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Abstract

In this paper, firms in a network of Cournot economies learn about the
intercept of the demand curve using past sales history. I decompose the learn-
ing process into economically interpretable components and find that learning
aggregate quantities happens at a faster rate than individual quantities both
within markets and within firms. This speed depends on the network topology
and the slope of the demand function. The slowest learning component is the
distribution of a correct aggregate amount between markets, which drives the
slow convergence of individual quantities. The convergence rate of individual
quantities is the same for all sufficiently connected networks and is indepen-
dent of the slope of the demand function. Increasing the density of a random
network has a non-monotonic effect on the convergence speed of aggregate
quantities. Convergence speeds first decrease relative to isolated market-firm
pairs, increasing again after the graph becomes sufficiently connected.

Keywords: Cournot competition, least squares learning, limited information, net-
works

1 Introduction
The market as an information aggregation device has been a central theme of modern
economic theory since its early days (Smith, 1776; Hayek, 1945). Markets, suppos-
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edly, allow economic actors using decentralized information to arrive at (constrained)
optimal decisions even though none of the actors have all the necessary information.
How markets fulfill this role exactly is not entirely clear (Bowles et al., 2017). In this
paper, I use a Cournot oligopoly model with limited information and learning firms
to decompose the learning dynamics into economically meaningful components and
characterize how information aggregated through the market leads to faster conver-
gence of aggregate quantities.

Often we focus on analyzing market equilibria because we assume that agents learn
these equilibria quickly. This is however not straightforward, as markets can allow for
(relatively) fast learning of aggregate quantities but individual quantities may still
be learned slowly. Hence, the plausibility of analyzing equilibrium outcomes may de-
pend on the aggregation level being analyzed. This has also implications for welfare:
in this market, aggregate quantities affect consumer surplus directly while individual
quantities only affect firm revenue. Thus, if aggregate quantities are learned faster
than individual quantities, welfare losses (relative to the full-information equilib-
rium) due to wrong aggregate quantities decrease faster than losses due to a wrong
distribution of individual quantities. So in settings where information is limited but
informative signals on an aggregate level are available and consumer utility is directly
affected by aggregate quantities only, out of equilibrium welfare losses may disappear
relatively quickly.

Expectations play an important role in many economic models and a key bench-
mark are rational expectations. Rational expectations were first introduced by Muth
(1961) and the formulation was further strengthened by Lucas and Prescott (1971)1.
Rational expectations as defined by Lucas and Prescott (1971) have been the primary
formulation used in economic modeling. They assume that when forming expecta-
tions all participants know the true distribution of future variables and form the
correct expectations, which also implies that all agents have the same expectations.
This can be motivated by an eductive argument (Guesnerie, 1992), i.e. agents are
able to derive the rational expectations equilibrium as a Nash equilibrium of the
economic model based on their understanding of the model, which however requires
a high computational ability. Another motivation is by an evolutive learning ar-
gument, whereby agents update their expectations over time and may converge to
the rational expectations equilibrium (Bray & Savin, 1986; Marcet & Sargent, 1989).
While the possibility of convergence has been studied extensively, the speed at which
this convergence happens has received less attention.

1See Wagener (2014) for a discussion.
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The central question of this paper is how long the convergence to an equilibrium
takes. To the best of my knowledge, this is the first paper to systematically analyze
convergence speeds theoretically in a network of markets and provide new insights
into how the Cournot market mechanism disseminates information. Convergence
speed is important for multiple reasons: first, if it is slow the rational expectations
assumption and focusing on equilibrium comparative statics may not be justified
as the economy may never reach this equilibrium before shocks or structural shifts
change it. It is also interesting from a market design perspective; if convergence of
individual quantities is an important goal a market mechanism with aggregate signals
may not be the best choice because individual quantities will converge relatively
slowly.

Vives (1993) analyzes convergence speeds in a ‘rational’ learning environment, i.e.
where agents have a correctly specified model, whereas in this paper agents are
boundedly rational in the sense that they have a misspecified model. Vives (1993)
analyzes convergence speeds in terms of the rate that the (stochastic) estimate of
the parameter under consideration converges in probability to the (deterministic)
true value. The focus in this paper is on the convergence rate of the expected value
of the estimator to the true value. The estimator is still a random variable, but as
the agents base their decisions on the mean of this random variable the remaining
randomness is not important for the economic outcomes.

Wagener (2014) analyzes data from learning-to-forecast experiments and finds slow
convergence speeds. If learning in real life is slow, the transient period before conver-
gence is of interest. In addition, if we want to understand how markets disseminate
information it is important to analyze this transient period as once the rational ex-
pectations equilibrium is reached the information aggregation and distribution role
of the market is limited. Agents will have beliefs consistent with the equilibrium and
thus no longer need to update their beliefs.

In this paper, I reduce the informational requirements in a one-good, many-markets
oligopoly model to study how firm decisions evolve when firms are learning about
their environment. In particular, I analyze how fast convergence to equilibria – if any
exist – takes place. Firms are active in multiple markets determined by an exogenous
network and know the slope of the demand function and their sales, i.e. price–
quantity pairs. Each firm believes demand is a linear function of their own quantity
and as new information arrives, firms update their estimate of the market size, i.e. the
intercept of the demand function using a recursive least squares learning algorithm.
Since firms are connected to multiple markets they simultaneously try to learn about
all the markets in their neighborhood. Firms’ production costs are a quadratic
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function of total production, which gives rise to tradeoffs between producing for one
market or another. This tradeoff implies that if a firm’s belief about any market in
its network changes, it has an effect on its production for all markets. The linearity
of perceived demand and the aggregate price signal in the Cournot market imply
that for strongly connected market networks, individual quantities converge at a
constant rate, which is independent of the network topology, to the full information
Cournot-Nash equilibrium. A sufficient condition for a market network to be strongly
connected is that each firm is active in at least two markets and each market has
two firms active in it. This guarantees that every firm faces tradeoffs and that no
firm is the only active firm in a market. So as long as this condition is satisfied we
know that all individual quantities will converge at a constant rate, which is slower
than for aggregate quantities, regardless of what the network looks like.

The recursive least squares algorithm describing how firms update their beliefs about
market size is a stochastic algorithm, which takes the form of a nonautonomous
stochastic difference equation. I approximate this with a system of linear ordinary
differential equations using results from the stochastic approximation literature (Ben-
veniste et al., 1990; Evans & Honkapohja, 2001). This approximation allows us to
analyze the convergence speeds of the system using the eigenvalues of the matrix that
represents the dynamics. In addition, we can link the convergence speeds to different
learning tasks via the eigenspaces of this matrix. This analysis is independent of the
network topology and allows me to make statements holding for any network.

