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1 Introduction

Perturbation methods are a widely popular tool for solving Dynamic Stochastic General Equi-
librium (DSGE) models. They tend to be fast, locally accurate as one increases the order of
approximation, and they can handle many state variables without suffering from the curse
of dimensionality. By far, their most common application consists of building Taylor series
approximations to the policy rules of the model around its deterministic steady-state using
implicit-function theorems (Fernández-Villaverde, Rubio-Ramírez, and Schorfheide, 2016).

Nevertheless, standard regular perturbation falls short in dealing with many open econ-
omy models of interest. This follows because, under incomplete markets, the properties of
these models in a stochastic setting can differ radically from their deterministic counterparts.
A classic example is the small open economy with a stochastic endowment. While this model is
dependent on initial conditions and displays non-stationary dynamics in a deterministic setup
(Schmitt-Grohé and Uribe, 2003), a precautionary-savings motive induces local stability and
stationarity in a stochastic context (Chamberlain and Wilson, 2000).1 A related problem arises
with DSGE portfolio-choice models: in a deterministic arbitrage-free equilibrium all asset re-
turns must be identical, leading to arbitrary portfolio allocations that makes the analysis of
these models intractable with the conventional perturbation approach (Devereux and Suther-
land, 2011; Tille and van Wincoop, 2010).

The first contribution of this paper is to propose a small generalization of the standard
perturbation procedure to bypass these technical difficulties. The method involves using two
perturbation parameters, ε and σ, to link a family of models. While σ is the conventional pa-
rameter scaling random innovations, the new parameter ε interacts with a subset of the model
parameters. Consider a setup where the model of interest (ε, σ) = (1, 1) is well-behaved (e.g. a
small open economy model with a stochastic endowment), but intractable with (ε, σ) = (1, 0)
(the deterministic version of this model). However, the auxiliary model with portfolio adjust-
ment costs (ε, σ) = (0, 0) has good local properties. Then, we can obtain approximations to
the policy rules of the model of interest around the deterministic steady-state of the auxiliary
model by applying the same algorithm used in standard perturbation. As such, simultaneous
perturbation of the pair (ε, σ) allows us to effectively reach the model of interest starting from
the nearby auxiliary one.

In principle, one could obtain the same result with a single-parameter perturbation model
where σ interacts with both the random innovations and the subset of model parameters.2

The main advantage of a two-parameter approach is eminently practical: popular solution
toolboxes (e.g. Dynare) only allow for the classical perturbation scheme. But thanks to the
variable-parameter duality of perturbation objects, we can treat the new parameter ε as an

1This issue is pervasive in open-economy macroeconomics. For example, Corsetti, Dedola and Leduc (2023)
analyze a DSGE one-bond economy that delivers non-stationary wealth dynamics because, for simplicity, they only
consider the perfect-foresight case.

2For example, Mertens and Judd (2018) solve an Heterogeneous-agent model a là Krusell-Smith with perturba-
tion methods where a factor (1 − σ) scales a penalty function ensuring that all households hold the same amount
of capital in the auxiliary deterministic model.
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exogenous state that is constant over time.3 Thus, at the very cheap cost of augmenting the
auxiliary model with an additional exogenous state, we can compute approximations to the
model of interest using available toolboxes.

Furthermore, the two-parameter perturbation model allows to obtain local solutions around
a large subset of points of the state-space, while still relying on the implicit function theorems
ensuring convergence of the Taylor series. This result follows because, by properly interacting
ε with structural parameters of the auxiliary model, we can impose different parameter values
to those intended for the model of interest, leading to a different deterministic steady-state than
the one implied by the model of interest (which might even fail to exist). Perturbation of ε then
corrects for any discrepancy of parameter values between models.

Exploiting this property, the paper develops a simple fixed-point algorithm, akin to stan-
dard calibration routines of DSGE models, that approximates the stochastic steady-state of the
model, and builds the perturbation solution around it.4 A proposition ensures that, under
standard regularity conditions, the output of the algorithm converges to the true stochastic
steady-state of the model as the order of the Taylor series goes to infinity. In the applications,
the algorithm delivers the same formulas for zero-order portfolios obtained with bifurcation
methods (Judd, 1998), and a stochastic steady-state of the small open economy identical to the
one obtained with global methods. The accuracy of the local approximations follows the same
pattern emphasized by Devereux and Sutherland (2010) and Tille and van Wincoop (2010).
Specifically, a second-order solution might suffice to approximate the stochastic steady-state
(provided that innovations are symmetric), but we require at least a third-order solution to
capture well portfolio dynamics.

The second contribution of the paper consists of applying two-parameter perturbation to
analyze hedging motives of equity home bias in a two-country DSGE model with bonds and
equities. To do so, I extend the two-period model by Coeurdacier and Gourinchas (2016, from
hereon CG) to an infinite-horizon setting, thus allowing rigorous quantitative work. The base-
line model consists of an endowment economy with two symmetric countries (Home and For-
eign), two goods, up to four assets, and different sources of risk (income, redistributive, and
preference shocks) that makes financial markets incomplete. With two-parameter perturbation,
what the literature considered a very challenging task now becomes standard DSGE work. In
particular, introducing portfolio adjustment costs in the auxiliary model suffices to obtain a
third-order solution to the model of interest around the stochastic steady-state that is highly
accurate (average Euler errors below −6), and very fast to compute.5

A first set of quantitative results confirms the original message from CG: bonds still matter.
Specifically, a model with only trade in equities fails to reproduce the large level of equity home
bias found in the data. This was an open question because, as CG showed in their Appendix,
sufficiently volatile redistributive risk can generate a sizable home bias. While this theoretical

3Levintal (2017) exploits this duality to build an efficient solution algorithm for the standard perturbation model.
4Coeurdacier, Rey and Winant (2011) call this point the risky steady-state.
5See https://github.com/ghausmann/two_parameter_perturbation.git for a repository with all the replication

files to solve the main application and examples of this paper, using both Dynare and the solution package by
Levintal (2017).
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result holds in the present framework, a calibration set to match key moments of advanced
economies rules out this possibility. At best, the equities-only model delivers a near perfectly
diversified portfolio; at worst, it reproduces a worse-than-you-think-puzzle scenario (Baxter
and Jermann, 1997). In contrast, the same model incorporating both bonds and equities has the
potential to deliver a large home bias. But to generate external equity positions consistent with
the data, an incomplete markets framework with all sources of risk active is essential. Other-
wise, domestic investors find it optimal to hold all domestic equity to eliminate redistributive
risk, just as CG found in their two-period model.

A second set of results accounts for the observed patterns of trade and financial global-
ization in the last decades, both across countries and over time. Firstly, the calibrated model
predicts large, leveraged gross debt positions comparable to the data that are long in the home
currency, and short in the foreign one (Lane and Shambaugh, 2010; Maggiori, Neiman and
Schreger, 2020). Secondly, the model predicts a strong positive relationship between trade and
financial openness (Collard et al. 2007; Heathcote and Perry, 2013) that is mostly driven by
a large increase in the external debt position of countries (Khalil, 2019). The mechanism that
generates this positive link is also novel. In the model, holding leveraged debt positions deliv-
ers risk-sharing transfers because the returns of Home and Foreign bonds change differently in
response to the same income shocks. But as deeper trade integration synchronizes the returns,
countries find it optimal to leverage up their debt positions just to maintain the same degree of
risk-sharing.

A strength of two-parameter perturbation is that the quantitative analysis naturally yields
implications for the dynamics of equilibrium portfolios and international capital flows. As in
Sauzet (2022a, 2022b), the allocation of time-varying wealth across countries emerges as a key
driver of portfolio reallocation, an aspect largely ignored by previous literature. Since relative
wealth is a slow moving object, this dependence generates a strong portfolio inertia despite
the absence of financial frictions in the model of interest.6 However, the model produces coun-
terfactual co-movements of gross capital flows. Stochastic simulations and impulse responses
reveal an almost perfect negative correlation between capital inflows and outflows, implying
that gross capital flows are much less volatile than net capital flows. As documented by Broner
et al. (2013) and Davis and van Wincoop (2018), both predictions are at odds with international
time-series data.

The present model also encounters challenges (common in many previous studies) when
attempting to replicate key features of time-series data. Among other issues, the simulations
struggle to capture the large volatility and persistence of the real exchange rate, and cannot
fully explain its co-movement with relative consumption, despite a considerable quantitative
improvement compared to complete-markets models strongly rejected by the data (Backus and
Smith, 1993). Another symptom of excessive risk-sharing is the model’s inability to account
for the consumption correlation puzzle (Backus, Kehoe, and Kydland, 1992), since the cross-
correlation of Home and Foreign consumption is too strong, both in comparison to the data

6See Bacchetta, Davenport and van Wincoop (2022), and Bacchetta, van Wincoop and Young (2023) for recent
contributions introducing portfolio frictions in DSGE models to generate this inertia.
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and relative to the cross-correlation of GDP.7

Taking further advantage of the capabilities of two-parameter perturbation, a final round
of experiments investigate the behavior of international portfolios under long-run global im-
balances. Specifically, I follow Gourinchas, Rey, and Govillot (2017), Sauzet (2022a) and Step-
anchuk and Tsyrennikov (2015) in introducing a structural asymmetry by making the Home
country less risk-averse than Foreign, as a simple way of rationalizing the international role of
the United States as a global banker. Similar to these papers, this new source of heterogeneity
induces the Home country to adopt a long-run riskier portfolio with less home bias, and to
enjoy, on average, a larger consumption stream. In return, Home’s consumption becomes sig-
nificantly more volatile than Foreign’s. Nevertheless, in this model, the less risk-averse country
is also a net creditor running a long-run positive net foreign asset position, a feature at odds
with U.S. data, but consistent with recent empirical findings by Zhang (2023), who shows that
creditor countries tend to exhibit more diversified international portfolios.

Related literature. Firstly, the paper contributes to the existing body of literature on solution
methods for portfolio-choice models that relies on local approximations.8 Within this liter-
ature, it aligns closely with the methodological breakthroughs of Devereux and Sutherland
(2010, 2011) and Tille and van Wincoop (2010), who build approximations based on the so-
called zero-order portfolios (those held by investors in a symmetric deterministic steady-state
as risk goes to zero). Alternatives to this approach include contributions based on bifurca-
tion theorems (Judd, 1998; Judd and Guu, 2001; Winant, 2014) or continuous-time approxi-
mations (Campbell and Viceira, 1999; Evans and Hnatkovska, 2012; Bacchetta, Davenport and
van Wincoop, 2022). To this literature, I bring a solution method fully based on regular per-
turbation, which benefits from all the theoretical results and efficient, user-friendly algorithms
available for this mathematical tool.9 In addition, approximations based on zero-order portfo-
lios suffer from two main limitations. First, they can become highly inacurate for models with
asymmetric countries (Rabitsch, Stepanchuk and Tsyrennikov, 2015). Second, being based on a
second-order approximation to the portfolio Euler equations, they cannot account for common
features in DSGE macro-finance models involving higher-order moments of the shocks, such
as non-symmetric distributions or stochastic volatility. By building approximations centered
at the stochastic steady-state, two-parameter perturbation provides a satisfactory solution to
these shortcomings.

Secondly, the paper contributes to a methodological literature proposing approximations
of DSGE models around the stochastic steady-state. Examples include Coeurdacier, Rey and
Winant (2011), de Groot (2013), Juillard (2011), Hausmann-Guil (2022), and Lopez, Lopez-

7Since the model does not include features such as recursive preferences, stochastic volatility, or disaster risk,
it also fails to reproduce many stylized asset-pricing facts (see e.g. Andreasen (2012)). On a positive note, two-
parameter perturbation can easily handle all these extensions.

8See Bacchetta, van Wincoop and Young (2023), Cao, Luo and Nie (2023), Sauzet (2022b), and Stepanchuk and
Tsyrennikov (2015) for examples of global solution methods. Compared to these algorithms, the usual trade-offs
between global and local methods apply (higher global accuracy and ability to handle strong non-linearities, versus
acute curse of dimensionality and sizable entry costs).

9See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), Andreasen (2012), and Levintal (2017), among others.
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Salido and Vazquez-Grande (2022). Relative to these studies, the algorithm presented here
is more general in scope, easier to implement, and backed by theoretical results. Indeed, the
ability of two-parameter perturbation to solve models around a point different than the deter-
ministic steady-state relates the paper to the Taylor-projection method by Levintal (2018), but
without having to rely on non-linear solvers to compute the coefficients of the polynomials
approximating decision rules.

Thirdly, the paper contributes to the vast literature that, following Schmitt-Grohé and Uribe
(2003), closes small open-economy models by introducing technical modifications with the only
purpose of generating stable dynamics around a well-defined steady-state. The problem with
this approach is twofold. First, the ad hoc modifications prevent researchers from studying
the determinants of long-run imbalances in small open economies, since the steady-state of net
foreign assets is a direct function of the modification involved. Second, these extra assumptions
are not innocuous for the numerical results (Seoane, 2015; de Groot, Durdu and Mendoza,
2023). With two-parameter perturbation, both problems are gone: now we can think of these
modifications as excellent auxiliary devices to be shut down at the model of interest.10

Finally, the main application relates the paper to the international finance literature that
builds general equilibrium models to account for the international diversification puzzle, and
more generally, for the determinants of gross external positions. Seminal contributions include
Baxter and Jermann (1997), Obstfeld and Rogoff (2000), Engel and Matsumoto (2009), Heath-
cote and Perry (2013), and Coeurdacier and Gourinchas (2016).11 Apart from the obvious con-
nection to the later, the present work strongly relates to Heathcote and Perry (2013) and Khalil
(2019) in generating a strong link between trade and financial integration, and to Coeurdacier,
Kollmann and Martin (2010) and Sauzet (2022a) in delivering quantitative predictions for the
dynamics of capital flows. To my knowledge, this is the first study delivering a solution for
a model with two (potentially asymmetric) countries, two goods, four assets and incomplete
markets with implications for gross capital flows.

