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Abstract

Large population games with incomplete information often entail integration of a
continuum of random variables. We showcase the usefulness of the integral notion à la
Pettis (1938) to study such models. We present several results on Pettis integral relevant
to game-theoretic applications, including convenient sufficient conditions for Pettis
integrability and Fubini-like exchangeability formulae, illustrated through a running
example. We further investigate an equation involving Pettis integral, which has a
stochastic process as the unknown, motivated by its use in equilibrium characterization.
The solvability of the equation is linked to its spectral properties.
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1 Introduction

When analyzing economic models involving uncertainties associated with a large number
of economic entities, we encounter the demand for aggregating a continuum of random
variables. For instance, in the beauty contest model introduced by Morris and Shin (2002),
each player best responds to an aggregated economic variable—an “integral” of actions
taken by a continuum of opponents—by choosing an action equal to a convex combination
of her best estimates regarding the aggregated action and an exogenous payoff-relevant
state. As opponents’ actions are stochastic under incomplete information, the aggregated
action takes the form of the integral of a “stochastic process,” which are indexed by the
players’ identities.

Integrating stochastic processes comes with mathematical complications when the
process contains purely idiosyncratic components: As pointed out by Judd (1985), a
typical sample path of an i.i.d. process is terribly discontinuous, hampering the modeler
to define the integral in a realized path-wise manner, which is one of the most natural
approaches. Moreover, while one may expect a certain law of large numbers (LLN) to
apply when aggregating a continuum of i.i.d. random variables, path-wise integration lacks
this property: if we assume the idiosyncratic components disappear in the aggregate for all
subintervals of a population, the stochastic process must essentially be constant, limiting
the validity of the LLN to only trivial cases.1

The source of these problems can be attributed to a way we interpret the integral of a
stochastic process. In this paper, instead, we advocate interpreting aggregation differently
by appealing to the integral notion à la Pettis (1938) and demonstrates the usefulness of
“Pettis integral” in the analysis of large population games.2 The Pettis integral is defined
for an abstract process that assigns to each input in a measurable space an output that
admits a value in a normed space. The definition leverages the duality of the outcome
space. Especially, when the process is valued in a Hilbert space, the core idea of Pettis can
be roughly described as “the inner product of the integral coincides with the integral of
inner products.” In a probabilistic context, this implies that the “the expectation of the
integral coincides with the integral of expectations,” which bears similarity to Fubini’s
exchangeability. In this regard, we can think of Pettis integral as an integral notion that is
designed to retain the desirable property of usual integral notions, holding for a continuum
of random variables.

To clarify the relevance to game-theoretic analysis, let us consider the following sym-
1See Theorem 1 in Uhlig (1996), as well as Proposition 2.1 in Sun (2006).
2Some authors including Al-Najjar (1995) and Uhlig (1996) also consider Pettis integral as a remedy for

the measurability problem of Judd (1985).
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metric linear-quadratic-Gaussian (LQG) game of Bergemann and Morris (2013).

Example 1. Each player i in a closed interval [0, 1] chooses an action ai ∈ R as a function
of a private signal xi and a public signal y, which are correlated with a payoff-relevant
random variable θ, referred to as a state. We assume that these random variables are
normally distributed as follows:

θ ∼ N
(
µθ, σ2

θ

)
, ϵi ∼ N

(
0, σ2

x

)
, ϵ ∼ N

(
0, σ2

y

)
, xi = θ + ϵi, y = θ + ϵ,

where ϵi and ϵ are independently distributed with respect to each other and to the state θ.
A player’s payoff is determined by her own action ai, the aggregated action A :=

∫ 1
0 ajdj,

and the state θ. Specifically, we posit that in an equilibrium, player i sets her action ai

equal to a linear combination of her best estimates regarding A and θ,

ai = rE [A | xi, y] + sE [θ | xi, y] + k, (1)

where r, s, k ∈ R are the parameters of the best response function. The beauty contest is a
special case that sets r ∈ (0, 1), s = 1 − r, and k = 0.

In this example, defining the aggregated action A entails the measurability issue:
Each individual action aj contains idiosyncratic randomness stemming from independent
noise in private signals. Our starting point is interpreting A as the Pettis integral of a
strategy profile. Unlike other integral notions, Pettis integrability requires only a notably
weak measurability condition, which can be met even when the presence contains i.i.d.
components. In Proposition 1, we outline easy-to-verify sufficient conditions for a process
to be Pettis integrable. In probabilistic contexts, these conditions are expressed solely in
terms of the first and second moments of a stochastic process, enabling us to readily verify
the well-definedness of A.

As argued in Angeletos and Pavan (2007), two pivotal variables in the welfare analysis of
LQG games are volatility and dispersion, defined respectively as the variance of aggregated
action V := Var [A] and that of the idiosyncratic difference D := Var [A − ai]. Ui and
Yoshizawa (2015) show that the expected welfare in any symmetric LQG game can be
expressed as a linear combination of V and D, thus, calculating these variables holds
particular importance for welfare evaluations. Earlier analyses perform this task by relying
on the intuition that idiosyncratic parts of individual actions cancel out through aggregation.
However, in Proposition 2, we provide a formal demonstration that this kind of LLN can
be derived directly from the definition of Pettis integral.

We also establish results on Pettis integral that are instrumental in characterizing
equilibrium in large population games. In Proposition 3, we present a “conditional” version
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of Fubini-like formula, justifying the interchange of conditional expectation and integration.
This result facilitates the computation of an agent’s conditional expectation concerning the
aggregated action, E [A | xi, y], a crucial step in deriving a closed form of an equilibrium
strategy using the “matching coefficient” method.

When players have different payoff functions or signal distributions, the matching
coefficient method is not practical to derive equilibrium strategies since these ought to
be asymmetric across players. Nonetheless, even in this case, an equilibrium can be
characterized as a solution to an equation akin to (1) that involves the (weighted) Pettis
integral of others players’ strategies and the state. Motivated by this, we investigate the
nature of such a Pettis integral equation, which has a stochastic process as the unknown,
from a general mathematical standpoint. In Proposition 4, we offer regularity conditions
on primitives, under which the equation enjoys a desirable property of compactness.
Leveraging the Riesz–Fredholm theory of functional analysis, this result enables us to
establish connections between the solvability of the equation and the spectral properties
of the corresponding integral operator. In our related work Miyashita and Ui (2024), we
employ this finding to characterize the existence, uniqueness, and stability of equilibrium in
large population games, accommodating general payoff and information structures, beyond
the symmetric case illustrated in Example 1.

