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Abstract

This paper studies identification and estimation of a game theoretical binary choice model

with social interactions. By exploiting two proxies for the group characteristics, we show that

peer effects can be identified even though the group structures are unobservable. Based on the

identification method, a semiparametric nonlinear least square estimator is established. Monte

Carlo experiments demonstrate that the semiparametric estimator has good finite-sample per-

formance. In the empirical application of our method, we find positive and significant peer

effects among students in their choices regarding private tutoring.
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1 Introduction

Social interaction models study how economic agents within well-defined reference groups (e.g.,

friends, colleagues, or neighbors) strategically interact with each other through their decision mak-

ing processes with respect to socioeconomic activities. Manski (1993) characterizes the impacts

of such strategic interactions as the influence of individuals’ decisions (peer effects), observable

characteristics of group members (contextual effects) and unobserved group heterogeneity (corre-

lated effects). Estimating peer effects is important for policy analyses because it can generate a

“social multiplier” where aggregate relationships will overstate individual elasticities (Glaeser et al.

2003). Recent empirical studies have found evidence of peer effects on crime (Glaeser et al. 1996),

adolescent behavior (Gaviria and Raphael 2001, Nakajima 2007), retirement savings (Duflo and

Saez 2002), in-school achievements (Calvó-Armengol et al. 2009), firm financial policy (Leary and

Roberts 2014), and product adoption (Bailey et al. 2022), among others. However, an empirical

challenge that applied researchers often encounter when analyzing such models is the unknown

nature of group structures. This problem arises because the data contains either no or inaccurate

information about group memberships1. Without prior information specifying the composition of

reference groups, it is impossible to conduct inference on peer effects (Manski 1993).

In this paper, we aim to address the empirical challenge at hand by introducing an econometric

method designed to uncover peer effects while incorporating unobservable group structures. We

model peer effects as the influence of binary choices made by members within the group. By

employing two proxies and a monotonicity condition for the unobserved group heterogeneity, we

demonstrate that it is possible to identify and estimate peer effects even in the absence of known

group structures. A noteworthy feature of our method, setting it apart from previous studies, is its

capability to distinguish peer effects from contextual plus correlated effects in this type of models.

This distinction has significant policy implications because contextual and correlated effects do not

generate the social multiplier.

The social interaction model under consideration is an incomplete information game theoretical

model with binary choices, resembling the one presented in Brock and Durlauf (2007). In the

model, each individual’s payoff function consists of four components: direct effects from their

own characteristics, peer effects from the subjective expectation of average choices made by group

members, contextual/correlated effects from unobserved group heterogeneity2, and a stochastic

component representing payoff shocks, assumed to be private information with a commonly known

distribution. Our goal is to recover the parameters associated with these components. Under

the condition of mild peer effects, we establish the existence of a unique rational expectation

1The inaccuracy primarily results from measurement errors, mainly stemming from sources of group structure
data, which are predominantly surveys and questionnaires soliciting self-reports (Marsden 1990).

2Due to latent group structures, the characteristics of group members become unobservable as well. Therefore,
the unobserved group heterogeneity in our model incorporates both contextual and correlated effects.
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equilibrium, which can help avoid the incompleteness problem as discussed in Tamer (2003).

Our identification strategy proceeds in two steps. First, we identify the subjective expectations

of average choices made by group members. In this step, we conduct the following: (1) In the

rational expectation equilibrium, these subjective expectations are equivalent to the conditional

expectations of binary choices based on the unobserved group heterogeneity. (2) We nonparamet-

rically identify the conditional expectations via the matrix decomposition method in the measure-

ment error literature (e.g., Hu 2008, 2017). This method requires two proxies for the unobserved

group heterogeneity3 and a monotonicity condition, which can be easily satisfied as long as the

contextual/correlated effects are nonzero. Second, we identify payoff parameters by exploring the

one-to-one mapping between subjective expectations and model parameters implied by the model

structure. This mapping allows us to pin down a linear relationship between structural parameters.

Then, the nolinearity of subjective expectations allows us to separately identify direct, peer and

contextual/correlated effects.

Based on this identification procedure, we propose a semiparametric nonlinear least square

(SNLS) estimator for model parameters. Note that under the setup of our model, the data ex-

hibits a locally dependent structure, wherein observations within each group are interdependent.

This dependence structure is unknown, as we lack information about the composition of groups4.

Despite the unknown dependence structure, we establish that the SNLS estimator is still root-n

consistent and asymptotically normal. The inference procedure for model parameters relies on the

dependent-robust subsampling method introduced in Song (2016) and Leung (2022). Monte Carlo

experiments demonstrate the good performance of our proposed estimator and inference method

in finite samples.

In the empirical application of the method developed in this paper, we investigate peer effects in

the decisions of secondary school students to participate in private tutoring, utilizing data from the

China Education Panel Survey (CEPS). CEPS is a nationally representative longitudinal survey

that contains rich information about secondary school students, their parents, and teachers. We

choose class advisors’ subjective evaluation of class performance as proxies for the unobserved group

heterogeneity. Our estimates suggest that there are positive and significant peer effects among

students in their choices related to private tutoring. In comparison, we also estimate models

that naively treat classrooms as reference groups, and it turns out that estimated peer effects

become insignificant, which demonstrates the empirical importance of incorporating unknown group

structure.

Relation to the Literature. This paper contributes to three strands of the literature. First,

it is naturally related to studies of social interaction models with discrete outcomes, which have

been extensively investigated since the pioneering work of Brock and Durlauf (2001, 2007). They

3These proxies can be other outcome variables or contaminated measurements of group characteristics.
4This is analogous to clustered data with unknown cluster memberships.
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propose a novel equilibrium characterization of discrete choice models with social interactions. The

key feature of their model is that individuals will form homogeneous rational expectations regarding

the behaviors of all other members in the same group. Soetevent and Kooreman (2007) adopt a

complete-information game framework to analyze peer effects in discrete choice models and uses

simulated maximum likelihood for estimation. Lee et al. (2014) extend the model of Brock and

Durlauf (2001, 2007) to allow for heterogeneous rational expectations based on publicly known

characteristics and proposes a maximum likelihood method to estimate model parameters. Yang

and Lee (2017) further permit the heterogeneous expectations to depend on asymmetric private

information. Xu (2018) employs a simultaneous game of incomplete information to study large

network-based social interactions. Lin et al. (2021) identify and estimate heterogeneous social effects

in binary choices with unknown network structures. The key assumption of their identification

strategy is that the latent network structures are functions of observable characteristics of group

members, essentially ruling out correlated effects. Our paper differs from the specifications in these

papers in the sense that it allows for both unknown group structures and correlated effects.

Second, the paper also contributes to the literature of empirical games with incomplete in-

formation. Aguirregabiria and Mira (2007) employ a nested pseudo likelihood method to estimate

dynamic discrete games of incomplete information. Aradillas-Lopez (2010) estimates a model where

players’ private values are independent of public information in the game. Bajari et al. (2010) use

exclusion restrictions to identify static games with multiple equilibria. De Paula and Tang (2012)

propose a test for multiple Bayesian Nash equilibria in discrete simultaneous games with incom-

plete information. Wan and Xu (2014) studies semiparametric identification of binary decision

games with two players and correlated private values. Lewbel and Tang (2015) show that it is

possible to nonparametrically identify binary games with incomplete information using excluded

regressors. Menzel (2016) develops asymptotic theory for discrete games with a large number of

players. Aguirregabiria and Mira (2019) identify games with both multiple equilibria and unob-

served heterogeneity. In comparison, we investigate an incomplete information game involving

simultaneous binary choices and social interactions. Our identification strategy is unique, utiliz-

ing the eigenvalue-eigenvector decomposition technique to nonparametrically identify equilibrium

beliefs and explores its structural links with model parameters subsequently.

Third, the paper also enriches the literature of nonparametric identification of measurement

error models5 and its applications in microeconomic models with latent variables such as auctions

(Li et al. 2000, An et al. 2010, Hu et al. 2013, An 2017), incomplete information games with

multiple equilibria (Xiao 2018, Luo et al. 2022), dynamic discrete choices (Hu and Shum 2012,

An et al. 2021), production functions for cognitive and nocognitive skills (Cunha et al. 2010), and

two-sided matching models (Diamond and Agarwal 2017). To the best of our knowledge, only

two papers have also employed measurement error approaches to study network models with social

5See Hu (2017) for an overview of the literature on the nonparametric identification of measurement error models.

4



interactions. Lin and Hu (2024) study a binary social interaction model with misclassification

errors in outcome variables but require knowledge of group structures. On the other hand, Zhang

(2020) nonparametrically identifies the reduced-form spillover effects of treatment responses in

social networks with missing links. In contrast, our paper focuses on the structural model of social

interactions, which is crucial for researchers to determine the mechanism through which peer effects

influence personal outcomes6.

The rest of the paper is organized as follows. Section 2 introduces the setting and basic as-

sumptions of our model. Section 3 presents a constructive identification procedure. In Section

4, we propose a SNLS estimator for model parameters and establish its asymptotic properties. A

subsampling inference method is also discussed. Section 5 discusses two extensions of our identifica-

tion method. The finite sample performances of the SNLS estimator and the subsampling method

are examined through Monte Carlo simulations in Section 6. Section 7 concludes. All proofs are

provided in the Appendix.

Notations: Throughout the paper, all random elements are defined on a probability space (Ω,A,P).
For a random variable X with support supp(X), we use FX(x) and fX(x) to represent its cumula-

tive distribution function (CDF) and probability density function (PDF) evaluated at x ∈ supp(X).

Let
p−→ and

d−→ denote convergence in probability and distribution, respectively.

2 The Model

We consider a binary choice social interaction model with rational expectations similar to Brock

and Durlauf (2001, 2007). The sample consists of n individuals within social groups, such as

friends, classmates and colleagues. There are G social groups in the population and each individual

i belongs to one of these G groups. The size of group g is ng, i.e., |Ng| = ng. Consequently,∑G
g=1 ng = n. In this paper, we assume that the group memberships are unknown to researchers,

i.e., we do not know which group individual i belong to for i = 1, 2, ..., n.

Individual choices are coded by Yi ∈ {0, 1}. We assume that the payoffs for Y = 1, ui(1) is

additive in the various factors, i.e.,

ui(1) = α+ βme
i,g + γXi + δZ∗

g − ϵi. (2.1)

Following the literature of binary choice model, we impose the normalization restriction that ui(0) =

0. Equation (2.1) is determined by four factors:

� observable individual-specific characteristics Xi, which is a dx × 1 vector of discrete random

variables;

6See Manski (2013) for a detailed comparison of reduced-form and structural approaches to social interaction
models.
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� subjective expectation by agent i of Ȳg, the average choice in the group, described by the

value me
i,g; this is known as the peer effects as it describes how the behaviors of others affect

each individual.

� unobserved group heterogeneity, measured by a discrete scalar Z∗
g . It relates to how charac-

teristics of a group affect its members. Note that its parameter δ represents both contextual

and correlated effects, as characteristics of group members are unobservable due to unknown

group structures and are therefore subsumed in Z∗
g .

� unobservable individual characteristics summarized by a scalar ϵi, which is assumed to be in-

dependently drawn from a known distribution (e.g., standard normal or logistic) with strictly

increasing CDF Fϵ and PDF fϵ that is bounded above by supe fϵ(e) <∞. Besides, the known

distribution does not depend on Xi, Zg.

We assume that subjective beliefs are rational, given information of Z∗
g and FX|Z∗ , the CDF of

Xi conditional Z
∗
g . Therefore, the subjective expectations m

e
i,g coincide with mg, the mathematical

expectation of the average choice in group g given Z∗
g . Since

E
(
Yi|Xi, Z

∗
g

)
= Fϵ

(
α+ βmg + γXi + δZ∗

g

)
, (2.2)

mg is then defined by

mg ≡ E
(
Yi|Z∗

g

)
=

∫
Fϵ

(
α+ βmg + γXi + δZ∗

g

)
dFX|Z∗ . (2.3)

In the equilibrium, mg can be characterized as the fixed point of (2.3). It is possible for there to

exist multiple values of mg that fulfill (2.3). However, when multiple equilibria exist, an obvious

obstacle for identification and inference is the incompleteness of the econometric model (Tamer

2003). Therefore, we impose the following assumption:

Assumption 2.1. (Unique Equilibrium) The sample is generated from a single equilibrium for all

n.

Assumption 2.1 is widely imposed for identifying and estimating an incomplete information

game, see e.g., Aradillas-Lopez (2010), Bajari et al. (2010) and Lewbel and Tang (2015). It en-

sures that the equilibrium expected average choice can be directly identified and estimated as the

conditional expectation using information from the sample.