2 A simple example: portfolio choices for small risks

To help build the intuition of why two-parameter perturbation is a useful tool to deal with
incomplete market models, I start by solving the same example used by Judd (1998, Chapter 15)
to introduce bifurcation. It consists of a one-period model whose approximation can be worked
out using pen and paper, and it examines the portfolio choice problem of an individual investor
with access to a safe and a risky asset. The auxiliary model introduces portfolio adjustment
costs (PAC) to pin down the proportion of wealth allocated in the risky asset. Remarkably,
two-parameter perturbation yields the same approximation formulas obtained by Judd.

10The small open-economy example of this paper shows that, regardless of the auxiliary modification involved,
two-parameter perturbation delivers highly accurate approximations (Average Euler errors below −5 with a third-
order solution, and well below −6 with a fifth-order one) with a calibration matching key moments of Mexican
data.

11See Coeurdacier and Rey (2013) for a thorough review of the literature on the equity home bias.
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An investor has one unit of wealth to invest in two assets. The safe asset yields 1 dollar per
dollar invested, and the risky asset yields Z dollars per dollar invested, where Z is stochastic
and given by

Z = 1 + π + z (2.1)

Here π ≥ 0 is the premium paid by the risky asset, and z a random variable with moments
E {z} = 0, E

{
z2} = µ2 > 0, and E

{
z3} = µ3. Let ω be the proportion of wealth invested

in the risky asset, and Y = (1 − ω) + ωZ the investor’s final wealth. The investor has CRRA
preferences, and her optimization problem is

max
ω

U = E

{
Y1−γ − 1

1 − γ

}
,

with first-order condition
0 = E

{
π + z

Yγ

}
. (2.2)

The goal is to approximate the proportion ω∗ that solves (2.2). Regular perturbation around
the deterministic case z = 0 does not work because a unique finite solution for ω∗ does not
exist: if π > 0, ω∗ should be infinity, and if π = 0 we find that (2.2) is satisfied for all ω. To deal
with this issue, Judd (1998) considers an auxiliary model with Z (σ) = 1+ σ2π + σz depending
on the perturbation parameter σ, and then applies a bifurcation theorem to approximate ω∗.

Instead, consider the following auxiliary model in terms of perturbation parameters ε and
σ. We have

Z (ε, σ) = 1 + ε2π + σz.

The investor faces quadratic costs of holding a proportion ω different from some given value
ω, as follows:

Y (ω, ε, σ) = (1 − ω) + ωZ (ε, σ)− ψ

2
(
1 − ε2) (ω − ω)2 ,

where ψ > 0 is an auxiliary parameter. Note that if (ε, σ) = (1, 1) we recover the model of
interest.12 The first-order condition of the auxiliary model is

0 = E

{
ε2π + σz − ψ

(
1 − ε2) (ω − ω)

[Y (ω, ε, σ)]γ

}
= G (ω, ε, σ) . (2.3)

Now we can use regular perturbation. First, at the deterministic case (ε, σ) = (0, 0) we find a
unique and finite solution ω∗ = ω. Second, the Implicit function theorem applies and there
exists a well-defined function ω∗ = ω (ε, σ) around (ε, σ) = (0, 0) that satisfies (2.3). Thus, we
can write:

G (ω (ε, σ) , ε, σ) = 0. (2.4)

12Following Judd (1998), I use second powers of ε to ensure that, whenever σ = ε, risk premia is proportional to
variance.
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The second-order approximation to ω∗ is:

ω∗ = ω + ωεε + ωσσ +
1
2
(
ωεεε

2 + ωσσσ2 + 2ωεσεσ
)

. (2.5)

We can obtain the derivatives of ω (ε, σ) by taking partial derivatives of G with respect to σ and
ε and equating them to zero. The procedure yields ωε = ωσ = ωεσ = 0, and

ωεε = 2
π

ψ
,

ωσσ = −2
(

γµ2

ψ

)
ω.

Plugging these results into (2.5) and evaluating at the model of interest (ε, σ) = (1, 1) gives

ψ (ω∗ − ω) = π − γµ2ω.

Then, imposing ω∗ = ω (a condition analogous to the stochastic steady-state of infinite-horizon
models) delivers a solution that depends on second moments:

ω∗ =
π

γµ2
,

which is the same formula obtained by Judd (1998). Intuitively, if the approximation point ω

is already the optimal proportion of wealth, the sum of the perturbation components ωεε and
ωσσ must equal zero, which pins down ω∗.

We can proceed further and use a third-order approximation to obtain a solution that de-
pends on both µ2 and µ3:

ω∗ = ω +
1
2
(
ωεεε

2 + ωσσσ2)+ 1
6
(
ωεεεε

3 + 3ωεεσε2σ + 3ωεσσεσ2 + ωσσσσ3) . (2.6)

The new derivatives are ωεεε = ωεεσ = ωσσε = 0, and

ωσσσ =

(
γ (γ + 1) µ3

ψ

)
3 (ω)2 .

Plugging the results for ωσσ, ωεε and ωσσσ into (2.6), evaluating at (ε, σ) = (1, 1), and imposing
ω∗ = ω gives

0 = π − γµ2ω∗ +

(
γ (γ + 1)

2

)
µ3 (ω

∗)2 .

While formally a quadratic equation in ω∗ , we can use implicit differentiation to obtain the
following expression for ω∗ around µ3 = 0:

ω∗ =
π

γµ2
+

(γ + 1)
2

(
µ3

µ2

)(
π

γµ2

)2

.

Again, the second term proportional to µ3 is the same one obtained by Judd (1998).
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3 The two-parameter perturbation model

This section presents an extension to the canonical perturbation model where the new perturba-
tion parameter ε interacts with a subset of the model parameters. The structure and notation of
the model follows closely the expositions by Schmitt-Grohé and Uribe (2004), and Fernández-
Villaverde, Rubio-Ramírez, and Schorfheide (2016).

3.1 The framework

Consider an auxiliary perturbation model with a set of equilibrium conditions of the form

Etf (yt+1, yt, xt+1, xt, ε) = 0. (3.1)

Here, Et denotes conditional expectations at time t = 0, 1, 2, ..., yt is a vector of ny control
variables, xt is a vector of nx state variables, and ε ≥ 0 is a perturbation parameter that interacts
with a subset of the model parameters. The function f maps R2(ny+nx)+1 into R(ny+nx). In turn,
the state vector can be partitioned as xt = [x1,t; x2,t], where x1,t consists of the nx1 endogenous
states, and x2,t of the nx2 exogenous states.13 The latter follows a stochastic process of the form

x2,t+1 = C(x2,t) + σηuut+1,

where C : Rnx2 → Rnx2 is a differentiable function that generates stationary dynamics, ut is a
vector of nu zero-mean innovations, and ηu is a known matrix with dimensions nx2 × nu scaled
by the standard perturbation parameter σ ≥ 0.

The solution to the model consists of a set of policy functions g and h for the control and
state variables:

yt = g(xt, ε, σ), (3.2)

xt+1 = h(xt, ε, σ) + σηut+1,

where g maps R(nx+2) into Rny , h maps R(nx+2) into Rnx , and η = [0nx1×nu ; ηu] is a nx × nu

matrix. Note that, under this formulation, the function C is the lower block of h, and the only
one updated by innovations.

The deterministic steady-state (DSS) of the model consists of vectors (xd, yd) that satisfy

f (yd, yd, xd, xd, 0) = 0. (3.3)

Assume that the DSS exists and that it is unique. Note that, by construction, we have that

xd = h(xd, 0, 0),

yd = g(xd, 0, 0), (3.4)

13Throughout the text I will also refer to the exogenous states as shocks.
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that is, the vector xd (which can be partitioned as xd = [x1,d; x2,d]) is the fixed-point of h condi-
tional on (ε, σ) = (0, 0).

The goal of perturbation is to approximate the functions g and h with Taylor series around
xt = xd. To find their partial derivatives, plug-in the unknown policy functions on f, and define
the new operator F : Rnx+2 → Rnx+ny :

F (xt, ε, σ) ≡ Etf (g (h + σηut+1) , g, h + σηut+1, xt, ε) = 0.

Since F (xt, ε, σ) = 0 must hold for all values of (xt, ε, σ), any of its partial derivatives evaluated
at (xd, 0, 0) must also equal zero:

Fxj
i ε

lσm (xd, 0, 0) = 0,

where Fxj
i ε

lσm is the partial derivative of F with respect to the i-th component of xt taken j times,
with respect to ε taken l times, and with respect to σ taken m times. It follows that, by taking the
proper number of derivatives, we end up with a system of equations to solve for the coefficients
of the Taylor series of g and h up to a given order k.

3.2 Implementation

The two-parameter perturbation model can be implemented using any algorithm designed to
solve the standard perturbation model. To show this, I follow Levintal (2017) and exploit the
variable-parameter duality of perturbation objects to rewrite the model with a new notation
that treats the perturbation parameter ε as a state variable.

To start, let εt denote an exogenous state variable that is constant over time: εt+1 = εt.
From the theoretical side, having a unit root is valid because εt is a purely exogenous state
that only depends on itself. From the practical side, popular solution packages such as Dynare
and the MATLAB function gx_hx.m by Schmitt-Grohé and Uribe (2004) accept the equation
εt+1 = ρεεt with ρ = 1 without problems (the latter once we change the default threshold of unit
eigenvalues).14 Alternatively, we can set a value ρε < 1 before executing the solution algorithm,
and impose ρε = 1 in the solution matrices right after executing the solver. In practice, this
procedure delivers numerical results identical to the unit root case if ρε is sufficiently close to
one.

Next, define the new vectors:

f̂ =

(
f

−εt+1 + εt

)
, x̂t =

(
xt

εt

)
, η̂ =

(
η

01×nu

)
.

Using this notation, the new set of equilibrium conditions is:

Et f̂ (yt+1, yt, x̂t+1, x̂t) = 0, (3.5)

14In the online repository, the function gx_hx.m already has a modified default threshold for eigenvalues that is
larger than (but extremely close to) one. I thank Oren Levintal for this suggestion.
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and we can restate the solution to the model as:

yt = ĝ(xt, σ), (3.6)

x̂t+1 = ĥ(x̂t, σ) + ση̂ut+1,

where ĝ and ĥ are the policy functions in the new notation. Finally, let x̂d = [xd; 0]. The new
DSS consists of vectors (x̂d, yd) that satisfy

f̂ (yd, yd, x̂d, x̂d) = 0. (3.7)

It follows that any algorithm capable of solving a model with the form of (3.5)-(3.7) will also
solve the two-parameter perturbation model.

3.3 Applications

Without loss of generality, we can normalize the parameters of the model such that the rele-
vant cases are when σ and ε take values of either zero or one. Thus, there are two cases with
equally valid interpretations of what constitutes the model of interest. The first is to interpret
(ε, σ) = (0, 1) as the model of interest. In such scenario, we are dealing with a stochastic model
(since σ = 1 activates the random innovations) whose approximation is identical to the stan-
dard perturbation model (since ε = 0 shuts down any term that interacts with this parameter
in the Taylor series). A potential application of the two-parameter model is to scale a model
parameter (say the discount factor β of the growth model) by (1 + ε), and think of small de-
partures from ε = 0 as the solution to the model of interest for different values of β, without
having to recalculate the DSS and the derivatives of g and h.

The alternative is to interpret (ε, σ) = (1, 1) as the model of interest. In this case, we are still
dealing with a stochastic model, but in general the approximation will be different than the one
obtained with standard perturbation, because ε = 1 activates all terms interacting with this pa-
rameter in the Taylor series. This new feature allows for two interesting (and complementary)
applications:

(i) We can approximate the policy functions g and h around a point xt = [x; x2,d] such that
x is different than the DSS of the endogenous state variables implied by the model of interest
(the (ε, σ) = (1, 0) case), and still rely on the theorems ensuring convergence of the Taylor series.15

This can be achieved by properly interacting ε with some parameters of the auxiliary model.
Specifically, we can introduce up to nx1 × 1 auxiliary parameters ψ that affect the DSS, and
scale them by factors such as (1 − ε) or

(
1 − ε2). Since at the DSS ε = 0, we can solve for values

of ψ such that x1,d = x satisfies the DSS conditions (3.3). Then, evaluating the Taylor series of
g and h at (ε, σ) = (1, 1) removes any effect of ψ on the equilibrium dynamics, and all that is
left are policy functions centered around the desired point x. The stochastic growth model of

15See in particular Theorem 6 in Jin and Judd (2002).
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Appendix B.1 provides a clear-cut example.16

(ii) We can introduce modifications in the auxiliary model that get shut down at the model
of interest. This way, we can build an approximate solution to a DSGE economy with incom-
plete markets by starting from the solution of a nearby model whose solution we have access
to, even if the deterministic version of the original economy is intractable with standard perturbation.
Again, a judicious interaction of ε with the parameters of the auxiliary model will do the job.
For example, one can introduce Portfolio adjustment costs (PAC) in an incomplete-markets
model with the only purpose of generating stationary dynamics around a well-defined DSS in
the auxiliary model, and then get rid of them by evaluating g and h at (ε, σ) = (1, 1) . This
is the technique applied in the two-country DSGE model of Section 5, and in the small open
economy of Appendix B.2.

3.4 Approximating the stochastic steady-state

This subsection describes a simple procedure to approximate the stochastic steady-state (SSS) of
the model of interest such that the perturbation is centered at this point. The procedure is akin
to standard calibration routines, and it builds on imposing enough conditions such that the DSS
of the endogenous state variables in the auxiliary model coincides with their SSS in the model
of interest. If the auxiliary model incorporates the proper modifications, the algorithm will
approximate the true SSS even if the DSS implied by the model of interest (the (ε, σ) = (1, 0)
case) is ill-defined.

To start, define the SSS of the model of interest as the vectors xt = xs and yt = ys that satisfy

xs = h(xs, 1, 1), (3.8)

ys = g(xs, 1, 1) (3.9)

In a way analogous to Eq. (3.4), xs is the fixed point of h conditional to (ε, σ) = (1, 1), assumed
to be unique. As with the DSS, xs can be partitioned as xs = [x1,s; x2,s], where x1,s is the SSS
of the endogenous states, and x2,s the SSS of the exogenous states. Note that, while x2,s = x2,d

by construction, x1,s does not need to coincide with x1,d (due to, for example, a precautionary
savings effect). In general, finding the true x1,s requires previous knowledge of h, a function
we do not have access to.