The rest of this paper is organized as follows. In Section 2, we offer the definition
of Pettis integral and establish some basic results on it. In Section 3, we delve into the
analysis of Pettis integral equations. In Section 4, we conclude the paper by discussing
some potential benefits and cautions of the Pettis-integral approach in analyzing large
population games. Throughout the paper, Example 1 serves as a running example to
illustrate the relevance of our results to economic contexts. All proofs omitted from the
main body are relegated to Appendix.

2 Pettis Integral

Notations. For a (real) normed space X, denote its norm by ∥ · ∥X and the dual space
of bounded linear functionals by X∗. We write as ⟨·, ·⟩X when X is equipped with an
inner product. The subscript “X” may be omitted for simplicity. Denote by xn

∥·∥−−→ x

when a sequence {xn}n∈N ⊆ X converges to x ∈ X in norm. Also, denote by x
w−→ x when

{xn}n∈N weakly converges to x. For a subset E ⊆ X, denote its closure by E , the set of
finite linear combinations of its elements by span(E), and the orthogonal complement by
E⊥. Let BR be the Borel σ-algebra on R. For a semiring S on a set T , σ(S) denote the
smallest σ-algebra containing S. When T is a σ-algebra on T , T ⊗ T = σ(T × T ) denotes
the product σ-algebra.
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2.1 Pettis Integral of General Hilbert-valued Processes

An input space is given as a finite measure space (T, T , ν), which is normalized as ν(T ) = 1.
For example, T can be the unit interval [0, 1] with the Lebesgue measure. An output space
is given as a Hilbert space X, equipped with the inner product ⟨·, ·⟩X . That X is Hilbertian
is needed to prove Proposition 1, while the notion of Pettis integral can be defined in a
more general setting.3

A process is meant by any function f : T → X that assigns an output f(t) ∈ X to each
input t ∈ T . Our primary interest lies in the integration of a process f with respect to ν.
In stating the next definition, and throughout the paper, the integral of any real-valued
function shall be understood in the sense of Lebesgue. The integral range will be suppressed
when performed over the entire space T .

Definition 1. A process f : T → X is weakly measurable if the mapping t 7→ ⟨y, f(t)⟩
is (T , BR)-measurable for every y ∈ X. Moreover, f is Pettis integrable if it is weakly
measurable, and if there exists x ∈ X such that

⟨y, x⟩X =
∫

⟨y, f(t)⟩X dν(t), ∀y ∈ X. (2)

In this case, x is called the Pettis integral of f , which is written as w-
∫

f(t)dν(t), or simply,∫
f(t)dν(t) when there is no risk of confusion.

Two standard references on weak measurability and Pettis integral are the books
Diestel and Uhl (1977) and Talagrand (1984). Here, we mention a few properties that are
immediate from the definition. First, the Pettis integral is linear: For two Pettis integrable
processes f and g, their point-wise linear combination αf + βg is Pettis integrable for any
α, β ∈ R, and we have∫

(αf + βg)(t)dν(t) = α

∫
f(t)dν(t) + β

∫
g(t)dν(t).

Second, the Pettis integral is consistent with convergence in norm: For any sequence {fn}n∈N

of Pettis integrable processes, if fn(t) converges to f(t) in norm ν-almost everywhere (ν-
a.e.), then f is Pettis integrable. Moreover, the sequence of the Pettis integrals

∫
fn(t)dν(t)

converges to
∫

f(t)dν(t) in norm.
There are several known sufficient conditions for Pettis integrability. For example, Huff

(1986) reports that a process f is Pettis integrable if it is weakly measurable, and if the
operator y 7→ ⟨y, f(·)⟩X acts weak-to-weak continuously from X to the Banach space of
ν-integrable real-valued functions. However, these conditions may not be very tractable

3See Chapter 11.10 of Aliprantis and Border (2006).
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from applied standpoints since they involve arbitrary elements of the dual space, most of
which are orthogonal to the process f itself. In light of this, we provide simpler sufficient
conditions, which can be stated solely in terms of the moments of the process f , without
invoking duality.

Proposition 1. Consider the following conditions on a process f : T → X.

(P1). The mapping t 7→ ⟨f(s), f(t)⟩ is (T , BR)-measurable for every s ∈ T .

(P2). The mapping t 7→ ∥f(t)∥ is (T , BR)-measurable and
∫

∥f(t)∥dν(t) < ∞.

If (and only if) f satisfies (P1), it is weakly measurable. If, in addition, f satisfies (P2),
then it is Pettis integrable.

Remark 1. By the symmetry of inner products, f satisfies (P1) if and only if s 7→ ⟨f(s), f(t)⟩
is (T , BR)-measurable for every t ∈ T . Thus, (P1) is equivalent to that (s, t) 7→ ⟨f(s), f(t)⟩
is separately measurable, according to Definition 4.47 of Aliprantis and Border (2006).

Since we can take any f(s) for y in Definition 2, weak measurability implies (P1). A
crucial part of Proposition 1 is the converse implication. To establish this, we slightly
generalize the arguments presented in Al-Najjar (1995), relying on Hilbert space geometry.4

In this regard, having values in a Hilbert space is a necessary assumption for the proposition,
although this restriction is fairly innocuous as long as we consider a space of square-
integrable random variables.

A process is said to be strongly measurable when it is the norm-limit of a sequence of
“simple” processes that admit at most finitely many values. For any strongly measurable
process, (P2) is necessary and sufficient for the process to be “Bochner integrable,” an
integral notion stronger than Pettis.5 On the other hand, (P2) is sufficient but not necessary
for a weakly measurable process to be Pettis integrable. This is illustrated in Example 2 in
Appendix, which is a variant of Birkhoff’s example, showing that a continuum of mutually
uncorrelated random variables are Pettis-integrated to zero no matter what values are
taken by each individual variance.6

The same example illustrates that the mapping (s, t) 7→ ⟨f(s), f(t)⟩ may fail jointly
measurable for Pettis integrable processes f . While one can interpret this as an indication
that the notion of Pettis integral is generous and widely applicable, a stronger measurability
condition turns out useful in applications. Specifically, strengthening (P1) to joint measur-
ability will be instrumental when we define a linear space of Pettis integrable processes in

4See Footnote 7 and Section A.1 of Al-Najjar (1995).
5See Theorem 2 in p. 45 of Diestel and Uhl (1977).
6For the standard Birkhoff example, see Example 5 in p. 43 of Diestel and Uhl (1977).