It is worth mentioning that Assumption 2.1 can be satisfied if we restrict the strength of peer

effects β not to be “too large” (Horst and Scheinkman 2006):

Lemma 2.1. If |β| < 1

supe fϵ(e)
, the equilibrium expected average choice characterized by (2.3)

will be unique.
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The upper bound of β in Lemma 2.1 guarantees that (2.3) is a contraction mapping. Similar

conditions has been used in Brock and Durlauf (2001), Lee et al. (2014), Xu (2018) and Lin and Hu

(2024) to show the uniqueness of equilibrium in incomplete information games. If the underlying

distribution of ϵ is standard normal, the upper bound will be
√
2π ≈ 2.507. For Logit-type models,

the upper bound should be changed to 4.

3 Identification

In this section, we present sufficient conditions for identifying the binary choice model of social in-

teractions with unknown group structures. Our identification strategy proceeds in two steps. First,

we identify the equilibrium subjective expectations of average choices made by group members.

Second, we identify payoff parameters by exploring the one-to-one mapping between subjective ex-

pectations and model parameters implied by the model structure and the nolinearity of conditional

expectations. For notational simplicity, we will suppress the subscripts i and g whenever there is

no ambiguity.

3.1 Identification of equilibrium subjective expectations

First, we discuss how to nonparametrically identify the equilibrium subjective expectationm, which

equals to E(Y |Z∗) by (2.3). We employ the eigenvalue-eigenvector decomposition method in Hu

(2008), relying on two discrete proxies for Z∗, denoted by Z and Z ′, and a monotonicity condition

to achieve identification. These two proxies can be obtained as other categorical outcome variables

related to social interactions or contaminated measurement of group characteristics based on self-

reported and administrative network data. The following set of assumptions will be imposed in

order to provide a baseline for identification analysis.

Assumption 3.1. (Random Assignment) Individuals are randomly assigned to groups, i.e., FX|Z∗ =

FX

Assumption 3.1 is also imposed in Brock and Durlauf (2007) and utilizes the idea of random

assignment by equating it with the independence of the distribution of individual characteristics

within a group from the unobserved group heterogeneity Z∗
g . While this assumption may be ap-

propriate for examples such as school classrooms (Eble and Hu 2022), it usually does not hold for

groups such as friends or neighborhood. In Section 5 we discuss how to extend the identification

results when Assumption 3.1 is not satisfied.

Under Assumption 3.1, we have

E (Y |X,Z∗) = Fϵ (α+ βm+ γX + δZ∗) (3.1)
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and

m =

∫
Fϵ (α+ βm+ γX + δZ∗) dFX . (3.2)

Assumption 3.2. (Conditional Independence) Z ⊥ Z ′ ⊥ Y |Z∗, X

Assumption 3.2 requires the two indicator Z, Z ′ and the binary outcome Y to be independent

with each other when conditioning on the latent variable Z∗ and the observables X. It implies

that the measurement errors in Z and Z ′ and the error term ϵ are independent with each other.

Assumption 3.2 is commonly imposed in the measurement error literature, see, e.g., Hu (2008), Hu

and Schennach (2008) and Hu (2017).

Under Assumptions 3.1 and 3.2, we can represent (conditional) joint distributions of observables

as mixtures of unobserved group heterogeneity Z∗.

Lemma 3.1. Suppose Assumptions 3.1 and 3.2 are satisfied. Then,

(i) fZ,Z′,Y |X(z, z′, y|x) =
∑

z∗∈supp(Z∗) fZ|Z∗,X(z|z∗, x)fZ′|Z∗,X(z′|z∗, x)fY |Z∗,X(y|z∗, x)fZ∗(z∗);

(ii) fZ,Z′|X(z, z′|x) =
∑

z∗∈supp(Z∗) fZ|Z∗,X(z|z∗, x)fZ′|Z∗,X(z′|z∗, x)fZ∗(z∗).

Proof. See Appendix.

Lemma 3.1 is a direct consequence of the random assignment and conditional independence

assumptions. It implies that the conditional joint distributions of two proxies Z, Z ′ and binary

outcome Y on covariates X are multiplicatively separable given Z∗. To identify m, we need to first

recover these latent mixture components.

Assumption 3.3. (Equal Support) | supp(Z)| = | supp(Z ′)| = | supp(Z∗)| = K.

Assumption 3.3 resembles the one in Hu (2017). It implies that the supports and Z, Z ′ and

Z∗ share the same carnality K. Otherwise, the proxies would lack sufficient information to iden-

tify the distribution of the latent variables. This assumption can be relaxed to allow | supp(Z)|
and | supp(Z ′)| to be larger than | supp(Z∗)|. In Section 5 we demonstrate that m can still be

nonparametrically identified in this scenario.

By imposing Assumption 3.3, we can define the following K ×K matrices for each Y = y and

X = x:
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MZ,Z′,Y |X =


fZ,Z′,Y |X(z1, z

′
1, y|x) fZ,Z′,Y |X(z1, z

′
2, y|x) · · · fZ,Z′,Y |X(z1, z

′
K , y|x)

fZ,Z′,Y |X(z2, z
′
1, y|x) fZ,Z′,Y |X(z2, z

′
2, y|x) · · · fZ,Z′,Y |X(z2, z

′
K , y|x)

...
...

. . .
...

fZ,Z′,Y |X(zK , z
′
1, y|x) fZ,Z′,Y |X(zK , z

′
2, y|x) · · · fZ,Z′,Y |X(zK , z

′
K , y|x)

 ,

MZ,Z′|X =


fZ,Z′|X(z1, z

′
1|x) fZ,Z′|X(z1, z

′
2|x) · · · fZ,Z′|X(z1, z

′
K |x)

fZ,Z′|X(z2, z
′
1|x) fZ,Z′|X(z2, z

′
2|x) · · · fZ,Z′|X(z2, z

′
K |x)

...
...

. . .
...

fZ,Z′|X(zK , z
′
1|x) fZ,Z′|X(zK , z

′
2|x) · · · fZ,Z′|X(zK , z

′
K |x)

 ,

MZ|Z∗,X =


fZ|Z∗,X(z1|z∗1 , x) fZ|Z∗,X(z1|z∗2 , x) · · · fZ|Z∗,X(z1|z∗K , x)
fZ|Z∗,X(z2|z∗1 , x) fZ|Z∗,X(z2|z∗2 , x) · · · fZ|Z∗,X(z2|z∗K , x)

...
...

. . .
...

fZ′|Z∗,X(z′K |z∗1 , x) fZ′|Z∗,X(z′K |z∗2 , x) · · · fZ′|Z∗,X(z′K |z∗K , x)

 ,

MZ′|Z∗,X =


fZ′|Z∗,X(z′1|z∗1 , x) fZ′|Z∗,X(z′1|z∗2 , x) · · · fZ′|Z∗,X(z′1|z∗K , x)
fZ′|Z∗,X(z′2|z∗1 , x) fZ′|Z∗,X(z′2|z∗2 , x) · · · fZ′|Z∗,X(z′2|z∗K , x)

...
...

. . .
...

fZ′|Z∗,X(z′K |z∗1 , x) fZ′|Z∗,X(z′K |z∗2 , x) · · · fZ′|Z∗,X(z′K |z∗K , x)

 ,

DY |Z∗,X =


fY |Z∗,X(y|z∗1 , x)

fY |Z∗,X(y|z∗2 , x)
. . .

fY |Z∗,X(y|z∗K , x)

 ,

DZ∗ =


fZ∗(z∗1)

fZ∗(z∗2)
. . .

fZ∗(z∗K)

 .

Then, the equations in Lemma 3.1 can be rewritten into matrix expression

MZ,Z′,Y |X =MZ|Z∗,XDY |Z∗,XDZ∗MT
Z′|Z∗,X (3.3)

and

MZ,Z′|X =MZ|Z∗,XDZ∗MT
Z′|Z∗,X . (3.4)

To use the eigen-decomposition technique, we need to ensure that the K × K matrices MZ|Z∗,X

and MZ′|Z∗,X are nonsingular, which is equivalent to the following rank condition.
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Assumption 3.4. (Full Rank) MZ|Z∗,X and MZ′|Z∗,X have rank K.

Assumption 3.4 has been adopted in prior works such as Hu (2008, 2017) and Xiao (2018).

However, when the measurements Z and Z ′ encompass fewer values than Z∗, Assumption 3.4 fails

to hold. In the subsequent lemma, we demonstrate its equivalence to assuming the invertibility of

the matrix MZ,Z′|X , which comprises observed probabilities. As a result, Assumption 3.6 can be

verified by testing H0 : rank(MZ,Z′|X) = K. This verification process can be implemented using

methods detailed in Robin and Smith (2000), Kleibergen and Paap (2006), and Chen and Fang

(2019).

Lemma 3.2. Under Assumptions 3.3, Assumption 3.4 holds if and only if the rank of the matrix

MZ,Z′|X is K.

Proof. See Appendix.

Lemma 3.2 also implies that the cardinality of supp(Z∗) can be identified as the rank ofMZ,Z′|X .

Then, algebraic manipulations of the matrix equations (3.3) and (3.4), summarized in the proof of

Proposition 3.1 below, implies that

MZ,Z′,Y |XM
−1
Z,Z′|X =MZ|Z∗,XDY |Z∗,XM

−1
Z|Z∗,X . (3.5)

This equation indicates that the observed matrix on the left hand side of (3.5) has an eigenvalue-

eigenvector decomposition. Then, the conditional density matrix DY |Z∗,X can be identified up to

the permutation of its diagonal entries. In order to guarantee the identification is unique, we need

to have another assumption:

Assumption 3.5. (Monotonicity) fY |Z∗,X is strictly monotonic in Z∗.

Assumption 3.5 is mild because Y is binary. Hence, the conditional density fY |Z∗,X equals

E(Y |Z∗, X) when Y = 1, and 1 − E(Y |Z∗, X) when Y = 0. Assumption 3.5 holds if and only if

E(Y |Z∗, X) is strictly monotonic in Z∗. In the following lemma, we show that a sufficient condition

for Assumption 3.5 is that δ ̸= 0.

Lemma 3.3. If δ ̸= 0, fY |Z∗,X is strictly monotonic in Z∗.

Assumption 3.5 ensures that the eigenvalues {fY |Z∗,X(y|z∗, x)}k=1,2,...,K are distinctive and rules

out the case of duplicate eigenvalues. Furthermore, it also fixes the ordering of the eigenvalues and

eigenvectors. This condition guarantees that the decomposition in (3.5) is unique and thus we can

identify fY |Z∗,X .

Once fY |Z∗,X is identified, the conditional expectation m∗ can be identified accordingly because

of the equation

fY |Z∗ =
∑

x∈supp(X)

fY |Z∗,X(·|·, x)fX|Z∗(x|z∗) =
∑

x∈supp(X)

fY |Z∗,X(·|·, x)fX(x), (3.6)
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where the last equality is by Assumption 3.1.

Proposition 3.1. Under Assumptions 3.1-3.5, the conditional density fY |Z∗,X and the conditional

expectation m are nonparametrically identified.

Proof. See Appendix.

A byproduct of the identification procedure above is the eigenvector matrix MZ|Z,X . The

identification of the conditional density fZ |Z′,X , which is necessary for the estimation method in

the next section, relies on the availability of this matrix. We summarize the procedure in Lemma

3.4 below.

Lemma 3.4. Under Assumptions 3.1-3.5, the conditional density fZ∗|Z′,X can be nonparametrically

identified as the elements of M−1
Z|Z∗,XMZ|Z′,X , where

MZ|Z′,X =


fZ|Z′,X(z1|z′1, x) fZ|Z′,X(z1|z′2, x) · · · fZ|Z′,X(z1|z′K , x)
fZ|Z′,X(z2|z′1, x) fZ|Z′,X(z2|z′2, x) · · · fZ|Z′,X(z2|z′K , x)

...
...

. . .
...

fZ|Z′,X(zK |z′1, x) fZ|Z′,X(zK |z′2, x) · · · fZ|Z′,X(zK |z′K , x)

 .

Proof. See Appendix.

3.2 Identification of model parameters

Next, we will identify the structural parameters θ ≡ (α, β, γ, δ)1×dθ . Besides the observable variables

(Y,X,Z, Z ′) specified in the previous step, we can treat m as known because it has been identified.

A key concept when analyzing identification of θ is the observationally equivalence.

Definition 3.1. The set of parameters θ = (α, β, γ, δ) is observationally equivalent to the alterna-

tive set of parameters θ̄ = (ᾱ, β̄, γ̄, δ̄) if∫
Fϵ (α+ βm+ γX + δZ∗) dFX =

∫
Fϵ

(
ᾱ+ β̄m+ γ̄X + δ̄Z∗) dFX

for all elements of supp(X) and supp(Z∗).

