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Abstract

This paper proposes a novel identi�cation strategy relying on quasi-instrumental

variables (quasi-IVs). A quasi-IV is a relevant but possibly invalid IV because

it is not completely exogenous and/or excluded. We show that a variety of

models with discrete or continuous endogenous treatment, which are usually

identi�ed with an IV - quantile models with rank invariance additive models

with homogenous treatment e�ects, and local average treatment e�ect models

- can be identi�ed under the joint relevance of two complementary quasi-IVs

instead. To achieve identi�cation we complement one excluded but possibly en-

dogenous quasi-IV (e.g., �relevant proxies� such as previous treatment choice)

with one exogenous (conditional on the excluded quasi-IV) but possibly included

quasi-IV (e.g., random assignment or exogenous market shocks). In practice,

our identi�cation strategy should be attractive since complementary quasi-IVs

should be easier to �nd than standard IVs. Our approach also holds if any of

the two quasi-IVs turns out to be a valid IV.
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1 Introduction

A popular quest in empirical economics is to recover the causal e�ect of a treat-

ment variable D (e.g., education), on an outcome variable Y (e.g., earnings). With

nonexperimental data, D and unobserved heterogeneity U (e.g., ability) may not be

independent. In this case, causal e�ects are not characterized by the conditional

distribution of Y given D, and D is deemed endogenous. A convenient strategy to

address endogenous selection is to rely on instrumental variables (IVs). A valid IV

must be relevant for the selection and �strongly excluded� , i.e., be independent of

the unobservables U (exogeneity) and have no direct e�ect on the outcome (exclu-

sion). In practice, however, instruments satisfying these conditions are hard to �nd.

In particular, the exclusion and exogeneity restrictions are rarely jointly satis�ed and

are often controversial, even for commonly used instruments.

In practice, many variables are not completely valid IVs, but are nonetheless

relevant and satisfy either exogeneity or exclusion but not both: we call these "quasi-

instrumental variables" (quasi-IVs). In this paper, we propose a novel identi�cation

strategy relying on two complementary quasi-IVs, Z and W , which are invalid IVs

on their own but �complementarily valid� taken as a set. The �rst variable, Z, is an

excluded quasi-IV that is possibly endogenous with respect to the unobservables, U ,

but is relevant (even when controlling for U) and has no direct e�ect on Y , apart

from its indirect e�ect through D, U , and W . The second variable, W , is exogenous

conditional on Z and relevant but possibly included. We call it the exogenous quasi-

IV. In addition, complementary validity requires that these two quasi-IVs are jointly

relevant for the selection into treatment, i.e., ceteris paribus (conditional on U), the

e�ect of Z on D varies with W (or vice versa). Separate relevance of W and Z is a

necessary condition for the joint relevance.

In practice, �nding two complementary quasi-IVs should be easier than �nding

one valid IV, since the separate requirements on each of the variable are weaker than

exogeneity and exclusion combined.

If either of the two quasi-IVs turns out to be a valid IV, our identi�cation strategy

is still valid. To sum up, we relax the joint exclusion and exogeneity of IVs at the

cost of a stronger joint relevance of W and Z for the selection into D.

One can think of many examples of such complementary exogenous and excluded
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quasi-IVs. The excluded quasi-IV, Z, can be thought of as a "relevant proxy": a proxy

for the unobservable, U , that is also directly relevant for the treatment, even when

controlling for U , but whose e�ect on Y only goes through U and D. Many variables

�t this description. For instance, past school grades or schooling recommendations

by teachers in the schooling example, or more generally past treatments whose ef-

fect on the outcome is superseded by the current treatment in dynamic models with

adjustment costs. To complement the excluded quasi-IV, one needs to �nd a comple-

mentary exogenous quasi-IV, i.e., a variable which is independent from U conditional

on Z. Conditional exogeneity di�ers from exogeneity and could be violated even with

unconditionally exogenous W , if Z was determined as a function of W for example.

In practice, a convenient way to satisfy this conditional independence is to �nd a

variable which satis�es the even stronger requirement of being jointly independent

from U and Z by exploiting the timing of the realization of the variables. Typically,

unanticipated exogenous shocks to local markets or local policy changes should be ex-

ogenous with respect to individuals' observed and unobserved characteristics but still

a�ect individuals' outcomes directly. The timing of Z occuring before W guarantees

that Z could not depend on W if W was unanticipated.

Random assignment in randomized experiments are other natural examples of ex-

ogenous quasi-IVs (e.g. Bloom et al., 1997; Heckman et al., 1997, 1998; Abadie et al.,

2002; Schochet et al., 2008, ...). The randomization guarantees its exogeneity with

respect to any pre-treatment variables and that it could not be anticipated before-

hand. However, these assignments are not necessarily valid IVs because there are

often reasonable concerns that they may be included and have a direct e�ect on the

outcome, even after controlling for the treatment. For example, winning a randomly

assigned voucher to cover the cost of private school has a direct e�ect on the sub-

sequent educational outcomes (Angrist et al., 2002). There is an included income

e�ect because the family of winners who attend private school are richer, and more-

over, the lottery assignment directly a�ects the level of e�ort exerted by the students.

Similarly, the military draft (Angrist, 1990) may have a direct e�ect on drafted indi-

viduals because they may behave di�erently to avoid going to war (by getting more

education) and conscientious objectors may go to prison because they did not comply.
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Another crucial example is (fuzzy) Di�erence-in-Di�erences (DiD), see Card and

Krueger (1994); Athey and Imbens (2006); De Chaisemartin and d'Haultfoeuille

(2018). In DiD, the group assignment corresponds to our Z, it is related to un-

observed characteristics but typically excluded from the model given these character-

istics. Time plays the role ofW , it is exogenous (conditional on the group assignment)

but is allowed to have a direct e�ect on outcomes. Moreover, W and Z (time and

group) are jointly relevant for the selection into treatment, to the point where, in the

sharp design, the interaction W × Z is the treatment.

From a theoretical perspective, we show that the models which are usually non-

parametrically identi�ed with an IV can be nonparametrically identi�ed with two

complementary quasi-IVs instead. In particular, we prove nonparametric identi�ca-

tion of quantile models with rank invariance (Chernozhukov and Hansen, 2005), ad-

ditive models with homogenous treatment e�ects (Newey and Powell, 2003; Darolles

et al., 2011), and local average treatment e�ect (LATE) models (Imbens and An-

grist, 1994; Heckman and Vytlacil, 2005). The intuition behind our result is that the

complementary validity of our two quasi-IVs implies that they only have a separable

e�ect on the outcome but a "jointly relevant" nonseparable e�ect on the selection

into treatment.1 In this case, the joint relevance on D provides exogenous variation

that is excluded from Y and that we can generally exploit to achieve identi�cation. In

the special case of a linear additive model, the complementarity of the two quasi-IVs

is equivalent to positing that the interaction between the two quasi-IVs is a valid

IV (see the discussion at the end of Section 3). Indeed, the interaction is relevant

(by joint relevance) but excluded from the outcome equation (by separability of the

e�ect of the two quasi-IVs on the outcome). In a more general nonlinear context, the

complementarity provides a general form of exclusion restriction via the separability

of the e�ects of the two quasi-IVs. In our main framework with one excluded (Z) and

one conditionally exogenous (W ) quasi-IV, W and Z only have a separable e�ect on

Y by construction. Indeed Z is excluded from Y if we control for the unobservables

(and for D), and W is excluded from these unobservables by exogeneity.

1Concerning the LATE framework, we allow the exogenous quasi-IV W to be possibly included
with an homogenous e�ect (this is similar to the fact that time is typically assumed to have an
homogenous e�ect in the di�erence-in-di�erences literature). We also need a testable local irrelevance
assumption positing that there exists a level of the excluded IV such that the exogenous IV does
not a�ect the propensity score.
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Related literature. This paper is related to a strand of the econometric litera-

ture identifying econometric models with endogeneity without (explicitly) relying on

instrumental variables. These papers address endogeneity by imposing parametric

functional form restrictions (see Rigobon, 2003; Dong, 2010; Klein and Vella, 2010;

Lewbel, 2012; Escanciano et al., 2016; Lewbel, 2018; D'Haultf÷uille et al., 2021; Jiang

and Tsyawo, 2022; Tsyawo, 2023; Lewbel et al., 2023; Gao and Wang, 2023). These

restrictions serve to con�ne the structural regression function's degrees of freedom,

enabling the identi�cation of the causal e�ect of the endogenous variable through

nonlinear variations induced by exogenous (yet included) variables. Our approach,

grounded in separability, can be viewed as a nonparametric counterpart to such para-

metric conditions. We also give a speci�c economic justi�cation to the separability

by introducing the concept of complementary quasi-IVs.