Next, I numerically look at how aggregate convergence speeds vary between different
standard network types and within types depending on fundamentals of the economy.
Convergence speeds of aggregate quantities depend on the network topology and the
slope of the demand function. I find that for networks with a constant number of links
per node, e.g. the circle or the tree network, aggregate convergence speeds decrease
as the size of the network increases2 and approaches the slower rate of individual
quantities. For the star network, the convergence speed is constant in the size of
the network, as the convergence speed is limited by the leaf nodes whose number of
connections do not change as the network size increases. Convergence speed in the
complete network is increasing in the size of the network. These results indicate that
if information and trade flows are limited the market is less efficient in disseminating
information as shown by the slower learning speeds. This could be an argument for
facilitating trade and information flows between markets and in favor of increasing
globalization as the total consumer surplus increases with the number of firms. The

2Note that in the tree and circle network, the number of firms and markets increases together,
i.e. we cannot vary the number of markets independently of the number of firms and vice versa.
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slope of demand has a heterogeneous effect that depends on the network topology.
In the complete network, convergence speeds increase as inverse demand reacts more
strongly to price changes (see discussion below). In the circle and star network,
this effect goes in the opposite direction and convergence speed decreases as inverse
demand becomes more sensitive to quantity changes.

The topology of these standard networks is by definition fixed and only covers a
fraction of all possible networks. To gain some more insight into how the network
topology affects the convergence speed I look at draws of an Erdős-Renyi graph with
a fixed number of markets and firms but a varying number of connections. An Erdős-
Renyi graph is a random graph that is uniformly drawn from the set of all graphs with
a given number of nodes and connections. By varying the number of connections we
gain insights into how the connectedness of the graph affects convergence speeds and
by looking at many draws we also gain insights into how much the network topology
changes the convergence speeds for a given number of connections. We find that for
a given demand slope, the convergence rate of aggregate demand is hump-shaped
and decreases as the network goes from single market-firm pairs, where there is no
information exchange, to a sparsely connected network, where information can travel
between markets. The increase in connections slows down aggregate convergence
because most markets are only indirectly connected to each other so information
takes longer to disseminate across the network and changes in a market that a firm
does not observe may affect the conditions in the market the firm does observe. As
the network becomes more dense convergence speed increases again as information
can now travel more directly between markets. Once the network becomes a complete
network there is a sharp increase in aggregate convergence speed as now all firms
have access to all information. The decrease in convergence speed is more pronounced
and takes longer to reverse the steeper the inverse demand function is. This can be
explained by the increase in price volatility as the sensitivity of the inverse demand
function to quantity changes increases. With a limited number of connections, and
thus a limited information flow, more pronounced price changes make it harder for a
firm to distinguish what caused prices to change and thus it takes longer for aggregate
quantities to converge. Interestingly, this has the opposite effect in the complete
network; convergence speeds increase sharply as the slope of the inverse demand
function increases. The reasoning for this is similar, as every firm is connected to
every market there are only direct information flows. Then, with a steeper inverse
demand curve fewer observations reveal more information about the equilibrium
beliefs as a small deviation of quantities from equilibrium will have a bigger effect on
the difference between observed and expected intercepts, which in turn affects how
strongly beliefs are updated, than with a less sensitive inverse demand.
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There is an extensive literature on learning and expectations in (macro-) economic
models (Evans & Honkapohja, 2001). Paramount among these is the cobweb model
(Ezekiel, 1938; Nerlove, 1958; Brock & Hommes, 1997; Guesnerie, 1992; Hommes
et al., 2022), which is characterized by a simple market where suppliers have a one
(or more) period production lag and thus base their production decisions on expected
prices instead of actual prices.

The literature on learning in Cournot oligopoly models evolved largely in parallel to
the literature on learning in cobweb models but is seldom talked about together. In
cobweb models, typically a continuum of firms is trying to learn about how an exoge-
nous variable drives demand and firms do not behave strategically. In contrast, in
Cournot oligopoly models the strategic interaction between firms is a key component
in the learning process.

Cournot (1838) was one of the first to model learning in an economic context. He in-
troduced the best reply dynamics as a justification for the Cournot-Nash equilibrium
(Cox & Walker, 1998). In the Cournot best-reply dynamics firms know perfectly the
demand they are facing but are unaware of what the other firms are supplying be-
fore making the production decision. Each period they choose their quantities by
optimally reacting to the previous period’s aggregate supply. This learning process
converges to the Nash equilibrium but it also requires a lot of information.

Kirman (1975) analyzes a linear duopoly model with imperfect substitutes where
firms compete in prices in a single market. Firms use Bayesian updating and recursive
least squares to learn about the demand they are facing. When using least squares
learning firms arrive at an equilibrium that is not the Nash equilibrium.

Tuinstra (2004) generalizes the demand function in a similar framework to Kirman
(1975). Firms are assumed to know the true slope of the demand curve they are
facing at the most recent price. Based on the price-quantity pair and the slope the
firms update the intercept of the linear approximation of the true demand curve
at the previous price. Tuinstra finds that the adjustment process is stable for de-
mand functions which exhibit little cross-price effects and are not too non-linear.
Otherwise, endogenous fluctuations may arise.

Bischi et al. (2007) is most similar to the present set-up: they analyze a repeated
Cournot oligopoly game in a single market where firms have more limited informa-
tion on the demand function. In particular, they only know the partial derivative
of the demand function with respect to their own quantity at the current aggregate
production level. I am using the same information structure and learning process
but while they focus on the local stability of the steady states and how the stabil-
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ity compares to learning under best reply dynamics, I focus on characterizing the
convergence dynamics, their relation to information aggregation, and how these two
relate to the network structure.

Gode and Sunder (1993) analyze the allocative efficiency of market institutions with
zero-intelligence traders, i.e. trades with only very simple behavioral rules. They find
that even in these circumstances some market institutions may achieve in aggregate
efficient outcomes. This result does, however, not extend to individual outcomes.
The setup differs from the present one as there is no learning by agents, but the
results share similarities in terms of how the efficiency of the market structure in
achieving equilibrium outcomes differs when comparing aggregation levels.

The paper is structured as follows. Section 2 presents the model structure and the
learning framework. Section 3 discusses learning dynamics in a general network and
characterizes learning speeds of individual and aggregate quantities. Sections 4.1
and 4.2 analyze learning dynamics for the particular cases of a single market and a
complete network, respectively, and Section 5 provides some comparative statics for
the economic fundamentals. Section 6 concludes.