6



Section 3. Additionally, we consider a slightly stronger version of (P2), requiring a process
to have square-integrable norms.

(Q1). The mapping (s, t) 7→ ⟨f(s), f(t)⟩ is (T ⊗ T , BR)-measurable.

(Q2). The mapping t 7→ ∥f(t)∥2 is (T , BR)-measurable and
∫

∥f(t)∥2dν(t) < ∞.

The above (Q1) simply requires that (s, t) 7→ ⟨f(s), f(t)⟩ is a jointly measurable mapping.
Thus, by Theorem 4.48 of Aliprantis and Border (2006), we confirm that (Q1) is stronger
than (P1) and weak measurability. Additionally, we can prove the next lemma, which will
be useful when we introduce an inner product space of Pettis integrable processes and an
integral equation defined over it.

Lemma 1. If processes f and g satisfy (Q1), then t 7→ ⟨f(t), g(t)⟩ is (T , BR)-measurable.

Remark 2. Since this lemma implies that t 7→ ∥f(t)∥2 is measurable whenever f satisfies
(Q1), an essential content of (Q2) is the square-integrability

∫
∥f(t)∥2dν(t) < ∞ in the

presence of (Q1).

2.2 Pettis Integral of Stochastic Processes

In the remainder of Section 2, we specify each output x ∈ X as a random variable with a
finite second moment. Specifically, let (Ω, Σ,P) be an arbitrary probability space, and let
X be a collection of random variables x : Ω → R such that E |x|2 =

∫
|x(ω)|2dP(ω) < ∞.

The inner product between random variables x, y ∈ X is defined as

⟨x, y⟩X := E [xy] =
∫

Ω
x(ω)y(ω)dP(ω).

For any x, y ∈ X, we denote the covariance by Cov [x, y] = E [xy] −E [x]E [y], the variance
by Var [x] = Cov [x, x], and the standard deviation by Sd [x] = Var [x]1/2.

In this probabilistic context, a (stochastic) process is meant by a function f : T → X

that assigns a random variable f(t) ∈ X to each input t ∈ T . As an immediate implication
of Proposition 1, a stochastic process is Pettis integrable if it has measurable covariance
and integrable mean and standard deviation.

Corollary 1. Let f be a process such that Cov [f(s), f(·)] is measurable for every s ∈ T ,
and that E[f(·)] and Sd [f(·)] are integrable. Then, f is Pettis integrable.

Example 1 (Continued). By leveraging the result of Ui and Yoshizawa (2013), Proposition
4 of Bergemann and Morris (2013) states the unique existence of an equilibrium under the
condition that r < 1. This equilibrium, symmetric across all players, is characterized by a
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linear function of signals, given by ai = α∗
0 + α∗

xxi + α∗
yy, where the coefficients (α∗

0, α∗
x, α∗

y)
are determined by (r, s, k, µθ, σ2

θ , σ2
x, σ2

y).
The Pettis integrability of this equilibrium strategy can be verified as follows: Firstly,

the mean is computed as E [ai] = α∗
0 + (α∗

x + α∗
y)µθ, which is constant across agents, thus,

integrable. Moreover, the covariance is computed as

Cov [ai, aj ] =
(
α∗

x + α∗
y

)2
σ2

θ + α∗2
y σ2

y + α∗2
x σ2

x · 1{i = j},

which is a step function, taking constant values on the on-diagonal and off-diagonal subsets
of [0, 1]2, respectively. Hence, Cov [ai, aj ] is measurable. Consequently, by Corollary 1, it
follows that {ai}i∈[0,1] is Pettis integrable.

The definition of Pettis integral reminds us of a Fubini-like property that justifies
exchanging the order of expectation over ω ∈ Ω and integration over t ∈ T . Indeed, by
taking a non-zero constant random variable in the position of y in (2), we confirm the
following holds true:

E
[∫

f(t)dν(t)
]

=
∫

E [f(t)]dν(t). (3)

In relation to this formula, we provide two results pertaining to the exchangeability of
probabilistic operations and integration on the input space. The next result justifies the
interchange of covariance and integration.

Proposition 2. For any Pettis integrable stochastic process f , it holds that

Cov
[
x,

∫
f(t)dν(t)

]
=
∫

Cov [x, f(t)]dν(t), ∀x ∈ X. (4)

In particular, we have

Var
[∫

f(t)dν(t)
]

=
∫ ∫

Cov [f(s), f(t)]dν(s)dν(t). (5)

This proposition yields an important implication when f(t) are pairwise uncorrelated
and have a common mean across t. In this case, the right-hand side of (5) becomes 0,
suggesting that the Pettis integral coincides with the common mean in mean square, which
is exactly the Pettis integral version of LLN, known as Theorem 3 of Uhlig (1996). However,
as pointed out in pp. 551–552 of Khan and Sun (1999), we have to be careful to interpret
this result because its probabilistic content is quite different from the classical LLN, stating
that a sample average of countably many i.i.d. random variables converges to the mean
for almost every sample path. This issue is elaborated in Section 4 by referring to their
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discussion more in details.

Example 1 (Continued). For a symmetric strategy profile, Bergemann and Morris (2013)
argue that the volatility and dispersion are computed as follows:

V = Cov [ai, aj ] and D = Var [ai] − Cov [ai, aj ],

where i, j ∈ [0, 1] are any distinct pair of representative agents. These formulae can be
readily derived as a consequence of Proposition 2.

Next, we develop a “conditional” version of the Fubini formula (3) that arises when
we replace the unconditional expectation by the conditional expectation with respect to a
sub-σ-algebra of Σ.

Proposition 3. Let Σ̂ ⊆ Σ be a sub-σ-algebra, f be a Pettis integrable stochastic process,
and f̂ ≡ E[f | Σ̂]. If f̂ is Pettis integrable, then we have

P
(
E
[∫

f(t)dν(t) | Σ̂
]

=
∫

E
[
f(t) | Σ̂

]
dν(t)

)
= 1. (6)

In particular, if f satisfies (P2) and f̂ satisfies (P1), then f̂ is Pettis integrable.