We note that separability-type restrictions have also been used in settings with

standard (excluded and exogenous) instruments to obtain identi�cation when the

relevance condition may not hold, see Caetano and Escanciano (2021); Feng (2024)

among others. Here, we rather use separability to address lack of exogeneity or ex-

clusion. From a general perspective, separability is a common tool in econometrics.

For instance, the separability of �xed e�ects with respect to time and subjects is

what allows identi�cation of panel data models with two-way �xed e�ects (including

di�erence-in-di�erences models).

Another line of works studies identi�cation of causal e�ects using exogenous but

included instrumental variables. Liu et al. (2020) point identi�es the partial derivative

of the average treatment e�ect with respect to an exogenous quasi-IV, but they need

this included instrument to be excluded from the selection equation. D'Haultf÷uille

et al. (2021) adopts a control function framework using an exogenous quasi-IV, achiev-

ing point identi�cation through a local irrelevance condition. We employ a similar

restriction in identifying our LATE model. Wang (2023) point identi�es the LATE

with an exogenous quasi-IV satisfying the standard monotonicity assumption of Im-

bens and Angrist (1994) and another exogenous and excluded IV that can violate

monotonicity. Some other works bound the treatment e�ects with an exogenous

quasi-IV IV, see Manski and Pepper (2000); Nevo and Rosen (2012); Conley et al.
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(2012); Flores and Flores-Lagunes (2013); Mealli and Pacini (2013); Ban and Kédagni

(2022) among others. Bartels (1991) also uses the term �quasi-IV�, but referring to

variables that can be both included and endogenous, but only slightly deviating from

the exclusion/exogeneity requirements. Bartels (1991) then conducts a sensitivity

analysis in this setting. In our case, the su�x "quasi" su�x means that the variables

only satisfy part of the IV requirements, but in the dimension from which they devi-

ate from the standard, the violations of the exclusion or exogeneity can be very large.

The present paper is also related to Bruneel-Zupanc (2023), which introduces

semi-instrumental variables (semi-IVs) in the context of discrete treatment variables.

A semi-IV is an exogenous variable that is only excluded from some (but not all)

potential outcomes. Identi�cation with semi-IVs works for similar reasons as identi-

�cation with complementary quasi-IVs: it requires complementary semi-IVs, i.e., at

least one semi-IV excluded from each potential outcome (hence a complementarity

in the exclusion), satisfying a stronger joint relevance condition than standard IVs.

The two papers are related but study identi�cation with a completely di�erent type

of invalid IVs. The advantage here is that quasi-IVs also apply to model with contin-

uous endogenous variables while semi-IVs cannot by construction (because one would

need to �nd in�nitely many of semi-IVs for in�nitely many potential outcomes). The

assumptions, results and proofs of the two papers di�er.

A large set of relevant empirical work also employs variables sharing similarities

with our exogenous variables (W ) and excluded quasi-instrumental variables (Z).

The literature on Bartik/Shift-share instruments typically hinges on several exoge-

nous shocks to which the units have (known) di�erent level of (endogenous) exposures

(Bartik, 1991; Adao et al., 2019; Goldsmith-Pinkham et al., 2020; Borusyak et al.,

2022; Borusyak and Hull, 2023). In this case, they have that the exogenous shocks are

independent from the unobservables, even conditional on the (possibly endogenous)

exposures. So the conditional exogeneity holds. However, for identi�cation they use

a �known formula" (formula instrument) interacting the exogenous shocks with the

nonrandom exposures to create the shift-share IV. The manner we achieve identi�ca-

tion is quite di�erent. The �rst di�erence is, we focus more directly on local shocks

as W since we need variations in W within sample. In a sense our W could be the

shift-share IV directly. But we allow for this W to be included and have a direct
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e�ect on the outcome, even controlling for D and U . Second, endogenous exposures

are probably not valid excluded quasi-IVs for our approach because they may not be

excluded. Third, we do not rely on a known formula to build an instrument, our

procedure is valid with general Z, not only exposures or related variables, for which

no known formula is available, it just requires Z to be a credible excluded quasi-IV.

The manner in whichW and Z interact to impact D is completely unknown and free:

we do not make any parametric assumption and allow the relation to be completely

nonseparable, even with respect to the unobservables, U .

Finally, as previously noted, in the context of di�erence-in-di�erences (Card and

Krueger, 1994; Athey and Imbens, 2006; De Chaisemartin and d'Haultfoeuille, 2018),

time serves the role of our variable W , and Z corresponds to the group assignment.

Let us compare our results with that of the literature on DiD. In quantile models

with rank invariance, we can identify quantile treatment e�ects over the whole pop-

ulation thanks to a rank invariance assumption with respect to both treatment and

time. Our framework allows the treatment and time to be continuous and a possibly

in�nite number of groups. As a comparison, in sharp DiD designs, Athey and Imbens

(2006), only imposes rank invariance with respect to time (but not to treatment) and

they can only identify treatment e�ects on the treated or untreated groups, but this

relies crucially on the fact that the design is sharp (a restriction that we avoid). In

fuzzy DiD designs, De Chaisemartin and d'Haultfoeuille (2018) also make a type of

rank invariance assumption with respect to time, and identify e�ects on the compli-

ers. In this fuzzy setting, we can identify e�ects over the whole population at the cost

of assuming rank invariance with respect to the treatment as well. Our �ndings on

the LATE can be viewed as an extension of these previously mentioned results from

De Chaisemartin and d'Haultfoeuille (2018) on fuzzy DiD, as we allow for continuous

time and an in�nite number of groups.

Outline. The paper is organized as follows. In Section 2, we show identi�cation

in a quantile model with rank invariance and discuss further concrete examples of

the quasi-IVs. Then, Section 3 contains identi�cation results for an additive model

with homogenous treatment e�ects. The LATE framework is discussed in Section 4.
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Section 5 concludes. The proofs of our formal results can be found in the appendix.

2 Quantile model with rank invariance

2.1 The model

In this section, we consider identi�cation in a quantile model with rank invariance.

Let D, with support D, be the observed (endogenous) choice/treatment and Yd the

(continuous) latent potential outcomes under treatment state d, for d ∈ D. The

potential outcomes {Yd} are latent because we only observe one outcome, Y = YD,

corresponding to the potential outcome of the selected alternative D. Let Z be an

excluded (possibly endogenous) quasi-IV, whose possible e�ect on Y only goes through

D,W,X and the unobservables U . Denote byW the complementary exogenous quasi-

IV (conditional on Z), which may be "included" and have a direct e�ect on Y . By

construction, the e�ects of W and Z on Y are separable, in the sense that, if we

could control for U (in addition of D and W ), Z would have no e�ect on Y . We

also allow for additional covariables X. The supports of W,Z,X are denoted by

W ,Z,X , respectively. We study the following structural quantile regression model

with endogeneity:

Yd = f(d,W,X,U), U ∼ U [0, 1], (1)

for all d ∈ D, where f is strictly increasing in its last argument. The treatment is

possibly endogenous since we do not assume that U ⊥⊥ D|(W,X). Z is excluded from

the potential outcomes given W and U (and covariables X).

To address the endogeneity issue, we assume that there exists a mapping g :

Z × X × [0, 1] → R strictly increasing in its last argument such that

U = g(Z,X, V ), V |Z,W,X ∼ U [0, 1], (2)

Equation (2) is equivalent to key identi�cation condition

U ⊥⊥ W |(Z,X),

that is W is exogenous given Z (and covariables X). However, W is not excluded

from (1) and Z can be endogenous through (2). If they also satisfy a joint relevance

condition, W and Z are "complementarily valid" quasi-IVs in this Framework. The
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general covariables X are not quasi-IVs, they di�er from W or Z because they are

not excluded from neither (1) nor (2). The facts that U and V have a uniform

distribution are just some normalizations. Note that, for w ∈ W , x ∈ X , z ∈ Z
and v ∈ [0, 1], f(d, w, x, g(z, x, v)) is the v-quantile of the distribution of Yd given

W = w,X = x, Z = z. The model in (1) implies rank invariance (see Chernozhukov

and Hansen, 2005). It essentially means that rank in the outcome of any two subjects

with the same value of W,Z,X is the same across all potential outcomes.2

Importantly, notice that our framework allows W to be excluded and/or Z to be

exogenous. It nests the case where any (or both) of the two quasi-IV turns out to be

a valid IV.

Our framework can be visualized through the causal graph of Figure 1. We do not

represent X here to simplify the graph. The fact that the only link between W and

U passes by Z means that W and U are independent given Z, ensuring conditional

exogeneity of W . There is no direct arrow from Z to Y , so that Z is excluded given

D,W and U . W and Z can be correlated, even though in most application they will

not be. We caution the reader that causal graphs are only a visualization tool but do

not rigorously encode all probabilistic assumptions.