16A limitation to this technique is that the magnitude of ψ must be small enough to ensure that (ε, σ) = (1, 1)
falls within the radius of convergence. As in standard DSGE applications, solving for values of ψ that satisfy the
DSS conditions can be often done analytically. If not possible, one can use a standard nonlinear solver.
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3.4.1 The stochastic steady-state conditions

Let hk
1 : Rnx+2 → Rnx1 be the k-order Taylor series around (xd, 0, 0) for the upper block of h.

Formally:

hk
1(xt, ε, σ) = x1,d +

k

∑
i=1

1
i!

Hi

 xt − xd

ε

σ


⊗i

, (3.10)

where each Hi is a nx1 × (nx + 2)i matrix of order i derivatives, and ⊗i denotes a “Kronecker
power”, that is z⊗i = z ⊗ ... ⊗ z i times. Similarly, the k-order Taylor series of g is:

gk(xt, ε, σ) = yd +
k

∑
i=1

1
i!

Gi

 xt − xd

ε

σ


⊗i

. (3.11)

On what follows, think of xs as the fixed point of hk (xt, 1, 1). Assume that a nx1 × 1 vector x
completely pins down the DSS of the endogenous states: x1,d = x. As explained in Section 3.3,
this can be accomplished by introducing up to nx1 × 1 auxiliary parameters ψ that affect the
DSS scaled by factors such as (1 − ε) or

(
1 − ε2).17 Since we are looking for an approximation

centered at the SSS, it must be the case that x1,s = x1,d = x. Imposing this condition in (3.10)
and evaluating at (xt, ε, σ) = (xd, 1, 1) delivers:

k

∑
i=1

1
i!

Hi

 0nx×1

1
1


⊗i

= 0. (3.12)

Since each Hi is itself a function of x , the last expression constitutes a system of nx1 equations
to solve for each of the components of x. Intuitively, if x is a fixed-point of hk (xt, 1, 1), the
sum of all coefficients proportional to powers of ε and/or σ must equal zero for each of its
rows. Appendix A shows that, under standard regularity assumptions, the solution to (3.12)
converges to the true x1,s as k goes to infinity.

Once a candidate solution to (3.12) has been found, we can combine Eqs. (3.9) and (3.11) to
retrieve a candidate solution for ys:

ys = yd +
k

∑
i=1

1
i!

Gi

 0nx×1

1
1


⊗i

.

Example: Consider the SOE model of Appendix B.2. The endogenous state is foreign bonds
x1,t = bt , and the exogenous states are (the logs of) income and returns x2,t = [yt; zt] . Using a

17Sometimes we will require less than nx1 auxiliary parameters if the SSS of some endogenous states is a function
of the others. The baseline symmetrical scenario of the two-country model provides an example.
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second-order approximation to h, the law of motion for bonds is:

bt+1 = b + hb

(
bt − b

)
+ hyyt + hzzt

+
1
2

(
hbb

(
bt − b

)2
+ hyyy2

t + hzzz2
t

)
+ hby

(
bt − b

)
yt + hbz

(
bt − b

)
zt + hyzytzt

+
1
2
(
hεεε

2 + hσσσ2) ,

where bd = b is the DSS of bonds.18 Then, evaluating at (bt, yt, zt, ε, σ) =
(

b, 0, 0, 1, 1
)

and

imposing bs = bd = b delivers the equation that pins down b:

hεε + hσσ = 0.

3.4.2 Numerical implementation

The system of equations (3.12) can be solved numerically with a standard nonlinear solver.
All that is needed is to code a residual function that takes the vector x as an argument and
returns the left hand-side of (3.12). The nonlinear solver will call this function and search for
a candidate x that makes it zero. Here I describe in detail the pseudo-code for this residual
function.

I assume that the user will implement the algorithm with an available DSGE solution tool-
box. For this reason, it is convenient to treat εt as an exogenous state and follow the notation of
Section 3.2. Therefore, the k-order Taylor series for the upper block of ĥ is:

ĥk
1(x̂t − x̂d, σ) = x1,d +

k

∑
i=1

1
i!

Hi

(
x̂t − x̂d

σ

)⊗i

where the first argument (x̂t − x̂d) are deviations of x̂t = [xt; εt] from the extended DSS x̂d =

[xd; 0].
For any given x, the residual function will recalculate the new DSS together with the implied

auxiliary parameter values, and call an external algorithm (the DSGE toolbox) to calculate the
matrices of derivatives H1, ..., Hk. Using these, the function will construct ĥk

1, evaluate it at
the model of interest ( that is, x̂t − x̂d = [0nx×1; 1] and σ = 1), and return the output y =

ĥk
1 − x. Let S be all the structure arrays required by the external algorithm.19 The pseudocode

summarizing these steps is:

18As with σ, the only non-zero derivative of ε is hεε, because this perturbation parameter enters as ε2 in the
equilibrium conditions.

19If the DSGE toolbox is Dynare, S includes the arrays M_, options_, and oo_. The external Dynare function
resol.m takes these as inputs to compute the matrices H1, ..., Hk.
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Algorithm 1 Residual SSS function

function y = eval_sss(x;S,k)

STEP 1: Given x, recalculate the new DSS and implied auxiliary

parameter values, modifying S when necessary.

STEP 2: Using the new DSS and S, call an external algorithm

to compute the matrices H1, ..., Hk.

STEP 3: Using the matrices H1, ..., Hk, evaluate ĥk
1 at x̂t − x̂d =

[0nx×1; 1] and σ = 1.

y = hk
1([0nx×1; 1] , 1)− x.

Steps 2 and 3 can be automated conditional on the external algorithm. To help with this
task, the Github repository includes MATLAB functions that construct and evaluate ĥk and ĝk

for Dynare and the perturbation algorithm by Levintal (2017).

Calibration mode. We can easily adapt the previous residual function to solve for values of
a nx1 × 1 vector θ̄ of parameters of the model of interest that target the desired x1,s = x. In
this case, the main argument of the residual function is θ̄, the vector x is kept fixed, and the
nonlinear solver will search for a candidate θ̄ that zeroes the left hand-side of (3.12). Appendix
B.2.3 uses this algorithm to calibrate the exogenous discount factor that targets the observed
long-run level of net foreign assets of the SOE. We can also implement a hybrid approach to
solve for a subset of θ̄ and x while keeping the other subset fixed. For example, the baseline
application with bonds and equities of Section 5 calibrates the standard deviation of preference
shocks consistent with the observed level of Equity home bias, and solves for the long-run
level of bond holdings. Finally, we can integrate the SSS algorithm into a more complex one
targeting a variety of observables. It all comes down to ensuring that x zeroes the left hand-side
of (3.12).

3.5 Pruning

We need at least third-order approximations of h and g to ensure that their derivatives with re-
spect to xt incorporate the effects of second moments of the innovations, via corrections scaled
by σ (Andreasen, 2012; Levintal, 2017). The same result applies to corrections of the auxiliary
model driven by ε if this parameter enters as ε2 in the equilibrium conditions. Thus, only Taylor
series of order k ≥ 3 are valid approximations to study the dynamics of incomplete-markets
models.

Working with high-order perturbation solutions comes with the technical difficulty of deal-
ing with the spurious explosive paths they sometimes generate. To resolve this issue for orders
k ≥ 3, we can implement the pruning method by Andreasen, Fernández-Villaverde, and Rubio-
Ramírez (2018). However, their pruning method treats σ as a state variable, and therefore it
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only affects second and higher-order effects. This treatment can be problematic for the two-
perturbation model, because it imposes that first-order effects —the main driver of dynamics
in a pruned state-space system— are the ones from the auxiliary model. 20

The solution here is to modify the pruning method by treating ε and σ (or at the very least
just σ ) as parameters. To do so, impose ε = σ = 1, and rewrite the Taylor series (3.10) and
(3.11) as follows:

hk
1(xt) = Ĥ0 +

k

∑
i=1

1
i!

Ĥi

(
xt − xd

)⊗i

gk(xt) = Ĝ0 +
k

∑
i=1

1
i!

Ĝi

(
xt − xd

)⊗i

where Ĥ0 and Ĝ0 are vectors of dimension nx1 × 1 and ny × 1, respectively.21 From here, one
can follow Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2018) and construct the laws
of motions for each n-order effect using the rewritten Taylor series. The Github repository
includes MATLAB functions that implement the modified pruning method (third-order only)
for users of Dynare, and the algorithm by Levintal (2017).22

3.6 Practical advice

This last subsection provides practical advice on various topics based on my experience using
two-parameter perturbation to solve DSGE models.

Order of approximations. I have already stressed the need of computing third or higher-
order solutions to approximate the dynamics of the model of interest. However, a second-order
solution is often accurate enough to approximate the SSS if the innovations are symmetrical (see
the SOE model of Appendix B.2). To exploit this insight, one can first approximate the SSS with
second-order approximations, and then build a third-order solution centered around it, as I
do in the two-country DSGE model of Section 5. Dynare’s second-order solver is fast enough
to make it an efficient option for the algorithm of Section 3.4. For higher orders, I strongly
recommend the algorithm by Levintal (2017).

Auxiliary modifications. Very often, more than one modification to the model of interest will
be available as an auxiliary device. Which one to choose, then? There are several criteria to
consider here. First, if the modifications are doing their job, their approximations evaluated at
(ε, σ) = (1, 1) should converge, as shown by the proposition in Appendix A, and illustrated
in the SOE example. It is therefore good practice to compare solutions obtained with different

20Incidentally, this problem also arises in small open economy models with modifications controlled by param-
eters set to very small values (e.g. Fernández-Villaverde et al., 2011), as these lead to nearly unit-root first-order
dynamics that only get corrected by third-order terms.

21Note that, if the approximation is done around the SSS, Ĥ0 = x1,d .
22For Dynare, I implement a very mild modification to the original Dynare function simul_.m that only treats σ

as a parameter.
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modifications and approximation orders, and take the absence of convergence as a warning
sign. Second, one should prioritize modifications that are consistent with the model of inter-
est.23 Third, auxiliary modifications are only valuable as a mathematical tool, and thus their
microfoundations (if any) are of no real concern. In that sense, one is allowed to prioritize the
simplest modification available. Fourth, as a rule of thumb any model parameter interacting
with ε should be relatively small, but depending on the application, smaller is not always nec-
essarily better. Thus, I recommend to always test the accuracy of the approximation (e.g. by
computing average Euler equation errors) and, when it comes to auxiliary parameters control-
ling modifications to be shut down at the model of interest, check if different values lead to
sizable gains in accuracy.

4 Practical examples

Appendix B provides two practical examples of DSGE models that fit in the general form of
Section 2. The Github repository includes the codes that solve these two examples, using both
Dynare and the algorithm by Levintal (2017) to calculate derivatives of the policy rules.

The first example (Appendix B.1) implements two-parameter perturbation to approximate
the policy rules of the neoclassical growth model around the SSS, and explores what gains in
accuracy can be achieved relative to standard perturbation around the deterministic steady-
state. The results indicate that two-parameter perturbation is about four times more accurate
in scenarios combining high levels of volatility and risk-aversion, thanks to approximations
built around a point much closer to the dynamic fluctuations of the model.

The second example (Appendix B.2) considers the open economy version of the classical
income fluctuation problem as in Coeurdacier, Rey, and Winant (2011). Using two different
auxiliary models (Uzawa preferences and PAC), I approximate policy rules centered around
the SSS. Regardless of the auxiliary model involved, two-parameter perturbation does an ex-
cellent job in approximating the true solution of the model. In a simple environment with only
income shocks, the method matches the same SSS obtained with the endogenous grid method.
In a more complex setting that includes interest rate shocks and is calibrated with aggregate
mexican data, the method delivers a well-defined ergodic distribution of net foreign assets
with Euler errors below −5 using a third-order approximation, and well below −6 using a
fifth-order one.

5 Equity home bias in a two-country DSGE model

The model is the infinite-period version of Coeurdacier and Gourinchas (2016) (from hereon
CG). Specifically, I consider a version of the model with endowment, redistributive and pref-
erence shocks (Appendix A.4 of their paper) that makes financial markets incomplete. As I

23For example, if the model of interest is a SOE with a constant interest rate, it makes little sense to use a Debt elas-
tic interest rate (DEIR) as the auxiliary modification, as perturbation may struggle to eliminate spurious dynamics
of the interest rate entirely.
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will show in the results, incomplete markets are essential to deliver external asset positions
consistent with the data.

5.1 Model description

Consider a World with two symmetric countries, Home (H) and Foreign (F). Below I describe
the model from Home’s perspective, but keep in mind that Foreign will be its mirror image.
When necessary, I will distinguish Foreign’s variables with an asterisk.

Preferences. A representative household at Home maximizes the following utility function:

Et

[
∞

∑
t=0

θt
C1−γ

t − 1
1 − γ

]
.

The risk-aversion parameter γ is the same for both countries in the baseline scenario, but I will
also explore the consequences of relaxing this assumption (which breaks perfect symmetry
across countries). The consumption index Ct is a constant-elasticity aggregator over consump-
tion of Home and Foreign goods cH,t and cF,t:

Ct =
[
α

1
ϕ (qtcH,t)

(ϕ−1)/ϕ + (1 − α)
1
ϕ (q∗t cF,t)

(ϕ−1)/ϕ
]ϕ/(ϕ−1)

,

where ϕ > 0 is the elasticity of substitution between the two goods, and the weight α ∈ ( 1
2 , 1)

captures Home bias towards cH,t. In turn, qt and q∗t are worldwide shocks to the preference (or
quality) for Home and Foreign goods.24

The Uzawa discount factor θt evolves over time according to

θ0 = 1,

θt+1 = θtβ

(
C̃t

C

)−κ

.

where C̃t denotes Home average consumption, and C > 0, β ∈ (0, 1) and κ ≥ 0 are parameters.
In contrast to the SOE model of Appendix B.2, the endogenous discount factor is not a purely
auxiliary modification to be shut down at the model of interest, but rather a device that helps
to match the persistence of the trade balance and the current account found in the data.25 Since
C will be equal to the DSS of Ct in the auxiliary model, the endogenous discount factor does
not play a role in pinning down the DSS.