2 Model
There is a finite set of markets M ≡ {1, . . . , M} indexed by m and a finite set of
firms J ≡ {1, . . . , J} indexed by j. A firm is connected to some subset Mj ⊆ M
of markets and markets are connected to some subset of firms, Jm ⊆ J . These
connections are not directed, so m ∈ Mj ⇐⇒ j ∈ Jm. A firm-market connection
means that the firm is aware of the market and is able to sell its good on the market
if the firm finds it profitable. The connections are assumed to be exogenous and
heterogeneous across firms. This network can be described by a bipartite graph
G = (M, J , E) where E is the set of paired vertices, i.e. the connections between
markets and firms. Let G ∈ {0, 1}M×J denote the biadjacency matrix of the graph
G, with elements, gmj, equal to 1 if there is an edge connecting m, j. The good is
assumed to be homogeneous so consumers are indifferent between consuming output
from different firms. The demand in each market is identical and denoted by Dm(pm

t ),
and is assumed to be a linear function of the price, pm

t . Each firm chooses the amount
to supply by maximizing expected profits.

In the example network of Figure 1, firm two can, for example, sell its goods on
markets one and two, whereas firm one can only sell its goods on market one.

In each period t firm j is choosing quantities qm,j
t to sell on market m in its network
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Figure 1: An example of a Cournot network with 2 markets and 3 firms.

Mj to maximize expected profits. Firms are endowed with a production technology
that is summarized by a cost function, cj

(
qj

t

)
: R|Mj |

+ → R+. I assume these costs
to be quadratic in total production Qj

t ≡ ∑
m∈Mj

qm,j
t . I make the quadratic cost

assumption as then the optimal quantity choice for a particular market depends on
the beliefs about all markets via the total quantity in the cost function. This implies
a trade-off between producing for different markets, which is not present if costs
were linear. With linear costs, each firm could make the production decision for each
market independently as the optimal choice only depends on the beliefs about the
market in question, which would make the network structure irrelevant3. This also
depends on the assumption that demand is isolated in the sense that consumers in
one market only have access to the good in that market.

Firms are assumed to make profit-maximizing decisions but face a restricted infor-
mation set, i.e. they can only base their decisions on information about the market
size that they have gathered through previous market interaction. Firms believe that

3Interestingly, the speed of convergence of individual quantities is the same in the linear case
as in the quadratic case, but the speed of convergence of aggregate quantities is independent of the
network structure and only depends on the firms active on a market, see Appendix A.10.
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demand is linear, which matches the true demand function. An avenue for future
work is to extend this by an additional layer of misspecification and see how nonlin-
ear demand functions affect the learning dynamics. The perceived demand function
is given by

pm,j
t = am,j − β

2 qm,j
t + υm,j

t , (1)

where a > 0 is an unknown parameter that the firm tries to learn, β > 0 is the true
slope and υm,j

t is an error term containing variables that affect the price but that
the firm has no information on. Firms only take into account their own quantity
because of their restricted information set. The only quantity that they observe is
their own as they have no way of knowing how much the other firms are producing.
Therefore, their best estimate of the price is as a function of their own supply. In
an equilibrium, this would also be the correct relationship as then other firms would
keep their supply constant at the equilibrium level (at least for one period). I assume
here, in line with some of the previous literature (Tuinstra, 2004; Bischi et al., 2007),
that the slope is known to the firms. Given that the demand function is linear, the
unobserved quantities only affect the perceived intercept and thus learning about the
slope would be unaffected by the other firms.

Now, as noted above, firms are not aware of the market size, i.e. they do not know
the parameter a of their perceived demand function. Through market exchange, the
firms can collect data and extend their information set. Using the data they collect
firms estimate these parameters using least squares learning, i.e. they estimate the
model in (1) yielding estimates am,j

t−1 of the parameter a. Based on this the firm forms
a perceived inverse demand function

p̂m,j
t (q) = am,j

t−1 − β

2 q . (2)

The firm problem can thus be described by,

qj
t = arg max

{qm,j}m∈Mj

 ∑
m∈Mj

p̂m,j
t (qm,j)qm,j

− c

2
(
Qj
)2
 . (3)

Aggregate demand is described by a linear inverse demand function

Pm (Qm
t ) = α − β

2 Qm
t + εm

t , (4)
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where α, β > 0, Qm
t is total production for market m, and, εm

t ∼ iid (0, σ2
ε) is a shock

to demand. The demand shock is assumed to be bounded by some constant C.

Total production in a market is given by

Sm(at−1) =
∑

j∈Jm

qm,j
t , (5)

where the quantities depend on firm beliefs and at−1 is a vector containing the pa-
rameter estimates of all markets of all firms active in market m (because the quantity
supplied to market m of firm j depends not only on the parameter estimate for mar-
ket m but on the estimates for all markets in which firm j is active, due to the
quadratic cost function).

As usual in Cournot oligopoly models, prices are assumed to adjust such that markets
clear, i.e.

pm
t = max {Pm (Sm (at−1)) , 0} . (6)

3 General Network
I will first discuss the general network described by the graph G = (M, J , E), which
is given by the biadjacency matrix, G. The whole adjacency matrix is given by

H =
(
0M G
GT 0J

)
,

where G has dimensions M ×J and the m, j-th element gmj is one if there is an edge
between the m-th market and the j-th firm. The matrix 0i is the i×i matrix of zeros.
The adjacency matrix H characterizes the connections between the M markets and
J firms. As this is a bipartite graph there are no connections between nodes of the
same type, i.e. no connections among markets and no connections among firms.

The graph can be summarized by the matrix G alone. The graph in Figure 1 is
described by the following biadjacency matrix

G =
(

1 1 0
0 1 1

)
. (7)

For the analytical results, I will assume that all markets are symmetric, i.e. αm = α
and βm = β for all m, and all firms have the same quadratic cost function with
coefficient c = 1.
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Firm decisions
The first-order conditions of the firm problem are

ai,j − βqi,j −
∑

m∈Mj

qm,j = 0 ∀i ∈ Mj . (8)

Note that i ∈ Mj ⇐⇒ gij = 1. So we can rewrite the above equation as

ai,j − βqi,j −
M∑

m=1
gmjq

m,j = 0 . (9)

This assumes that the firm finds it profitable to produce for all markets it is connected
to. If this is not the case then the firm will not produce for some markets and the
first-order conditions will only hold for markets it is producing for. This is discussed
in Appendix A.1. We can sum over all first-order conditions

∑
i∈Mj

ai,j − βqi,j −
∑

m∈Mj

qm,j

 = 0
∑

i∈Mj

ai,j − βQj − MjQ
j = 0

Qj =
∑

i∈Mj
ai,j

Mj + β
=
∑

i gija
i,j

Mj + β
, (10)

where Mj = |Mj| is the degree of firm j, i.e. the number of markets firm j is
connected to and, similarly, Jm is the degree of market m, the number of firms active
on market m.