Figure 1: Causal graph of the Framework

D

Z

W

Y

U

Solid and empty nodes represent observed and unobserved variables, respectively. Solid arrows in-

dicate causal e�ects. Dotted arrows indicate possible causal relationships. Dotted undirected lines

indicate possible general relationships without specifying the direction.

Alternative potential outcome justi�cation.

2We could relax this assumption and instead impose rank similarity as in Chernozhukov and
Hansen (2005), but we do not do so to avoid complicating the exposition.
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In the baseline Framework described above, U can be seen as a structural error

term that has a clear structural interpretation (e.g., unobserved ability, preference,

productivity, etc.). Alternatively, we could write the problem in terms of potential

outcomes with

Yd = f̃(d,W,X, Ũd), Ũd|(W,X) ∼ U [0, 1], (3)

There, Ũd = FYd|W,X(Yd|W,X) is the rank of Yd in its distribution given W and X,

and by construction, Ũd ⊥⊥ (W,X). Then, the rank invariance, means that there

exists a variable Ũ such that Ũd = Ũ for all d. This variable may depend on Z, and

we can write it as

Ũ = g̃(Z,X, V ), V |Z,W,X ∼ U [0, 1]. (4)

This implies our main assumption (the complementarity), that is Ũ ⊥⊥ W |Z,X.

Very importantly, notice that Ũ ⊥⊥ W |X, which is guaranteed by construction, is

a completely di�erent assumption from Ũ ⊥⊥ W |Z,X. To satisfy Ũ ⊥⊥ W |Z,X, a

necessary condition is that Z has a separable e�ect from W on Yd.
3 The baseline

Framework actually �ts into this framework written in terms of potential outcomes,

and would yield Ũ ⊥⊥ W |Z,X (even though U is generally di�erent from Ũ). The

two frameworks are equivalent when it comes to the identi�cation arguments.

2.2 Discussion and structured examples

Let us discuss the conditions under which W and Z are complementarily valid quasi-

IVs and provide several examples of applications. Every statements are implicitly

conditional on X and we only mention X when necessary.

The di�erence between W ⊥⊥ U and W ⊥⊥ U|Z.
Our framework requires the conditional independence that W ⊥⊥ U |Z. This is di�er-
ent from unconditional exogeneity,W ⊥⊥ U . Finding an exogenousW is not su�cient

(nor necessary), one needs to �nd a W that is exogenous when conditioning on Z. In

particular, we may run into a problem if Z is a function of W , i.e., Z = φ(W,X,U).

In this case, even if W is unconditionally exogenous, i.e., W ⊥⊥ U , we will not gener-

3Note again that X is neither exogenous nor excluded. Even if Ũ ⊥⊥ X, we may not have
Ũ ⊥⊥ X|Z, which is the reason why X must appear inside the function g̃ in (4).
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ally have W ⊥⊥ U |Z.
In practice, thinking in terms of conditional independence is often nontrivial,

therefore, to �nd valid W and Z, we suggest to look for variables satisfying the

stronger, but more intuitive, requirement that W ⊥⊥ (U,Z).

To ensure this stronger condition when Z is a choice, we need that W is excluded

from the decision Z. This can be achieved by exploiting the timing of the variables,

if W is unknown and unanticipated when Z is decided. For example, in a dynamic

model where Z is a choice taken in period t − 1, our assumption hold if W is an

exogenous shock occuring in period t that was unanticipated in period t− 1. This is

why, in many examples below, we use �past decisions/outcomes� as Z, and exogenous

shocks (i.e. contemporaneous variations) to the local market conditions as W . We

do not use local market conditions themselves as W because these may partly a�ect

Z.

Nonetheless, it is also possible that W ⊥⊥ U |Z even if W ̸⊥⊥ U . A typical example

of this is when W represents randomized treatment but the randomization occurs

on the basis of a speci�c variable, e.g., unemployment status, education or income.

Then, taking these variables as Z, we have W ⊥⊥ U |Z, and the requirement is then

that the Z are plausibly excluded conditional on D,U and W . Therefore, our work

implies that randomized experiments can be �conditionally randomized� on the ba-

sis of observable excluded quasi-IVs to favor more some target population (e.g., the

unemployed or uneducated), and still identify treatment e�ects for everyone. If one

expects positive e�ects from the treatments, being able to identify the treatment ef-

fect with this conditional randomization is a desirable property, especially when the

program is costly.

Example 1 (Returns to schooling). We are interested in the e�ect of schooling

(years of education, or binary decision to go to college or not), D, on the earnings at

age 30, Y (Card, 1995, 2001). We have an endogeneity issue because the decision to

go to college and the subsequent earnings are both impacted by unobserved ability,

U . To identify the e�ect of D on Y , we need to �nd two complementary quasi-IVs.

Let us consider past grades or school recommendation by teachers as the excluded

quasi-IV, Z. The idea is that these variables are "relevant proxies" in the sense that,
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they are likely strongly correlated with individuals' unobserved abilities (U), but once

you control for U and D (and X), they have no e�ect on the outcome. Moreover,

they are still relevant, even controlling for U , because everything else equal (i.e., at

�xed ability), a student with better grades or with a good recommendation, is more

likely to go to college. We complement these excluded IVs by using exogenous shocks

to the local market conditions (wage levels, unemployment rates, tuition fees, ...) at

the time of the decision to go to college (around age 17) as the exogenous quasi-IV,

W . These types of exogenous shocks were used as IVs by Carneiro et al. (2011) when

controlling for permanent market conditions for example. However, these W may

not be valid IVs because they may be included if, for example, a positive shock to

local market condition at age 17 persists over time. Yet, they are valid W because

they are likely exogenous with respect to unobserved student ability, U , and past

individuals' grades/school recommendations, Z, so W ⊥⊥ (U,Z), which is stronger

than the required W ⊥⊥ U |Z. Notice that it is important that W was unanticipated

at the time when the student grades were obtained, otherwise, some students may

have potentially worked harder because of W , and the conditional independence of

W ⊥⊥ U |Z would not necessarily hold then. The two complementary quasi-IVs are

also likely to be jointly relevant if the likelihood of pursuing education for students

with good grades compared to student with bad grades varies with market conditions.

Example 2 (Returns to private schooling using randomized lotteries). An-

other typical question is the returns to private vs. public schooling (D) on educational

attainment, Y . Again, the main problem is that both the educational attainment and

the decision to go to a private school are endogenous with respect to the unobserved

student ability. The Colombian government ran a large scale randomized experiment,

the PACES program, giving vouchers which partially covered the cost of private sec-

ondary school (Angrist et al., 2002). The vouchers were assigned randomly via a

lottery, so their assignment is exogenous by construction, and it is a natural candi-

date exogenous quasi-IV, W . However, despite its exogeneity, W is probably not a

valid IV if we want to study the returns to private schooling, because the vouchers

may be included and have a direct e�ect on educational attainment. For example,

conditional on going to private schooling, families of students receiving the vouchers
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are richer than families who did not receive it. This income e�ect may directly af-

fect the subsequent educational attainment of the children. Another concern is that

student with vouchers may exert a di�erent amount of e�ort than students without

vouchers to get into the same schools. Because of these concerns, Angrist et al. (2002)

study the e�ect of winning the lottery on educational attainment, not the e�ect of

private schooling. But using our methodology, we can actually leverage the exogene-

ity of W to identify the causal e�ect of private schooling. To do so, we need to �nd

an excluded quasi-IV, Z, to complement the exogenous voucher assignment, W . For

the same reasons as in the previous returns to schooling example, variables such as

pre-lottery student grades are valid Z: they are relevant for the selection into private

school, even controlling for unobserved ability U , but are otherwise excluded from the

subsequent schooling attainments when one controls for D and U . Moreover, because

the lottery was randomized, and especially if the PACES program was unanticipated,

Z is also independent from the voucher assignment, W . So we haveW ⊥⊥ (U,Z), and

thus, W ⊥⊥ U |Z. The joint relevance is likely to be satis�ed, as the increase in the

probability to attend private school if receiving a voucher varies with the past school

achievements, Z.

Example 3 (Marginal returns to hours worked). Suppose we want to identify

the marginal e�ect of working more on earnings, Y . In this case, D represent the

(continuous) worked hours, or a general measure of work �exibility. The main endo-

geneity issue is that the hours worked decision depends on individuals' unobserved

productivity, U . In order to address this endogeneity, we need two complementary

quasi-IVs. If we focus on a sample of married men, let us use the spouse character-

istics (e.g., spouse education or income) as a Z (e.g., Mroz, 1987). Z is correlated

with the wife's unobserved productivity, and in the presence of assortative matching,

the wife's unobserved productivity should correlate with the husband's unobserved

productivity, U . It is also possible that the wife's characteristics have an e�ect on

U directly. As a consequence, Z is a not a valid IV because it is not exogenous.