Let the Home good be the numeraire, and denote the relative price of Foreign by pF,t. Then,

24See Pavlova and Rigobon (2010) and Khalil (2019) for examples of DSGE portfolio-choice models with a similar
type of shock.

25If κ = 0, the discount factor becomes fully exogenous and equal to β. Under the baseline calibration of Section
5.3, this leads to a model of interest with asset dynamics extremely close to a random walk.
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the implied consumer price indices for Home and Foreign are:

Pt =

[
α

(
1
qt

)1−ϕ

+ (1 − α)

(
pF,t

q∗t

)1−ϕ
]1/(1−ϕ)

, (5.1)

P∗
t =

[
(1 − α)

(
1
qt

)1−ϕ

+ α

(
pF,t

q∗t

)1−ϕ
]1/(1−ϕ)

. (5.2)

In turn, optimal intra-temporal allocation yields the following relative demands for the two
goods:

cH,t = αPϕ
t (qt)

ϕ−1 Ct, (5.3)

cF,t = (1 − α)

(
Pt

pF,t

)ϕ

(q∗t )
ϕ−1 Ct,

for Home, and

c∗H,t = (1 − α) (P∗
t )

ϕ (qt)
ϕ−1 C∗

t , (5.4)

c∗F,t = α

(
P∗

t
pF,t

)ϕ

(q∗t )
ϕ−1 C∗

t ,

for Foreign.

Asset trading and budget constraint. In each country there is a Lucas tree whose supply is
normalized to unity. At each period, the Home tree delivers a endowment Yt of the Home
good. Out of this endowment, a Home share δt ∈ (0, 1) is distributed to shareholders as divi-
dends, while the remaining fraction (1− δt) is distributed to Home households as non-financial
income. Similarly, the Foreign tree delivers an endowment of Foreign goods Y∗

t , so that share-
holders receive a financial income of δ∗t pF,tY∗

t as dividends (with δ∗t ∈ (0, 1)), while Foreign
households retaining a non-financial income of (1 − δ∗t ) pF,tY∗

t . Let zS
H,t and zS

F,t denote the
prices of Home and Foreign equity, and SH,t and SF,t the start-of-period portfolio of Home and
Foreign stocks.

Households can also trade Home and Foreign one-period bonds in zero net supply. Let zB
H,t

and zB
F,t denote the prices of Home and Foreign bonds, and BH,t and BF,t the start-of-period

portfolio of Home and Foreign bonds. Following CG, bonds of each country pays one unit of
their respective consumption index not adjusted for preference shocks.26 That is, the cash-flows
of one unit of the Home and Foreign bond purchased at t − 1 are:

P̃t =
[
α + (1 − α) (pF,t)

1−ϕ
]1/(1−ϕ)

, (5.5)

P̃∗
t =

[
(1 − α) + α (pF,t)

1−ϕ
]1/(1−ϕ)

. (5.6)

26CG introduce this assumption in their two-period model to generate a wedge between relative bond returns and
changes in the real exchange rate that makes the inclusion of preference shocks meaningful. Since I have verified
that the result holds in this infinite-horizon setup, I keep it as they have it.
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Putting all together, Home’s representative household faces a budget constraint given by

PtCt + zS
H,tSH,t+1 + zS

F,tSF,t+1 + zB
H,tBH,t+1 + zB

F,tBF,t+1

= (1 − δt)Yt + SH,t

(
δtYt + zS

H,t

)
+ SF,t

(
δ∗t pF,tY∗

t + zS
F,t

)
+ P̃tBH,t + P̃∗

t BF,t. (5.7)

Similarly, the budget constraint faced by Foreign’s households is

P∗
t C∗

t + zS
H,tS

∗
H,t+1 + zS

F,tS
∗
F,t+1 + zB

H,tB
∗
H,t+1 + zB

F,tB
∗
F,t+1

= (1 − δ∗t ) pF,tY∗
t + S∗

H,t

(
δtYt + zS

H,t

)
+ S∗

F,t

(
δ∗t pF,tY∗

t + zS
F,t

)
+ P̃tB∗

H,t + P̃∗
t B∗

F,t. (5.8)

Stochastic processes. There are six independent sources of risk that makes financial markets
incomplete. Home and Foreign income follow log-normally distributed AR(1) processes:

ln Yt+1 = ρy ln Yt + σηyuy,t+1 (5.9)

ln Y∗
t+1 = ρy ln Y∗

t + σηyu∗
y,t+1 (5.10)

where
(
ut+1, u∗

t+1
)

are standard normal innovations scaled by the perturbation parameter σ.
The model of interest corresponds to the case σ = 1.

In turn, redistributive shocks δ̃t = ln (δt/(1 − δt)) and δ̃∗t = ln (δ∗t /(1 − δ∗t )) follow AR(1)
processes of the form:

δ̃t+1 = (1 − ρδ) δ̃ + ρδδ̃t + σηδuδ,t+1 (5.11)

δ̃∗t+1 = (1 − ρδ) δ̃ + ρδδ̃∗t + σηδu∗
δ,t+1 (5.12)

These specifications ensure that the shares δt and δ∗t are bounded within their natural domain.
In particular, δ̃ = ln

(
δ/(1 − δ)

)
ensures that the DSS of both δt and δ∗t equals δ ∈ (0, 1).

Finally, preference shocks qt and q∗t follow log-normally distributed AR(1) processes:

ln qt+1 = ρq ln qt + σηquq,t+1 (5.13)

ln q∗t+1 = ρq ln q∗t + σηqu∗
q,t+1 (5.14)

I assume that all innovations are serially uncorrelated, but will allow for intra-period corre-
lation to match observed long-term correlations of output across countries, and between output
and financial shares within countries.

Market-clearing conditions. At each period, equilibrium in the two-good markets requires

cH,t + c∗H,t = Yt, (5.15)

cF,t + c∗F,t = Y∗
t .

19



Similarly, equilibrium in equity markets requires

SH,t + S∗
H,t = 1, (5.16)

SF,t + S∗
F,t = 1, (5.17)

and equilibrium in bond markets requires

BH,t + B∗
H,t = 0, (5.18)

BF,t + B∗
F,t = 0. (5.19)

5.2 Equilibrium

5.2.1 Auxiliary model

The model of interest just described cannot be solved by standard perturbation for the usual
indeterminacy reasons. To solve the model by two-parameter perturbation, the auxiliary model
introduces Portfolio Adjustment Costs (PAC) in the budget constraints. Specifically, agents in
both countries face quadratic costs of holding stocks and bonds in a quantity different from
some long-run levels. These costs are paid to a national agency that simply returns them to the
households as lump-sum transfers Tt and T∗

t . The new budget constraints replacing (5.7) and
(5.8) are:

PtCt + zS
H,tSH,t+1 + zS

F,tSF,t+1 + zB
H,tBH,t+1 + zB

F,tBF,t+1

= (1 − δt)Yt + SH,t

(
δtYt + zS

H,t

)
+ SF,t

(
δ∗t pF,tY∗

t + zS
F,t

)
+ P̃tBH,t + P̃∗

t BF,t

−ψ

2
(1 − ε)

[
zS

H,t (SH,t+1 − a)2 + zS
F,t (SF,t+1 − aF)

2
]

−ψ

2
(1 − ε)

[
zB

H,t

(
BH,t+1 − b

)2
+ zB

F,t

(
BF,t+1 − bF

)2
]
+ Tt (5.20)

for Home households, and

P∗
t C∗

t + zS
H,tS

∗
H,t+1 + zS

F,tS
∗
F,t+1 + zB

H,tB
∗
H,t+1 + zB

F,tB
∗
F,t+1

= (1 − δ∗t ) pF,tY∗
t + S∗

H,t

(
δtYt + zS

H,t

)
+ S∗

F,t

(
δ∗t pF,tY∗

t + zS
F,t

)
+ P̃tB∗

H,t + P̃∗
t B∗

F,t

−ψ

2
(1 − ε)

[
zS

H,t
(
S∗

H,t+1 − (1 − a)
)2

+ zS
F,t
(
S∗

F,t+1 − (1 − aF)
)2
]

−ψ

2
(1 − ε)

[
zB

H,t

(
B∗

H,t+1 + b
)2

+ zB
F,t

(
B∗

F,t+1 + bF

)2
]
+ T∗

t . (5.21)

for Foreign households. In both equations, ψ > 0 is the auxiliary parameter controlling quadratic
costs,

(
a, aF, b, bF

)
is the vector of parameters that will pin down the DSS of asset holdings, and

ε is the new perturbation parameter. As always, we recover the model of interest by evaluating
both equations at ε = 1.
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5.2.2 Equilibrium conditions

Model with bonds and equities. Appendix C lists the 21 equilibrium conditions of the aux-
iliary model, including the 8 Euler equations (two for each asset and country) that characterize
inter-temporal optimization. These are also the equilibrium conditions of the model of interest
once we evaluate them at (ε, σ) = 1. Exploiting the asset market-clearing conditions (5.16)-
(5.19), we can reduce the endogenous state-space in terms of Home states only. Hence, the 4
endogenous state variables are bond holdings BH,t and BF,t, and stock holdings SH,t and SF,t.
The 6 exogenous states are Home and Foreign income Yt and Y∗

t , Home and Foreign shares δt

and δ∗t , and preference shocks qt and q∗t . The 11 control variables are: consumptions Ct and C∗
t ,

equity prices pS
H,t and pS

F,t, bond prices pB
H,t and pB

F,t, price indices Pt, P∗
t , P̃t and P̃∗

t , and terms
of trade pF,t .

Appendix C also pins down the DSS of the auxiliary model (ε, σ) = (0, 0). In the baseline
calibration, perfect symmetry across countries leads to the parameter restriction aF = 1 − a,
and bF = −b. It follows that the pair

(
a, b
)

uniquely pins down the DSS of the endogenous

states: BH,d = b, BF,d = −b, SH,d = a, and SF,d = 1 − a.

Model with equities only. I will compare the ability of the full model to account for the
international diversification puzzle with a simplified equities-only version where BH,t = BF,t =

0 at all times. This reduces the model to 15 equilibrium conditions with 2 endogenous states
(SH,t and SF,t), 6 exogenous states (same as in the full model), and 7 control variables (Ct,
C∗

t , pS
H,t , pS

F,t, Pt, P∗
t , and pF,t). Under perfect symmetry, the DSS of the endogenous states

is SH,d = a, and SF,d = 1 − a.

5.2.3 Solution

The equilibrium conditions of this model are a particular case of the Two-parameter perturba-
tion model described in Section 2. Thus, we can solve this application with available solution
packages by treating ε as a exogenous state that is constant (or extremely persistent) over time:
εt+1 = εt. Since the pair

(
a, b
)

uniquely pins down the DSS of the endogenous states, we can

use the algorithm of Section 3.4 and solve for values of
(

a, b
)

that approximate the SSS of the

endogenous states: BH,s = b, BF,s = −b, SH,s = a, and SF,s = 1 − a. As the DSS of the state
variables will equal their SSS in the model of interest, in what follows I omit s and d sub-indices
for these variables when refering to their steady-state.

I use a second-order approximation to the policy rules to approximate the SSS, and build
third-order approximations around this point to study the equilibrium dynamics. As shown in
the results section, this suffices to produce highly accurate solutions. Moreover, I have verified
that the contribution of higher orders in this model (to both SSS and dynamics) is virtually nil.
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5.2.4 Additional variables of interest

The model also deliver implications for a set of variables of interest that can be expressed as
functions of the equilibrium ones.

Domestic wealth, portfolio shares, and asset returns. End-of-period domestic wealth Wt is
the sum of all asset gross purchases:

Wt = zS
H,tSH,t+1 + zS

F,tSF,t+1 + zB
H,tBH,t+1 + zB

F,tBF,t+1. (5.22)

The portfolio shares are: wS
H,t = zS

H,tSH,t+1/Wt for Home equity, wS
F,t = zS

F,tSF,t+1/Wt for
Foreign equity, wB

H,t = zB
H,tBH,t+1/Wt for Home bonds, and wB

F,t = zB
F,tBF,t+1/Wt for For-

eign bonds.27 The returns of each asset are: RS
H,t =

(
δtYt + zS

H,t

)
/zS

H,t−1 for Home equity,

RS
F,t =

(
δ∗t pF,tY∗

t + zS
F,t

)
/zS

F,t−1 for Foreign equity, RB
H,t = P̃t/zB

H,t−1 for Home bonds, and

RB
F,t = P̃∗

t /zB
F,t−1 for Foreign bonds.

Using the previous definitions, the endogenous return to wealth (specific to each country)
is the weighted sum of asset returns, where the weights are the portfolio shares chosen the
previous period. For Home, we have:

RW
H,t = wS

H,t−1RS
H,t + wS

F,t−1RS
F,t + wB

H,t−1RB
H,t + wB

F,t−1RB
F,t. (5.23)

Combining (5.22) and (5.23), Home’s budget constraint (5.7) can be rewritten as a standard
wealth accumulation equation:

Wt = Wt−1RW
H,t + (1 − δt)Yt − PtCt.