According to Proposition 3, the interchange of conditional expectation and integration
over T is justified if the “conditional” stochastic process f̂ is Pettis integrable. In evaluating
the Pettis integrability of f̂ , we observe that E[f̂ ] = E[f ] and Sd[f̂ ] ≤ Sd[f ], which are
confirmed by the law of iterated expectations and Jensen’s inequality, respectively. Hence,
given that the initial process f meets all assumptions of Corollary 1, our task simplifies
to verifying the measurability of the covariance of f̂ . We are going to illustrate this by
focusing on a class of Gaussian processes.

2.3 Pettis Integral of Gaussian Processes

Many economic applications, including Example 1, focus on normally distributed random
variables for tractability. To model a continuum of such random variables, the concept of
Gaussian processes is useful.

We say that a stochastic process f : T → X is a Gaussian process if any finite selection
from the collection {f(t)}t∈T is jointly normally distributed. By normality, the joint
distribution of f can be summarized by the mean and covariance functions,

µ(t) := E [f(t)] and σ(s, t) := Cov(f(s), f(t)), ∀s, t ∈ T.
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Notice that by definition, σ necessarily satisfies the statistical property that for any
n ∈ N and t1, . . . , tn ∈ R, the matrix [σ(ti, tj)]1≤i,j≤n ∈ Rn×n is symmetric and positive
semidefinite. In fact, this property of σ is sufficient for the existence of a Gaussian process,
which has σ exactly as its covariance function (see, e.g., Chapter 12 of Dudley, 1989). No
restriction on µ is needed.

Corollary 1 readily provides sufficient conditions on µ and σ for the Pettis integrability
of Gaussian processes. Moreover, when Proposition 3 is narrowed down to Gaussian
processes, we see that no further assumption, other than the joint measurability of σ, is
needed to obtain the conditional Fubini formula.

Corollary 2. Let f : T → X be a Gaussian process that satisfies all assumptions of
Corollary 1. If σ is jointly measurable, then for any n ∈ N and t1, . . . , tn ∈ T , the process
f̂ ≡ E [f | f(t1, . . . , tn)] is Pettis integrable, and it holds that

P
(
E
[∫

f(s)dν(s) | f(t1, . . . , tn)
]

=
∫

E [f(s) | f(t1, . . . , tn)]dν(s)
)

= 1. (7)

To verify this result, we can simply use the conditional Gaussian formula to obtain

Cov
[
f̂(s), f̂(t)

]
=


σ(s, t1)

...
σ(s, tn)


⊤

σ(t1, t1) · · · σ(t1, tn)
... . . . ...

σ(tn, t1) · · · σ(tn, tn)


−1

σ(t, t1)
...

σ(t, tn)

.

Given that σ : T 2 → R is jointly measurable, it should be evident that the conditional
process f̂ has a jointly measurable covariance function. Therefore, by the discussion after
Proposition 3, we confirm that (7) holds true.

Example 1 (Continued). A common way to get a closed form of an equilibrium is based
on matching coefficients. Namely, we firstly guess a (symmetric) equilibrium strategy
ai = α0 +αxxi +αyy, which is linear in signals, and then substitute it into the best-response
formula (1) to express (α0, αx, αy) in terms of parameters. In doing so, we need to calculate
each agent’s conditional expectation of the aggregated action A. This step is facilitated by
postulating the exchangeability of conditional expectation and integration,

E [A | xi, y] =
∫ 1

0
E [aj | xi, y]dj.

By means of Proposition 3, the interchange is justified if the process j 7→ E [aj | xi, y] is
Pettis integrable. Indeed, by the linearity of aj in (xj , y) and the normality of information,
one can see that E [aj | xi, y] is expressed as a linear combination of xi and y, with
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weights identical across agents. Consequently, the conditional process maintains the needed
conditions for Pettis integrability.

3 Pettis Integral Equation

In this section, we investigate a linear equation that involves a Pettis integral of an unknown
process. Specifically, we are interested in an equation of the form

f(t) = w-
∫

K(t, t′)f(t′)dν(t′) + g(t), ν-a.e. t ∈ T. (8)

Here, f is an unknown process that we want to derive, g is a known process, and K : T 2 → R
is a real-valued function, termed an (integral) kernel, that specifies wights put on f(t′)
when computing the Pettis integral in the right-hand side. Our main interests lie in the
existence and uniqueness issues of the above Pettis integral equation.

This type of equation naturally arises when characterizing an equilibrium in a large
population game with linear best responses. In this context, each input t ∈ T is interpreted
as a player. An outcome f(t) is viewed as an equilibrium strategy of player t, which is
a random variable measurable with respect to t’s private information. The equation (8)
then requires that for (almost) every player t, the best response strategy f(t) sets equal to
the weighted aggregate

∫
K(t, t′)f(t′)dν(t′) of others’ equilibrium strategies, defined as the

Pettis integral, plus some exogenous component g. Here, an integral kernel K captures
payoff interactions among agents by quantitatively evaluating “whose behavior affect whom
and how much.”

Example 1 (Continued). Let us generalize the running example to accommodate payoff
asymmetry across players.7 Specifically, we postulate that player i’s best-response strategy
is now given as

ai = E
[∫ 1

0
rijajdj | xi, y

]
+ si E [θ | xi, y] + ki, (9)

where rij , si, ki ∈ R are the parameters that can vary across agents. In this context, an
integral kernel K corresponds to {rij}i,j∈[0,1], indicating how player i adjusts her strategy
in response to changes in j’s strategy. For example, in network games, we often consider
the specification such as rij = r · 1{(i, j) ∈ G}, where r > 0 is interpreted as the degree of
peer effects, and G is a subset of T 2, called a graph or network structure, that represents
the connections among players. An exogenous process g corresponds to {siθ + ki}i∈[0,1].

7This generalized case falls in the model of Miyashita (2022).
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Having heterogeneous g enables us to model player’s base action levels and responses to
the state that differ across players.

Throughout, we assume that K satisfies jointly measurability and bounded. These
assumptions are satisfied in most economic applications.