However, Z should be a valid excluded quasi-IV for the following reasons. First, it

is likely very relevant for the husband working time decision, even controlling for

his unobserved productivity, because it has a direct e�ect on the household available

13



income. Second, controlling for the unobserved productivity, U , and for the hours

worked, D, and for other control variables such as husband's experience, X, the wife's

characteristics, Z, should have no direct e�ect on the husband earnings, Y . Z is thus

a plausible "relevant proxy" and thus excluded quasi-IV. A similar reasoning can be

applied to many other plausible Z in this application. For example, the simple fact of

being married or not, or other variables representing the number of children or their

age could be valid excluded IVs, Z: it is plausible that they do not have any e�ect

on Y conditional on D and U . To complement these excluded quasi-IVs, we can use

exogenous shocks to the local market characteristics as W . The conditional indepen-

dence condition, W ⊥⊥ U |Z, is more likely to hold if the decision to marry/to have

kids was independent from W . It is plausible if the marriage happened in a previous

period while W are contemporaneous market shocks. As for the joint relevance, it is

likely to hold as the marginal e�ect of Z on D should vary with the market shocksW .

Example 4 (Dynamic models with adjustment costs). Let us consider dynamic

models with adjustment costs. For example, one can think of a model of labor supply,

Dt, and consumption, Yt to study the marginal propensity to consume with respect to

work (Blundell et al., 2016a,b; Bruneel-Zupanc, 2022).4 There is an endogeneity is-

sue in this case because unobserved individual preference for consumption, Ut, a�ects

both decisions Dt and Yt. In this case, Dt−1 is a natural excluded quasi-IV, Zt: con-

ditional on the current Dt, and controlling for current covariates such as wealth and

hourly wage in Xt, the past labor decision, Dt−1 has no e�ect on the current consump-

tion choice, Yt. Moreover, in the presence of adjustment costs in the labor supply, the

current labor supply decision is directly a�ected by the previous labor supply choice,

even controlling for Ut and Xt. Dt−1 is, however, not a valid IV because it is likely cor-

related with Ut as soon as there is some persistence in the preference for consumption.

We complement this excluded quasi-IV with contemporaneous exogenous shocks to

the local market conditions (e.g. to prices) which were unpredictable at time t−1 and

are independent from the individual unobserved preferences. Thus, Wt ⊥⊥ (Ut, Zt).

4One could also consider the identi�cation of dynamic production functions (Olley and Pakes,
1996; Blundell and Bond, 2000; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al.,
2020, see De Loecker and Syverson, 2021 for a recent survey) with adjustment costs on the inputs
as a similar alternative example.
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As stressed earlier, it is important that Wt was unanticipated at t− 1 when Dt−1 was

decided, because other Dt−1 would depend on Wt. Finally, joint relevance should be

satis�ed if the e�ect ofDt−1 onDt varies with the contemporaneous exogenous shocks.

Example 5 (Job Training Programs). We are interested in the e�ect of job

training programs such as JTPA (Bloom et al., 1997; Heckman et al., 1997, 1998;

Abadie et al., 2002) or Job Corps (Schochet et al., 2008) on subsequent job market

outcomes, Y (employment or earnings). In this case, random assignment into the

program is exogenous by construction. However, it is only a valid IV if we want to re-

cover the global e�ect of the program. Typically, job training programs o�er a variety

of trainings. Imagine for example that everyone receives a job search assistance, but

only some individuals choose to follow a schooling training in addition. If we want

to recover the e�ect of schooling, D, on Y , the random assignment to the program is

not a valid IV anymore. Indeed, despite its exogeneity, it is included since assigned

individuals also obtain the job search assistance, which may have a direct e�ect on

the outcome. A solution to address this issue is to �nd a complementary excluded

quasi-IV, Z. A good candidate in this setup is pre-assignment schooling achievement.

If we consider D as the schooling level after training, Z is excluded from Y condi-

tional on D and U because the subsequent schooling level supersedes the previous

one. Previous schooling is however relevant for the selection into the training since,

everything else equal, individuals with di�erent schooling background may be more

or less likely to accept to participate in the training. It is however not a valid IV

since it is strongly correlated with unobserved ability, U . Since Z is a pre-treatment

variable and the random assignment was not anticipated,W ⊥⊥ (U,Z). Moreover, the

joint relevance is satis�ed since the increased probability of following the treatment

if assigned to it should vary with the previous schooling achievement. So, W and Z

are complementarily valid quasi-IVs.5

5Treatment recommendations or measures of long term unemployment probability by the train-
ing agencies are also typically good Z. One concern here, is that, when there are several kind of
treatments, the recommendations may not be excluded from Y . Indeed, an individual to whom we
recommended to follow a school training may follow another non-mandatory training if assigned
to the program. As a consequence, assigned individuals (W = 1) with schooling recommendation
(Z = 1) and assigned individuals with another recommendation (Z = 0) do not follow the same
trainings, and the interaction between W and Z has a direct included e�ect on the outcome. This
is not a concern if the alternative trainings are mandatory and followed by everyone. Otherwise, we
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Example 6 (Di�erence-in-di�erences). Consider a di�erence-in-di�erences set-

ting where W is time and Z is the group assignment. D is typically a binary treat-

ment. Our key assumption that U ⊥⊥ W |Z is standard in the DiD literature. Indeed,

Athey and Imbens (2006) imposes �time invariance within groups� (their Assump-

tion 3.3) and De Chaisemartin and d'Haultfoeuille (2018) assumes �time invariance

of unobservables� (see their Assumption 7). It states that time is independent from

unobserved heterogeneity within each group or, in other words, that the composition

of the groups does not change with time. This is exactly U ⊥⊥ W |Z in our model. In

DiD, this assumption is for instance satis�ed by construction if one observes all units

in each group at every date.

Compared to Athey and Imbens (2006) and De Chaisemartin and d'Haultfoeuille

(2018), we impose rank invariance with respect to both time and treatment. Instead,

they only impose rank invariance with respect to time of a given potential outcome

(see their Assumptions 3.1 and 7, respectively). However, in fuzzy designs where units

in a given group can have di�erent treatment statuses, the approach of these two pa-

pers can only identify local quantile treatment e�ects. The results in the present

section instead allow to identify quantile treatment e�ects over the whole population.

We also note that, in DiD papers, treatment, time, and group assignments are usu-

ally all discrete. Here, we allow them to be continuous. Note that we continue this

analysis of our results in the context of DiD in the LATE framework in Section 4.

2.3 Identi�cation of the model

2.3.1 System of equations

In this section, we study nonparametric identi�cation of di�erent unknown (in�nite

dimensional) parameters. For simplicity, we will suppress the dependence on X. All

our results and assumptions can be interpreted as conditional onX. For u ∈ [0, 1], z ∈
Z, w ∈ W , let FU |Z(u|z) = P(U ≤ u|Z = z).

We want to identify the functions f and g. Notice that, for all u ∈ [0, 1] and

z ∈ Z, we have FU |Z(u|z) = g(z, ·)−1(u). Because of this one-to-one relationship

between g and FU |Z , we focus on identi�cation of FU |Z rather than of g, but the two

need to control for the di�erent kind of trainings (if observable).

16



are equivalent.

We observe the joint distribution of (Y,D,W,Z). Identi�cation relies on the fact

that the model and assumptions imply that, for u ∈ [0, 1], w ∈ W , and z ∈ Z, we

have
FU |Z(u|z) = P(U ≤ u|W = w,Z = z)

= E[E[1(U ≤ u)|D,W,Z]|W = w,Z = z]

= E[E[1(YD ≤ f(D,W, u))|D,W,Z]|W = w,Z = z]

= P(Y ≤ f(D,w, u)|W = w,Z = z).

(5)

The �rst equality comes from U ⊥⊥ W |Z because V ⊥⊥ (Z,W ). Then, we rewrite the

equation using the law of total expectation and the next equality follows from the

monotonicity of f in its last argument. The last equality is a consequence of the fact

that Y = YD and the law of total expectations.

Moreover, for u ∈ [0, 1], we have

u = E[FU |Z(u|Z)], (6)

by the law of total expectation. This gives one more equation.6

The function f and the conditional distribution functions FU |Z are identi�ed from

the joint distribution of (Y,D,W,Z) if they are the unique solution in a given (in�nite

dimensional) parameter space to the continuum of integral equations in (5)-(6). In the

next two sub-subsections, we give relevance conditions guaranteeing the uniqueness

of the solution to (5)-(6) when D is discrete (Section 2.3.2) and when D is continuous

(Section 2.3.3).