Because m has been identified in the first step, Definition 3.1 indicates that the identification

of θ holds if observational equivalence between model parameters and an alternative implies they

are identical, i.e., θ = θ̄. Let κ = α + βm + δZ∗ and κ̄ = ᾱ + β̄m + δ̄Z∗. It is obvious that m

is monotone increasing in κ + γX. Hence, the observational equivalence requirement holds if and

only if

κ+ γX = κ̄+ γ̄X. (3.7)

11



The identification sources for κ and γ stem from the intra-group variations in individual char-

acteristics X. In other words, there exists a group g0 such that the support of (1, XT
i,g0

) is not

contained in a proper linear subspace of Rdx+1, where Xi,g0 represents the characteristics of agent

i in group g0. To separately recover α, β, and δ from κ, we must rely on variations of m and Z∗

from agents in different groups. Specifically, it is crucial to ensure that m is not a linear function

of (1, Z∗) on the support of Z∗. Generally, this condition is satisfied because m solves a nonlinear

fixed-point equation (3.2). Brock and Durlauf (2007) also explore the nonlinearity of m to identify

model parameters. To formalize the idea, we impose the following assumption. Define the dx × n

matrix X = (Xi)1≤i≤n and n× 1 vectors m =
(
mgιng

)
1≤g≤G

and Z∗ =
(
Z∗
g ιng

)
1≤g≤G

, where ιng

represents a ng × 1 vector of ones.

Assumption 3.6. The n× (dx + 3) matrix
[
ιn,m,XT ,Z∗] is full column rank.

Assumption 3.6 is essentially a full-rank condition that rules out perfect collinearity of
[
1,m,XT , Z∗].

This condition is sufficient for generating enough intra- and inter-group variations for identification.

Similar conditions have been adopted in Bajari et al. (2010), Xu (2018), and Aguirregabiria and

Mira (2019)

Proposition 3.2. Under Assumptions 2.1 and 3.1-3.6, the structural parameters θ are identified.

Proof. The proof directly follows the discussion above and hence is omitted.

4 Semiparametric estimation

In this section, we discuss the estimation method of the baseline model and its asymptotic prop-

erties. Let θ0 denote the true value of the structural parameters. We can estimate θ0 via the

semiparametric nonlinear least squares (SNLS) method. Specifically, define

mc =


m(z∗1)

m(z∗2)
...

m(z∗K)

 , f cZ∗|Z(z
∗|·) =


f(z∗1 |·)
f(z∗2 |·)

...

f(z∗K |·)

 ,
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where (z∗1 , z
∗
2 , ..., z

∗
K) represents different values of Z∗ ∈ supp(Z∗). In the sample, we observe the

variables Wi ≡ (Yi, X
T
i , Zi, Z

′
i)
T , i = 1, 2, ..., n, which lead to an observed conditional moment

E(Y |Z ′ = z′, X = x) =
∑

z∗∈supp(Z∗)

E(Y |Z∗ = z∗, Z ′ = z′, X = x)fZ∗|Z′,X(z∗|z′, x)

=
∑

z∗∈supp(Z∗)

E(Y |Z∗ = z∗, X = x)fZ∗|Z′,X(z∗|z′, x)

=
∑

z∗∈supp(Z∗)

Fϵ (α+ βm+ γx+ δz∗) fZ∗|Z′,X(z∗|z′, x)

≡ g(z′, x; θ0, σ0), (4.1)

where the second equality is by Assumption 3.2, and the third equality is by (3.1). The observed

moment function above depends on the nuisance functions σ0 ≡ [(mc)T , (f cZ∗|Z′,X)T ]T .

In the following, we discuss the estimation procedure for the nuisance functions σ0. Then, we

can estimate the joint distributions of Z, Z ′, Y and X using a simple frequency estimator,

f̂Z,Z′,Y,X(z, z′, y, x) =
1

n

n∑
i=1

1(Zi = z, Z ′
i = z′, Yi = y,Xi = x),

where 1(·) is the indicator function. Similarly, we can estimate fZ,Z′,X and fX using the frequency

estimator. Then, the conditional distribution matrices MZ,Z′,Y |X and MZ,Z′|X can be estimated by

stacking the estimate of fZ,Z′,Y,X , fZ,Z′,X and fX as follows:

M̂Z,Z′,Y |X =

[
f̂Z,Z′,Y,X(zl, z

′
k, y, x)

f̂X(x)

]
l,k

and

M̂Z,Z′|X =

[
f̂Z,Z′,X(zl, z

′
k, x)

f̂X(x)

]
l,k

.

Next, following the identification procedure, there exists known functions ψ and ϕ such that the

conditional densities fY |Z∗,X and fZ|Z∗,X are estimated as

f̂Y |Z∗,X = ψ
(
M̂Z,Z′,Y |XM̂

−1
Z,Z′|X

)
and

f̂Z|Z∗,X = ϕ
(
M̂Z,Z′,Y |XM̂

−1
Z,Z′|X

)
,

respectively. Specifically, ψ and ϕ compute the eigenvalues and eigenvectors of the matrix. Although

the expressions of ψ and ϕ are complicated, Andrew et al. (1993) shows that they are well-behaved
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analytic functions. Then, the conditional expectation m is estimated as

m̂ =
∑

x∈supp(X)

f̂Y |Z∗,X(1|z∗, x)f̂X(x)

by (3.6). Finally, the conditional density of Z∗ can be estimated as the elements of

M̂Z∗|Z′,X = M̂−1
Z|Z∗,XM̂Z|Z′,X (4.2)

by Lemma 3.4, where M̂Z∗|Z′,X = [f̂Z∗|Z′,X(z∗l |z′k, x)]l,k. Note that M̂Z|Z′,X = [f̂Z|Z′,X(zl|z′k, x)]l,k
is directly obtained from data using the frequency estimator.

Let σ̂ denote the estimate of σ0 with the nuisance functions mv and fvZ∗|Z replacing by their

estimates. By (4.1), the SNLS estimator θ̂ is defined as follows:

θ̂ = argmin
θ∈Θ

n∑
i=1

[
Yi − g(Z ′

i, Xi; θ, σ̂)
]2
, (4.3)

where Θ is the parameter space.

4.1 Consistency

In this section, we establish the consistency of our two-step semiparametric estimator. First, we

show that the estimator of the nuisance functions σ is uniformly consistent. Note that we can not

assume the dependent variable {Yi}i=1,2,...,n is i.i.d. across individuals because for i and j within

the same group, their outcomes Yi and Yj are not independent because of the same Z∗
g . Therefore,

we impose the following assumption:

Assumption 4.1. (i) The group size ng is fixed for g = 1, 2, ..., G; (ii) The observables Wi are

independent across different groups and identically distributed; (iii) There exists a c > 0 such that

fX ≥ c and fZ′,X ≥ c.

Assumption 4.1 (i) implies that the number of groups G goes to infinity as n→ ∞. Therefore,

we will focus on the asymptotics with G→ ∞ and ng fixed. This data structure is analogous to the

panel data with n→ ∞ and time period t fixed. Hence, condition (ii) ensures that the law of large

numbers and central limit theorem still work for our data. Condition (iii) is a technical condition

that guarantees the densities are bounded away from zero. Let ∥ · ∥∞ denote the sup norm and σ0

the true value of σ. we have

Proposition 4.1. Suppose the assumptions in Proposition 3.1 and Assumption 4.1 hold. Then,

∥σ̂ − σ0∥∞ = Op(n
−1/2).
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Proposition 4.1 means that the estimator of the nuisance functions σ is uniformly consistent at

the rate n−1/2. The uniform convergence rate is consistent with that of the conventional frequency

estimation under i.i.d. data setting.

Next, we show that the SNLS estimator θ̂ is a consistent estimator for θ0. We impose the

following assumptions:

Assumption 4.2. (i) Θ is compact; (ii) For all (θ, σ) ∈ Θ × Σ, g(z′, x, θ, σ) is measurable of z′

and x and is continuously differentiable in θ up to order 3 for all z′ and x; (iii) There exists a

function h(w) with E[h(w)] < ∞ such that g(z′, x; θ, σ)2 ≤ h(w) and ∥∇θT g(z
′, x; θ, σ)∥2 ≤ h(w)

for all w ∈ supp(W ).

Assumptions 4.2 (i)-(ii) are standard in the M-estimation literature. See, e.g., Newey and

McFadden (1994) and Wooldridge (1994). Condition (iii) is a technical condition for the law of

large numbers. The consistency of the estimator θ̂ is summarized in the following theorem:

Theorem 4.1. Suppose the assumptions in Proposition 3.2 and Assumptions 4.1-4.2 are satisfied.

Then,

θ̂
p−→ θ0.

4.2 Asymptotic normality

We now show the asymptotic distribution of the estimator θ̂. Note that we need to account for the

presence of the nuisance functions σ. From the first order condition of the optimization problem

(4.3), θ̂ solves

1

n

n∑
i=1

[Yi − g(Z ′
i, Xi; θ̂, σ̂)]∇θT g(Z

′
i, Xi; θ̂, σ̂) = 0.

Define s(Wi; θ, σ) = [Yi − g(Z ′
i, Xi; θ, σ)]∇θT g(Z

′
i, Xi; θ, σ). Then, by the mean value theorem we

can obtain
1

n

n∑
i=1

s(Wi; θ0, σ̂) +
1

n

n∑
i=1

∇θs(Wi; θ̃, σ̂)(θ̂ − θ0) = 0, (4.4)

where θ̃ is between θ̂ and θ0. If 1/n
∑n

i=1∇θs(Wi; θ̃, σ̂) is invertible, rearranging (4.4) leads to

√
n(θ̂ − θ0) =

[
1

n

n∑
i=1

∇θs(Wi; θ̃, σ̂)

]−1 [
− 1√

n

n∑
i=1

s(Wi; θ0, σ̂)

]
.

Define v0 = (fZ,Z′,Y,X , fZ,Z′,X , fZ′,X , fX)T and v̂ contains the frequency estimators of all densities

in v0. Note that by the identification result, we can express the nuisance functions σ0 and their

estimates σ̂ as known functions of v0 and v̂, respectively. Besides, we also impose the following

notations:

ρ(w) ≡ l̃(w)− E[l̃(w)],
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l̃(w) ≡ E
[
∇vT {[y − g(z′, x; θ0, σ0)]∇θT g(z

′, x; θ0, σ0)}ιdv
∣∣W = w

]
,

H ≡ E[∇θs(Wi; θ0, σ0)]

and

D ≡ lim
n→∞

1

n
Var

{
n∑

i=1

[s(Wi; θ0, σ0) + ρ(Wi)]

}
,

where ιdv is a dv × 1 vector of ones and dv is the dimension of v.

To obtain the asymptotic distribution of θ̂, the key step is to show that

1√
n

n∑
i=1

s(Wi; θ0, σ̂) =
1√
n

n∑
i=1

[s(Wi; θ0, σ0) + ρ(Wi)] + op(1),

where ρ(Wi) is the correction term that accounts for the nonparametric estimation of the nuisance

functions. The expression of ρ(Wi) is obtained from the linearization of g(z, x; θ0, σ) with respect

to v. Then, we impose the following assumptions:

Assumption 4.3. (i) θ0 ∈ int(Θ); (ii) g(z′, x; θ, σ) and ∇θT g(z
′, x; θ, σ) are continuously differ-

entiable in v up to order 2 with uniformly bounded derivatives; (iii) E[∥ρ(Wi)∥2] < ∞; (iv) There

exists a function h(w) with E[h(w)] < ∞ such that ∥∇θs(w; θ, σ)∥2 ≤ h(w) for all w ∈ supp(W );

(v) H exists and is nonsingular; (vi) fϵ and ∇θT fϵ are uniformly continuous in m.

Assumption 4.3 (i)-(v) are standard in the semiparametric M-estimation literature, see, e.g.,

Andrews (1994), Newey (1994a) and Newey and McFadden (1994). Condition (vi) guarantees the

uniform negligibility of the remainder terms in the score function and the Hessian matrix when we

approximating the nuisance functions by their estimates (Kasy 2019).

Theorem 4.2. Suppose the assumptions in Theorem 4.1 and Assumption 4.3 hold. Then,

√
n(θ̂ − θ0)

d−→ N(0, H−1DH−1).

Since the knowledge of group memberships is not available, we can not directly estimate the

asymptotic variance H−1DH−1 by the analogy principle because D includes unknown covariance

terms across individuals within each group. Nevertheless, the
√
n-consistency of the semiparametric

NLS estimator θ̂ enables us to apply the resampling method in Leung (2022) for inference of the

parameters of interest. We discuss this inference procedure in the next section.