Definition 2. A kernel is given as a jointly measurable function K : T 2 → R. In particular,
we say that K is bounded if

∥K∥∞ := sup
s,t∈T

|K(s, t)| < ∞

To formally discuss the solvability of the equation (8), we need to introduce a space of
processes, serving as a set of candidate solutions. To this end, we recall the strengthening of
weak measurability that makes an inner product between processes be definable. Specifically,
denote by F the linear space of processes f : T → X that satisfy (Q1) and (Q2), equipped
with point-wise additions and multiplications. Then, by means of Lemma 1, the inner
product between two processes f, g ∈ F can be defined by

⟨f, g⟩L2 :=
∫

⟨f(t), g(t)⟩Xdν(t). (10)

Additionally, we define the induced norm as ∥f∥L2 := ⟨f, f⟩1/2
L2

. Notice that (Q2) ensures
that ∥f∥L2 < ∞ for all f ∈ F .

We say that f, f ′ ∈ F are equivalent if ∥f − f ′∥L2 = 0. Denote by [f ]∼ the induced
equivalent class of f , while we often abuse the notation to write f = [f ]∼ as usual. Then,
let L2 be the space of (equivalent classes of) processes f ∈ F . By routine arguments,
we can show that L2 is Hilbertian, which will serve as the space in which all processes
appearing in the equation (8) reside.

Lemma 2. L2 equipped with the inner product (10) constitutes a Hilbert space space.

Now, given a bounded kernel K, we define an integral operator K by

Kf := w-
∫

K(·, t)f(t)dν(t)

for each f ∈ L2. It should be checked that K is a well-defined linear operator acting from
L2 to itself, which is accomplished in the next proposition. Moreover, the proposition
shows that K enjoys a nice property of compactness, enabling us to deal with K in a way
similar to a finite-dimensional matrix.

Proposition 4. If K is a bounded kernel, then K is a bounded linear operator acting from
L2 to itself. Moreover, K is compact.

12



Now, by using the current notation, we can rewrite (8) as

(I − K)(f) = g,

where I stands for the identity operator on L2. As mentioned earlier, the compactness of
K allows us to treat the equation akin to a finite-dimensional matrix equation. Specifically,
the equation admits a unique solution in L2 if and only if the operator (I − K) has a
bounded inverse. Moreover, by virtue of the Riesz–Fredholm theory, this is the case if and
only if (I − K) is injective, which is further equivalent to saying that 1 is not an eigenvalue
of K. Formally, by applying Theorem 3.4 of Kress (2014), we establish the following result
as a corollary to Proposition 4.

Corollary 3. Let g ∈ L2 and K be a bounded kernel. Then, (8) has a unique solution in
L2 if and only if 1 is not an eigenvalue of K.

We remark that there is a missing component in the equation (9) of our example that
does not appear in (8): That is, the conditional expectation operator E [· | xi, , y], which
depends on each player’s private information, and may influence equilibrium properties.
This aspect is addressed in our complementary work Miyashita and Ui (2024), filling
the mentioned gap by uncovering the mathematical nature of the role that information
structures play in network games with incomplete information. In this work, we delve
into the relationship between equilibrium properties and the spectral properties of K by
providing sufficient conditions that guarantee the existence, uniqueness, and stability of
an equilibrium under an arbitrary information structure, and further show that these
conditions are, in some sense, necessary as well.

4 Discussion

Several papers on large LQG games, such as Bergemann and Morris (2013), can be read
without prior knowledge of Pettis integral, and their economic implications remain valid
even when integration is interpreted naively. Therefore, the contribution of this paper
lies in providing a solid mathematical foundation for the economic insights derived from
earlier works, rather than in identifying errors or incorrect conclusions, by employing
the Pettis-integral approach. We believe that this approach is among the simplest and
least technically demanding ones, as most results in this paper are proven using standard
technical machinery in economic theory. The implications of our findings, demonstrated
through the running example, may align with economists’ intuitions. In light of this, we
propose that this approach can serve as a useful instrument for future studies of large

13



population games, offering a means to avoid tricky issues related to the aggregation of a
continuum of random variables.

As cautioned in Khan and Sun (1999), the Pettis-integral approach can “avoid” the
measurability issue, but it does not “resolve” the issue and leaves some interpretation
challenges.8 To illustrate their discussion, consider a collection of random variables
{f(t)}t∈T Pettis-integrated to the aggregated random variable f̄ ≡

∫
f(t)dν(t). While f̄

has an ex-post realization f̄(ω) for each ω in the underlying probability space, it may
lack meaningful relations to the realized sample path {f(t, ω)}t∈T , which may not be
integrable across t. In the context of Example 1, the Pettis integral approach allows us
to define the aggregate A from an ex-ante standpoint, but it does not reveal how the
realization of A is related to specific realizations of the state, signals, and individual actions.
Relatedly, Proposition 2 cannot be given probabilistic interpretations in the same way as
the traditional LLN, but rather, it should be understood as calculating the moment of the
aggregate from an ex-ante standpoint before the resolution of uncertainty about ω.9

Under what circumstances would the Pettis integral approach be appropriate for
modeling large strategic situations with incomplete information? In our perspective,
the combination of two ingredients—aggregative and Bayesian elements—is crucial. In
the running example, the aggregated action is the sole strategic argument in players’
payoff functions that matter their incentives. The notion of Pettis integral relies on
the interchange of integration and probabilistic operations, taken unconditionally, which
implies its conditional counterpart, Proposition 3. Applying this result to the best-response
formula (1), we observe a specific way of how Bayesian players evaluate strategic uncertainty:
The aggregated action is best estimated as the total sum of the individual uncertainties
associated with each opponent’s strategic decision. If one agrees that viewing aggregated
uncertainty as the sum of individual uncertainties guides ex-ante payoff maximization,
then the Pettis integral approach becomes appealing, as the notion is essentially defined
by embracing this idea as an axiom. On the other hand, the Pettis integral approach may
lack clear economic interpretations when the modeler’s interest lies in ex-post realizations
of the aggregate or sample path.10

Finally, applying the Pettis-integral approach to games requires some regularity con-
8The lack of ex-post interpretations of Pettis integral is well recognized and discussed in Al-Najjar (1995)

and Uhlig (1996), who firstly advocate for this approach as modeling tools of large economies.
9Sun (2006) proposes a different approach to integrate a sample path by considering an extension

of the measurable space (T × Ω, T ⊗ Σ, ν ⊗ P), on which the real-valued function f : T × Ω → R acts
measurably. On this extended measurable space, he establishes the “exact” LLN, stating that the sample
mean

∫
T

f(t, ω)dν(t) is equal to the ex-ante mean of the process P-almost surely. He defines the extension
by appealing to the Fubini property, the interchange of the integrals over T and Ω, which has a similar
spirit to Pettis integral.