2.3.2 Identi�cation with discrete D

Let us assume in this section that D is discrete with D = {1, ..., |D|}. Without loss of

generality, we can also suppose thatW and Z have discrete support W = {1, ..., |W|}
and Z = {1, ..., |Z|}. In this setting, (5)-(6) become

6There are more equations of the form P(U ≤ u|W = w) = E[FU |Z(u|Z)|W = w] but they do
not help for identi�cation since they introduce as many unknowns as new equations.
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FU |Z(u|z) =
|D|∑
d=1

P(Y ≤ f(d, w, u), D = d|W = w,Z = z)

u =

|Z|∑
z=1

FU |Z(u|z)P(Z = z),

(7)

for all u ∈ [0, 1], w ∈ W , and z ∈ Z. For each u ∈ [0, 1], we obtain a system of

|Z| × |W| + 1 equations, for |Z| + |D| × |W| unknowns: the |D| × |W| outcome

functions' values f(d, w, u), the |Z| conditional probabilities FU |Z(u|z). Provided

that there are more equations than the number of unknowns, we can proceed to the

identi�cation of our objects of interest by solving this system of equations.

Let us provide a su�cient identi�cation condition. For an integer N , let IN be

the identify matrix of size N . De�ne

pd|u,w,z =

P(D = d|U = u,W = w,Z = z) if fU |Z(u|z) > 0,

0 otherwise if fU |Z(u|z) = 0,

the selection probabilities.7

Assumption 2.1 (Relevance with discrete D). The

(1 + |Z| × |W|)× (|Z|+ |D| × |W|)

matrix of selection probabilities

M(u) =



PW1(u) 0 . . . 0 −I|Z|

0 PW2(u) . . .
... −I|Z|

... . . .
. . .

...
...

0 . . . . . . PW |W|(u) −I|Z|

0 . . . . . . 0 PZ


,

where PWw(u) =


p1|u,w,1 p2|u,w,1 . . . p|D||u,w,1

p1|u,w,2 p2|u,w,2 . . . p|D||u,w,2

...
...

...
...

p1|u,w,|Z| p2|u,w,|Z| . . . p|D||u,w,|Z|

 is |Z| × |D|

7We choose this de�nition when fU |Z(u|z) = 0 in order for the identi�cation proof to hold
generally, even when the support of U |Z is not [0, 1] for all z ∈ Z.
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and PZ =
[
P(Z = 1) P(Z = 2) . . . P(Z = |Z|)

]
has full column rank for all u ∈ [0, 1]\K, where K ⊂ [0, 1] is a (possibly empty) �nite

set containing K ≥ 0 isolated values uk, k = 1, . . . , K, at which there is a rank-one

de�ciency, i.e., rank
(
M(uk)

)
= |Z|+ |D| × |W| − 1.

Theorem 1 (Identi�cation). Suppose that the support of (W,Z) is W × Z. Then,

under regularity conditions that pd|u=0,w,z > 0 for all d, w, z, there exists a unique set

of strictly increasing functions, f(d, w, ·), mapping [0, 1] into the support of Y given

D = d,W = w (for each d ∈ D and w ∈ W) and conditional distribution functions

FU |Z solving the system of equations (7).

A sketch of the proof of the theorem can be found in Appendix A. To show the

result, we �rst di�erentiate System (7) with respect to u. This yields a quasilinear

system of �rst order di�erential equations. Using the Picard-Lindelöf Theorem for

system of nonlinear equations, we have that this system has a unique solution under

a full rank conditon along the �optimal path" (i.e., at the true outcome functions and

densities) equivalent to Assumption 2.1.8 The relevance assumption can be expressed

in terms of conditional selection probabilities because these can be directly related to

the joint densities of Y,D given W,Z at the optimal choices.

Identi�cation when |D| = |Z| = |W| = 2. The full column rank identi�cation

Assumption 2.1 is a relevance condition on the e�ect of the variables on the true

selection probabilities given the unobservable U . Let us focus on the simpler case

where D and W are binary with D = W = {1, 2}. In this case, a direct necessary

condition is that |Z| ≥ 3 for Assumption 2.1 to hold, because otherwise the system

would have less equations than unknowns, soM would not be injective. Let us assume

|Z| = 3. Then, we have |Z|×|W|+1 = 7 equations for |Z|+ |D|×|W| = 7 unknowns

(four functions, and three conditional distribution functions), and one can show that

det
(
M(u)

)
= p1|u,1,1

(
p1|u,2,2 − p1|u,2,3

)
+ p1|u,1,2

(
p1|u,2,3 − p1|u,2,1

)
+ p1|u,1,3

(
p1|u,2,1 − p1|u,2,2

)
.

(8)

8Exploiting the known monotonicity of the potential outcomes functions we want to identify, we
show that identi�cation can be obtained even with some isolated violations (rank one de�ciency) of
the full rank condition on the optimal path, as in Bruneel-Zupanc (2023) or Feng (2024).
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Hence, det
(
M(u)

)
= 0, if W ⊥⊥ D|Z,U , or, Z ⊥⊥ D|W,U . In particular, it means

that Z must be relevant for D but not only because of its dependence with U . It

also requires that W and Z are jointly relevant, in the sense their interaction has a

signi�cant e�ect on the selection. For example, if P(D = 1|W = w,Z = z, U = u) =

a+ b1(w = 2)+ c1(z = 2)+ d1(z = 3), there is no joint e�ect of W and Z on D, and

one can check that the relevance condition is violated. If we add some interaction

terms, e.g., e1(w = 1, z = 2), the relevance holds.

2.3.3 Identi�cation with continuous D

Let us now consider identi�cation with continuous D. We �x u ∈ [0, 1] and introduce

ϵ = Y − f(D,W, u). Let fϵ|D,Z,W (e|d, z, w) be the density of ϵ given D = d, Z =

z,W = w at the point e (which existence is guaranteed under our assumptions). We

also introduce H : {h : Z → R : E[h(Z)] = 0}. For ∆ ∈ L2(D,W ), we de�ne

ω∆(D,Z,W ) =

∫ 1

0

fϵ|D,Z,W (δ∆(D,W )|D,Z,W )dδ.

Let us state the following strong completeness condition and the related identi�cation

result.

Assumption 2.2 (Relevance with continuous D). For all ∆ ∈ L2(D,W ) and h ∈ H,

E [∆(D,W )ω∆(D,Z,W )|Z,W ] + h(Z) = 0 a.s. ⇒ ∆(D,W ) = h(Z) = 0 a.s.

Theorem 2. Assume that (d, w) ∈ D × W → f(d, w, u) belongs to L2(D,W ) and

that the distibution of ϵ given D,Z,W is continuous. Let also Assumption (2.2) hold.

Then, ψ ∈ L2(D,W ) and h ∈ H solve the system (5)-(6) if and only if ψ(D,W ) =

qD(W,u) and h(Z) = FU |Z(u|Z) a.s.

Assumption 2.2 is our model's counterpart of Assumption L1∗ in Appendix C of

Chernozhukov and Hansen (2005). As argued in the literature relevance conditions

for nonseparable models with endogenous continuous treatment are di�cult to inter-

pret, see the discussions in Canay et al. (2013); Beyhum et al. (2023) for the IVQR

model. Our condition su�ers from the same drawback, that is it does not possess a

straightforward meaning.
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3 Additive model

Let us now consider an additive model with homogenous treatment e�ects. Such a

model is interesting because identi�cation results can be obtained in a single frame-

work allowing for both discrete and continuous D. Moreover, the global identi�cation

results for continuous D can be derived under more interpretable conditions. We let

Yd = f(d,W,X) + U, E[U ] = 0. (9)

This is the counterpart of equation (1) in mean regression contexts. The residual U

does not depend on d, meaning that the treatment e�ects are homogenous (this is

the analogue of the rank invariance assumption in the present additive context). We

then impose

U = g(Z,X) + V, E[V |Z,W,X] = 0, (10)

which is the analogue of (2). Here, for w ∈ W , z ∈ Z, x ∈ X , f(d, w, x) + g(z, x) is

the average of Yd given Z = z,W = w,X = x.

Let us now turn to identi�cation. We again suppress the dependence on X for

convenience. We want to identify the sum f(d, w) + g(z). Let us de�ne the in�nite

dimensional parameter spaces Pf and Pg for f and g, respectively. As an example,

Pf can be the set of square integrable, bounded or linear functions of the support

S(D,W ) of (D,W ) to R. From the model, we obtain the following system of equations

E[Y |W,Z] = E[f(D,W ) + g(Z)|W,Z] a.s.;

E[g(Z)] = 0.
(11)

The mappings f and g are identi�ed from the joint distribution of (Y,D,Z,W ) if this

system has a unique solution.9 This will be the case under the following completeness

assumption:

Assumption 3.1 (Additive completeness). For all f ∈ Pf and g ∈ Pg,

E[f(D,W ) + g(Z)|W,Z] = E[g(Z)] = 0 a.s. ⇒ f(D,W ) = g(Z) = 0 a.s..