Its associated wealth Euler equation in the model of interest is:

β

(
Ct

C

)−κ

Et

[(
Pt

Pt+1

) RW
H,t+1

Cγ
t+1

]
=

1
Cγ

t
, (5.24)

which I will use to compute Euler equation errors.28

External assets positions and Equity home bias. Following the conventions of Lane and
Milesi-Ferretti (2018), Home’s external equity assets are its gross purchases of Foreign equity
zS

F,tSF,t+1, and Home’s external equity liabilities are Foreign’s gross purchases of Home equity
zS

H,tS
∗
H,t+1. In equilibrium, each country will be long in the bond denominated in its own price

index, and short in the other. From Home’s perspective, this means that zB
H,tBH,t+1 are its exter-

nal debt assets, and zB
F,tB

∗
F,t+1 its external debt liabilities. Thus, total external assets TEAt and

27Note that, by construction, wS
H,t + wS

F,t + wB
H,t + wB

F,t = 1.
28This equation can also be obtained as the weighted sum of the Euler equations (C.1)-(C.8) evaluated at ε = 1.
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liabilities TELt are:

TEAt = zS
F,tSF,t+1 + zB

H,tBH,t+1,

TELt = zS
H,tS

∗
H,t+1 + zB

F,tB
∗
F,t+1.

In turn, net foreign assets NFAt is the difference between the two. Combining (5.22) with (5.17)
and (5.19), it can be shown that NFAt = Wt − zS

H,t.

The share of foreign equities in Home’s equity holdings is zS
F,tSF,t+1/

(
zS

H,tSH,t+1 + zS
F,tSF,t+1

)
,

and the share of foreign equities in the World market portfolio is zS
F,t/

(
zS

H,t + zS
F,t

)
. Following

Coeurdacier and Rey (2013), the measure of equity home bias is:

EHBt = 1 − Share of foreign equities in Home’s equity holdings
Share of foreign equities in the World portfolio

Provided that countries are symmetric, it is easy to verify that the SSS of this equation is:

EHB = 2SH − 1 = 1 − 2SF. (5.25)

Real exchange rate, trade balance, and current account. The real exchange rate is the ratio
between Home and Foreign price indices: RERt = Pt/P∗

t . In the stochastic simulations, I will
also consider an alternative measure not adjusted for preference shocks (RERt = P̃t/P̃∗

t ), which
might be relevant given the difficulty of quantifying these shocks in the data. Home’s trade bal-
ance (or net exports) is the difference between Home’s output and consumption expenditures:

TBt = Yt − PtCt. (5.26)

The current account is defined as the sum of portfolio reallocations, excluding valuation effects:

CAt = zS
H,t∆SH,t+1 + zS

F,t∆SF,t+1 + zB
H,t∆BH,t+1 + zB

F,t∆BF,t+1,

where the operator ∆ denotes first differences: ∆Xt+1 = Xt+1 − Xt.

Capital inflows and outflows. Following Broner et al. (2013), end-of-period capital inflows
by Foreign CIFt is equal to the net purchases of domestic assets by Foreign, and capital outflows
by domestic (Home) agents CODt is equal to the net purchases of foreign assets by domestic
agents. Given that in equilibrium each country will be long in the bond denominated in its
own price index, we can write:

CIFt = zS
H,t∆S∗

H,t+1 + zB
F,t∆B∗

F,t+1,

CODt = zS
F,t∆SF,t+1 + zB

H,t∆BH,t+1,

where, consistent with the dataset of Broner et al. (2013), the measures exclude valuation ef-
fects. Then, total gross flows is the sum CIFt + CODt, and net capital flows are equal to the
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Table 1: Calibration of the two-country DSGE model

Parameter Value

Model parameters
β Discount factor 0.96

γ Risk aversion 2

α Share of domestic consumption 0.85

ϕ Trade elasticity 2
κ Uzawa parameter 0.007

Stochastic processes
δ DSS dividend share 0.036

ρy Persistence income shocks 0.51

ρδ Persistence redistributive shocks 0.42
ρq Persistence preference shocks 0.46
ηy Std. income shocks 0.018
ηδ Std. redistributive shocks 0.059
ηq Std. preference shocks 0.007

ρyy∗ Corr
(

uy,t+1, u∗
y,t+1

)
0.68

ρyδ Corr
(
uy,t+1, uδ,t+1

)
0.12

difference CIFt − CODt. It is easy to verify that, in equilibrium, net capital flows are the nega-
tive of the current account.

5.3 Calibration

Table 1 reports the baseline calibration of the two-country model, chosen to match key moments
of annual data for advanced economies (mostly the United States). The discount factor β = 0.96
delivers a DSS net return of 4% for all assets.29 The risk aversion parameter γ = 2 is large
enough to ensure that households want to increase their income when their consumption goods
are more expensive (Coeurdacier and Rey, 2013). The home bias in consumption α = 0.85
is set to match the average U.S. import ratio, and the trade elasticity is set to ϕ = 2, which
falls within the conservative range of empirical estimates using sectoral trade data (Imbs and
Mejean (2015), Boehm et al. (2023)). In the results section, I will explore how changes to these
two parameters affects the equilibrium.

Regarding the stochastic processes (5.9)-(5.12), the paramaters are set to match estimates
from AR(1) regressions using U.S. data. Specifically, I collect annual data from the FRED
database for U.S. real GDP and net corporate dividends (as a share of GDP) for the time period

29Since this model lacks features such as time-varying volatility or disaster risk, the SSS returns will be close to
4% for all assets too.
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1947-2022. The average dividend share of 3.6% pins down the DSS share δ = 0.036. Then, I
apply the Hodrick-Prescott filter to detrend the variables ln Yt and δ̃t, and run AR(1) regres-
sions using their cyclical components. The procedure yields auto-correlations of ρy = 0.51 and
ρδ = 0.42, and conditional standard deviations of ηy = 0.018 and ηδ = 0.059. Moreover, the
correlation between the two time-series pins down the correlation of income and redistributive
shocks to ρyδ = 0.12.

The remaining parameters are calibrated as follows. The correlation between Home and
Foreign income shocks ρyy∗ = 0.68 helps to match the observed cross-country correlation of
GDP between the U.S. and a set of OECD countries reported by Corsetti, Dedola and Leduc
(2008, Table 3). Since preference shocks are unobserved, I set the auto-correlation ρq = 0.42 such
that ρδ < ρq < ρy, and in the next subsection I will calibrate a standard deviation ηq = 0.0067
such that the model with bonds and equities matches a degree of equity home bias equal to 0.66
(the value for the U.S. in 2008 reported by Coeurdacier and Rey (2013, Table 1)). The Uzawa
parameter κ = 0.007 helps to match the auto-correlation of net exports over GDP ratio for the
U.S., equal to 0.62 using (HP detrended) FRED data. Finally, I set the PAC auxiliary parameter
to ψ = 0.001 to optimize dynamic accuracy as measured by Euler equation errors.

5.4 Results

5.4.1 Comparative statics at the stochastic steady-state

Bonds still matter. This numerical exercise compares the SSS properties of the model with
bonds and equities against the equities-only model by performing the same comparative statics
studied by CG in their Online Appendix. The first experiment shuts down preference risk by
setting a very small value of ηq = 0.0001. I then let ηδ vary between 0.025 and 0.1, compute
the associated SSS asset values for both models, and plot the results in Figure 1, panel (a).
The second experiment sets redistributive risk at its calibrated value ηδ = 0.059. I then let ηq

vary between 0 and 0.01, compute the associated SSS asset values, and report them in Figure 1,
panel (b). In both panels, the red dotted line is the value of SH in the equities-only model, and
the blue solid and green dashed lines correspond to SH and BH in the model with bonds and
equities.

The qualitative findings of Figure 1 are identical to those reported by CG in Figure 1 of their
Online Appendix (top and bottom panels with trade elasticity above unity). In that sense, their
key theoretical results survive in a quantitative model. The intuition behind these findings is
therefore the same as in their two-period model. Consider first the case with only equities. In
panel (a), sufficiently small values of ηδ deliver a worse-than-you-think-puzzle scenario (Baxter
and Jermann, 1997): holding a portfolio strongly biased towards Foreign (SH < 0.5) is optimal
because Home equity returns RS

H,t are strongly correlated with Home’s non-financial income
(1 − δt)Yt. However, this correlation decreases as ηδ increases because a positive redistributive
shock increases Home’s dividends dtYt at the expense of Home’s non-financial income. For
enough large redistributive shocks the equities-only model can generate a significant Home
bias ( SH > 0.5), just as CG found in their two-period model.
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Figure 1: SSS Portfolios
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Therefore, whether an incomplete-markets structure with only equities can account for the
International diversification puzzle is a quantitative question that only this model can address.
Panels (a) and (b) together provide a clear negative answer: the calibrated value ηδ = 0.059
delivers a SH barely above 0.5 (zero Home bias), and increasing preference risk only pushes the
model into worse-than-you-think-puzzle territory. Since SH should be above 0.80 to match the
high levels of equity home bias observed in the data (0.66 for the U.S. and 0.62 for the Eurozone
in 2008), the equities-only model is strongly rejected by the data.30

Next, consider the model with bonds and equities. Since panel (a) effectively shuts down
preference risk, financial markets are complete, leading to the perfect risk-sharing scenario that
CG cover in the main text of their paper. In this case, a large external debt position that is long in
the Home bond and short in the Foreign one provides an optimal hedge against relative income
shocks. Intuitively, shocks that increase Home’s relative income lead to a RER depreciation,
which lowers the bond return differential ln

(
RB

H,t/RB
F,t

)
and generates a transfer from Home

to Foreign (see also the IRFs of Figure 3). As CG emphasize, all what is left for equities is to
provide a hedge against redistributive risk, which residents in each country can achieve by
holding all their domestic equity. The result is therefore full equity home bias (SH = 1).

While this extreme case is also rejected by the data, panel (b) shows that as ηq increases
both BH and SH decrease. Intuitively, a positive shock to the preference for Home goods leads
to a (welfare based) RER depreciation and to a simultaneous positive bond return differential
(see also the IRFs of Figure 5). Thus, a bond portfolio long in Home and short in Foreign is
a bad hedge against this shock because it generates a positive transfer from Foreign to Home
just when Home’s goods are relatively cheaper. This gives countries an incentive to reduce
their gross external debt positions and partially replace them with foreign equity. In particular,
calibrating the standard deviation of (unobserved) preference shocks to ηq = 0.0067 delivers

30The numbers come from Coeurdacier and Rey (2013). Note that even a massive value ηδ = 0.1 that nearly
doubles redistributive risk is unable to match the observed level of home bias. More generally, the equities-only
model cannot generate a large equity home bias unless one imposes strongly counterfactual calibrations.
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Figure 2: SSS External wealth
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SH = 0.83, which matches the U.S. equity home bias of 0.66 (see equation (5.25)). Since this
calibration also delivers a external gross debt position comparable to those held by advanced
economies in the Lane and Milesi-Ferretti dataset, I conclude that, from the point of view of
SSS portfolios, the incomplete-markets model with bonds and equities is consistent with the
data.

Trade and financial linkages. In the steady-state of the baseline model, Trade openness (ex-
ports plus imports over GDP) is given by 2 (1 − α), where α > 0.5 controls home bias in goods.
To explore the effects of trade openness on external asset positions, I let 1 − α vary between 0.1
and 0.45, compute the associated steady states, and use them to construct measures of external
equity and debt assets as indicated in Section 5.2.4. Panel (a) of Figure 2 shows the results,
where the blue solid line is external equity, and the dashed green line is external debt. Since
countries are symmetric, equity and debt liabilities equal their asset counterparts, total external
assets equals external liabilities, and financial openness (the sum of the two measures) equals
twice the vertical sum of the blue and green lines.

The results of Panel (a) are consistent with the data. First, the model predicts a strong
positive relationship between trade and financial openness, as documented by Heathcote and
Perry (2013).31 Furthermore, this positive relationship is almost entirely driven by a large in-
crease in the external debt position of countries, whereas the change in the external equity
position is much more modest and can even decrease for sufficiently large levels of trade open-
ness (Khalil, 2019). Since these patterns hold empirically both across countries and over time,
the findings of Panel (a) help to rationalize the slow rate of change of Equity home bias despite
the last decades of intense trade globalization and large increases in external gross positions
(Coeurdacier and Rey, 2013; Gourinchas and Rey, 2014). Last but not least, the magnitudes of

31Indeed, the fast rate of increase in this model does a better job that theirs in rationalizing Figure 2 of their paper,
where they plot a sample of advanced economies in the trade-financial space.
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external asset positions delivered by the model are comparable to their empirical counterparts
for advanced economies (see the dataset of Lane and Milesi-Ferretti, 2018).

What is the intuition behind these predictions? Holding a leveraged bond position (long in
Home and short in Foreign) delivers stabilizing transfers because the cash-flows of Home and
Foreign bonds change differently in response to the same income shocks. But since the degree
of this asymmetry is a direct function of Home bias in goods, lower home bias (higher trade
openness) implies smaller transfers other things equal. To compensate for this effect, countries
that are more trade integrated must leverage up their bond positions just to maintain the same
transfer size. As α approaches 0.5, the asymmetry between cash-flows almost entirely vanishes,
and a extremely large gross debt position is needed for the transfer scheme to work at all.

As for equities, the equilibrium portfolio is determined by two opposing forces: redistribu-
tive shocks incentivize a less diversified portfolio (smaller holdings of foreign equity), and pref-
erence shocks encourage a more diversified one. In this model, the relative strength of these
two forces changes with α in a non-monotonic way. Specifically, the net incentive towards
diversification is strong for low levels of trade openness, but it weakens as trade openness be-
comes large enough.32 As such, the pattern of external equities in Panel (a) is the logical answer
to these changing incentives.

Long-run global imbalances. As a final experiment, I explore the implications of introducing
a parameter asymmetry between countries, wherein domestic households become less risk-
averse than foreigners. The goal of this exercise is twofold. Firstly, Rabitsch, Stepanchuk, and
Tsyrennikov (2015) document that the solution method proposed by Devereux and Sutherland
(2010) struggles to generate accurate portfolio dynamics in asymmetric settings induced by
risk. This issue arises because the approximation point of the solution method is the sym-
metric DSS. In contrast, the SSS naturally incorporates any asymmetry related to risk, making
Two-parameter perturbation a more suitable tool for studying portfolio-choice models with
long-run global imbalances.33 Secondly, recent papers, such as Gourinchas, Rey, and Govillot
(2017), Sauzet (2022a), and Stepanchuk and Tsyrennikov (2015) have considered this type of
asymmetry to rationalize the international role of the United States as a global banker. It is
then natural to examine the predictions of this model and compare them with the data.