10Khan and Sun (1999) reach a similar conclusion to us; see the last paragraph of their Section 7.
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ditions on primitives, such as the measurability of network structures. More crucially,
we need to restrict attention to a well-posed class of strategy profiles, satisfying (Q1)
and (Q2), to properly define the aggregate. As pointed out by Al-Najjar (2008), since
any measurable function is approximately continuous, measurability implicitly assume
some degree of similarity among players. Thus, imposing similarity of strategies could be
an undesirable restriction, as an equilibrium is typically perceived as a consequence of
decentralized strategic decisions. On the other hand, it would be natural to anticipate
that rational choices of players tend to be similar if they share similar primitives, such as
payoff functions, private information, or sets of neighbours. In Miyashita and Ui (2024),
we show that by imposing certain measurability conditions on primitives, there exists an
equilibrium wherein players’ strategies are measurable in the same degree. Our existence
result can be viewed as a positive result, affirming such predictions.

A Appendix

Proof of Proposition 1

Clearly, f satisfies (P1) if it is weakly measurable. Conversely, assume that f satisfies (P1).
Let F := span{f(t) : t ∈ T}. Then, given any y ∈ X, there exists a unique orthogonal
decomposition (z, y⊥) ∈ F × F ⊥ such that y = z + y⊥ by Theorem 3 in p. 55 of Lax (2002).
Since ⟨y, f(t)⟩ = ⟨z, f(t)⟩ holds for every t ∈ T , it is without loss of generality to assume
that y ∈ F to show that f is weakly measurable.

By the construction of F , we can find a sequence {yn}n∈N in span {f(t) : t ∈ T},
converging to y in norm, such that each yn is expressed as a finite linear combination

yn =
k̄n∑

k=1
βn

k f(tn
k) (11)

with some k̄n ∈ N, βn
1 , . . . , βn

k̄n
∈ R, and tn

1 , . . . , tn
k̄n

∈ T . Then, by setting ȳn = 1
n

∑n
m=1 ym,

we observe that

∥y − ȳn∥ ≤ 1
n

n∑
m=1

∥y − ym∥.

Since the right-hand side is the Cesàro mean of ∥y − ym∥ through m = 1, . . . , n, and since
ym

∥·∥−−→ y, it follows that ȳn
∥·∥−−→ y.
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For each n ∈ N, we define a function ϕ̄n : T → R by

ϕ̄n(t) = 1
n

n∑
m=1

ϕm(t) where ϕm(t) =
k̄m∑
k=1

βm
k ⟨f(tm

k ), f(t)⟩ , ∀t ∈ T.

Note that ϕm(t) = ⟨ym, f(t)⟩ holds by (11), whereas we have limm→∞⟨ym, f(t)⟩ = ⟨y, f(t)⟩
since norm convergence implies weak convergence. Thus, for every t ∈ T , the real sequence
{ϕm(t)}m∈N is convergent, and its limit equal to ⟨y, f(t)⟩. Moreover, by the fact that ϕ̄n(t)
is the Cesàro mean of ϕm(t), it follows that

lim
n→∞

ϕ̄n(t) = ⟨y, f(t)⟩ ∀t ∈ T.

Notice that ϕ̄n is written as a finite linear combination of functions t 7→ ⟨f(tm
k ), f(t)⟩,

each of which is measurable by (P1). Thus ϕ̄n is measurable. Moreover, since the
mapping t 7→ ⟨y, f(t)⟩ is given as the pointwise limit of ϕ̄n, it is measurable by Lemma
4.29 of Aliprantis and Border (2006). Since y is arbitrary, we have established the weak
measurability of f .

Next, we show that f is Pettis integrable when it satisfies both (P1) and (P2). To this
end, by the Cauchy–Schwartz inequality, observe that∫

|⟨y, f(t)⟩|dν(t) ≤ ∥y∥
∫

∥f(t)∥dν(t),

where the right-hand side is finite by (P2). Now, take any sequence {yn}n∈N ⊆ X such
that yn

w−→ y. Let us show that ⟨yn, f(·)⟩ converges to ⟨y, f(·)⟩ in L1, i.e.,

lim
n→∞

∫
|⟨yn − y, f(t)⟩|dν(t) = 0. (12)

Since any weakly convergent sequence is norm-bounded, we can find some c ∈ R++ such
that c > ∥y∥ ∨ supn∈N ∥yn∥. For each t ∈ T , by the Cauchy–Schwartz inequality, we have

|⟨yn − y, f(t)⟩| ≤ ∥yn − y∥ · ∥f(t)∥ < 2c∥f(t)∥,

whereas t 7→ 2c∥f(t)∥ is integrable by (P2). Hence, by the dominated convergence theorem,
it follows that

lim
n→∞

∫
|⟨yn − y, f(t)⟩|dν(t) =

∫
lim

n→∞
|⟨yn − y, f(t)⟩|dν(t) = 0,

where the second equality holds by yn
w−→ y. Thus, (12) is verified. Therefore, Proposition

1 of Huff (1986) implies that f is Pettis integrable. Q.E.D.
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While weak measurability is equivalent to (P1), the following example shows that a
Pettis integrable process can violate (P2).