Completeness assumptions are standard in the literature on nonparametric instru-

mental variable models, see Newey and Powell (2003); Darolles et al. (2011). In this

9As in the quantile case, there are additional equations available, of the form E[g(Z)|W ] = 0 a.s..
However, again, such equations are not useful for identi�cation.
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literature, D is the endogenous variable, Z is the IV and the completeness assump-

tion is di�erent since it corresponds to E[f(D)|Z] = 0 a.s.,⇒ f(D) = 0 a.s., for all

f ∈ L2(D). Without the separability of the model, the needed relevance would be

E[h(D,W,Z)|W,Z] = 0 a.s. ⇒ h(D,W,Z) = 0 a.s.,

for functions h in a de�ned parameter space. This can only hold under degenerate

joint distribution of (D,W,Z) or degenerate parameter space. Therefore, the sepa-

rability of the model allows us to rely on a weaker condition. To further interpret

Assumption 3.1, we consider two examples in the following Lemmas.

Lemma 1. Suppose D, Z and W are discrete with respective supports {1, . . . , |D|},
{1, . . . , |Z|}, {1, . . . , |W|}. For (d, z, w) ∈ D × Z × W, let pd|w,z = P(D = d|W =

w,Z = z) and pz = P(Z = z). De�ne the parameter spaces as Pf = {f : D ×W → R}
and Pg = {g : Z → R}. Assume that the following (1+ |Z|×|W|)× (|Z|+ |D|×|W|)
matrix of selection probabilities

M =



PW1 0 . . . 0 I|Z|

0 PW2 . . .
... I|Z|

... . . .
. . .

...
...

0 . . . . . . PW |W| I|Z|

0 . . . . . . 0 PZ


,

with PWw =


p1|w,1 p2|w,1 . . . p|D||w,1

p1|w,2 p2|w,2 . . . p|D||w,2

...
...

...
...

p1|w,|Z| p2|w,|Z| . . . p|D||w,|Z|

 is |Z| × |D|,

and PZ =
[
P(Z = 1) P(Z = 2) . . . P(Z = |Z|)

]
has full column rank. Then, Assumption 3.1 holds.

Lemma 2. Let f1, f2, . . . , frf and g1, g2, . . . , grg form orthonormal families of func-

tions of L2(D,W ) and L2(Z), respectively. We consider the parameter spaces:

Pf =

{
rf∑
j=1

βjfj, β ∈ Rrf

}
;
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Pg =

{
rg∑
j=1

αjgj, α ∈ Rrg

}
.

Suppose that there exists orthonormal functions h1, . . . , hrh in L2(W,Z) such that the

(rh + 1)× (rf + rg) matrix

M =



ef1|1 ef2|1 . . . efrf |1 eg1|1 eg2|1 . . . egrg |1

ef1|2 ef2|2 . . . efrf |2 eg1|2 eg2|2 . . . egrg |2
...

...
...

...
...

...
...

...

ef1|rh ef2|rh . . . efrf |rh eg1|rh eg2|rh . . . egrg |rh
0 0 . . . 0 E[g1(Z)] E[g2(Z)] . . . E[grh(Z)]


,

where efj|k = E[fj(D,W )hk(W,Z)] and e
g
j|k = E[gj(Z)hk(W,Z)],

has rank equal to rf + rg. Then, Assumption 3.1 holds.

The rank condition in Lemma 1 is the counterpart of Assumption 2.1 in the ad-

ditive model. It can be interpreted similarly to Assumption 2.1. Lemma 2 allows D

to be continuous. It considers parameter spaces consisting in �exible linear combina-

tions of functions. By letting rf and rg go to in�nity one can approach nonparametric

parameter spaces. An important special case of Lemma 2 is the linear case, which we

elaborate on below.

Linear case. Take Pf = {(d, w) ∈ D ×W 7→ α+ βDd+ βWw} and Pg = {z ∈ Z 7→
αZ + βZz} and h1(z, w) = 1, h2(z, w) = z, h3(z, w) = w and h4(z, w) = zw. Then,

by (11), we have

E[{Y − ((α + αZ) + βDD + βWW + βZZ)}hj(Z,W )] = 0, j = 1, . . . , 4.

These are exactly the moment conditions underlying the two-stage least squares es-

timator using a constant, D, W and Z as independent variables and a constant, Z,

W and ZW as instrumental variables. Hence, as claimed in the introduction, in this

linear case, we use the interaction ZW as an instrument for D.

We conclude this section by formally stating our identi�cation theorem.

Theorem 3. Let Assumption 3.1 hold, then f̃ ∈ Pf and g̃ ∈ Pg solve (11) if and

only if f̃(D,W ) = f(D,W ) and g̃(Z) = g(Z) almost surely.
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4 LATE with invalid IVs

Let us now discuss how we can identify LATEs with invalid IVs. Our LATE frame-

work is neither nested by, nor nesting the previous nonseparable model with rank

invariance, and the identi�cation arguments di�er, so we discuss this in a separate

section. However, as in the previous section, the intuition remains similar: relax-

ing the exclusion and exogeneity restrictions requires to satisfy a (testable) stronger

relevance condition than standard IVs.

4.1 LATE model

Throughout this section, let us focus on the binary case, where D = 0 or D = 1. Let

us denote by Z an excluded quasi-IV with support Z ⊂ R, and W a complementary

exogenous quasi-IV with support W ⊂ R. The arguments also naturally extend

when W and Z contain several variables, but we do not address it for simplicity of

exposition. We also introduce covariables X the standard covariates. In the spirit of

Imbens and Angrist (1994), de�ne D(w, z, x) the potential D as a function of Z = z,

W = ws and X = x. Also denote by Ydw the potential outcome under treatment d

and exogenous quasi-IV equal to w. We have the following model for the (continuous

or discrete) potential outcomes for d ∈ {0, 1},

Ydw = fdw(X) + Ud, for all w ∈ W , (12)

and a selection equation with a latent index structure with additive separability of

the shocks:

D∗(W,Z,X) = µ(W,Z,X)− η, (13)

and D(W,Z,X) = 1 if D∗(W,Z,X) ≥ 0, D(W,Z,X) = 0 otherwise.

We observe (Y,D,W,Z,X), where Y = YDW and D = D(W,Z,X). As in the stan-

dard LATE framework (Imbens and Angrist, 1994; Vytlacil, 2002; Heckman and Vyt-

lacil, 2005), (η, U0, U1) are general unobserved random variables which may be corre-

lated, yielding endogenous selection. Z does not enter directly the outcome equations,

but it is (possibly) entering indirectly through U0 and U1. Otherwise, we impose the

same assumptions (naturally adjusted for inclusion of W and endogeneity of Z) as

Heckman and Vytlacil (2005), and refer to this paper for more detailed discussions:
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Assumption 4.1. The following holds:

(i) (Independence): (U0, U1, η) are independent of W conditional on Z and X.

(ii) (Rank condition): µ(W,Z,X) is a nondegenerate random variable conditional

on Z and X.

(iii) The distribution of η is absolutely continuous w.r.t. Lebesgue measure.

(iv) (Finite means) The values of E|Y0| and E|Y1| are �nite.

(v) 0 < Pr(D = 1|X) < 1.

Under independence (i), the separability of η from µ(W,Z,X) in the latent index

selection equation (13) yields the monotonicity assumption of Imbens and Angrist

(1994) for the exogenous quasi-IV,W . In other words, conditional on X = x and Z =

z, either D(w′, z, x) ≥ D(w, z, x for all (w,w′) ∈ W ×W or D(w′, z, x) ≤ D(w, z, x)

for all (w,w′) ∈ W × W . Crucially, without further assumption, the monotonicity

only holds for the exogenous quasi-IV, not for the endogenous one. Indeed, Z is

generally correlated with η, so we do not have additive separability of the e�ect of Z

from the shock η on D∗. As a consequence, we only express the LATE for changes

of W , not changes of Z, because without monotonicity with respect to Z, the set of

compliers is not easily de�ned. A-(ii) is a general relevance condition but we impose

stronger and more precise restrictions later.

A few remarks are in order. Note that if we assume that fdw(·) does not depend
on w, then W becomes a valid IV. Similarly, Z may be independent of the shocks

(U0, U1, η) and, in that case it is a valid IV. Remark also that here Ud does not depend

on w. Hence, we assume that the e�ect of w on the potential outcomes is homoge-

nous. In other words, Ydw′ −Ydw is not random. Our procedure is therefore robust to

homogenous direct e�ects of W on the potential outcomes. Finally, we stress again

that we do not assume that Z is exogenous here.