To introduce the asymmetry, the new risk-aversion parameters are γH = γ − τ for Home,
and γF = γ + τ for Foreign, where γ is the level of risk aversion in the baseline model, and
τ ≥ 0 represents the gap between countries’ risk aversion. I then vary τ between 0 and 0.15,
compute the associated steady states, and use them to construct measures of external assets
and liabilities. Panel (b) of Figure 2 presents the results. Here, red lines with markers represent
external liabilities, and blue lines without them correspond to external assets. Similarly, solid
lines indicate equity positions, and dashed lines indicate debt positions.

32Consistent with this argument, the size of impulse responses to the return differential of stocks changes with α
in a non-monotonic way.

33Indeed, Table 2 shows that the stochastic simulation with the parameter asymmetry is as accurate as the baseline
scenario.
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Figure 3: Impulse responses to a Home income shock
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The success of the model in replicating the long-run patterns of the international financial
system is mixed. On the one hand, the model correctly predicts that the country with lower
risk aversion (akin to the U.S. in the data) significantly increases its exposure to foreign equity
assets. On the other hand, the model predicts that the same country should be a net creditor
with a long-run positive NFA position, while the data shows the opposite. Indeed, the trade-off
generated by the model, as highlighted in Table 2 ("Different γ’s" column), is that Home enjoys
a larger long-run consumption in exchange for an increase in its volatility relative to Foreign.34
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5.4.2 Impulse responses

Income shock. Figure 3 reports impulse responses of selected variables following a surprise
shock to Home output Yt of one standard deviation at t = 1, starting from the SSS. All variables
are expressed in their natural units and, unless otherwise specified, refer to Home measures.

The economic effects can be summarized as follows. The shock to domestic income is per-
sistent but mean-reverting, and it dies out after 10 years. Home goods are relatively more
abundant during this period, which worsens Home’s terms of trade (larger pF,t) and causes a
RER depreciation that mirrors the income shock. Due to a substantial trade elasticity, domestic
non-financial income increases compared to Foreign.

The Return bond differential is negative on impact but zero afterwards, resulting in a one-
time transfer from Home to Foreign (since the SSS bond position is long in Home and short
in Foreign). However, this transfer does not fully offset the relative increase of Home’s non-
financial income. Exploiting this situation, domestic households accumulate both domestic and
foreign assets, leading to Home’s current account surpluses driven by a simultaneous decline
of capital inflows and a surge of capital outflows.

Net Foreign Assets (NFA) decline on impact due to valuation effects, as the RER deprecia-
tion implies cheaper Home bonds compared to Foreign ones. Consequently, the wealth ratio
falls on impact too. However, as the RER reverts to unity, both variables converge to medium-
run values above their SSS. This allows domestic households to enjoy a consumption stream
larger than foreigners in both the short and medium-run, as reflected in the impulse response
of the Home-to-Foreign consumption ratio that outlasts the income shock.

The last row of Figure 3 shows the effects of the income shock on portfolio reallocation.
Equity home bias gradually decreases until convergence to a medium-run level below its SSS.35

We observe a similar pattern with the share of equity over total external assets: following the
initial jump, there is convergence to a medium-run level above the SSS. What explains this
extremely persistent portfolio reallocation? The answer is that, as Home becomes richer than
Foreign, it also becomes less risk averse relative to Foreign. As a result, Home is inclined
to embrace a riskier external position.36 The increased (ex-ante) correlation between Home’s
endogenous wealth returns RW

H,t and non-financial income confirms the willingness of domestic
households to bear a riskier portfolio than foreigners, in both the short and medium-run.

Redistributive shock. Figure 4 reports impulse responses of selected variables following a
surprise shock to the Home dividend share of one standard deviation at t = 1, starting from the
SSS. Since this shock implies an income transfer from domestic households to shareholders of
Home’s equity (via a positive return stock differential), and domestic households are the main
owners of the asset, the resulting effect is a small transfer from domestic to foreign households.

All the impulse responses can therefore be interpreted under this light. The RER slightly de-

34The positive NFA position might follow because the risk premia generated by the model is too low. Thus, a
promising avenue for future research is to incorporate disaster risk, as in Gourinchas, Rey, and Govillot (2017).

35In the long-run there is full convergence back to the initial SSS.
36See Sauzet (2022a) for a similar result linking relative wealth to portfolio reallocations.
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Figure 4: Impulse responses to a Home redistributive shock
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Figure 5: Impulse responses to a Home preference shock
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preciates (due to Foreign bias towards their goods), which leads to a (one-time) very small neg-
ative return bond differential. To smooth out the income transfer over time, foreign households
accumulate both Home and Foreign assets, as reflected by domestic current account deficits
driven by an influx of capital inflows, and a decline of capital outflows. Consequently, there
is a very persistent (albeit small) decrease of Home’s NFA and consumption, and a gradual
decline of relative wealth converging to a medium-run level slightly below the steady-state.
Consistent with these patterns, Home opts for a relatively safer portfolio, as illustrated by the
increase in equity home bias, the decline of the share of equity over total external assets, and
the reduced correlation between RW

H,t and non-financial income.
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Preference shock. Figure 5 reports impulse responses of selected variables following a sur-
prise shock to the preference for the Home good of one standard deviation at t = 1, starting
from the SSS. This shock implies a welfare-based RER depreciation coupled with a simulta-
neous improvement of Home’s terms of trade (lower pF,t). Since the return differentials of
bonds and stocks are positive on impact, domestic households receive an income transfer just
when their non-financial income is relatively larger, and their consumption expenditures are
relatively cheaper. To smooth out these positive effects over time, domestic households ac-
cumulate both Home and Foreign assets, as reflected by domestic current account surpluses
driven by a decline of capital inflows, and a rise of capital outflows. As a result, there is a very
persistent increase of Home’s NFA and consumption, and a gradual rise of relative wealth con-
verging to a medium-run level slightly above the steady-state. Consistent with these patterns,
Home chooses a relatively riskier portfolio, as shown by the decrease in equity home bias, the
increase of the share of equity over total external assets, and the larger correlation between RW

H,t

and non-financial income.

5.4.3 Stochastic Simulations

Table 2 reports moments from stochastic simulations of the model. The "Baseline" column
corresponds to a simulation using the calibration specified in Table 1. Relative to this scenario,
the "High ϕ" column doubles the trade elasticity (ϕ = 4), the "Low α" column considers a
World with lower Home bias in goods (α = 0.75), and the "Different γ’s" column introduces
a parameter asymmetry between countries by making domestic households less risk-averse
than foreigners: γ = 1.75 for Home, and γ = 2.25 for Foreign (the moments reported are from
the Home economy). For reference, the "Data" column reports the empirical counterparts for
the United States. In all cases, I simulate the model 100, 000 periods (with a burn-in of 10, 000
additional periods) feeding the decision rules with pseudo-random innovations.

Despite the absence of a pruning scheme, these simulations produce well-behaved uni-
modal distributions for all model variables. In the first three columns, I calibrate the volatility
of preference shocks to match a SSS of Equity Home bias equal to 0.66 as in the data. Thus, the
fact that the averages of this variable also equal 0.66 shows that, at least in this model, the SSS
is very close to the ergodic mean. It is then no surprise that the model performs reasonably
well in delivering average external asset positions (all measured as ratios to GDP) comparable
to the data, with external equity assets of 0.15 in the model versus 0.19 in the data, and total
external assets of 0.84 in the model versus 1.04 in the data.37

The model is less successful in matching second moments of the data. On the positive side,
the model is able to match the volatility of the trade balance (std. of 0.56%), and it correctly
predicts that consumption is less volatile than GDP. But compared to the data, the std. of the
RER (0.54%) is about seven times lower, the std. of the current account (0.31%) is about two
times lower, and the std. of the change in NFA (0.56%) is about five times lower.

37Since in the first three columns countries are perfectly symmetric, there are no long-run global imbalances: on
average, total external liabilities exactly match total external assets.
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Table 2: Simulated Moments of the two-country DSGE model

Baseline High ϕ Low α Different γ’s Data

Averages:

Equity home bias 0.66 0.66 0.66 0.49 0.66
External equity assets 0.15 0.15 0.15 0.30 0.19
Total external assets 0.84 1.97 1.43 0.96 1.04
Total external liabilities 0.84 1.97 1.43 0.70 1.38
Euler errors (in log10) -6.01 -6.25 -6.10 -6.02

Standard deviations (relative to GDP):

Consumption 0.98 0.93 0.95 1.07 0.94
RER 0.54 0.26 0.27 0.54 3.90
Absolute standard deviations:

Trade balance 0.54 0.65 0.54 0.56 0.56
Current account 0.31 0.29 0.30 0.31 0.66
∆(Net foreign assets) 0.50 0.61 0.50 1.12 2.36
Gross capital flows 0.01 0.01 0.01 0.01
Equity home bias 0.03 0.02 0.02 0.01

Serial correlations:

Trade balance 0.62 0.58 0.61 0.61 0.62
Current account 0.46 0.46 0.46 0.46 0.67
∆(Net foreign assets) 0.03 -0.08 0.02 -0.19 0.03
Equity home bias 0.99 0.99 0.99 0.99
Cross-Correlations:

RER and relative consumption -0.37 -0.20 -0.29 -0.27 0.71
Home and Foreign consumption 0.89 0.94 0.93 0.89 0.60
Capital inflows and outflows -0.99 -0.99 -1 -0.99 0.78
Current account and GDP 0.07 0.11 0.10 0.04 -0.52
∆(Net foreign assets) and GDP -0.10 -0.11 -0.08 0.40 -0.27

Conditional hedge ratios:

Relative bond returns 0.81 0.82 0.76 0.82 0.94
Relative equity returns -0.18 -0.07 -0.09 -0.17 -0.01

Notes. The table reports simulated moments of the two-country DSGE model, using a third-order approximation to the policy
rules around the SSS. Each simulation contains 100, 000 observations to generate an ergodic set. RER is the real exchange rate.
The column "Baseline" reports results using the baseline calibration. The column "High ϕ" doubles the elasticity of substitution
between Home and Foreign goods. The column "Low α" sets α = 0.75 to match the World’s import share. The column "Different
γ’s" makes Home and Foreign heterogeneous by setting γH = 1.75 and γF = 2.25, and reports results from Home’s perspective.
The sources and periods of the data are as follows: Coeurdacier and Rey (2013) for the 2008 U.S. home bias; the dataset by Lane and
Milesi-Ferretti (2018) for 2008 U.S. external positions; Corsetti, Dedola and Leduc (2008) for U.S. relative standard deviations, and
cross-correlations of RER and consumption; Coeurdacier, Kollman and Martin (2010) for data on U.S. net foreign assets, Broner et
al. (2013) for the correlation between inflows and outflows for advanced economies; Coeurdacier and Gourinchas (2016) for U.S.
hedge ratios, and the author’s calculations using U.S. data from the FRED for the remaining variables.

34



More troubling are the results for gross capital flows. Broner et al. (2013) show that, em-
pirically, gross capital flows are much more volatile than net capital flows (the negative of the
current account). In Table 2, the opposite is true. To understand this result, note that in all
figures depicting impulse responses, capital inflows (CIF) and capital outflows (COD) are the
opposite mirror of each other: if CIF rises, COD falls by almost the same magnitude. It follows
that CIF and COD are almost perfectly negatively correlated in the model (whereas in the data
the correlation is 0.78), and thus they cancel each other as a sum, which is the definition of gross
capital flows.38

The model is able to match the empirical serial correlations of the trade balance (0.62) and
of the change in NFA (0.03), but it underestimates the one of the current account (0.46 in the
model versus 0.67 in the data). In turn, and consistent with the impulse responses, the equity
home bias follows an extremely persistent process with a serial correlation of 0.99.

The model also struggles reproducing international co-movements. The simulations deliver
a negative correlation between the RER and relative consumption (−0.37 in the baseline sce-
nario), while in the data this correlation is strongly positive, at least for the U.S. (0.71). Still, this
result is an improvement relative to complete-markets models where full risk-sharing leads to
perfectly negative correlations (Backus and Smith, 1993).39 Moreover, if one uses instead the
measure of RER not adjusted for preference shocks, the correlation raises significantly (−0.11).
As an additional symptom of excessive risk-sharing, Home and Foreign consumptions are too
synchronized, both relative to the empirical counterpart (correlation of 0.89 or above in the
model, versus 0.60 in the data), and relative to the cross-correlation between Home and Foreign
GDP (0.68), leading to what is commonly referred to as the Consumption Correlation Puzzle
(Backus, Kehoe, and Kydland, 1992).

Another problem, shared with many open-economy models, is that the simulations fail to
reproduce the empirical negative co-movement between the current account and GDP (0.07 of
above in the model, versus −0.52 in the data). On a positive note, the model correctly predicts
a small and negative correlation between the NFA and GDP (about −0.10 in the model, −0.27
in the data).

The model is relatively successful in reproducing observed conditional hedge ratios be-
tween changes in the RER and relative asset returns. Similar to CG, these ratios correspond to
estimates from OLS regressions, where the dependent variable is the change in the RER, and
the regressors are (the logs of) the return differentials of equities and bonds. The model simu-
lations successfully reproduce a large hedge ratio for relative bond returns (0.81 in the model,
compared to 0.94 in the empirical application of CG), and a small, negative hedge ratio for rel-
ative equity returns (−0.18 in the model, −0.01 in the empirical application of CG).40 Again,

38See Tille and van Wincoop (2010) for a model with a positive correlation between CIF and COD, driven by
time-varying second moments of the return differentials. While in this paper these moments are also time-varying,
their impact on portfolio reallocation is almost nil.

39Figure 5 shows that preference shocks are the main driver behind this departure from perfect risk-sharing, since
they trigger positive transfers from Foreign when Home is doing fine. Indeed, the correlation between RER and
relative consumption converges to −1 as I shut down preference risk.