4.3 Inference by subsampling

We consider testing H0 : θ0 = θ for some θ ∈ Θ. Let Rn ≥ 2 be an integer and Π the set

of permutations on {1, 2, ..., n}. Let {πr}Rn
r=1 be a set of Rn i.i.d. uniform draws from Π and

π ≡ (π1, π2, ..., πRn).
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The results in the previous section implies that θ̂ is asymptotically linear in the sense that

√
n(θ̂ − θ0) =

[
1

n

n∑
i=1

∇θs(Wi; θ̂, σ̂)

]−1{
− 1√

n

n∑
i=1

[s(Wi; θ0, σ0) + ρ(Wi)]

}
+ op(1).

Then, following Leung (2022), we define the test statistic as

TM (θ;π) =
1√
Rn

Rn∑
r=1

V̂ −1/2χπr(1), (4.5)

where

χi = −

[
1

n

n∑
i=1

∇θs(Wi; θ̂, σ̂)

]−1

[s(Wi; θ, σ̂) + ρ̂(Wi)] ,

V̂ =
1

n

n∑
i=1

(χi − χ)(χi − χ)T ,

χ is the sample average of {χi}ni=1. Following Newey (1994b, equation 7), ρ̂(Wi) is obtained by

computing via numerical differentiation the (demeaned) first-order effect of the ith observation in

each component of v̂ on 1/n
∑n

i=1 s(Wi; θ̂, σ̂).

The mean-type statistic in (4.5) is computed by drawing Rn observations with replacement

from {V̂ −1/2χi}ni=1, and then taking the average and scaling up by
√
Rn. Note that we compute V̂

using the full sample. Since σ̂ is
√
n-consistent, Theorem A.1 of Leung (2022) implies the following

result.

Proposition 4.2. Suppose the following conditions hold. (i) n−1
∑n

i=1 ∥χ̃i∥2+λ = Op(1) for some

λ > 0, where

χ̃i = −H−1 [s(Wi; θ0, σ0) + ρ(Wi)] .

(ii) V ≡ Var(χ̃i) is positive definite. (iii) Rn → ∞ and Rn/n = o(1). Then, under the null

hypothesis H0 : θ0 = θ, TM (θ;π)
d−→ N(0, Idθ) conditional on W ≡ (Wi)1≤i≤n, where Idθ is a dθ×dθ

identity matrix.

Proof. See Appendix.

Proposition 4.2 enables us to use standard normal critical values for testing H0 : θ0 = θ. The

intuition behind this proposition can be explained as follows: the test statistic TM (θ;π) can be

decomposed into two parts

TM (θ0;π) = TM (θ0;π)− E [TM (θ0;π)|W ]︸ ︷︷ ︸
Part I

+E [TM (θ0;π)|W ]︸ ︷︷ ︸
Part II

.
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While the first part converges in distribution to a standard normal random variable as Rn → ∞
because random permutations are i.i.d. conditional on the data, the second part is a bias term

that is asymptotically negligible if we make Rn diverge at a sufficiently slow rate. Following Leung

(2022), the tuning parameter Rn is chosen by trading-off the power of the test and the bias, which

yields the optimal Rn as

R∗
n =

√
n.

5 Extensions

The identification method described in Section 3 can be extended in several ways. We shall formally

discuss two cases: nonrandom assignment and unequal support.

5.1 Nonrandom assignment

Consider the case where individuals are nonrandomly assigned, which means that Assumption 3.1

no longer holds, i.e., X and Z∗ are dependent with each other.

For identification, we maintain Assumptions 3.2–3.6. First, the conditional densities fY |Z∗,X

and fZ|Z∗,X can still be identified using the eigen-decomposition technique in Section 3. Specifically,

the matrix equations (3.3) and (3.4) will be modified to

MZ,Z′,Y |X =MZ|Z∗,XDY |Z∗,XDZ∗|XM
T
Z′|Z∗,X (5.1)

and

MZ,Z′|X =MZ|Z∗,XDZ∗|XM
T
Z′|Z∗,X (5.2)

without Assumption 3.1, where

DZ∗|X =


fZ∗|X(z∗1 |x)

fZ∗|X(z∗2 |x)
. . .

fZ∗|X(z∗K |x)

 .

for each X = x. By arguments similar to the proof of Proposition 3.1, equations (5.1) and (5.2)

still lead to the eigen-decomposition equation (3.5).

Second, the conditional density fZ∗|Z′,X can be identified analogously to Lemma 3.4. Then, by

the law of total probability we have

fZ∗,X(z∗, x) =
∑

z′∈supp(Z′)

fZ∗|Z′,X(z∗|z′, x)fZ′,X(z′, x) (5.3)
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and

fZ∗(z∗) =
∑

x∈supp(X)

fZ∗,X(z∗, x) (5.4)

for each X = x. The matrix version of equation (5.3) can be written as

MZ∗,X =MZ∗|Z′,XMZ′,X , (5.5)

where

MZ∗,X =


fZ∗,X(z∗1 , x)

fZ∗,X(z∗2 , x)
...

fZ∗,X(z∗K , x)

 , MZ′,X =


fZ′,X(z′1, x)

fZ′,X(z′2, x)
...

fZ′,X(z′K , x)

 ,

MZ∗|Z′,X =


fZ∗|Z′,X(z∗1 |z′1, x) fZ∗|Z′,X(z∗1 |z′2, x) · · · fZ∗|Z′,X(z∗1 |z′K , x)
fZ∗|Z′,X(z∗2 |z′1, x) fZ∗|Z′,X(z∗2 |z′2, x) · · · fZ∗|Z′,X(z∗2 |z′K , x)

...
...

. . .
...

fZ∗|Z′,X(z∗K |z′1, x) fZ∗|Z′,X(z∗K |z′2, x) · · · fZ∗|Z′,X(z∗K |z′K , x)

 .

Equation (5.5) implies that the joint density fZ∗,X can be identified as elements of MZ∗|Z′,XMZ′,X ,

and the density fZ∗ is identified accordingly by (5.4). Consequently, the conditional density

f(X|Z∗) can be identified as elements of the matrix

D−1
Z∗MZ∗,X

by Bayes’ theorem. Hence, the conditional expectation m∗ is nonparametrically identified by the

first equality of (3.6). Finally, we can identify the structural parameters θ by Assumption 3.6. The

estimation of θ can be conducted similarly as described in Section 4.

5.2 Unequal support

In this section, we consider the identification of model primitives while relaxing the equal support

Assumption 3.3. Specifically, we will consider two cases: first, only one proxy (Z ′) has larger

support. Second, both proxies have larger supports.

5.2.1 One proxy has larger support

Assumption 3.3′. | supp(Z)| = | supp (Z∗)| = K, | supp(Z ′)| = K ′ > K.

Assumption 3.3′ allows the cardinality of supp(Z ′) to be larger than K. Under this assumption,

the matricesMZ,Z′|X , MZ′|Z∗,X are rectangular and hence we cannot directly invert them to obtain
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the eigen-decomposition equation (3.5).

To address this technical challenge, we utilize the concept of the generalized inverse of a matrix.

LetM+
Z,Z′|X andM+

Z′|Z∗,X be the Moore–Penrose inverse ofMZ,Z′|X andMZ′|Z∗,X
7. Then, by (3.4)

and Assumption 3.4 we have

M+
Z,Z′|X =

(
MT

Z′|Z∗,X

)+
(MZ|Z∗,XDZ∗)+ =MZ′|Z∗,X

(
MT

Z′|Z∗,XMZ′|Z∗,X

)−1
D−1

Z∗M
−1
Z|Z∗,X (5.6)

where the first equality is by the product property of the Moore–Penrose inverse. Post-multiplying

(3.3) by (5.6) leads to

MZ,Z′,Y |XM
+
Z,Z′|X =MZ|Z∗,XDY |Z∗,XM

−1
Z|Z∗,X ,

which implies that the matrix MZ,Z′,Y |XM
+
Z,Z′|X still has an eigenvalue-eigenvector decomposition.

Therefore, we can follow the rest of the procedure in Section 3 to identify model primitives m and

θ.

5.2.2 Both proxies have larger supports

Assumption 3.3′′. | supp (Z∗)| = K, | supp(Z)| = | supp(Z ′)| = K ′ > K.

Under Assumption 3.3′′, both proxies Z and Z ′ can have larger supports than Z∗. Consequently,

the matrix MZ|Z∗,X is also rectangular, and thus we cannot even employ the eigen-decomposition

method for identification, as the eigenvector matrix should be square. In this scenario, we can

generate a new proxy variable Z̃ with | supp(Z̃)| = K by combining some values in the support of

Z. Formally, this process is conducted through a subjective function q : supp(Z) 7→ supp(Z̃) and

Z̃ = q(Z). This is equivalent to grouping rows of MZ|Z∗,X and MZ,Z′|X so that the new matrices

M
Z̃|Z∗,X and M

Z̃,Z′|X have K rows. The following lemma ensures these new matrices are full (row)

rank.

Lemma 5.1. Under Assumptions 3.3′′ and 3.4, the row vectors of MZ|Z∗,X , and MZ,Z′|X can be

grouped such that the new matrices M
Z̃|Z∗,X and M

Z̃,Z′|X have rank K.

Proof. The proof is similar to Xiao (2018, Lemma 2) or Luo et al. (2022, Lemma 3) and hence is

omitted.

We can then follow the idea in the previous section to obtain the eigen-decomposition. Specifi-

7For a real matrix A, its Moore–Penrose inverse is defined as the unique matrix A+ that satisfies the following
conditions: AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A. In general, A+ can be obtained

by a singular value decomposition. However, if A is full column rank, A+ = (ATA)
−1

AT . On the other hand,
A+ = AT (AAT )−1 if A is full row rank. Moreover, A+ = A−1 if A is nonsingular (Golub and Van Loan 2013).
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cally, equations (3.3) and (3.4) can be modified as

M
Z̃,Z′,Y |X =M

Z̃|Z∗,XDY |Z∗,XDZ∗MT
Z′|Z∗,X (5.7)

and

M
Z̃,Z′|X =M

Z̃|Z∗,XDZ∗MT
Z′|Z∗,X . (5.8)

The Moore-Penrose inverse of (5.8) is

M+

Z̃,Z′|X
=MZ′|Z∗,X

(
MT

Z′|Z∗,XMZ′|Z∗,X

)−1
D−1

Z∗M
−1

Z̃|Z∗,X
. (5.9)

Post-multiplying (5.7) by (5.9) yields again the eigen-decomposition equation

M
Z̃,Z′,Y |XM

+

Z̃,Z′|X
=M

Z̃|Z∗,XDY |Z∗,XM
−1

Z̃|Z∗,X
.

The identification of model primitives m and θ follows accordingly by imposing Assumptions 3.5

and 3.6.

6 Simulation studies

In this section, we use Monte Carlo experiments to demonstrates the finite sample performance

of the estimator in Section 4. In each iteration of the simulations, we generate data using sample

size n = 1000. Then, the whole sample is divided into equally sized groups with each having 4

individuals. Therefore, the number of groups is 250. Consistent with the model setup in Section 2,

we consider the following data generating process of the outcome variable:

Y = 1(α+ βm+ γX + δZ∗ ≥ ϵ), (6.1)

where the covariateX∼Bernoulli(0.5) is i.i.d. across individuals. The true values of the parameters

are α = −1, β = 0.5, γ = −1 and δ = 1. We consider five distributions for the error ϵ as follows:

1. UN: ϵ ∼ Unif(−
√
3,
√
3)

2. NR: ϵ ∼ N(0, 1)

3. T3: ϵ ∼ t3 (Student’s t distribution with 3 degrees of freedom)

4. LG: ϵ ∼ Logistic(0, 1) (standard logistic distribution)

The discrete latent variable Z∗ has the support {1, 2, 3, 4} with probability mass functions PZ∗ ≡
(Pr(Z∗ = 1), P r(Z∗ = 2), P r(Z∗ = 3), P r(Z∗ = 4)) = (0.2, 0.3, 0.2, 0.3). The variable Z∗ is
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generated as follows:

Z∗ =



1 if eZ∗ ≤ Pr(Z∗ = 1),

2 if Pr(Z∗ = 1) < eZ∗ ≤ Pr(Z∗ ≤ 2),

3 if Pr(Z∗ ≤ 2) < eZ∗ ≤ Pr(Z∗ ≤ 3),

4 if Pr(Z∗ ≤ 3) < eZ∗ ≤ Pr(Z∗ ≤ 4),

where eZ∗ is uniformly distributed on [0, 1] and is independent of all other variables. In the experi-

ments, we also generate two indicators Z and Z ′ for Z∗. Z and Z ′ share the same support {1, 2, 3, 4}
and probability mass functions as Z∗, i.e., PZ = PZ′ = (0.2, 0.3, 0.2, 0.3). The indicator Z (Z ′) is

generated similarly as Z∗, with eZ∗ replaced by 0.5eZ∗ + 0.5eZ (0.5eZ∗ + 0.5eZ′), where eZ (eZ′) is

another independent random variable with a uniform distribution on [0, 1]. Hence, the correlation

between Z∗ and Z (Z ′) is caused by the common random variable eZ (eZ′). The variables Z∗, Z

and Z ′ are i.i.d. across different groups. The equilibrium conditional expectation m is generated

by solving the fixed point of (3.2).