De�ne the propensity score P (W,Z,X) = P(D = 1|W,Z,X). Under our assump-

tions, we have that P (W,Z,X) = Fη|W,Z,X(µ(W,Z,X)) = Fη|Z,X(µ(W,Z,X)) by inde-

pendence, and similarly, P (W,Z,X) = P(D(W,Z,X) = 1|W,Z,X) = P(D(W,Z,X) =

1|Z,X) by independence. Let us normalize η|Z,X ∼ U(0, 1), then, µ(W,Z,X) =
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P (W,Z,X).10 The setup implies that, conditional on Z = z and X = x, for any

w′ ̸= w, if P (w′, z, x) = P (w, z, x), then D(w′, z, x) = D(w, z, x) almost surely. This

is the key property implied by monotonicity that we will use for identi�cation.

4.2 De�nition of the LATE with invalid IVs

From here onwards, let us abstract from X to simplify the exposition, and proceed

as if every statement was conditional on X. For any z ∈ Z, conditional on Z = z,

for any w′ and w ∈ W , with P (w, z) = p and P (w′, z) = p′, de�ne the counterpart of

Imbens and Angrist (1994)'s LATE with invalid IVs as

∆LATE(w,w
′|z) = E[ Y1w′ − Y0w | D(w′, z) = 1, D(w, z) = 0, Z = z ]. (14)

In other words, this LATE is the average variation in outcome following from an

exogenous change in W from w to w′, when Z = z, for subjects switching from no

treatment to treatment because of this change. As already explained, we can only

de�ne a LATE conditional on Z, since monotonicity does not hold with respect to

Z, it is not possible to identify the e�ect exogenously moving Z on the subset of the

population taking up treatment because of this change. In a sense, Z behaves similarly

to a standard covariates, X, in the de�nition of the LATE. However, its (conditional)

exclusion from Y is going to allow us to identify the said LATE. Finally, remark also

that if W is in fact excluded, (14) becomes the original LATE of Imbens and Angrist

(1994) (conditional on Z).

4.3 Identi�cation of the LATE

Let us study identi�cation ∆LATE(w,w
′|z) using data on (D, Y,W,Z). For any w and

w′ ∈ W and z ∈ Z, with P (w, z) = p < P (w′, z) = p′, we can compute

E
[
Y |W = w′, Z = z

]
− E

[
Y |W = w,Z = z

]
= E

[
Y0w′ + (Y1w′ − Y0w′)D|W = w′, Z = z

]
− E

[
Y0w + (Y1w − Y0w)D|W = w,Z = z

]
= E

[
Y0w′ + (Y1w′ − Y0w′)D(w′, z)|Z = z

]
− E

[
Y0w + (Y1w − Y0w)D(w, z)|Z = z

]
10This normalization is innocuous given the model assumptions, if the latent variable generating

the choices is, D∗ = ν(W,Z,X)−V , where V is a general continuous random variable, we can always
reparametrize the model such that µ(W,Z,X) = FV |Z,X(ν(W,Z,X)) and η = FV |Z,X(V ).
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= E
[
(Y1w′ − Y0w)(D(w′, z)−D(w, z))|Z = z

] }
= e�ect on compliers

+ E
[
(Y0w′ − Y0w)(1−D(w′, z))|Z = z

]︸ ︷︷ ︸
e�ect on never takers

+ E
[
(Y1w′ − Y1w)D(w, z)|Z = z

]︸ ︷︷ ︸
e�ect on always takers

, (15)

where the second equality comes from the independence of W conditional on Z (A-

1), and the third one comes from rewriting Y1w′ − Y0w′ = Y1w′ − Y0w + Y0w − Y0w′ ,

and Y1w − Y0w = Y1w − Y1w′ + Y1w′ − Y0w. Moreover, by monotonicity/uniformity,

D(w′, z) > D(w, z) for all subjects if p′ > p. Thus, the e�ect on compliers is almost

directly the LATE, since:

E
[
(Y1w′ − Y0w)(D(w′, z)−D(w, z))|Z = z

]
= E

[
Y1w′ − Y0w|D(w′, z) = 1, D(w, z) = 0, Z = z]Pr(D(w′, z) = 1, D(w, z) = 0)

= ∆LATE(w,w
′|z)(p′ − p).

The main di�erence with the standard LATE with valid IVs is the presence of the

last two terms in Equation (15). They represent the e�ects on always takers and on

never takers following from an exogenous change in W from w to w′ conditional on

Z = z. These terms are present because W is (possibly) included here, so changing

W does not only a�ect the compliers, but also the never-takers and always-takers.

To identify the LATE with invalid IVs, one needs to recover these two additional

e�ects from the data. Let us focus on the e�ect on always takers for example. We

want to identify

E
[
(Y1w′ − Y1w)D(w, z)|Z = z

]
= (f1w′ − f1w) E[D(w, z)|Z = z]

:= ∆W
1 (w,w′) p.

So, if we identify ∆W
1 (w,w′), we identify the e�ect on the always takers. Similarly,

de�ne ∆W
0 (w,w′) = f0w′ −f0w. If we identify ∆W

0 (w,w′), we identify the e�ect on the

never-takers.

We can show that ∆W
d (w,w′) (for d = 0, 1) are identi�ed under the following

irrelevance assumption.

Assumption 4.2 (Local Irrelevance). There exists Z = z∗ such that, P (w, z∗) =
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P (w′, z∗).

The local irrelevance assumption requires that there exists z∗ such that the e�ect

e�ect of W and Z on D is su�ciently nonlinear. Such an assumption is more likely

to hold when Z is continuous, but it does not require that W or Z are continuous.

As mentioned in the introduction, in a di�erent context, D'Haultf÷uille et al. (2021)

also relies on a local irrelevance condition, and show the power of such restriction.

We also note that Assumption 4.2 is testable.

Under Local Irrelevance, 4.2, we identify ∆W
1 (w,w′) and ∆W

0 (w,w′), and conse-

quently, we identify ∆LATE(w,w
′, z) for all z ∈ Z. Indeed, at Z = z∗ such that

P (w, z∗) = P (w′, z∗) = p∗, we have D(w, z∗) = D(w′, z∗) conditional on Z = z∗ by

monotonicity. As a consequence, we have the following theorem.

Theorem 4. Let Assumptions 4.1 and 4.2 hold. Suppose that 0 < P (w, z∗) < 1,

where z∗ is de�ned in Assumption 4.2. Then, ∆LATE(w,w
′|z)is identi�ed for all

z ∈ Z such that P (w′, z)−P (w, z) > 0 and ∆LATE(w
′, w|z)is identi�ed for all z ∈ Z

such that P (w′, z)− P (w, z) < 0.

Special case of fuzzy DiD. In the case where W ∈ {0, 1} is time (with two time

periods) and Z ∈ {0, 1} is the group assignment (with two groups), it is helpful

to compare our results with that of De Chaisemartin and d'Haultfoeuille (2018) for

fuzzy DiD. They make two crucial sets of assumptions. First, there are the common

trends and conditional common trends conditions (Assumptions 2 and 4' in their

paper). These assumptions are both implied by our model (12). Formally, our model

(12) is more restrictive, but in the special case of fuzzy DiD, we could relax it to

just impose some conditions on the trends as De Chaisemartin and d'Haultfoeuille

(2018). Second, they assume that the treatment rate does not change in the control

group between the two periods (Assumption 2 in their paper). This is just our local

irrelevance Assumption 4.2 where Z = z∗ is the control group and w = 0, w′ = 1 are

the dates.