40See van Wincoop and Warnock (2010) for a similar result concerning relative equity returns.
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using a measure of RER not adjusted for preference shocks improves the results substantially,
yielding hedge ratios of 1 for bond returns, and 0 for equity returns. Overall, this outcome
simply reflects a point already made in the previous subsections: that bonds provide a much
effective hedge against income shocks compared to equities.

Finally, Table 2 reveals that changes to the trade elasticity or the Home bias in goods make
little difference in shaping the ergodic distributions of the simulations, as all moments remain
very similar. However, the same is not true when introducing an asymmetry that makes do-
mestic households less risk-averse than foreigners. On the one hand, average total external
assets (0.96) are larger than average total external liabilities (0.70), indicating a long-run global
imbalance where Home, on average, serves as a net creditor. On the other hand, domestic con-
sumption becomes more volatile than GDP (and foreign consumption, not reported, becomes
substantially less volatile). That is, the price paid by Home for a larger average consumption is
an increase in its volatility.

5.4.4 Accuracy

To test the accuracy of the third-order solution, I feed the wealth Euler equation (5.24) with
the policy rules to compute average unit-free Euler errors (in log10 scale) of the simulated
time-series (Aruoba et al, 2006), discretizing the innovations with monomials to approximate
expectations (Judd, Maliar and Maliar, 2011).41 The last row of "Averages" in Table 2 shows
that the simulations are, indeed, highly accurate. In all scenarios, the mean errors are slightly
below −6, and the max. errors (not reported) are well below −4. To put this result in context,
Aruoba et al. (2006, Table 5) find that a fifth-order approximation of the stochastic growth
model delivers a mean error of −5.43, and a max. error of −3.33.

6 Conclusion

This paper has proposed a small generalization to the standard perturbation approach by in-
troducing a new perturbation parameter, in addition to the standard one scaling future shocks,
that interacts with a subset of the model parameters. The resulting two-parameter perturba-
tion model is well suited for solving open-economy models with incomplete markets, as it
allows to solve for the dynamics of a nearby auxiliary model, and then use perturbation to
reach the model of interest. Exploiting that two-parameter perturbation can approximate the
model of interest around a different point than its implied deterministic steady-state, the paper
has developed a simple algorithm that, backed by theoretical results, approximates the DSGE
model around the stochastic steady-state. Since the method is fully compatible with popular
solution toolboxes, now researchers can solve DSGE models with portfolio-choice just like any
other standard model, and small open-economy models free of ad hoc modifications to induce
stationary.

41The log10 scale allows for an intuitive interpretation: a value of -3 means $1 mistake for each $1,000, a value of
-4 a $1 mistake for each $10,000, and so on.
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As a main application, the paper has extended the two-period, multi-asset model of Coeur-
dacier and Gourinchas (2016) to an infinite-horizon setting, and has performed a rigorous quan-
titative analysis that includes the study of portfolio dynamics. Among other results, the paper
has successfully demonstrated that an incomplete-market structure with bonds and equities
is essential to generate long-run external gross positions comparable to the data, and has un-
covered a new natural link between trade and financial integration consistent with the main
patterns of globalization during the last decades.
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Appendix

A Convergence to the true stochastic steady-state

Let xk be the vector that solves the system (3.12) for a given order k. The following assumptions
are sufficient to prove that xk converges to x1,s as k goes to infinity:

Assumption 1. There exists a vector ψ of values of the auxiliary parameters ψ such that xs satisfies
the DSS condition (3.3).

Assumption 2. The function h(x, ε, σ) is analytic in a neighborhood around (xs, 0, 0) that includes
(xs, 1, 1).

The first assumption ensures that the true SSS can be the DSS of the auxiliary model. The
second assumption ensures that the Taylor series of h about (xs, 0, 0) converges to h(x, 1, 1)
when evaluated at the true SSS. In practice, this will be satisfied provided that both ψ and the
matrix η scaling innovations are small enough in magnitude.

Under these regularity assumptions, the following proposition holds:

PROPOSITION. If Assumptions 1 and 2 hold, xk converges to x1,s as k → ∞.

PROOF. Let hT
1 (x) be the Taylor series of h1 about (x, 0, 0) evaluated at (x, 1, 1), given by:

hT
1 (x) = H0 +

k

∑
i=1

1
i!

Hi

 0nx×1

1
1


⊗i

+ ζk,

where H0 = h1(x, 0, 0) is a nx1 × 1 vector, and

ζk =
∞

∑
i=k+1

1
i!

Hi

 0nx×1

1
1


⊗i

is the error term of the k-order Taylor series evaluated at (x, 1, 1). Fix ψ = ψ and evaluate hT
1

at x = xs. Since Assumption 1 holds, xs is the fixed-point of h(x, 0, 0), and therefore H0 = x1,s.
Since Assumption 2 holds, convergence of the Taylor series gives hT

1 (xs) = h1 (xs, 1, 1), and
by definition (3.8) we have x1,s = h1 (xs, 1, 1). Combining these two equalities gives hT

1 (xs) =

x1,s, which is equivalent to

k

∑
i=1

1
i!

Hi

 0nx×1

1
1


⊗i

+ ζk = 0. (A.1)
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Note that each Hi is a continuous function of x1,s. If hT
1 (xs) is an exact k-order Taylor series,

then ζk = 0 and the system (A.1) is identical to (3.12) in the main text, which automatically
gives xk = x1,s. Otherwise Assumption 2 implies that limk→∞ ζk = 0 holds, and the systems
(A.1) and (3.12) become identical as k → ∞, leading to xk → x1,s. ■

B Examples

B.1 Neoclassical growth model

The equilibrium equations of the model of interest are standard:

yt = ct + it, (B.1)

yt = ezt kα
t , (B.2)

kt+1 = (1 − δ) kt + it, (B.3)

1
cγ

t
= βEt

[(
α

yt+1

kt+1
+ 1 − δ

)
1

cγ
t+1

]
, (B.4)

zt+1 = ρzt + ηut+1, (B.5)

where yt is output, ct consumption, it investment, zt the log of TFP, kt current capital, and ut+1

the iid standard normal innovation.
The auxiliary model includes the perturbation parameters ε and σ, and introduces an aux-

iliary parameter ψ such that the effective discount factor is β [1 + ψ (1 − ε)]−1. This way we
allow for a small change to the discount factor such that the DSS of the auxiliary model is dif-
ferent from the one implied by the model of interest.42 Perturbation around (ε, σ) = (0, 0) then
corrects for this deviation and risk simultaneously. The new equilibrium conditions replacing
(B.4) and (B.5) are:

1
cγ

t
= β [1 + ψ (1 − ε)]−1

Et

[(
α

yt+1

kt+1
+ 1 − δ

)
1

cγ
t+1

]
,

zt+1 = ρzt + σηut+1.

As always, we recover the model of interest by setting (ε, σ) = (1, 1).
At (ε, σ) = (0, 0), the deterministic steady-state (DSS) of capital in the auxiliary model is:

kd =

[
α

([1 + ψ] /β − (1 − δ))

]1/(1−α)

.

It follows that by setting

ψ
(

k
)
= β

 α(
k
)1−α

+ (1 − δ)

− 1

42Another natural candidate for perturbation is δ. Perturbing α is also feasible but less efficient because one
cannot solve analytically for ψ as a function of the target DSS of capital .
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Figure 6: Comparative statics of the Growth model across methods
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we can choose a wide range of values for k such that kd = k. Since k uniquely pins down kd, we
can use the algorithm of Section 3.4 to build a local solution around the stochastic steady-state
(SSS) of the model of interest such that ks = kd = k.

B.1.1 Numerical performance

The baseline calibration of the model of interest is standard: β = 0.99, γ = 2, α = 0.35,
δ = 0.025, ρ = 0.95, and η = 0.01. In addition, I consider an extreme calibration combining high
levels of risk and risk aversion: η = 0.025 and γ = 20. I compute third-order approximations
to the policy rule for capital using both standard perturbation and the two-parameter pertur-
bation. To evaluate accuracy, I compare their performance against a global solution computed
with the endogenous grid method (Carroll, 2006) using a grid of 400 grid-points for capital
and 15 grid-points for productivity, discretizing the AR(1) process for zt with the Rouwenhorst
method.

First, I perform a comparative statics exercise by looking at the implied SSS of the Growth
model across methods and calibrations. Specifically, for each method I solve the model for
different values of risk (with the conditional standard deviation of productivity shocks η rang-
ing from 0.0025 to 0.03), and then calculate the implied SSS of each policy rule.43 Figure 6
reports the results. In Panel (a) the risk-aversion parameter is set to γ = 2, and the key finding
is that the three solutions deliver virtually the same SSS, which increases with η due to the
precautionary-saving motive.

In contrast, in panel (b) I set a high value of γ = 20, and find that the SSS of standard pertur-
bation (green dashed line) deviates from the global solution (blue solid line) for enough large
risk, whereas the one computed with two-parameter perturbation (red dash-dotted line) man-
ages to follow the global solution closely. This happens because a high-risk and risk-aversion
scenario boosts the precautionary-saving effect, leading to a true SSS far away from the deter-

43For standard perturbation, I find the SSS by iterating the state vector (kt, zt) over time until convergence using
the third-order policy rule. For the global solution, the SSS is the point where the policy rule of capital (conditional
on z = 0) crosses the 45◦ line.
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Table 3: Accuracy check for the Growth model

Approximation
Baseline Extreme

Mean Max Mean Max

Standard perturbation 0.016 0.017 1.74 6.68

Two-parameter perturbation 0.016 0.017 0.40 1.32

Notes. The table reports key statistics of the time-series for absolute
percent errors of two local approximations (relative to the global
solution) under two different calibrations.

ministic one. Since a large value of γ = 20 greatly increases the non-linearity of the policy rule,
the region of the state-space where the true SSS belongs falls beyond the radius of convergence
of a local approximation around the DSS, thus worsening the accuracy.

Next, I fix γ = 2 and η = 0.01 in the baseline calibration, γ = 20 and η = 0.025 in the ex-
treme calibration, and run a stochastic simulation of the model with a length of 10, 000 periods
(burn-in of 1, 000 periods) for the three solution methods. To make a fair comparison, in all
three cases productivity z follows the same Markov chain as in the global solution. Hence dif-
ferent time-paths of capital across models are due to differences in the policy rules only. Then,
for the two local approximations I compute the (absolute) percent errors of the time-series of
capital with respect to the time-series of the global solution, which I treat as the "true" solution.

Table 3 reports mean and maximum values for each simulation. Under the baseline calibra-
tion, these statistic are very small and virtually identical across local approximations. However,
under the extreme calibration the simulation of two-parameter perturbation clearly outper-
forms standard perturbation: its mean absolute error of 0.4% is about four times smaller, and
its maximum of 1.32% is about six times smaller. The intuition behind this result is the same
as in the comparative statics exercise: under the extreme calibration, the dynamics of capital
gravitate around a true SSS far above the deterministic one. By changing the point of ap-
proximation, the two-parameter perturbation corrects for this effect, leading to more accurate
time-series.

B.2 Small open economy model

A representative agent in a small open economy (SOE) seeks to maximize a standard CRRA
utility function:

E0

[
∞

∑
t=0

βt c1−γ
t − 1
1 − γ

]
.

At each period the agent receives an endowment income yt and can save or borrow net
foreign assets bt with a (gross) world interest rate Rt. The budget constraint is:

ct = Yt + bt −
bt+1

Rt
. (B.6)
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The exogenous states yt = ln Yt and zt = ln
(

Rt
R

)
(with R as the DSS level of Rt) follow

AR(1) processes:

yt+1 = ρyyt + σηyuy,t+1, (B.7)

zt+1 = ρrzt + σηrur,t+1, (B.8)

where and uy,t+1 and ur,t+1 are serially uncorrelated standard normal disturbances scaled by
the perturbation parameter σ.

The first-order conditions of this problem, together with a no-Ponzi-game condition, lead
to the following Euler Equation for bonds:

c−γ
t = RtβEt

[
c−γ

t+1

]
. (B.9)

Thus, the equilibrium conditions of the model of interest are given by equations (B.6)-(B.9).

B.2.1 Auxiliary models

I consider two well-known modifications of the standard SOE model that have no other pur-
pose than to induce stationarity of the equilibrium dynamics (Schmitt-Grohé and Uribe, 2003).
In both cases the control variable is ct, and the state variables are bt, yt, and zt.

(i) Uzawa preferences. The new lifetime utility function is:

E0

[
∞

∑
t=0

θt
c1−γ

t − 1
1 − γ

]
,

where the discount factor θt depends on the perturbation parameter ε, and evolves over time
according to

θ0 = 1,

θt+1 = θtβ
(
1 + ψ2ε2) (κc̃t)

−ψ1(1−ε2) .

Here c̃t denotes average consumption, ψ1 > 0 and ψ2 < 0 are two auxiliary parameters, κ is a
calibration parameter discussed below, and β = 1/R. When ε = 1 the discount factor becomes
exogenous and equal to β = β (1 + ψ2), which allows the model of interest to satisfy the well-
known stationarity condition Rβ < 1 arising from precautionary savings.44 The new Euler
equation replacing (B.9) is:

c−γ
t = Rtβ

(
1 + ψ2ε2) (κct)

−ψ1(1−ε2)
Et

[
c−γ

t+1

]
(B.10)

where I have already imposed c̃t = ct. Thus, the equilibrium conditions of the new model are
given by equations (B.6), (B.7), (B.8), and (B.10). The deterministic auxiliary model corresponds

44See Aiyagari (1994), and Chamberlain and Wilson (2000).
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to the case (ε, σ) = (0, 0), and the model of interest is (ε, σ) = (1, 1).
Finally, imposing stationarity to (B.10) gives cd = 1/κ, which we can substitute into (B.6)

to pin down bd = (1/κ − 1)/(1 − 1/R). Since this expression is invertible in κ, we can set

κ =
[
1 + b

(
1 − 1/R

)]−1
, and target a wide range of DSS values for external assets such that

bd = b.45

(ii) Portfolio adjustment costs (PAC). The new budget constraint takes into account that
agents face convex costs of holding external assets in a quantity different from some long-run
level b:

ct = yt + bt −
bt+1

Rt
− ψ1

2
(
1 − ε2) (bt+1 − b

)2
(B.11)

where ψ1 > 0 is an auxiliary parameter. The exogenous discount factor is β = β
(
1 + ψ2ε2),

with ψ2 < 0 and β = 1/R. It follows that the new Euler equation replacing (B.9) is:(
1
Rt

+ ψ1
(
1 − ε2) (bt+1 − b

))
c−γ

t = β
(
1 + ψ2ε2)Et

[
c−γ

t+1

]
(B.12)

The equilibrium conditions of the new model are given by equations (B.7), (B.8), (B.11), and
(B.12). Again, we recover the model of interest by setting (ε, σ) = (1, 1). Finally, imposing
stationarity to (B.12) immediately yields bd = b.