Example 2. Let ν be the Lebesgue measure on T = [0, 1], and let X be a non-separable
Hilbert space that has an uncountable orthonormal system {e(t)}t∈T . Then, let f(t) =
γ(t)e(t), where γ : T → R is any function. In particular, the mapping t 7→ |γ(t)| need
be neither measurable nor integrable. Regardless of γ, however, f is weakly measurable
since ⟨f(s), f(t)⟩ = 0 whenever s ̸= t. Let us show that f is Pettis integrated to zero.
Given any element y ∈ X, consider its orthogonal decomposition y = z + y⊥ with
z ∈ E := span{e(t)}t∈T and y⊥ ∈ E⊥. Notice that ⟨y, f(t)⟩ = ⟨z, f(t)⟩ holds for every
t ∈ T . Moreover, by the construction of E, there exists a sequence {zn}n∈N, converging
to z in norm, such that each zn is a finite linear combination of elements of {e(t)}t∈T .
Now, for each n, we have ⟨zn, f(t)⟩ = 0 except for at most finitely many t, and thus,∫

⟨zn, f(t)⟩dν(t) = 0 holds. In particular, this implies that the mapping t 7→ |⟨zn, f(t)⟩| is
bounded ν-a.e. uniformly across all n, so the dominated convergence theorem implies

0 = lim
n→∞

∫
⟨zn, f(t)⟩dν(t) =

∫
⟨z, f(t)⟩dν(t) =

∫
⟨y, f(t)⟩dν(t).

Since y is arbitrary, we have shown that w-
∫

f(t)dν(t) = 0. △

Proof of Lemma 1

For any process f , we denote cf : (s, t) 7→ ⟨f(s), f(t)⟩ and df : t 7→ ∥f(t)∥2. Also, let
δ : T → T 2 be defined by δ(t) = (t, t). It is clear that δ is (T , T ⊗ T )-measurable. Now,
assume that f and g satisfy (Q1) so that cf and cg are jointly measurable. Since df = cf ◦δ,
by Lemma 4.22 of Aliprantis and Border (2006), we see that df is (T , BR)-measurable, and
so is true for dg. Moreover, since f + g satisfies (Q1), notice that df+g : t 7→ ∥f(t) + g(t)∥2

is (T , BR)-measurable. We then observe that

⟨f(t), g(t)⟩ = ∥f(t) + g(t)∥2 − ∥f(t)∥2 − ∥g(t)∥2

2 ,

indicating that the mapping t 7→ ⟨f(t), g(t)⟩ is a linear combination of df , dg, and df+g,
and hence, it is (T , BR)-measurable. Q.E.D.
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Proof of Proposition 2

By using the definition of the Pettis integral, we observe that

Cov
[
x,

∫
f(t)dν(t)

]
= E

[
x

∫
f(t)dν(t)

]
− E [x]E

[∫
f(t)dν(t)

]
=
∫

E [xf(t)]dν(t) − E [x]
∫

E [f(t)]dν(t)

=
∫

(E [xf(t)] − E [x]E [f(t)])dν(t)

=
∫

Cov [x, f(t)]dν(t),

where the first and last equalities are nothing more than the definition of the covariance
of random variables. Thus, we have established (4). Moreover, (5) is obtained by taking∫

f(s)dν(s) in the position of x above and by applying (4) twice. Q.E.D.

Proof of Proposition 3

Suppose that f̂(·) = E[f(·) | Σ̂] is Pettis integrable. To verify (6), fix any event E ∈ Σ̂. By
the definition of conditional expectation (see, e.g., Chapter 10 of Dudley, 1989), it suffices
to show that

E
[
χE

∫
f(t)dν(t)

]
= E

[
χE

∫
E
[
f(t) | Σ̂

]
dν(t)

]
, (13)

where χE is a binary random variable such that χ(ω) = 1 if ω ∈ E and χ(ω) = 0 otherwise.
Since E |χE |2 = P(E) ≤ 1 is finite, we have

E
[
χE

∫
f(t)dν(t)

]
=
∫

E [χEf(t)]dν(t). (14)

On the other hand, by the definition of Pettis integral, we have

E
[
χE

∫
E
[
f(t) | Σ̂

]
dν(t)

]
=
∫

E
[
χE E

[
f(t) | Σ̂

]]
dν(t)

=
∫

E
[
E
[
χEf(t) | Σ̂

]]
dν(t) =

∫
E [χEf(t)]dν(t), (15)

where the second equality holds true since χE is f(t)-measurable, and the third equality
comes from the law of iterated expectation. Combining (14) and (15), we confirm that
(13) holds true. Q.E.D.
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Proof of Proposition 4

Let K : T 2 → R be a bounded kernel. Given any f ∈ L2 and s ∈ T , let us show that
the process t 7→ K(s, t)f(t) satisfies (Q1) and (Q2) so that it is Pettis integrable. By the
homogeneity of inner products, we have

⟨K(s, t)f(t), K(s, t′)f(t′)⟩ = K(s, t)K(s, t′)⟨f(t), f(t′)⟩.

Since K is jointly measurable, and since f satisfies (Q1), the above expression is measurable
in (t, t′) as being the product of three measurable functions. Thus t 7→ K(s, t)f(t) satisfies
(Q1). Moreover, by the boundedness of K, it holds that∫

∥K(s, t)f(t)∥2dν(t) =
∫

|K(s, t)|2 · ∥f(t)∥2dν(t) ≤ ∥K∥2
∞ · ∥f∥2

L2 < ∞,

which confirms (Q2). Thus, by Proposition 1, the Pettis integral Kf(s) =
∫

K(s, t)f(t)dν(t)
exists for all s ∈ T .

Next, we show that s 7→ Kf(s) satisfies (Q1) and (Q2) whenever f ∈ L2. Given any
s ∈ T , by applying the definition of Pettis integral twice, we have

∥Kf(s)∥ =
〈∫

K(s, t)f(t)dν(t),
∫

K(s, t′)f(t′)dν(t′)
〉

=
∫ ∫ 〈

K(s, t)f(t), K(t, t′)f(t′)
〉

dν(t)dν(t′)

≤ ∥K∥2
∞ ·

∫ ∫ 〈
f(t), f(t′)

〉
dν(t)dν(t′)

Thus, given that s 7→ ∥Kf(s)∥ is measurable, by using the Cauchy–Schwartz and Jensen’s
inequalities, we can bound the norm of Kf as

∥Kf∥2
L2 =

∫
∥Kf(s)∥2dν(s)

≤ ∥K∥2
∞ ·

(∫ ∫ 〈
f(t), f(t′)

〉
dν(t)dν(t′)

)2

≤ ∥K∥2
∞ ·

∫ ∫ ∣∣〈f(t), f(t′)
〉∣∣2dν(t)dν(t′)

≤ ∥K∥2
∞ ·

(∫
∥f(t)∥2dν(t)

)2
,

from which

∥Kf∥L2 ≤ ∥K∥∞ · ∥f∥2
L2 < ∞. (16)
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This confirms Kf satisfies (Q2), and particularly, we have Kf ′ ∈ [Kf ]∼ whenever f ′ ∈ [f ]∼.
We need to show that s 7→ ∥Kf(s)∥ is measurable, and that Kf satisfies (Q1). The next
lemma deals with these measurability issues.11

Lemma 3. For any f ∈ L2, Kf satisfies (Q1), i.e., the mapping (s, t) 7→ ⟨Kf(s), Kf(t)⟩
is (T ⊗ T , BR)-measurable. In particular, s 7→ ∥Kf(s)∥ is (T , BR)-measurable.