In the estimation, we compare two NLS estimators: (i) SNLS: the proposed semiparametric NLS

estimator in (4.3); (ii) NEG: the estimator that neglects unkown group structures, i.e., treating the

indicator Z as Z∗, estimating m via frequency estimator

m̂(z) =

∑n
i=1 Yi · 1(Zi = z)∑n

i=1 1(Zi = z)

and then obtaining the estimator θ̂NEG as

θ̂NEG = argmin
θ∈Θ

n∑
i=1

[Yi − Fϵ (α+ βm̂+ γX + δZ)]2 .

The simulation results are provided in Tables 1-2. For each estimator, we report the bias, the

standard deviation (Std.dev) and the root mean squared error (RMSE) over 1000 replications.

The results show that our estimator performs well in finite samples. Overall, the SNLS estimators

of all four parameters has considerably smaller biases than the NEG estimators that ignore the

unknown group structure. For example, consider the estimation of peer effects β in Tables 1 and

2. When the error distribution is standard normal, the bias of SNLS estimator is −0.015, which

is about 4% of the bias (−0.376) of the NEG estimator. When the error distribution changes to

standard logistic, the bias of the SNLS estimator (−0.009) changes to 0.76% of the bias of the

Naive estimator (−1.129). Furthermore, the SNLS estimator in general has larger variances than

NEG estimators, which is natural because it contains more nonparametrically estimated nusiance

parameters. However, the SNLS estimator still achieves a reduction in the RMSE for the estimated
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social parameters of β and δ, relative to the NEG estimator.

Table 1: Simulation Results (SNLS)

Parameter(=True Value)
α = −1 β = 0.5 γ = −1 δ = 1

Model Bias Std.dev RMSE Bias Std.dev RMSE Bias Std.dev RMSE Bias Std.dev RMSE

UN 0.0572 0.6238 0.6261 -0.0518 0.7630 0.7644 -0.0645 0.2506 0.2586 0.0114 0.4223 0.4222
NR 0.0559 0.6428 0.6449 -0.0149 0.8274 0.8272 -0.0444 0.2536 0.2573 -0.0059 0.4546 0.4544
T3 0.0416 0.6531 0.6541 -0.0048 0.8587 0.8583 -0.0584 0.2431 0.2499 -0.0001 0.4361 0.4359
LG 0.1070 0.6990 0.7068 -0.0086 0.8625 0.8621 -0.0327 0.2194 0.2217 -0.0535 0.4315 0.4345

Table 2: Simulation Results (NEG)

Parameter(=True Value)
α = −1 β = 0.5 γ = −1 δ = 1

Model Bias Std.dev RMSE Bias Std.dev RMSE Bias Std.dev RMSE Bias Std.dev RMSE

UN -0.2985 0.3739 0.4782 -0.6302 0.9201 1.1148 -0.2513 0.1607 0.2983 0.4890 0.2019 0.5290
NR -0.3693 0.3190 0.4879 -0.3756 0.8256 0.9067 -0.2357 0.1229 0.2658 0.4754 0.1700 0.5048
T3 -0.3032 0.5156 0.5979 -0.4135 1.2735 1.3383 -0.1958 0.1417 0.2416 0.4286 0.2259 0.4845
LG 0.0356 0.8299 0.8303 -1.1294 2.0546 2.3437 -0.1299 0.1638 0.2090 0.4221 0.3045 0.5204

To examine the finite sample performance of the subsampling method in Secition 4.3, we also

run simulations to show the size control of the test for H0 : θ0 = (−1, 0.5,−1, 1). The tuning

parameter Rn is chosen to be
√
1000 ≈ 32. The results of the experiments shown in Table 3

indicates that the empirical sizes obtained from using the subsampling method are well controlled

under various nominal levels.

Table 3: Simulated Test Size

Null Hypothesis
α = −1 β = 0.5 γ = −1 δ = 1

Model 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

UN 0.124 0.055 0.015 0.101 0.053 0.018 0.104 0.054 0.004 0.123 0.077 0.018
NR 0.091 0.042 0.009 0.100 0.054 0.016 0.105 0.063 0.012 0.112 0.063 0.016
T3 0.096 0.055 0.018 0.094 0.049 0.017 0.101 0.051 0.019 0.118 0.076 0.012
LG 0.114 0.059 0.013 0.112 0.057 0.012 0.100 0.045 0.009 0.117 0.058 0.017

7 Conclusion

In the context of binary choice models involving social interactions and unknown group structures,

this paper presents an identification method for the underlying model primitives. This is achieved

by employing the eigen-decomposition technique with two proxies and a monotonicity condition.

Additionally, we introduce a two-stage SNLS method for estimating model parameters and derive
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its asymptotic properties. For inferential purposes, we also offer a dependent-robust subsampling

method. As an application of the proposed method, we investigate social interactions among

secondary school students and find positive and significant peer effects in their choices towards

private tutoring.
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Appendix A Proofs of main results

Proof of Lemma 2.1

Proof. Define R(Z∗
g , νg) =

∫
Fϵ

(
α+ βmg + γXi + δZ∗

g

)
dFX|Z∗ . By the boundedness of fϵ and

Leibniz rule, we have

∂R

∂m
=

∫
fϵ
(
α+ βmg + γXi + δZ∗

g

)
βdFX|Z∗

≤|β|
∫
fϵ
(
α+ βmg + γXi + δZ∗

g

)
dFX|Z∗

≤|β|
∫

sup
ϵ
fϵ
(
α+ βmg + γXi + δZ∗

g

)
dFX|Z∗

<1

if |β| < 1

supe fϵ(e)
. Therefore, the fixed point mg is unique by Banach fixed-point theorem.

Proof of Lemma 3.1

Proof. First, note that the law of total probability implies

fZ,Z′,Y |X(z, z′, y|x) =
∑

z∗∈supp(Z∗)

fZ,Z′,Y,Z∗|X(z, z′, y, z∗|x),

where

fZ,Z′,Y,Z∗|X(z, z′, y, z∗|x) = fZ|Z∗,Z′,Y,X(z|z′, y, z∗, x)fZ′|Z∗,Y,X(z′|z∗, y, x)fY |Z∗,X(y|z∗, x)fZ∗|X(z∗|x)

= fZ|Z∗,X(z|z∗, x)fZ′|Z∗,X(z′|z∗, x)fY |Z∗,X(y|z∗, x)fZ∗(z∗)

by Assumptions 3.1 and 3.2. Similarly, we can show that

fZ,Z′|X(z, z′|x) =
∑

z∗∈supp(Z∗)

fZ|Z∗,X(z|z∗, x)fZ′|Z∗,X(z′|z∗, x)fZ∗(z∗)

Proof of Lemma 3.2

Proof. (⇒) By Assumption 3.3, the rank of DZ∗ is K. By the rank inequality, for any p×n matrix

A and n× q matrix B,

rank(A) + rank(B)− n ≤ rank(AB) ≤ min{rank(A), rank(B)}.
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Then, we can show that MZ|Z∗,XDX∗ has rank K. By applying the inequality again, we can

conclude that the matrix

MZ,Z′|X =MZ|Z∗,XDZ∗MT
Z′|Z∗,X (A.1)

has rank K.

(⇐) Suppose rank(MZ,Z′|X) = K. Then, by (A.1) and the rank inequality above, we have

rank(MZ|Z∗,X) ≥ K and rank(MZ′|Z∗,X) ≥ K. By Assumption 3.3, both matrices are K × K,

which leads to the conclusion.

Proof of Lemma 3.3

Proof. Since Y is binary,

fY |Z∗,X = E(Y |Z∗, X)Y [1− E(Y |Z∗, X)]1−Y .

Therefore, fY |Z∗,X is strictly monotonic in Z∗ if and only if E(Y |Z∗, X) is strictly monotonic in

Z∗. Since
∂E(Y |Z∗, X)

∂Z∗ = fϵ(α+ βm+ γX + δZ∗)

(
β
∂m

∂Z∗ + δ

)
.

By Leibniz rule, taking the derivative with respect to Z∗ on both sides of equation (3.2) gives

∂m

∂Z∗ =

∫
fϵ (α+ βm+ γX + δZ∗)

(
β
∂m

∂Z∗ + δ

)
dFX .

Therefore,
∂m

∂Z∗ =
δ
∫
fϵ (α+ βm+ γX + δZ∗) dFX

1− β
∫
fϵ (α+ βm+ γX + δZ∗) dFX

.

It implies that

β
∂m∗

∂Z∗ + δ =
δβ
∫
fϵ (α+ βm+ γX + δZ∗) dFX

1− β
∫
fϵ (α+ βm+ γXi + δZ∗) dFX

+ δ

=
δ

1− β
∫
fϵ (α+ βm+ γX + δZ∗) dFX

.

Consequently, ∂E(Y |Z∗, X)/∂Z∗ ̸= 0 if δ ̸= 0.

Proof of Proposition 3.1

Proof. Lemma 3.1 implies that

fZ,Z′,Y,Z∗|X(z, z′, y, z∗|x) = fZ|Z∗,X(z|z∗, x)fZ′|Z∗,X(z′|z∗, x)fY |Z∗,X(y|z∗, x)fZ∗(z∗)
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and

fZ,Z′|X(z, z′|x) =
∑

z∗∈supp(Z∗)

fZ|Z∗,X(z|z∗, x)fZ′|Z∗,X(z′|z∗, x)fZ∗(z∗)

which have the matrix representations

MZ,Z′,Y |X =MZ|Z∗,XDY |Z∗,XDZ∗MT
Z′|Z∗,X (A.2)

and

MZ,Z′|X =MZ|Z∗,XDZ∗MT
Z′|Z∗,X . (A.3)

By Assumption 3.4, the matrices MZ|Z∗,X and MZ′|Z∗,X are invertible. Therefore,

M−1
Z,Z′|X =

(
MT

Z′|Z∗,X

)−1
D−1

Z∗
(
MZ|Z∗,X

)−1
. (A.4)

Consequently, we post-multiply equation (A.2) by (A.4), which leads to

MZ,Z′,Y |XM
−1
Z,Z′|X =MZ|Z∗,XDY |Z∗,XM

−1
Z|Z∗,X . (A.5)

The matrices on the left-hand side of (A.5) can be directly computed from the data, while the

matrices on-the right hand side are of particular interest. Moreover, this representation implies that

the matrices of the joint conditional densities on the left-hand side admit an eigenvalue-eigenvector

decomposition. Consequently, MZ|Z∗,X can be identified as eigenvectors up to permutation of its

columns, and DY |Z∗,X can be identified as eigenvalues up to permutation of its diagonal entries(Hu

2008). Since each column in MZ|Z∗,X represents an entire distribution, the column sum should be

1, through which normalization can be performed.

Assumption 3.5 ensures that there are no duplicate values for the diagonal elements in DY |Z∗,X ,

which correspond to fY |Z∗,X . Therefore, the eigenvectors are linearly independent with each other.

The next step is to determine which eigenvalues corresponds to fY |Z∗,X(·|j, x) for j = 1, 2, ...,K.

Assumption 3.5 directly imposes an ordering for the eigenvalues and hence the eigenvectors. Con-

sequently, we can identify fY |Z∗,X by checking the ordering of each eigenvalue, and fZ|Z∗,X can be

identified similarly.

Next, we need to identify m∗. By the law of total probability and Assumption 3.1

fY |Z∗(·|·) =
∑

x∈supp(X)

fY |Z∗,X(·|·, x)fX(x). (A.6)

Since Y is binary,

fY |Z∗ = E(Y |Z∗)Y [1− E(Y |Z∗)]1−Y .