Plugging aggregate production (10) back in the first-order condition (8) and assuming
it holds with equality yields

am,j − βqm,j −
∑

i gija
i,j

Mj + β
= 0 , (11)

which we can solve for individual quantities

qm,j
t = 2

β

(
(Mj + β − 1) am,j

t−1
2 (Mj + β) −

∑
i (gij − δim) ai,j

t−1
2 (Mj + β)

)
, (12)

where δim is Kronecker’s delta, defined as

δim =

1 if i = m

0 if i ̸= m
.
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Note that we have derived this under the assumption that the firm produces positive
quantities for all markets in Mj. This is not necessarily true and the firm may
produce only for a subset M∗

j ⊆ Mj of markets. This subset can be found iteratively
(see Appendix A.1), but for the derivations, I will assume that M∗

j = Mj.

Quantities are a linear function of firm beliefs and can be split into two components

qm,j
t = 2

β
gmj

(
sja

m,j
t−1 + tj

∑
i

(gij − δim) ai,j
t−1

)
, (13)

where sj and tj are defined as follows:

sj = (Mj + β − 1)
2 (Mj + β) > 0 (14)

tj = − 1
2 (Mj + β) < 0 . (15)

The belief about the market under consideration is multiplied by the positive factor
sj, which implies the bigger the firm believes the market to be the more it will
produce for it, ceteris paribus. It can be interpreted as the benefit of producing for
market m. The sum of beliefs of all other markets, i.e. the total market size apart
from market m, is multiplied by tj. This can be interpreted as the implicit cost of
not producing for one of the other markets, which is a result of the quadratic cost
function. Also note that sj = tj + 1

2 , which we will use to keep notation more concise.

Increasing production for market m will increase the marginal costs for all markets.
If marginal revenue equaled marginal costs for the remaining markets before the pro-
duction increase this implies that now marginal costs are higher and the production
for the other markets has to be decreased. Adding a link to another market cannot
decrease total production of a firm and cannot increase production for already con-
nected markets. If production for the new market is positive, marginal costs have
increased and thus the production for the other markets has to decrease in compar-
ison to before. The decrease has to be no bigger than the increase in production
for the new market, as adding a new market allows the firm to spread its total pro-
duction over more markets, which increases the marginal revenue on each market,
assuming demand is downward sloping, and thus can sustain a higher equilibrium
aggregate production. Aggregate consumer surplus then increases as the network
becomes more connected as the total production increases. The distribution of the
aggregate consumer surplus changes.
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We are going to proceed in steps: first starting with the quantity choice of a fully
connected firm, i.e. a firm connected to all markets, and then adjusting it to arrive
at the general formulation. If the firm is not connected to all markets then beliefs
about markets it is not connected to do not influence its decision and the quantity
it produces for a market it is not connected to is zero. For this adjustment, we need
to define the projection matrix, diag Gj, which is a diagonal matrix with the j-th
column of G on the diagonal. This matrix allows us to define base matrices that
represent a fully connected firm and simply “turn off” the markets that the firm is
not connected to.

Quantities of fully connected firms can be written as

qm,j
t = 2

β
gmj

(∑
i

gijtja
i,j
t−1 + 1

2am,j
t−1

)
, (16)

where gij = 1 ∀i as the firm is connected to all markets. In vector notation we can
write

qm,j
t = 2

β

(
tj1 + 1

2em

)⊤
aj

t−1 , (17)

where 1 is the vector of ones, usually assumed to be in RM but on occasion it may
be adapted to the size of the matrix being multiplied, and em ∈ RM the standard
unit vector in the m-th dimension.

The sum in Equation (16) is over all markets the firm is connected to. In the
vectorized version in Equation (17) the sum tj1⊤at−1 is over all markets because for
a fully connected firm Mj = M. For the general formulation, we will multiply the
above expression with the projection matrix diag Gj, which will turn off the markets
that the firm is not connected to. So, tj (diag Gj1)⊤ at−1 = tjG

⊤
j at−1 only sums over

beliefs of markets the firm is connected to.

The last thing to consider is that if firm j is not connected to market m then its
production for market m is zero. This is why we will multiply the above expression
with the m, j−th element of the biadjacency matrix, gmj, which is one if the firm is
connected to market m and zero otherwise. Then, we arrive at the final expression
for the quantity choice of a firm

qm,j
t = 2

β
gmj

(
diag Gj

(
tj1 + 1

2em

))⊤
aj

t−1 . (18)
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We will call
um,j = gmj

(
diag Gj

(
tj1 + 1

2em

))T

the aggregation mapping which aggregates the beliefs of firm j to arrive at production
for market m, qm,j

t = 2
β

um,jaj
t−1.

Equation (18) represents the quantity choice of a particular market-firm combination.
We can further vectorize this problem by stacking all quantities of a firm on top of
each other

qj
t =


q1,j

t
...

qM,j
t

 = 2
β


u1,j

...
uM,j

 aj
t−1 . (19)

We can write this in matrix form as

qj
t = 2

β
Lja

j
t−1 , (20)

where

Lj = diag GjKj diag Gj , (21)

and

Kj =
(

tj1 + 1
2I
)

, (22)

with 1 the matrix of all ones. Here Kj is again the default matrix for a fully connected
firm. Multiplying it with diag Gj from the right turns off the beliefs of markets the
firm is not connected to and multiplying it with diag Gj from the left sets production
for markets the firm is not connected to zero.

The matrix Lj aggregates the beliefs of firm j to arrive at production for all markets.
By combining the Lj matrices in a block diagonal matrix we can write the whole
system as

qt = 2
β


L1 . . . 0
... . . . ...
0 . . . LJ

 at−1 . (23)
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Dynamics of firm beliefs
Next, we describe the price formation process. Firms believe4 prices are determined
(if nonnegative) according to

p̂m
t =am,j

t−1 − β

2 qm,j
t m ∈ Mj , (24)

while price are actually determined by

pm
t =α − β

2

 ∑
j∈Jm

qj
t

+ εm
t . (25)

From this, it can be seen that there is misspecification in the firms’ model of the
economy as they only have information on their quantities and base their price pre-
dictions on this information whereas the actual price depends on the quantities of
all firms, i.e. they only use the subset of the explanatory variables that they have
access to.