5 Conclusion

In this paper, we have shown that quantities typically identi�ed by IV can be iden-

ti�ed by two quasi-IVs instead. Several economic examples of quasi-IVs satisfying
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our assumptions have been given, demonstrating that our approach is promising in

practice. In the simple linear case, the estimation of treatment e�ects with quasi-IVs

can be carried by running a standard 2SLS and taking the interaction between the

complementary quasi-IVs as a valid IV. However, for the more general models pre-

sented in the paper, a natural and crucial next step before bringing the methodology

to the data is estimation. Our identi�cation proofs are constructive and in this sense

can be used to de�ne an estimator. Nevertheless, there will be several computational

challenges arising from the complex nature of the problem at hand that we will tackle

in the future. Another avenue is to study identi�cation with other types of invalid IVs

which complement each other in a di�erent manner from the exogenous and excluded

quasi-IVs studied here. The semi-IVs of Bruneel-Zupanc (2023) are one example, but

they may be other empirically relevant cases.
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A Sketch of the proof of Theorem 1

Identi�cation of the (strictly increasing) outcome functions and distribution of U |Z
for all u ∈ [0, 1] requires that there exists a unique solution to the system (7). To �nd

a su�cient condition for uniqueness of the solution, one can derive each equation of

System (7) with respect to u and obtain a quasilinear system of �rst order di�erential

equations,0 =
∑|D|

d=1 fY,D|W,Z(f(d, w, u), d|w, z) ∂f(d, w, u)/∂u− fU |Z(u|z)

1 =
∑|Z|

z=1 fU |Z(u|z)P(Z = z),
(16)

where the unknowns are the derivatives (with respect to u) of the outcome functions,

∂f(d, w, u)/∂u, and the derivatives of the conditional distributions of U |Z, i.e., the
conditional densities fU |Z(u|z) for all (w, z) ∈ W × Z. To shorten the notation, and

minimize the risk of confusion between the outcomes and densities, let us denote

qdw(u) = f(d, w, u), and its derivative q′dw(u) = ∂f(d, w, u)/∂u. Let us denote the

vector of all the functions of interest,

q(u) =
[
q11(u) q21(u) · · · q|D|1(u) · · · q1|W|(u) · · · q|D||W|(u) FU |Z(u|1) · · ·FU |Z(u||Z|)

]
,

and its derivative:

q′(u) =
[
q′11(u) q

′
21(u) · · · q′|D|1(u) · · · q′1|W|(u) · · · q′|D||W|(u) fU |Z(u|1) · · · fU |Z(u||Z|)

]
.

Also de�ne the conditional joint densities as fd|w,z(y) = fY,D|W,Z(y, d|w, z) if fU |Z(u|z) >
0 and fd|w,z(y) = 0 if fU |Z(u|z) = 0. The system of di�erential equation (16) can be

written under matrix form as,11

M̃
(
q(u)

)
q′(u) =

[
0 · · · 0︸ ︷︷ ︸

size |D|×|W|

1 · · · 1︸ ︷︷ ︸
size |Z|

]T
, (17)

11Notice that the conditional distributions FU |Z(u) which are included in q(u), play no role in
M . We include them nonetheless for generality of the notation.
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where

M̃(q(u)) =



FW1(q(u)) 0 . . . 0 −I|Z|

0 FW2(q(u)) . . .
... −I|Z|

... . . .
. . .

...
...

0 . . . . . . FW |W|(q(u)) −I|Z|

0 . . . . . . 0 PZ


,

with FWw(q(u)) =


f1|w,1(q1w(u)) f2|w,1(q2w(u)) . . . f|D||w,1(q1w(u))

f1|w,2(q1w(u)) f2|w,2(q2w(u)) . . . f|D||w,2(q1w(u))
...

...
...

...

f1|w,|Z|(q1w(u)) f2|w,|Z|(q2w(u)) . . . f|D||w,|Z|(q1w(u))

 is |Z| × |D|,

and PZ =
[
P(Z = 1) P(Z = 2) . . . P(Z = |Z|)

]
Now, if the matrix of conditional densities, M̃(q(u)), is full column rank, it has a left

inverse, that we denote M̃−1(q(u)), and we can recover q′(u) as

q′(u) = M̃−1
(
q(u)

)[
0 · · · 0 1 · · · 1

]T
.

Starting from the known minimum q(0) = [· · · qdw(0) · · ·FU |Z(0|z) · · · ], with FU |Z(0|z) =
0 and qdw(0) identi�ed as the minimum observable in the data (if pd|u=0,w,z > 0 for all

d, w, z), we can solve for the unique optimal solution path if M̃(q(u)) is full column

rank for all u. So a key condition for identi�cation is the full column rank of M̃(q(u)),

which allows us to use Picard-Lindelöf Theorem for nonlinear system of di�erential

equations.

For the interpretation, notice that the joint conditional densities at the true values

of the outcome functions are related to the conditional selection probabilities as

fY,D|W,Z(qdw(u), d|w, z) = pd|u,w,z ×
∂udw
∂ydw

(qdw(u)),

where udw(ydw) = q−1
dw(ydw) for all d, w. As a consequence, we can rewrite M̃(q(u)) as

M̃
(
q(u)

)
=M(u) H

(
q(u)

)
,

with the M(u) de�ned in the relevance Assumption 2.1 and where

H(q(u)) = diag

(
∂u11
∂y11

(q11(u)) · · ·
∂u|D|1

∂y|D|1
(q|D|1(u)) · · ·

∂u|D||W|

∂y|D||W|
(q|D||W|(u)) 1 · · · 1︸ ︷︷ ︸

size |Z|

)
.
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By strict monotonicity of the outcome functions, all the diagonal elements of H(q(u))

are strictly positive. As a consequence, M̃(q(u)) is full column rank if and only if

M(u) is full column rank. Hence, the relevance Assumption 2.1 is expressed directly

in terms of the true selection probabilities. Notice that the condition only needs to

hold on the true optimal path with the true outcome function and density of U |Z.
This is because, if we start on the correct path, we will not deviate from it if the

relevance condition is satis�ed along the path.

The main idea behind the proof has been expressed above. Now, especially with a

large number of alternative in D, it is likely even with relatively simple models, that

the matrix of selection probability may have a rank one de�ciency at some points

along the way as it naturally occurs that some of the alternatives become uninforma-

tive at some isolated values of u. However, this is not a problem and following the

proof in Appendix A of Bruneel-Zupanc (2023) building on the literature on quasilin-

ear di�erential equations (Marszalek et al., 2005), we show that, thanks to the known

strict monotonicity of the potential outcomes, the unique solution path is identi�ed,

even if there are an isolated set of values of u, denoted uk at which the matrix M(uk)

has a rank-one de�ciency. A similar proof, building on variants of Hadamard's Theo-

rem for global inverse (Ambrosetti and Prodi, 1995) can be found in Feng (2024). ■

B Proof of Theorem 2

Let (φ,GZ|U) be another admissible solution to the system (5)-(6). The following

holds
E[E[1(Y ≤ f(D,W, u))− 1(YD ≤ φ(D,W, u))|D,W,Z]|W,Z]

+ FZ|U(u|Z)−GZ|U(u|Z) = 0 a.s..

E[FZ|U(u|Z)−GZ|U(u|Z)] = 0 a.s.,

(18)

Let ∆(D,W ) = φ(D,W, u) − f(D,W, u) and h(Z) = FZ|U(u|Z) − GZ|U(u|Z). By

de�nition of ϵ, the �rst equation of (18) is equivalent to

E[E[I(ϵ ≤ 0)− E[I(ϵ ≤ ∆(D,W ))|D,W,Z]|Z,W ] + h(Z) = 0 a.s.

⇐⇒ E
[∫ 1

0

∆(D,W )fϵ|D,Z,W (δ∆(D,W )|D,Z,W )

∣∣∣∣W,Z]+ h(Z) = 0 a.s.
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The system (18) is then equivalent to

E [∆(D,W )ω∆(D,Z,W )|W,Z] + h(Z) = 0;

E[h(Z)] = 0,
(19)

which implies ∆(D,W ) = g(Z) = 0 a.s. by Assumption 2.2.

C Proof of the results of Section 3

C.1 Proof of Lemma 1

Take f̃ ∈ Pf and g̃ ∈ Pg such that

E[f̃(D,W ) + g̃(Z)|W,Z] = E[g̃(Z)] = 0 a.s. (20)

Let v = [f̃(1, 1), . . . , f̃(|D|, 1), . . . , f̃(1, |W|), . . . , f̃(|D|, |W|), g̃(1), . . . , g̃(|Z|)]⊤. The
system of equations (20) can be rewritten as Mv = 0, where The full column rank

assumption on M implies v = 0.

C.2 Proof of Lemma 2

Take f̃ =
∑rf

j=1 βjfj ∈ Pf and g̃ =
∑rj

j=1 βjgj ∈ Pg such that

E[f̃(D,W ) + g̃(Z)|W,Z] = E[g̃(Z)] = 0 a.s.

By the law of total expectations, this implies

E[(f̃(D,W ) + g̃(Z))hj(W,Z)] = E[g̃(Z)] = 0 a.s., j = 1, . . . , rh. (21)

Let v = [β1, . . . , βrf , α1, . . . , αrg ]
⊤. The system of equations (21) can be rewritten as

Mv = 0. This yields v = 0 by the full column rank condition on M .

C.3 Proof of Theorem 3

Suppose that f̃ ∈ Pf and g̃ ∈ Pg satisfy

E[Y |W,Z] = E[f̃(D,W ) + g̃(Z)|W,Z] a.s.

E[g̃(Z)] = 0.

Then, we obtain

E[∆f(D,W )|W,Z] + ∆g(Z) = E[∆g(Z)] = 0 a.s.,
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where ∆f = f̃ − f and ∆g = g̃ − g. This yields the result by Assumption 3.1.
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