Therefore, m∗ can be identified as fY |Z∗(1|·).
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Proof of Lemma 3.4

Proof. The law total probability implies that the conditional density of Z can be represented as

fZ|Z′,X(z|z′, x) =
∑

z∗∈supp(Z∗)

fZ|Z∗,Z′,X(z|z∗, z′, x)fZ∗|Z′,X(z∗|z′, x) =
∑

z∗∈supp(Z∗)

fZ|Z∗,X(z|z∗, x)fZ∗|Z′,X(z∗|z′, x),

where the last equality is by Assumption 3.2. It has the matrix representation

MZ|Z′,X =MZ|Z∗,XMZ∗|Z′,X ,

where

MZ|Z′,X =
[
fZ|Z′,X(zl|z′k, x)

]
l=1,2,...,K;k=1,2,...,K

and

MZ∗|Z′,X =
[
fZ∗|Z(z

∗
l |z′k, x)

]
l=1,2,...,K;k=1,2,...,K

.

By Assumption 3.4, the matrix MZ|Z∗,X is invertible. Therefore, the conditional density of Z∗ can

be identified as

MZ∗|Z′,X =M−1
Z|Z∗,XMZ|Z′,X , (A.7)

where MZ|Z∗,X is identified by Proposition 3.1 and the matrix MZ|Z′,X is directly identifiable from

data.

Proof of Proposition 4.1

Proof. We prove this proposition in three steps:

Step 1. First, we show that the estimator m̂ is uniformly consistent at rate n−1/2. By Lemma

B.1, the frequency estimators fZ,Z′,Y,X and fX are uniformly consistent at rate n−1/2. Hence, by

Assumption 4.1 (iii) and Slutsky’s theorem, we have

∥∥∥f̂Z,Z′,Y |X − fZ,Z′,Y |X

∥∥∥
∞

=

∥∥∥∥∥ f̂Z,Z′,Y

f̂X
− fZ,Z′,Y |X

∥∥∥∥∥
∞

= Op(n
−1/2),

which implies that the matrix M̂Z,Z′,Y |X is also uniformly consistent for MZ,Z′,Y |X at rate n−1/2.

Similarly, we have

∥∥∥f̂Z,Z′|X − fZ,Z′|X

∥∥∥
∞

=

∥∥∥∥∥ f̂Z,Z′

f̂X
− fZ,Z′|X

∥∥∥∥∥
∞

= Op(n
−1/2).

By notation abuse, define v0 = (fZ,Z′,Y |X , fZ,Z′|X)T and v̂ = (f̂Z,Z′,Y |X , f̂Z,Z′|X)T . By Lemma

3 of Hu (2008), there exists a neighborhood of (vec(MZ,Z′,Y |X)T , vec(MZ,Z′|X)T )T such that the
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eigenvalue function ψ(·) is analytical and

sup
∥v̂−v0∥∞≤ε

∥∥∥ψ (M̂Z,Z′,Y |XM̂
−1
Z,Z|X

)
− ψ

(
MZ,Z′,Y |XM

−1
Z,Z|X

)∥∥∥
1
= Op(∥v̂ − v0∥∞),

where ε > 0 is arbitrary and ∥ · ∥1 is the L1 norm. Hence, we have shown that f̂Y |Z∗,X is uniformly

consistent for fY |Z∗,X at rate n−1/2. Because

m̂ =
∑

x∈supp(X)

f̂Y |Z∗,X(1|z∗, x)f̂X(x).

We can conclude that

∥m̂−m∥∞ = Op(n
−1/2). (A.8)

Step 2. Then, we show that f̂Z∗|Z′,X is uniformly consistent at rate n−1/2. By Lemma B.1, the

frequency estimators f̂Z and f̂Z′,X are
√
n-uniformly consistent. Therefore, by Assumption 4.1 (iii)

and Slutsky’s theorem, ∥∥∥f̂Z|Z′,X − fZ|Z′,X

∥∥∥
∞

= Op(n
−1/2).

Again, by Lemma 3 of Hu (2008), there exists a neighborhood of (vec(MZ,Z′,Y |X)T , vec(MZ,Z′|X)T )T

such that the eigenvector function ϕ(·) is analytical and

sup
∥v̂−v0∥∞≤ε

∥∥∥ϕ(M̂Z,Z′,Y |XM̂
−1
Z,Z|X

)
− ϕ

(
MZ,Z′,Y |XM

−1
Z,Z|X

)∥∥∥
1
= Op(∥v̂ − v0∥∞),

which implies f̂Z|Z∗,X is
√
n-uniformly consistent. Since

M̂Z∗|Z′,X = M̂−1
Z|Z∗,XM̂Z|Z′,X

and ∥∥∥f̂Z|Z′,X − fZ|Z′,X

∥∥∥
∞

=

∥∥∥∥∥ f̂Z

f̂Z′,X

− fZ|Z′X

∥∥∥∥∥
∞

= Op(n
−1/2).

we can conclude that ∥∥∥f̂Z∗|Z′,X − fZ∗|Z′,X

∥∥∥
∞

= Op(n
−1/2). (A.9)

Step 3. (A.8) and (A.9) together indicate that ∥σ̂ − σ0∥∞ = Op(n
−1/2).

Proof of Theorem 4.1

Proof. We prove this theorem by verifying conditions (i)-(iv) of Theorem 2.1 in Newey and Mc-
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Fadden (1994). Define

Qn(θ, σ) =
1

n

n∑
i=1

[
Yi − g(Z ′

i, Xi; θ, σ)
]2

and

Q(θ, σ) = E
[
Yi − g(Z ′

i, Xi; θ, σ)
]2
.

It is straightforward to see that their conditions (ii) and (iii) are satisfied for Q(θ, σ0) by Assumption

4.2 (i) and (ii). Furthermore, condition (i) is satisfied by Proposition 3.2. Therefore, we only need

to verify condition (iv), i.e.,

sup
θ∈Θ

|Qn(θ, σ̂)−Q(θ, σ0)| = op(1). (A.10)

By triangle inequality, the left-hand side of (A.10) is bounded as follows:

sup
θ∈Θ

|Qn(θ, σ̂)−Q(θ, σ0)| ≤ sup
θ∈Θ

|Qn(θ, σ̂)−Qn(θ, σ0)|+ sup
θ∈Θ

|Q(θ, σ0)−Q(θ, σ0)| . (A.11)

By Lemma B.2, the second term on the right-hand side of (A.11) is op(1). Hence, we only need to

show that the first term is op(1).

By using the identity

â2 − a = (â− a)2 + 2a(â− a),

we can obtain

Qn(θ, σ̂)−Qn(θ, σ0) =
1

n

n∑
i=1

[
g(Z ′

i, Xi, θ, σ̂)− g(Z ′
i, Xi, θ, σ0)

]2
+

1

n

n∑
i=1

2[Yi − g(Z ′
i, Xi, θ, σ0)]

[
g(Z ′

i, Xi, θ, σ̂)− g(Z ′
i, Xi, θ, σ0)

]
≡A1 +A2. (A.12)

Next, we show that

sup
θ∈Θ

∣∣g(Z ′
i, Xi, θ, σ̂)− g(Z ′

i, Xi, θ, σ0)
∣∣ = op(1).

By the identify

âb̂ = (â− a)b+ a(̂b− b) + (â− a)(̂b− b)
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and triangle inequality, we have

|g(Z ′
i, Xi, θ, σ̂)−g(Z ′

i, Xi, θ, σ0)| ≤
∑
z∗

|Fϵ (α+ βm̂i + γXi + δz∗)− Fϵ (α+ βmi + γXi + δz∗)| fZ∗|Z′,X(z∗|Z ′
i, X)

+
∑
z∗

Fϵ (α+ βmi + γXi + δz∗)
∣∣∣f̂Z∗|Z′,X(z∗|Z ′

i, Xi)− fZ∗|Z′,X(z∗|Z ′
i, Xi)

∣∣∣
+
∑
z∗

|Fϵ (α+ βm̂i + γXi + δz∗)− Fϵ (α+ βmi + γXi + δz∗)|
∣∣∣f̂Z∗|Z′,X(z∗|Z ′

i, Xi)− fZ∗|Z′,X(z∗|Z ′
i, Xi)

∣∣∣ .
Therefore,

sup
θ∈Θ

∣∣g(Z ′
i, Xi, θ, σ̂)− g(Z ′

i, Xi, θ, σ0)
∣∣ = op(1) (A.13)

by Proposition 4.1 and the uniform continuous mapping theorem (see, e.g., Theorem 1 of Kasy

2019). (A.13) implies that

sup
θ∈Θ

A1 = Op(∥σ̂ − σ0∥∞) = op(1).

Furthermore, since Yi − g(Zi, Xi, θ, σ0) is uniformly bounded,

sup
θ∈Θ

A2 = Op(∥σ̂ − σ0∥∞) = op(1).

Consequently, (A.12) implies that

sup
θ∈Θ

|Qn(θ, σ̂)−Qn(θ, σ0)| = op(1).

Thus, (A.10) is verified and we can conclude by Theorem 2.1 of Newey and McFadden (1994) that

σ̂
p−→ σ0.

Proof of Theorem 4.2

Proof. From Assumption 4.3 (i) and the first order condition of the optimization problem (4.3), θ̂

solves
1

n

n∑
i=1

[Yi − g(Z ′
i, Xi; θ̂, σ̂)]∇θT g(Z

′
i, Xi; θ̂, σ̂) = 0.

Define s(Wi; θ, σ) = [Yi − g(Z ′
i, Xi; θ, σ)]∇θT g(Z

′
i, Xi; θ, σ). Then, by the mean value theorem we

can obtain
1

n

n∑
i=1

s(Wi; θ0, σ̂) +
1

n

n∑
i=1

∇θs(Wi; θ̃, σ̂)(θ̂ − θ0) = 0, (A.14)

where θ̃ is between θ̂ and θ0. Following the proof of Theorem 8.1 in Newey and McFadden (1994),
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the major step in this proof is to show

1√
n

n∑
i=1

s(Wi; θ0, σ̂) =
1√
n

n∑
i=1

[s(Wi; θ0, σ0) + ρ(Wi)] + op(1). (A.15)

(A.15) means 1/
√
n
∑n

i=1 s(Wi; θ0, σ̂) has the same asymptotic distribution as 1/
√
n
∑n

i=1[s(Wi; θ0, σ0)+

ρ(Wi)], which converges to a normal distribution. Consider

1√
n

n∑
i=1

s(Wi; θ0, σ̂)−
1√
n

n∑
i=1

s(Wi; θ0, σ0) =
1√
n

n∑
i=1

{[Yi − g(Z ′
i, Xi; θ0, σ̂)]∇θT g(Z

′
i, Xi; θ0, σ̂)

− [Yi − g(Z ′
i, Xi; θ0, σ̂)]∇θT g(Z

′
i, Xi; θ0, σ)} (A.16)

By the identity

âb̂ = (â− a)b+ a(̂b− b) + (â− a)(̂b− b),

the right-hand side of (A.16) equals

=− 1√
n

n∑
i=1

[
g(Z ′

i, Xi; θ0, σ̂)− g(Z ′
i, Xi; θ0, σ0)

]
∇θT g(Z

′
i, Xi; θ0, σ0)

+
1√
n

n∑
i=1

[Yi − g(Z ′
i, Xi; θ0, σ0)]

[
∇θT g(Z

′
i, Xi; θ0, σ̂)−∇θT g(Z

′
i, Xi; θ0, σ0)

]
− 1√

n

n∑
i=1

[
g(Z ′

i, Xi; θ0, σ̂)− g(Z ′
i, Xi; θ0, σ0)

] [
∇θT g(Z

′
i, Xi; θ0, σ̂)−∇θT g(Z

′
i, Xi; θ0, σ0)

]
≡ B1 +B2 +B3.

First, we show the term B3 is op(1). Following the proof of Theorem 4.1, we have

|g(Z ′
i, Xi; θ0, σ̂)− g(Z ′

i, Xi; θ0, σ0)| = Op(∥σ̂ − σ0∥∞).

Define W̃i = (1,mi, X
T
i , z

∗)T and Ŵi = (1, m̂i, X
T
i , z

∗)T . By the identify âb̂ = (â− a)b+ a(̂b− b) +
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(â− a)(̂b− b), we can obtain

∇θT g(Z
′
i, Xi; θ0, σ̂)−∇θT g(Z

′
i, Xi; θ0, σ0)

=
∑
z∗

fϵ(α+ βm̂i + γXi + δz∗)Ŵif̂Z∗|Z′,X(z∗|Z ′
i, Xi)−

∑
z∗

fϵ(α+ βmi + γXi + δz∗)W̃ifZ∗|Z′,X(z∗|Z ′
i, Xi)

=
∑
z∗

[
fϵ(α+ βm̂i + γXi + δz∗)Ŵi − fϵ(α+ βmi + γXi + δz∗)W̃i

]
fZ∗|Z′,X(z∗|Z ′

i, Xi)

+
∑
z∗

fϵ(α+ βmi + γXi + δz∗)W̃i

[
f̂Z∗|Z′,X(z∗|Z ′

i, Xi)− fZ∗|Z′,X(z∗|Z ′
i, Xi)

]
+
∑
z∗

[
fϵ(α+ βm̂i + γXi + δz∗)Ŵi − fϵ(α+ βmi + γXi + δz∗)W̃i

] [
f̂Z∗|Z′,Xi

(z∗|Z ′
i, Xi)− fZ∗|Z′,X(z∗|Z ′

i, Xi)
]
.