Firms update their beliefs recursively using recursive least squares estimation,

am,j
t = am,j

t−1 + 1
t

(
pm

t + β

2 qm,j
t − am,j

t−1

)
. (26)

Based on the firm’s perceived price formation process and an observation of the
actual price pm

t and quantity qm,j
t the firm infers the realized market size ãm,j

t as

ãm,j
t = pm

t + β

2 qm,j
t . (27)

This is the market size belief that would be consistent with the realized price and
chosen quantity. The expected market size is given by am,j

t−1. The firm thus increases
its estimate of am,j if the realized price is higher than expected and decreases it if
the realized price is lower than expected.

Using the actual price formation process we can rewrite the above equation as

am,j
t = am,j

t−1 + 1
t

α − β

2

 ∑
i∈Jm\j

qm,i
t

− am,j
t−1 + εm

t


4We can interpret this as firms believing that prices are determined this way but we can also

equally well interpret it as firms being aware that this equation is misspecified but given that their
information set does not include more they use this approximation.
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= am,j
t−1 + 1

t

α −
∑

i∈Jm\j

(
diag Gj

(
tj1 + 1

2em

))⊤
ai

t−1 − am,j
t−1 + εm

t

 . (28)

This assumes that quantity choices and shock realizations are such that prices are
not at the zero bound. For reasonable initial values a0 and support of the shocks
this is the case.

Equation (28) is the updating rule for one market-firm combination. We will next
vectorize it and write the whole learning process in matrix form.

To do so we introduce the operator vec (C) which transforms a matrix to a vector
by stacking the columns on top of each other, and B ◦ C is the Hadamard, or
componentwise, product which for two matrices is defined as

(B ◦ C)ij = BijCij . (29)

Lastly, for two vectors u ∈ RK and v ∈ RL, ⊗ is the Kronecker product, defined as

u ⊗ v =


u1v

...
uKv

 ∈ RKL . (30)

Let us first consider the learning process for firm one, which corresponds to the first
M rows in the matrix form of the learning process. The learning process for firm one
is given by

a1
t =


a1,1

t
...

aM,1
t

 = a1
t−1 + 1

t

αG1 −
∑

j∈J \{1}
diag G1Lja

j
t−1 − a1

t−1 + εt ◦ G1

 . (31)

This system of equations follows directly from Equation (28) by stacking the equa-
tions for all markets on top of each other, apart from multiplying the terms with
G1, the first column of G or diag G1, the diagonal matrix with G1 on the diagonal.
The reason for this is that if firm one is not connected to a particular market n its
belief about the market size of that market is constant at zero. By multiplying the
quantities of the other firms with diag G1 we ensure that the production of the other
firms who may be connected to market n and thus produce something for market n
does not affect the beliefs of firm one who is not connected to this market.
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By stacking the difference equations for all firms we can write the learning process
in matrix form as

at = at−1 + 1
t

(α vec G − Aat−1 + Et) , (32)

where

A = diag G (L + I) ∈ RJM×JM , (33)

L =


0 L2 . . . LJ

L1 0 . . . LJ
... ... . . . ...

L1 L2 . . . 0

 ∈ RJ×J , (34)

and,

Et = (1 ⊗ εt) ◦ vec G . (35)

Again multiplying with diag G ≡ diag vec G ensures that if firm i is not connected to
a market the dynamics of firm i’s belief for this market are constant at 0. The last
term in Equation (32) is the noise component and is zero in expectations.

Equation (32) is a stochastic difference equation and thus has no steady state. How-
ever, by taking expectations we can find the steady state of the deterministic part
of the system. The steady state is implicitly determined by α vec G − Aā = 0. If the
network is not complete then A is not invertible as there are some rows and columns
that are all zeros. These rows and columns correspond to the missing market-firm
connections, i.e. where gmj = 0. Again, the corresponding rows of A are zero because
am,j

t = 0 ∀t if firm j is not connected to market m and the corresponding columns are
zero because a firm’s belief about a market it is not connected to does not affect other
firms’ beliefs who are connected to it. As the beliefs corresponding to the missing
connections are constant at zero we can simply remove the corresponding rows and
columns from A and α vec G and solve the system for the remaining variables. See
Appendix A.2 for a proof of the invertibility of the reduced matrix A−.

It can be shown that the steady-state beliefs solve the same first-order condition as
the quantities in a Cournot-Nash equilibrium and thus, quantities at the steady-state
beliefs are equal to the Cournot-Nash equilibrium quantities (see Appendix A.3).

17



We can rewrite the system dynamics in terms of deviations from the steady state –
ât = at − ā – as

ât = ât−1 − 1
t

(Aât−1 − Et) . (36)

To keep the notation simple I will drop the hat from now on and assume that all
variables are in deviations from the steady state.

Stochastic approximation and analysis
Proposition 3.1. The system dynamics in Equation (36) can be approximated by
the ordinary differential equation

ȧ = −Aa .

In particular, if ā is a globally stable steady state of the ordinary differential equation
then at will converge to ā almost surely from any starting point. In addition if a (τ)
is the solution to the ordinary differential equation then

at ≈ a (τ) ,

where the continuous time τ is related to the step-size 1
t

by

τ =
t∑

k=1

1
k

≈
∫ k

1

1
k

dk = log t .

Proof. This follows from results in the stochastic approximation literature. The
stochastic algorithm in Equation (36) satisfies conditions A.1-A.5 in Benveniste et
al. (1990) and thus the system dynamics can be approximated by the ordinary dif-
ferential equation in Equation (37).

Thus, we can analyze the dynamics of the system by studying the eigenvalues and
eigenspaces of the matrix A.

The solution to the differential equation is given by

a (τ) =
N∑
i

cie
−λiτ vi ,
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where the ci are constants depending on the initial condition and N is the number
of eigenvalues. This assumes that the matrix A is diagonalizable and thus has MJ
linearly independent eigenvectors. I do not show that this is the case and therefore
the solution of the differential equation may require generalized eigenvectors. This
has no impact on the results.

In addition, the dynamics of each eigenvector component are governed by the corre-
sponding eigenvalue, i.e.

vi (τ) = cie
−λiτ vi ,

or in discrete time

vi
t = cit

−λivi .