Proof. Consider the semiring S := (T ⊗ T ) × (T ⊗ T ) on T 4, and let τ : S → [0, 1] be a
set function given by

τ(A × B) = (ν ⊗ ν(A))(ν ⊗ ν(B)), ∀A, B ∈ T ⊗ T .

By Theorem 10.45 of Aliprantis and Border (2006), we know that τ is a measure on S. Let
Sτ be the collection of τ -measurable subsets of T 4. By Theorem 10.23 of Aliprantis and
Border (2006), Sτ is a σ-algebra on T 4, satisfying σ(S) ⊆ Sτ . In particular, since T 4 ⊆ S,
we have σ(T 4) ⊆ Sτ . This implies that any jointly measurable function ϕ : T 4 → R is
τ -measurable.

Fix any f ∈ L2. Since

γ(s, t, s′, t′) :=
〈
K(s, s′)f(s′), K(t, t′)f(t′)

〉
= K(s, s′)K(t, t′)

〈
f(s′), f(t′)

〉
,

is jointly measurable in (s, t, s′, t′), γ above defines a τ -measurable function by σ(T 4) ⊆ Sτ .
Moreover, by the boundedness of K and the Cauchy–Schwartz inequality, we have

|γ(s, t, s′, t′)| ≤ ∥K∥2
∞ · ∥f(s′)∥ · ∥f(t′)∥.

Thus, it follows that

∫
T 4

|γ(s, t, s′, t′)|dτ(s, t, s′, t′) ≤ ∥K∥2
∞ ·

(∫
∥f(t′)∥dν(t′)

)2
≤ ∥K∥2

∞ · ∥f∥2
L2 < ∞,

from which γ is τ -integrable. Therefore, by the standard Fubini theorem (Theorem 11.27 of
Aliprantis and Border, 2006), the iterated integral

∫
T 2
∫

T 2 γ(s, t, s′, t′)dν⊗ν(s′, t′)dν⊗ν(s, t)
exists, and particularly, this implies that the function

(s, t) 7→
∫

T 2
γ(s, t, s′, t′)dν ⊗ ν(s′, t′)

is (ν ⊗ ν)-measurable. Moreover, since every set in T ⊗ T is (ν ⊗ ν)-measurable by
11The proof of the lemma invokes some concepts pertaining to Carathéodory extension, such as measura-

bility of sets or functions with respect to a measure defined on a semiring. All our definitions are consistent
with those of Aliprantis and Border (2006).
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Corollary 10.28 of Aliprantis and Border (2006), by the construction of γ, it follows that
(s, t) 7→ ⟨Kf(s), Kf(t)⟩ is (T ⊗ T , BR)-measurable.

Having established the measurability of (s, t) 7→ ⟨Kf(s), Kf(t)⟩, that of s 7→ ∥Kf(s)∥
follows from Lemma 1.

By means of this lemma, we have shown that K is an operator acting from L2 to itself.
Clearly, K is linear by the linearity of Pettis integral. So, our remaining task is establishing
the compactness of K. To this end, take any bounded sequence {fn}n∈N ⊆ L2. Since L2 is
Hilbertian, the Banach–Alaoglu theorem implies that {fn}n∈N has a weakly convergent
subsequence fn(i)

w−→ f ∈ L2. Abusing the notation, we write as {fn}n∈N to represent the
subsequence. It is without loss of generality to let fn

w−→ 0, since otherwise, we can consider
an alternative sequence fn − f without changing subsequent arguments.

We want to show that the sequence {Kfn}n∈N converges to 0 in norm. First, notice
that the sequence is uniformly bounded, as (16) implies

sup
n∈N

∥Kfn∥L2 ≤ ∥K∥∞ ·
(

sup
n∈N

∥fn∥2
L2

)
< ∞. (17)

By Theorem 9 and Theorem 10 in pp. 60–61 of Lax (2002), we can take a (possibly,
uncountable) orthonormal basis {ei}i∈I of L2 so that each Kfn is written as

Kfn =
∑
i∈I

⟨Kfn, ei⟩L2
· ei. (18)

Since ∥Kfn∥L2 < ∞, there are at most countably many indexes j ∈ I for which
⟨Kfn, ei⟩L2

≠ 0. For each n, we denote the set of such indexes by Jn, and let J :=⋃
n∈N Jn ⊆ I. Note that J is countable, and the expression (18) now implies the following

Parseval’s equality:

∥Kfn∥2
L2 =

∑
j∈J

∣∣∣⟨Kfn, ej⟩L2

∣∣∣2. (19)

By the Cauchy–Schwartz inequality and (17), we have

sup
n∈N, j∈J

∣∣∣⟨Kfn, ei⟩L2

∣∣∣2 ≤
(

sup
n∈N

∥Kfn∥2
L2

)
·
(

sup
j∈J

∥ej∥2
L2

)
︸ ︷︷ ︸

=1

< ∞.
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Hence, by letting n → ∞ in (19), the dominated convergence theorem yields

lim
n→∞

∥Kfn∥2
L2 =

∑
j∈J

(
lim

n→∞
|⟨Kfn, ej⟩L2 |2

)
. (20)

Now, consider the adjoint operator K∗ of K. Since L2 is Hilbertian, K∗ acts from L2 to
itself and satisfies

⟨Kg, h⟩L2
= ⟨g, K∗h⟩L2

, ∀g, h ∈ L2.

Since fn
w−→ 0, we then observe that

lim
n→∞

|⟨Kfn, ej⟩L2 |2 = lim
n→∞

|⟨fn, K∗ej⟩L2 |2 = 0,

By this and (20), we conclude that Kfn
∥·∥−−→ 0, as desired. Q.E.D.
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