(A.17)

Furthermore, by the identity âb̂ = (â− a)b+ a(̂b− b) + (â− a)(̂b− b), we have

fϵ(α+ βm̂i + γXi + δz∗)Ŵi − fϵ(α+ βmi + γXi + δz∗)W̃i

= [fϵ(α+ βm̂i + γXi + δz∗)− fϵ(α+ βmi + γXi + δz∗)] W̃i + fϵ(α+ βmi + γXi + δz∗)
(
Ŵi − W̃i

)
+ [fϵ(α+ βm̂i + γXi + δz∗)− fϵ(α+ βmi + γXi + δz∗)]

(
Ŵi − W̃i

)
. (A.18)

Hence, by Assumption 4.3 (vi) and the uniform continuous mapping theorem,∥∥∥fϵ(α+ βm̂i + γXi + δz∗)Ŵi − fϵ(α+ βmi + γXi + δz∗)W̃i

∥∥∥ = Op(∥m̂−m∥∞).

Therefore, (A.17) implies that

∥∥∇θT g(Z
′
i, Xi; θ0, σ̂)−∇θT g(Z

′
i, Xi; θ0, σ0)

∥∥ = Op(∥σ̂ − σ0∥∞).

Consequently,

∥B3∥ = Op(
√
n∥σ̂ − σ0∥2∞) = op(1) (A.19)

by Proposition 4.1. Next, by a second-order Taylor expansion,

B1 = − 1√
n

n∑
i=1

[
∇vT g(Z

′
i, Xi; θ0, σ0)(v̂ − v0) +R

]
∇θT g(Z

′
i, Xi; θ0, σ0)

= − 1√
n

n∑
i=1

[
∇vT g(Z

′
i, Xi; θ0, σ0)(v̂ − v0)

]
∇θT g(Z

′
i, Xi; θ0, σ0) + op(1),

where R = Op(∥v̂−v0∥2∞) by Assumption 4.3 (ii). Note that the second equality is due to Assump-
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tion 4.2 and Lemma B.1. Similarly, we can show that

B2 =
1√
n

n∑
i=1

[Yi − g(Z ′
i, Xi; θ0, σ0)]

[
∇vT∇θT g(Z

′
i, Xi; θ0, σ0)(v̂ − v0)

]
+ op(1).

Therefore,

B1 +B2 =
1√
n

n∑
i=1

{[Yi − g(Z ′
i, Xi; θ0, σ0)]∇vT∇θT g(Z

′
i, Xi; θ0, σ0)

−∇θT g(Z
′
i, Xi; θ0, σ0)∇vT g(Z

′
i, Xi; θ0, σ0)}(v̂ − v0) + op(1)

=
1√
n

n∑
i=1

∇vT {[Yi − g(Z ′
i, Xi; θ0, σ0)]∇θT g(Z

′
i, Xi; θ0, σ0)}(v̂ − v0) + op(1).

Define

G(w; v̂ − v0) = ∇vT {[y − g(z′, x; θ0, σ0)]∇θT g(z
′, x; θ0, σ0)}(v̂ − v0). (A.20)

Next, similar to the proof of Theorem 8.1 in Newey and McFadden (1994), we need to prove two

conditions: stochastic equicontinuity and mean-square differentiability. By Lemmas B.3 and B.4,

these two conditions are verified. Hence, (A.15) is proved with ρ(Wi) = l̃(Wi)− E[l̃(Wi)] and

l̃(w) = E
[
∇vT {[y − g(z′, x; θ0, σ0)]∇θT g(z

′, x; θ0, σ0)}ιdv
∣∣W = w

]
.

By Assumption 4.3 and the central limit theorem for weakly dependent random processes (e.g.,

Corollary 4.1 of Rio 2017),

− 1√
n

n∑
i=1

[s(Wi; θ0, σ0) + ρ(Wi)]
d−→ N(0, D), (A.21)

where

D = lim
n→∞

1

n
Var

{
n∑

i=1

[s(Wi; θ0, σ0) + ρ(Wi)]

}
exists and is positive semi-definite. Furthermore,

1

n

n∑
i=1

∇θs(Wi; θ̃, σ̂)
p−→ E[∇θs(Wi; θ0, σ0)] ≡ H (A.22)

by Lemma B.5. Finally, by Slutsky’s theorem, (A.14), (A.21), (A.22) and Assumption 4.3 (v)

together imply that
√
n(θ̂ − θ0)

d−→ N(0, H−1DH−1).
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Proof of Proposition 4.2

Proof. The proof follows that of Leung (2022, Theorem A.1). First, we have the following decom-

position

TM (θ0;π) = TM (θ0;π)− E [TM (θ0;π)|W ] + E [TM (θ0;π)|W ]

=
1√
Rn

Rn∑
r=1

[
V̂ −1/2χπr(1) − E

(
V̂ −1/2χπr(1)

∣∣W)]
+

1√
Rn

Rn∑
r=1

E
(
V̂ −1/2χπr(1)

∣∣W)
≡ C1 + C2. (A.23)

According to the definition of πr,

C2 =
√
RnV̂

−1/2 1

|Π|
∑
π∈Π

χπ(1) =
√
RnV̂

−1/2 1

n!

∑
π∈Π

χπ(1)

=
√
RnV̂

−1/2 1

n!

n∑
i=1

χi(n− 1)! =

√
Rn

n
V̂ −1/2 1√

n

n∑
i=1

χi

Note that 1/
√
n
∑n

i=1 χi = Op(1) by the proof of Theorem 4.2 and Lemma B.2. Furthermore,

V̂ − V = op(1) can be proved analogously to Lemma B.5. Therefore, C2 is Op

(√
Rn/n

)
= op(1)

by conditions of this proposition.

Next, we apply the Lyapunov central limit theorem to C1, which is a sum of conditionally i.i.d.

random vectors. First ,we have

C1 =
1√
Rn

Rn∑
r=1

(
V̂ −1/2χπr(1) − V̂ −1/2 1

n

n∑
i=1

χi

)
=

1√
Rn

Rn∑
r=1

[
V̂ −1/2

(
χπr(1) − χ

)]
.

Then,

Var(C1|W ) = E
(
C1C

T
1 |W

)
=

1

Rn

Rn∑
r=1

E
[
V̂ −1/2

(
χπr(1) − χ

) (
χπr(1) − χ

)T (
V̂ −1/2

)T ∣∣∣∣W ]
=

1

|Π|
∑
π∈Π

V̂ −1/2
(
χπ(1) − χ

) (
χπ(1) − χ

)T (
V̂ −1/2

)T
=

1

n!

n∑
i=1

V̂ −1/2 (χi − χ) (χi − χ)T
(
V̂ −1/2

)T
(n− 1)!

= Idθ .
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Similarly, we can show that for some λ > 0,

E
[∥∥∥V̂ −1/2 (χi − χ)

∥∥∥2+λ ∣∣W ]
=

1

n

n∑
i=1

∥∥∥V̂ −1/2 (χi − χ)
∥∥∥2+λ

=
1

n

n∑
i=1

∥∥∥V −1/2
(
χ̃i − χ̃

)∥∥∥2+λ
+ op(1)

by the uniform continuous mapping theorem. Note that this is Op(1) by conditions (i) and (ii) and

Minkowski’s inequality, which verifies the Lyapunov condition. Hence, C1
d−→ N(0, Idθ) conditional

on W by Lyapunov’s central limit theorem.

Appendix B Auxiliary lemmas

This section introduces useful lemmas that are used in the proofs of Appendix A.

Lemma B.1. Under Assumption 4.1, the frequency estimator f̂W is a uniformly consistent esti-

mator at rate n−1/2, i.e.,

∥f̂W − fW ∥∞ = Op(n
−1/2).

Proof. We need to show that

lim
ε→∞

lim sup
n→∞

Pr
(√

n∥f̂W − fW ∥∞ > ε
)
= 0.

Let K be the number of elements in the support of W , which is finite because W is discrete. Then,

Pr

(
∥f̂W − fW ∥∞ >

ε√
n

)
≤

∑
w∈supp(W )

Pr

{[
f̂W (w)− fW (w)

]2
>
ε2

n

}
≤

∑
w∈supp(W )

E
[
f̂W (w)− fW (w)

]2 n
ε2

≤ Kn

ε2
max

w∈supp(W )
E
[
f̂W (w)− fW (w)

]2
,

where the second inequality is by Chebyshev’s inequality. It remains to show that E[f̂W (w) −
fW (w)]2 is O(n−1) for any w ∈ supp(W ). By Assumption 4.1,

E
[
f̂W (w)− fW (w)

]
= E

[
1

n

n∑
i=1

1(Wi = w)− fW (w)

]
= 0.
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Define 1i = 1(Wi = w)− fW (w). Hence, by Assumption 4.1 we have

E
[
f̂W (w)− fW (w)

]2
= Var

[
f̂W (w)− fW (w)

]
=

1

n2

n∑
i=1

Var1i +
1

n2

n∑
i=1

n∑
j ̸=i

Cov(1i,1j)

=
1

n
Var1i +

1

n2

G∑
g=1

ng∑
i∈Ng

ng∑
j ̸=i,j∈Ng

Cov(1i,1j)

= O
(
n−1

)
,

Therefore,

∥f̂W − fW ∥∞ = Op(n
−1/2).

Lemma B.2. Suppose Assumption 4.1 (i) and (ii) hold. For any function b : supp(W )×Θ 7→ Rp,

if the following condition hold (i) Θ is compact; (ii) b(w, θ) is measurable of w for each θ ∈ Θ

and continuously differentiable in θ for all w ∈ supp(W ); (iii) There exists a function h(w) with

E[h(w)] <∞ such that b(w; θ)2 ≤ h(w) and ∥∇θT b(w; θ)∥2 ≤ h(w) for all w. Then,

sup
θ∈Θ

∥∥∥∥∥ 1n
n∑

i=1

b(Wi, θ)− E[b(Wi, θ)]

∥∥∥∥∥ = op(1).

Proof. This proof is based on that of Theorem 4.2 in Wooldridge (1994). By notation abuse, define

Qn(θ) = 1/n
∑n

i=1 b(Wi, θ) and Q(θ) = E[b(Wi, θ)]. Let η be a positive number to be set later.

Since Θ is compact, there exists a finite covering of Θ, say Bη(θj), j = 1, 2, ...,K(η), where Bη(θj)

is the sphere of radius η about θj , i.e.,

Bη(θj) = {θ ∈ Θ| ∥θ − θj∥ < η} .

Since Θ ⊂
⋃K

j=1Bη(θj), it follows that for all ε > 0,

Pr

[
sup
θ∈Θ

∥Qn(θ)−Q(θ)∥ > ε

]
≤Pr

[
max

1≤j≤K(η)
sup

θ∈Bη(θj)
∥Qn(θ)−Q(θ)∥ > ε

]

≤
K(η)∑
j=1

Pr

[
sup

θ∈Bη(θj)
∥Qn(θ)−Q(θ)∥ > ε

]
. (B.1)

We will show that each probability in the summand of (B.1) is o(1). Define bi(θ) = b(Wi, θ). For
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θ ∈ Bη(θj),

∥Qn(θ)−Q(θ)∥ ≤ ∥Qn(θ)−Q(θj)∥+ ∥Qn(θj)−Q(θj)∥+ ∥Q(θj)−Q(θ)∥

≤ 1

n

n∑
i=1

∥bi(θ)−Q(θj)∥+

∥∥∥∥∥ 1n
n∑

i=1

bi(θj)−Q(θj)

∥∥∥∥∥+ 1

n

n∑
i=1

∥Q(θ)−Q(θj)∥

by triangle inequality. By Conditions (i)-(ii) and the monotonicity of expectations,

∥bi(θ)− bi(θj)∥ ≤ ci∥θ − θj∥ ≤ ηci

and

∥Q(θ)−Q(θj)∥ ≤ ci∥θ − θj∥ ≤ ηci,

where ci = supθ∈Θ ∥∇θT bi(θ)∥ and ci = E(ci). Therefore, we have

sup
θ∈Bη(θj)

|Qn(θ)−Q(θ)| ≤ η

(
1

n

n∑
i=1

ci +
1

n

n∑
i=1

ci

)
+

∥∥∥∥∥ 1n
n∑

i=1

bi(θj)−Q(θj)

∥∥∥∥∥
≤ 2η

n

n∑
i=1

ci + η

∥∥∥∥∥ 1n
n∑

i=1

ci −
1

n

n∑
i=1

ci

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

bi(θj)−Q(θj)

∥∥∥∥∥
= 2ηci + η

∥∥∥∥∥ 1n
n∑

i=1

ci − ci

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

bi(θj)−Q(θj)

∥∥∥∥∥ .
where the second inequality is by triangle inequality and the last equality is by Assumption 4.1.