Let us consider the example in Figure 1. Then A ∈ R6×6 and Lj ∈ R2×2 for all j.
The belief vector is structured as

at =

a1
t

a2
t

a3
t

 ,

where aj
t ∈ R2 is the belief vector of firm j. Firm one is not connected to market two

and firm three is not connected to market one. Therefore, the corresponding beliefs
are zero for all periods.

The Lj are given by

L1 =
(

s1 0
0 0

)
, L2 =

(
s2 t2
t2 s2

)
, L3 =

(
0 0
0 s3

)
, (37)

and A is given by

A =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1


︸ ︷︷ ︸

diag G



1 0 s2 t2 0 0
0 1 t2 s2 0 0
s1 0 1 0 0 0
0 0 0 1 0 s3
0 0 s1 t1 1 0
0 0 t1 s1 0 1


︸ ︷︷ ︸

L+I
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=



1 0 s2 t2 0 0
0 0 0 0 0 0
s1 0 1 0 0 0
0 0 0 1 0 s3
0 0 0 0 0 0
0 0 t1 s1 0 1


. (38)

The second row determines the dynamics of a2,1
t . As firm one is not connected to

market two this belief is zero. By considering only the matrix L + I we can see that
a2,1

t would not remain constant at zero but would be driven by the dynamics of a1,2
t1

and a2,2
t1 . However, as firm one is not connected to market two we multiply from

the left with diag G ensuring that the corresponding row in A is zero and thus a2,1
t

remains constant at zero.

Having sufficiently defined the problem we can start with the analysis. We will
proceed in steps: as can be seen from Equation (33), the learning process is strongly
tied to the L matrix. Therefore, we will first analyze the properties of L and then
move on to the properties of A. The analysis of L will be split into two parts: first,
we will analyze the properties of the Lj and then see what these properties imply for
L itself. Our goal is to characterize the eigenspaces of A as the eigenvalues determine
the stability of the system and the eigenvectors tell us what kind of information is
learned at what speed.

It will be useful to define a measure of the density of the network. In particular, I
will consider the total number of connections in the network, which is given by

D = 1⊤G1 =
J∑

j=1
Mj =

M∑
m=1

Jm .

For the following results we will need two definitions:

Definition 3.1 (Weak connectivity). A network of markets is weakly connected if
D > M + J − 1

which is a lower bound on the density of the network, i.e. the number of connections,
and

Definition 3.2 (Strong connectivity). A network of markets is strongly connected
if Mj ≥ 2 ∀j and Jm ≥ 2 ∀m ,
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which means that each firm is active in at least two markets and each market has at
least two firms active in it.

We show in Appendix A.4 that the eigenvalues of A are nonnegative. There is an
eigenvalue λ1 = 0 associated with the eigenvectors in the kernel of diag G. These
eigenvectors correspond to learning of firms about markets they are not connected
to and thus remain constant at zero.

Proposition 3.2. For any weakly connected market network, the smallest nonzero
eigenvalue of A is λ2 = 1

2 . The associated eigenspace has dimension D−(M + J − 1).

Proof. Proof in Appendix A.4.

Knowing this eigenvalue allows us to conclude that at least some firm beliefs converge
at a rate equal to −1

2 for any weakly connected network.

The eigenspace Eλ2 consists of vectors

v =


v1

...
vJ

 ∈ RMJ

with the property that if we were to reshape v by taking the J components vj of size
M corresponding to each firm and stack them side-by-side in a matrix

V =
(
v1 . . . vJ

)
∈ RM×J ,

then v needs to be in two subspaces

W1 = {v | V 1 = 0}
W2 =

{
v | V ⊤1 = 0

}
.

So, the vector of ones is both in the left- and right-nullspace of V . This means that
the rows and columns of V sum to zero. The columns of V correspond to the beliefs
of a firm about all markets and the rows correspond to the beliefs of all firms about
a single market. So, the rows of V summing to zero mean that in this eigenvector
component of a aggregate beliefs of firms are correct and the columns summing
to zero mean that in this eigenvector the aggregate beliefs of markets are correct.
Economically, this means that the hardest learning task is for firms to distribute an,
in aggregate, correct amount between markets.

Combining the result of Proposition 3.2 with the learning problem leads us to the
following result.

21



Theorem 1 (Individual Learning). For any strongly connected network quantities
converge polynomially at a rate of −1

2 to the steady state values.

Proof. Proof in Appendix A.4.

So, for any strongly connected network, the individual quantities converge at the
same rate regardless of the topology of the network. This includes among others the
complete network, the star network, the circle network, and the tree network.

Theorem 2 (Informational Efficiency). The Cournot market mechanism aggregates
information such that aggregate production converges at a faster rate than individual
production both within markets and within firms. Prices are determined by aggregate
production and are thus also learned at the faster rate.

Proof. Proof in Appendix A.4.

The results of Theorems 1 and 2 can be interpreted as follows: in a market that sends
out signals that are informative about the aggregate state, in this case through the
price, aggregate quantities are learned relatively faster, while individual quantities
are learned slowly. One could thus conclude that markets are learning fast and
market outcomes converge fast, but given that the Cournot market is restricted to
aggregate signals it is less efficient in ensuring that also individual quantities are
learned at the same rate.

These results are valid for strongly connected networks. For weakly connected net-
works some quantities will converge at the same rate as aggregate quantities and
some will converge at the rate −1

2 . If the network is also not weakly connected then
it is rather sparse with few connections. In this case, the convergence rate of all
individual quantities will be faster than −1

2 .

A common learning process with more informational requirements is the best-response
dynamics. Here, the demand function as well as the previously chosen quantities of
the other firms are assumed to be known. In the simplest case, firms have naive ex-
pectations, i.e. they assume that the quantities of the other firms in the next period
are equal to the previously chosen quantities. Then, firms choose their quantities
as a best response to the expected quantities of the other firms. It is known that
the steady state under best-response dynamics can be unstable (Theocharis, 1960;
Fisher, 1961; al-Nowaihi & Levine, 1985) if speeds of adjustment are too large and
there are too many firms.
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If the system is stable, the increased information environment is also reflected in
the convergence properties. Quantities under the best-response dynamics converge
exponentially fast to the steady state (see Appendix A.7 for details). Numerical
results confirm the intution that the aggregate price signal is, in combination with
the previous quantities of the other firms, informative of the direction of change
of individual quantities. Thus, the convergence rate of individual quantities is the
same as the convergence rate of aggregate quantities. This is in contrast to the previ-
ously discussed case where the aggregate price signal is informative of the aggregate
quantities but not of the individual quantities.

