-existing market distortions that Pigouvian tools need to work through to achieve
their desired objective. Understanding how individual industries are characterized by specific it-
erations along these three dimensions can help yield general insights about the effectiveness and
incidence of market-based corrective policies.
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