Since ci ≤ C <∞ by dominated convergence theorem. It follows that

Pr

[
sup

θ∈Bη(θj)
∥Qn(θ)−Q(θ)∥ > ε

]
≤ Pr

[
η

∥∥∥∥∥ 1n
n∑

i=1

ci − ci

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

bi(θj)−Q(θj)

∥∥∥∥∥ > ε− 2ηC

]
.

Now choose η ≤ 1 such that ε− 2ηC > ε/2. Then

Pr

[
sup

θ∈Bη(θj)
∥Qn(θ)−Q(θ)∥ > ε

]
≤ Pr

[∥∥∥∥∥ 1n
n∑

i=1

ci − ci

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

bi(θj)−Q(θj)

∥∥∥∥∥ > ε

2

]
.

Next, choose N so that

Pr

[∥∥∥∥∥ 1n
n∑

i=1

ci − ci

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

bi(θj)−Q(θj)

∥∥∥∥∥ > ε

2

]
≤ ε

K(η)
, (B.2)

for all n ≥ N and all j = 1, 2, ...,K(δ). Note that this is possible because under Assumption 4.1
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and Condition (iii), ∥∥∥∥∥ 1n
n∑

i=1

ci − ci

∥∥∥∥∥ = op(1)

and ∥∥∥∥∥ 1n
n∑

i=1

bi(θj)−Q(θj)

∥∥∥∥∥ = op(1)

by using variance calculation similar to the proof of Lemma B.1. Consequently, (B.1) and (B.2)

together imply that for all n ≥ N and ε > 0

Pr

[
sup
θ∈Θ

∥Qn(θ)−Q(θ)∥ > ε

]
≤ ε,

which proves the result.

Lemma B.3. Let G(w; v̂ − v0) be defined as in (A.20). Then, under Assumptions 4.1 and 4.3,

1√
n

n∑
i=1

[
G(Wi; v̂ − v0)−

∫
G(w; v̂ − v0)dFW (w)

]
= op(1).

Proof. Since G(w; v̂ − v0) is linear in v̂ − v0, we can rewrite it as G(w; v̂ − v0) = l̃(w)(v̂ − v0).

Consequently, ∥∥∥∥∥ 1√
n

n∑
i=1

[
G(Wi; v̂ − v0)−

∫
G(w; v̂ − v0)dFW (w)

]∥∥∥∥∥
=

∥∥∥∥∥ 1√
n

n∑
i=1

{
l̃(Wi)− E[l̃(Wi)]

}
(v̂ − v0)

∥∥∥∥∥
≤

∥∥∥∥∥ 1√
n

n∑
i=1

{
l̃(Wi)− E[l̃(Wi)]

}∥∥∥∥∥ ∥v̂ − v0∥∞ .

Then,

E

(
1√
n

n∑
i=1

{
l̃(Wi)− E[l̃(Wi)]

})2

=
1

n

n∑
i=1

E
{
l̃(Wi)− E[l̃(Wi)]

}2
+

1

n

n∑
i=1

n∑
j ̸=i

E
{
l̃(Wi)− E[l̃(Wi)]

}
{l(Wj)− E[l(Wj)]}

=
1

n

n∑
i=1

E
{
l̃(Wi)− E[l̃(Wi)]

}2
+

1

n

G∑
g=1

ng∑
i∈Ng

ng∑
j ̸=i,j∈Ng

E {h(Wi)− E[h(Wi)]} {h(Wj)− E[h(Wj)]}

=O(1)
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by Assumptions 4.1 and 4.3. Hence, by Proposition 4.1 we can obtain

1√
n

n∑
i=1

[
G(Wi; v̂ − v0)−

∫
G(w; v̂ − v0)dFW (w)

]
= op(1).

Lemma B.4. There exists a function ρ : supp(W ) 7→ Rdθ such that∫
G(w; v̂ − v0)dFW (w) =

∫
ρ(w)dF̂W (w),

where F̂W is the empirical distribution of Wi.

Proof. By the linearity of G(w; v) in v and the law of iterated expectations, we have∫
G(w; v)dFW (w) =

∫
l̃(w)v(w)dw,

where

l̃(w) = E [∇vT {[y − g(z, x; θ0, σ0)]∇θT g(z, x; θ0, σ0)}ιdv |W = w] .

Note that ιdv is a dv × 1 vector of ones and dv is the dimension of v. Furthermore, define ρ(w) =

l̃(w)− E[l̃(w)], we can easily verify that∫
G(w; v̂ − v0)dFW (w) =

∫
ρ(w)dF̂W (w).

Lemma B.5. Suppose the assumptions of Proposition 4.1 hold. Then, under Assumptions 4.1-4.3,

1

n

n∑
i=1

∇θs(Wi; θ̃, σ̂)
p−→ E[∇θs(Wi; θ0, σ0)].

Proof. By triangle inequality,∥∥∥∥∥ 1n
n∑

i=1

∇θs(Wi; θ̃, σ̂)− E[∇θs(Wi; θ0, σ0)]

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

∇θs(Wi; θ̃, σ̂)−
1

n

n∑
i=1

∇θs(Wi; θ0, σ0)

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

∇θs(Wi; θ0, σ0)− E[∇θs(Wi; θ0, σ0)]

∥∥∥∥∥ .
(B.3)

By Assumptions 4.1 and 4.3 (v) and using variance calculation similar to the proof of Lemma B.1,
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the second term on the right-hand side of (B.3) is op(1). Therefore, we need to show that the first

term is op(1). Again, by triangle inequality we have∥∥∥∥∥ 1n
n∑

i=1

∇θs(Wi; θ̃, σ̂)−
1

n

n∑
i=1

∇θs(Wi; θ0, σ0)

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

∇θs(Wi; θ̃, σ̂)−
1

n

n∑
i=1

∇θs(Wi; θ̃, σ0)

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

∇θs(Wi; θ̃, σ0)−
1

n

n∑
i=1

∇θs(Wi; θ0, σ0)

∥∥∥∥∥
≡∥D1∥+ ∥D2∥.

Note that ∥D2∥ = op(1) by Theorem 4.1 and Assumption 4.2 (ii). Now consider the term D1. Since

1

n

n∑
i=1

∇θs(Wi; θ̃, σ̂)−
1

n

n∑
i=1

∇θs(Wi; θ̃, σ0)

=
1

n

n∑
i=1

{
[Yi − g(Z ′

i, Xi; θ̃, σ̂)]
[
∇θ∇θT g(Z

′
i, Xi; θ̃, σ̂)

]
− [Yi − g(Z ′

i, Xi; θ̃, σ0)]
[
∇θ∇θT g(Z

′
i, Xi; θ̃, σ0)

]}
− 1

n

n∑
i=1

[
∇θT g(Z

′
i, Xi; θ̃, σ̂)∇θg(Z

′
i, Xi; θ̃, σ̂)−∇θT g(Z

′
i, Xi; θ̃, σ0)∇θg(Z

′
i, Xi; θ̃, σ0)

]
.

Using the identity

âb̂ = (â− a)b+ a(̂b− b) + (â− a)(̂b− b),

we have for any θ̃ ∈ Θ,

D1 =− 1

n

n∑
i=1

[
g(Z ′

i, Xi; θ̃, σ̂)− g(Z ′
i, Xi; θ̃, σ0)

]
∇θ∇θT g(Z

′
i, Xi; θ̃, σ0)

+
1

n

n∑
i=1

[Yi − g(Z ′
i, Xi; θ̃, σ0)]

[
∇θ∇θT g(Z

′
i, Xi; θ̃, σ̂)−∇θ∇θT g(Z

′
i, Xi; θ̃, σ0)

]
− 1

n

n∑
i=1

[
g(Z ′

i, Xi; θ̃, σ̂)− g(Z ′
i, Xi; θ̃, σ0)

] [
∇θ∇θT g(Z

′
i, Xi; θ̃, σ̂)−∇θ∇θT g(Z

′
i, Xi; θ̃, σ0)

]
− 1

n

n∑
i=1

[
∇θT g(Z

′
i, Xi; θ̃, σ̂)−∇θT g(Z

′
i, Xi; θ̃, σ0)

]
∇θg(Z

′
i, Xi; θ̃, σ0)

− 1

n

n∑
i=1

∇θT g(Z
′
i, Xi; θ̃, σ0)

[
∇θg(Z

′
i, Xi; θ̃, σ̂)−∇θg(Z

′
i, Xi; θ̃, σ0)

]
− 1

n

n∑
i=1

[
∇θT g(Z

′
i, Xi; θ̃, σ̂)−∇θT g(Z

′
i, Xi; θ̃, σ0)

] [
∇θg(Z

′
i, Xi; θ̃, σ̂)−∇θg(Z

′
i, Xi; θ̃, σ0)

]
.
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Following the proof of Theorem 4.1, we can conclude that∣∣∣g(Z ′
i, Xi; θ̃, σ̂)− g(Z ′

i, Xi; θ̃, σ0)
∣∣∣ = Op(∥σ̂ − σ0∥∞) (B.4)

and ∥∥∥∇θT g(Z
′
i, Xi; θ̃, σ̂)−∇θT g(Z

′
i, Xi; θ̃, σ0)

∥∥∥ = Op(∥σ̂ − σ0∥∞). (B.5)

Besides, by using the identity âb̂ = (â− a)b+ a(̂b− b) + (â− a)(̂b− b) again, we have

∇θ∇θT g(Z
′
i, Xi; θ̃, σ̂)−∇θ∇θT g(Z

′
i, Xi; θ̃, σ0)

=
∑
z∗

∇θfϵ(θ̃Ŵi)ŴiŴ
T
i f̂Z∗|Z′,X(z∗|Zi, Xi)−

∑
z∗

∇θfϵ(θ̃W̃i)W̃iW̃
T
i fZ∗|Z′,X(z∗|Z ′

i, Xi)

=
∑
z∗

[
∇θfϵ(θ̃Ŵi)ŴiŴ

T
i −∇θfϵ(θ̃W̃i)W̃iW̃

T
i

]
fZ∗|Z′,X(z∗|Z ′

i, Xi)

+
∑
z∗

fϵ(θ̃W̃i)W̃iW̃
T
i

[
f̂Z∗|Z′,X(z∗|Z ′

i, Xi)− fZ∗|Z′,X(z∗|Z ′
i, Xi)

]
+
∑
z∗

[
∇θfϵ(θ̃Ŵi)ŴiŴ

T
i −∇θfϵ(θ̃W̃i)W̃iW̃

T
i

] [
f̂Z∗|Z′,X(z∗|Z ′

i, Xi)− fZ∗|Z′,X(z∗|Z ′
i, Xi)

]
(B.6)

Furthermore,

∇θfϵ(θ̃Ŵi)ŴiŴ
T
i −∇θfϵ(θ̃W̃i)W̃iW̃

T
i

=
[
∇θfϵ(θ̃Ŵi)−∇θfϵ(θ̃W̃i)

]
W̃iW̃

T
i +∇θfϵ(θ̃W̃i)

[
ŴiŴ

T
i − W̃iW̃

T
i

]
+
[
∇θfϵ(θ̃Ŵi)−∇θfϵ(θ̃W̃i)

] [
ŴiŴ

T
i − W̃iW̃

T
i

]
(B.7)

by the identity âb̂ = (â − a)b + a(̂b − b) + (â − a)(̂b − b). By Assumption 4.3 and the uniform

continuous mapping theorem, (B.6) and (B.7) together imply that∥∥∥∇θ∇θT g(Z
′
i, Xi; θ̃, σ̂)−∇θ∇θT g(Z

′
i, Xi; θ̃, σ0)

∥∥∥ = Op(∥σ̂ − σ0∥∞). (B.8)

Consequently, (B.4), (B.5) and (B.8) together indicate that the term ∥D1∥ can be bounded as

∥D1∥ = Op(∥σ̂ − σ0∥∞) = op(1)

by Proposition 4.1. Hence, we can conclude by (B.3) that

1

n

n∑
i=1

∇θs(Wi; θ̃, σ̂)
p−→ E[∇θs(Wi; θ0, σ0)].
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