We can look at some particularly regular networks to gain some more analytical
insights into the learning dynamics.

4 Networks with a special structure

4.1 Single Cournot market
Let us first consider the case of a single market oligopoly for exposition, i.e. |M| = 1,
|J | = J , and G = 1⊤ ∈ R1×J . Note that D = ∑

j Mj = J so that this network is
neither strongly nor weakly connected and thus Theorem 1 does not apply.

Assuming homogenous5 quadratic costs with the multiplicative coefficient equal to
one, profit-maximizing quantities are given by

q̃j
t = aj

t−1
1 + β

. (39)

Assuming J ≥ 2, A now takes the simple form

A =


1 β

2(1+β) . . . β
2(1+β)

... . . . ... ...
β

2(1+β)
β

2(1+β) . . . 1

 , (40)

and we can characterize its eigenspaces analytically.

Proposition 4.1. In a single market oligopoly with at least two firms A has two
eigenvalues, λ1 = 1− β

2(1+β) and λ2 = 1+(J−1) β
2(1+β) with corresponding eigenspaces,

5Allowing for heterogeneous quadratic costs does not change the result but makes it hard to
characterize the convergence dynamics analytically, see Appendix A.11.
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Eλ1 = 1⊥, the distributive learning component, and Eλ2 = span 1, the aggregate
learning component. The distributive learning component preserves the aggregate
belief but moves some of it from one firm to the other. The aggregate learning com-
ponent changes the aggregate belief by uniformly changing individual beliefs.

Let us consider the case J = 2 for intuition. Then v1 =
(

1
−1

)
and v2 = 1. v2 moves

the beliefs in the same direction, either increasing or decreasing them. It can be
interpreted as the aggregate learning component, i.e. should firms produce more or
less in aggregate. In contrast, v1 keeps aggregate beliefs constant and only moves
some from one firm to the other. It corresponds to the distribution of aggregate
production between firms.

In the single market case, u = 1
1+β

1⊤ which is obviously in the kernel of Eλ1 = 1⊥

and so aggregate quantities do indeed converge faster.

Figure 2: Log-deviations of aggregate and individual beliefs from the equilibrium
values for homogenous cost functions.

As can be seen in Figure 3 if shocks are added to the model, aggregate beliefs
converge at the rate predicted by the smaller eigenvalue until the magnitude of the
shocks becomes larger than the deterministic reduction in the deviations from the
steady-state. This is intuitive as markets, via prices, provide signals to firms allowing
for faster convergence. If this signal becomes more noisy, efficiency decreases.
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Figure 3: Log-deviations of aggregate and individual beliefs from the equilibrium
values for homogenous cost functions with shocks.

4.2 Complete Network
Let us consider the complete network as the second special case: the learning process
is the same as in section 3 but with G = 1 and diag G = I, which simplifies the
expressions. Now, Lj = Kj = K ∀j. Note also that the complete network is a
strongly connected network.

In matrix notation, we have (in expectation)

at = at−1 + 1
t

(α1 − Aat−1) , (41)

where

A =


I K . . . K
K I . . . K
... ... . . . ...

K K . . . I

 , (42)

and

K =


s t . . . t
t s . . . t
... ... . . . ...
t t . . . s

 , (43)
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where

s = (M − 1) + β

2 (M + β) (44)

t = − 1
2 (M + β) . (45)

We can solve for the steady-state belief, which is the same for each firm,

ā = 2α (M + β)
2M + (J + 1) β

,

and at this belief quantities correspond to the Cournot-Nash equilibrium.

Because of the symmetry of the matrices in this special case, we can say a lot about
the eigenspaces of A.

Proposition 4.2. In a complete network, there are four eigenspaces, which are dis-
tinguished by which entities – markets or firms – hold the correct beliefs in aggregate,
e.g. a firm has the correct sum of all market sizes but the distribution between markets
is incorrect. We can distinguish between the following cases:

1. Neither firms nor markets have the correct aggregate beliefs: λ2 = 2M+(J+1)β
2(M+β) .

2. Firms have the correct aggregate beliefs but markets do not: λ1 = J+1
2 .

3. Firms do not have the correct aggregate beliefs but markets do: λ4 = 2M+β
2(M+β) .

4. Both firms and markets have the correct aggregate beliefs: λ3 = 1
2 .

Proof. The proof is given in Appendix A.6.

Using the same arguments as in the previous sections we can show that the aggre-
gation vector is orthogonal to the component where both firms and markets have
the correct aggregate beliefs and the component where markets have the correct
aggregate beliefs but firms do not. Surprisingly, the component with the fastest con-
vergence rate is the one where firms have the correct aggregate beliefs but markets
do not, and not the component where nothing is correct.
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5 Numerical comperative statics for standard net-
works

In this section, we will see how the convergence speed of aggregate beliefs, as de-
termined by the largest eigenvalue not orthogonal to the aggregation vector, varies
from network to network as well as how it depends on the network size and the slope
parameter.

Figure 4: Example graphs.

We can compare the convergence speeds of aggregate quantities for some standard
networks.

In Figure 5, we can see that convergence is fastest for the complete network (here
J = M) and slowest for the tree and circle network (here every firm is connected to
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Figure 5: Comparison of convergence speeds for specific networks as a function of
network size.
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two markets). The star network is in between with a constant convergence speed,
which is due to the leaf markets converging at a slower rate than the center market
and the number of edges of the leaf markets being constant and thus independent of
the network size.

Figure 6: Convergence speeds as a function of network size, number of connections,
and slope parameters in the complete, circle, and star network, respectively.

In the left panel of Figure 6 we can see how the convergence speed depends on the
number of firms and markets in a complete network. Convergence is fastest for a small
number of markets and a large number of firms. For a fixed large number of firms
convergence speed initially decreases sharply as the number of markets increases,
but then increases rather slowly thereafter. For a smaller number of firms, this effect
is similar but less pronounced as convergence speed starts at a higher level. For a
fixed number of markets convergence speed decreases linearly as the number of firms
increases. This decrease is stronger for a small number of markets.

In the center panel of Figure 6 we can see how the convergence speed depends on
the number of markets/firms in a circular network. Convergence is slowest in the
standard circle network where each firm is connected to two markets and each firm
shares each market with exactly one firm. As we increase the number of connections
each firm has convergence speed initially increases sharply and then tapers off before
a sharp drop when the network becomes fully connected.