B.2.2 Comparative statics

Consider the special case where there are only income shocks (ηr = 0), so that Rt = R at
all times. This allows me to compare the performance of the approximations with a global
solution to the income fluctuation problem based on the endogenous grid method. The baseline
calibration is R = 1.04, γ = 4, ρy = 0.85, and ηy = 0.02. The auxiliary parameters are set to
ψ1 = 10−5 and ψ2 = −10−4. These low values helps perturbation to reach the model of interest
starting from the auxiliary ones.

To implement the global algorithm, I introduce the borrowing constraint bt+1 ≥ b (as op-
posed to a no-Ponzi-game condition), and set a value of b low enough such that its effects on
the dynamics are negligible. To maximize accuracy, I use a dense grid of 1, 000 nodes for bt

and 25 nodes for income Y, discretizing its AR(1) process with the Rouwenhorst method. The
solution delivers a SSS of bs = −2.0582, which corresponds to the point where the policy rule
of bt+1 (conditional on Y = 1) crosses the 45◦ line.

When I approximate the SSS with the algorithm of Section 3.4 I obtain the following val-
ues: bs = −2.0510 and bs = −2.0583 using second and fourth-order approximations to the
auxiliary PAC model, and bs = −2.0855 and bs = −2.0584 using second and fourth-order ap-
proximations to the auxiliary Uzawa model. Thus, regardless of the auxiliary model used, a
second-order perturbation already provides a good approximation to the true SSS, which be-
comes a near-perfect fit as the order of perturbation increases.

45The restriction is that DSS consumption must be positive: b > −
(
1 − 1/R

)−1 .
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Figure 7: Comparative statics of the SOE model across methods
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Table 4: Calibration of the SOE model

Parameter Value

R DSS gross interest rate 1.0144

β Discount factor 0.9851
γ Risk aversion 2

ρy Auto-correlation of income 0.749
ρr Auto-correlation of interest rate 0.572
ηy Std. of income shocks 0.0180

ηr Std. of interest rate shocks 0.0161

ρy,r Correlation of innovations −0.62

Next, I perform a comparative statics exercise by computing the SSS for different values of
income risk (ηy ranging from 0.005 to 0.04), and risk-aversion (γ ranging from 1 to 8). Figure
7 reports the results. Panel (a) plots the SSS values as a function of income risk, and Panel
(b) plots the SSS values as a function of risk-aversion. In both panels the blue solid line cor-
responds to the global solution, the green dotted line to the second-order perturbation using
the auxiliary PAC model, and the red dashed line to the second-order perturbation using the
auxiliary Uzawa model. Since the three lines are virtually identical in both panels, the main
result here is that two-parameter perturbation does an excellent job in approximating the true
SSS of the model, regardless of the auxiliary model involved.

B.2.3 Simulations with a realistic calibration

Table 4 reports the calibration used to simulate the SOE economy. Here I follow Mendoza (2010)
and set values to the structural parameters that help to match key moments from Mexican data
for the period 1993:I-2005:II. The only parameters different from this study are R (set to match
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Figure 8: Ergodic distribution of the SOE model
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Table 5: Euler errors of the SOE model

Approximation
Auxiliary Uzawa Auxiliary PAC

Mean Max Mean Max

Third order -5.19 -3.42 -5.28 -3.50

Fifth order -6.92 -4.32 -6.82 -4.25

Notes. The table reports the mean and maximum values of the Euler
errors (in log10 scale) across the ergodic set of each approximation.

the average (annual equivalent) of 5.9 percent from Uribe and Yue (2006)), and β, which I
calibrate to deliver a SSS ratio of net foreign assets to GDP of −44 percent (Mexico’s average
ratio over the period 1985–2004 in the Lane and Milesi-Ferretti (2018) database).

Using a third-order perturbation to the model of interest for each auxiliary model, I simulate
the economy for 100, 000 periods (burn-in of 1, 000 periods), feeding the decision rules with the
same pseudo-random innovations. The resulting time-series for net foreign assets allows me
to compute kernel distributions (using the Epanechnikov method) that I plot in Figure 8, Panel
(a). The first result is that the approximations deliver well-defined ergodic distributions of net
foreign assets (dotted green line for PAC, and red dashed line for Uzawa) , despite the use of
a third-order approximation without pruning the state-space. The second result is that the two
distributions are extremely close to each other, indicating near-identical long-run dynamics.
To show that this is not an artifact implied by similar underlying auxiliary models, Panel (b)
repeats the same exercise evaluating the approximations without correcting for the stationary-
inducing modifications (that is, (ε, σ) = (0, 1)). Now the two kernel distributions are widely
different, both from each other and from the ones implied by the model of interest.

Finally, I compute the mean and maximum of unit-free Euler errors (in log10 scale) of the
simulated time-series. Table 5 reports the results for third and fifth-order approximations to
the policy rules. The overall message is that, regardless of the auxiliary model used, the two-
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variable perturbation method delivers approximations with good global properties, with mean
Euler errors below −5 using a third-order approximation, and well below −6 using a fifth-order
one.

C Derivations of the two-country DSGE model

C.1 Equilibrium conditions

The Euler equations of the Home agent for Home and Foreign stocks are:

β

(
Ct

C

)−κ

Et

[
δt+1Yt+1 + zS

H,t+1

Pt+1Cγ
t+1

]
=

zS
H,t

PtC
γ
t
[1 + ψ (1 − ε) (SH,t+1 − a)] , (C.1)

β

(
Ct

C

)−κ

Et

[
δ∗t+1 pF,t+1Y∗

t+1 + zS
F,t+1

Pt+1Cγ
t+1

]
=

zS
F,t

PtC
γ
t
[1 + ψ (1 − ε) (SF,t+1 − aF)] . (C.2)

where I have already imposed C̃t = Ct. The Euler equations of the Home agent for Home and
Foreign bonds are:

β

(
Ct

C

)−κ

Et

[
P̃t

Pt+1Cγ
t+1

]
=

zB
H,t

PtC
γ
t

[
1 + ψ (1 − ε)

(
BH,t+1 − b

)]
, (C.3)

β

(
Ct

C

)−κ

Et

[
P̃∗

t

Pt+1Cγ
t+1

]
=

zB
F,t

PtC
γ
t

[
1 + ψ (1 − ε)

(
BF,t+1 − bF

)]
. (C.4)

In turn, the Euler equations of the Foreign agent for Home and Foreign stocks are:

β

(
C∗

t

C∗

)−κ

Et

[
δt+1Yt+1 + zS

H,t+1

P∗
t+1

(
C∗

t+1

)γ

]
=

zS
H,t

P∗
t (C∗

t )
γ [1 − ψ (1 − ε) (SH,t+1 − a)] , (C.5)

β

(
C∗

t

C∗

)−κ

Et

[
δ∗t+1 pF,t+1Y∗

t+1 + zS
F,t+1

P∗
t+1

(
C∗

t+1

)γ

]
=

zS
F,t

P∗
t (C∗

t )
γ [1 − ψ (1 − ε) (SF,t+1 − aF)] , (C.6)

where I have used the market conditions (5.16) and (5.17) to impose S∗
H,t+1 = 1 − SH,t+1, and

S∗
F,t+1 = 1 − SF,t+1. Also, C∗

is the DSS of C∗
t in the auxiliary model. The Euler equations of the

Foreign agent for Home and Foreign bonds are:

β

(
C∗

t

C∗

)−κ

Et

[
P̃t

P∗
t+1

(
C∗

t+1

)γ

]
=

zB
H,t

P∗
t (C∗

t )
γ

[
1 − ψ (1 − ε)

(
BH,t+1 − b

)]
, (C.7)

β

(
C∗

t

C∗

)−κ

Et

[
P̃∗

t

P∗
t+1

(
C∗

t+1

)γ

]
=

zB
F,t

P∗
t (C∗

t )
γ

[
1 − ψ (1 − ε)

(
BF,t+1 − bF

)]
, (C.8)

where I have used the market-clearing conditions (5.18) and (5.19) to impose B∗
H,t = −BH,t, and

B∗
F,t = −BF,t.

In the auxiliary equilibrium, the PAC of each country cancels out with their respective
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lump-sum transfer (and in the model of interest there is no PAC in the first place). It follows
that the equilibrium budget constraints are (5.7) for Home, and

P∗
t C∗

t + zS
H,t (1 − SH,t+1) + zS

F,t (1 − SF,t+1)− zB
H,tBH,t+1 − zB

F,tBF,t+1

= (1 − δ∗t ) pF,tY∗
t + (1 − SH,t)

(
δtYt + zS

H,t

)
+ (1 − SF,t)

(
δ∗t pF,tY∗

t + zS
F,t

)
− P̃tB∗

H,t − P̃∗
t B∗

F,t.

(C.9)

for Foreign, where I have already imposed the market-clearing substitutions. Finally, substitut-
ing the relative demands (5.3) and (5.4) into the market-clearing condition (5.15) gives

αPϕ
t (qt)

ϕ−1 Ct + (1 − α) (P∗
t )

ϕ (qt)
ϕ−1 C∗

t = Yt. (C.10)

Bonds and equities model. The 21 equilibrium conditions of the full model are: the Euler
equations (C.1)-(C.8), budget constraints (5.7) and (C.9), price-index equations (5.1), (5.2), (5.5)
and (5.6), market-clearing condition (C.10), and AR(1) processes (5.9)-(5.14).

Equities-only model. I also consider an equities-only version of the model, where BH,t =

BF,t = 0 at all times. In this case, the 15 equilibrium conditions are the Euler equations (C.1),
(C.2), (C.5) and (C.6), the budget constraints (5.7) and (C.9), price-index equations (5.1) and
(5.2), market-clearing condition (C.10), and AR(1) processes (5.9)-(5.14).

C.2 Deterministic steady-state

The first step is to pin down the DSS of asset holdings. Let C = C and C∗
= C∗ be the DSS of

Home and Foreign consumption. Evaluating at (ε, σ) = (0, 0) and imposing stationarity, Euler
equations (C.1) and (C.5) become:

β

[
δ + zS

H

zS
H

]
= 1 + ψ (SH − a) ,

β

[
δ + zS

H

zS
H

]
= 1 − ψ (SH − a) .

Equating the left hand-sides of the equations delivers SH = a, which implies zS
H = β

1−β δ. An

identical procedure with the pair (C.2) and (C.6) gives SF = aF, and zS
F = β

1−β pFδ. In turn,
combining the pairs (C.3)-(C.7) and (C.4)-(C.8) yields DSS bond holdings BH = b and BF = bF,
and DSS bond prices zB

H = βP and zB
F = βP∗.46 Thus, it follows that the vector

(
a, aF, b, bF

)
uniquely pins down the DSS of the endogenous states.

Next, impose stationarity in the budget constraints (5.7) and (C.9), and use the previous

46Note that the steady-state values of Pt and its non-adjusted counterpart P̃t are identical: Pd = P̃d = P. Similarly,

(P∗)d =
(

P̃∗
)d

= P∗.
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results to obtain:

C =

(
1
P

)
[(1 − δ) + δ (a + pFaF) + (1 − β) (Pb + P∗bF)] (C.11)

C∗ =

(
1

P∗

)
[(1 − δ) pF + δ ((1 − a) + pF (1 − aF))− (1 − β) (Pb + P∗bF)] (C.12)

where I have omitted hat symbols to ease notation. Likewise, the stationary versions of the
price-index equations (5.1) and (5.2) are:

P =
[
α + (1 − α) p1−ϕ

F

]1/(1−ϕ)
, (C.13)

P∗ =
[
(1 − α) + αp1−ϕ

F

]1/(1−ϕ)
, (C.14)

and the stationary version of the market-clearing equation (C.10) is:

αPϕC + (1 − α) (P∗
t )

ϕ C∗
t = 1. (C.15)

Thus, we can substitute (C.13) and (C.14) into (C.11) and (C.12), and in turn these into (C.15)
to obtain an equation with pF as the only unknown. Once this variable is solved, we can
immediately compute the remaining DSS values of price indices (P, P∗), consumptions (C, C∗),
and asset prices zS

F, zB
H, and zB

F . Finally, the calculations for the equities-only version of the
model are identical after setting b = bF = 0.

Symmetrical case. The previous solution is general enough to allow for approximations to
the policy rules around arbitrary values of

(
a, aF, b, bF

)
. But if one is working with perfectly

symmetric countries, exploiting this symmetry simplifies calculations. In particular, perfect
symmetry imposes a strong parameter restriction: aF = 1 − a, and bF = −b. To see this, note
that under perfect symmetry it must be the case that pF = 1, and P = P∗ = 1. Plugging these
results into (C.11) and (C.12), and substituting the resulting expressions into (C.15) gives

(1 − δ) + 2 (1 − α) δ + (2α − 1) (δA + (1 − β) B) = 1.

where A = a + aF, and B = b + bF. For this equation to hold good for arbitrary values of δ

and α, we require A = 1 and B = 0, which delivers the result. Moreover, since one obtains an
identical expression by imposing stationarity in the model of interest (ε, σ) = (1, 1), the same
restrictions apply to the SSS of asset holdings. The consequences are that, when solving for the
SSS with the algorithm of Section 3.4, (i) we just have to solve for a and b, and (ii) recalculating
the DSS starting from arbitrary values of a and b does not require any intermediate numerical
procedure.
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