In the right panel of Figure 6 we see again that in the star network, the network size
does not affect convergence speed but convergence speed decreases with the steepness
of the demand function.
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Figure 7: Average convergence speeds of an Erdős-Rényi graph with 20 markets and
firms for a varying number of connections. Darker shades indicate the 99% confidence
interval and lighter shades indicate the maximum and minimum values.

30



Figure 7 shows the average slowest6 aggregate convergence speed, the 99% confidence
interval, and the minimal and maximal values of 100 draws of an Erdős-Rényi graph
where each graph G (N, L), i.e. each graph with N nodes and L edges is chosen with
equal probability7. This allows us to get an idea of the effect the number of edges have
on convergence speed without imposing any structure on the graph as is the case with
more standard, symmetric networks. We have seen in Figure 5 that the complete
network converges faster than the other standard networks, which have fewer edges.
We also observe faster convergence in a circle network when increasing the number of
connections as in Figure 6. In Figure 7 we can see that this relationship is nonlinear:
for a small number of edges convergence speed is relatively high as markets are
disconnected from each other and the network consists mainly of single market-firm
pairs. As the number of edges increases, convergence speed decreases as the network
becomes more connected and information needs to be transmitted between markets.
However, much of this information is indirect effects of markets that are not directly
connected. As the number of edges increases further, convergence speed increases
again as the network becomes more connected and information can be transmitted
more directly between markets. Also here we observe that convergence speed is
slower for a steeper slope parameter β, except for the special case of the complete
network where the opposite is true.

6 Conclusion
In this paper, I analyze how agents learn about the market size in a limited infor-
mation Cournot oligopoly model. I find that steady-state beliefs are stable for all
networks. I characterize convergence speeds for any network topology and decom-
pose the learning process into economically interpretable components. In particular,
I show that aggregate quantities converge at a faster rate which depends on the net-
work structure, and that individual quantities take longer to converge. For a subclass
of networks that have a sufficient number of connections, this rate is polynomial with
coefficient −1

2 , which is independent of the network structure or the slope of demand.
I decompose the learning process into different regimes corresponding to whether ag-
gregate beliefs are correct or not. The distribution of a correct aggregate amount,
both within firms and across markets, is learned the slowest and drives the slow con-
vergence of individual quantities. A reason for this could be that the Cournot market
mechanism gives signals related to aggregate quantities via the prices. Therefore, it

6Aggregate convergence speeds may differ across the network if the graph is disconnected.
7The y-values for β = −5 and β = −10 for the complete network case extend outside the graph.
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may be expected that the convergence speed of aggregate quantities is faster than
that of individual quantities as an individual firm does not receive a direct signal
related to its individual quantity. It may be interesting to see how this result changes
if the market mechanism is changed. The rate of convergence of aggregate quanti-
ties is nonlinearly related to the number of connections in the network. As markets
are isolated with few connections, convergence speed is relatively fast. Convergence
speeds then decrease as firms become connected but many of these connections are
indirect which means that information takes longer to spread through the network.
Convergence speeds increase again as the number of firms directly connected to many
markets increases, with the complete network having the fastest convergence rate.
For not fully connected networks a larger slope of the inverse demand function leads
to slower aggregate convergence as prices are more sensitive to small changes in
quantities. As firms are not connected to all markets they may find it difficult to
distinguish what caused the price change and thus take longer to learn the correct
quantities. This effect is not present in fully connected networks as all firms are
connected to all markets and thus have a better picture of what caused the price
changes. A more sensitive inverse demand function then leads to faster convergence
as for a given deviation of quantities from the steady state, price expectations and
realized prices are further apart, which provides a stronger signal for firms to adjust
their beliefs.
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A Appendix

A.1 Proof of how to find the set of active markets
Proof. This is an optimization problem with nonnegativity constraints so we can
look at the Karush-Kuhn-Tucker conditions. The conditions are

∂π (q∗
t , at)

∂qi
t

≤ 0 qi
t ≥ 0 ∂π (q∗

t , at)
∂qi

t

qi
t = 0 ∀i ∈ Mj .

The first condition is equivalent to

ai − βqi − Q ≤ 0 ∀i ∈ Mj .

Let us fix Q at the unconstrained optimal value. Not taking the nonnegativity
constraints into account, the smaller ai is the smaller qi is. Without loss of generality
let the am be ordered from largest to smallest. If the constraints are not satisfied we
can set all qi < 0 equal to zero and remove them from Mj and repeat the procedure.
Why can we remove all of them? Let us assume we only remove one at a time.
Then removing qM < 0 increases Q and qM−1 will be even more negative (assuming
it was negative before), so we can remove it as well. However, removing the first
set of markets is not sufficient. Assuming qN was the quantity with the smallest aN

that was still positive then by the same argument removing the N + 1-th to M -th
markets increases Q, so QN which may have been positive when the other Q were
still included may no longer be positive. So we optimize again but only using markets
1, . . . , N . If the constraints are not satisfied we remove the next set of markets and
repeat the procedure. We continue this until all constraints are satisfied. We know
that the constraints are satisfied at least for one market as if all qi = 0 i ̸= 1, then
Q−1 = 0 and we can choose q1 = a1

2(1+β) . Can there be positive production for more
than one market? Let us consider two markets, then

a1 − (1 + β) q1 − q2 = 0
a2 − (1 + β) q2 − q1 = 0 .

Solving this yields

q1 = a1(1 + β) − a2

β (2 + β) q2 = a2(1 + β) − a1

β (2 + β) .

So as long as (1 + β) ≥ a1

a2 and (1 + β) ≥ a2

a1 we can have positive production for
more than one market. Thus, this algorithm finds the optimal solution in a finite
amount of steps.
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A.2 Proof of invertibility of A−

Proof. A is a MJ × MJ matrix that is noninvertible if the network is not complete.
If it is complete we have characterized the eigenspaces in Section 4.2 and shown that
A is invertible. Let us remember that the matrix A takes in the vector of beliefs
and outputs the vector of beliefs in the next period. If the network is not complete
then some am,j are zero and do not affect the dynamics. The corresponding m × j
rows and columns of A are zero. The columns of A are zero because this belief does
not affect any other firm’s beliefs. The rows are zero because the firm has no belief
about this market so it needs to stay at zero. If N = |E| is the number of edges then
we can permute the rows and columns of A to arrive at a new matrix

A =
(

A− 0
0 0

)
, (46)

where A− ∈ RN×N . We know that A− has no all-zero rows or columns by con-
struction. In addition, no row is a linear combination of the other rows as how a
firm’s next period’s beliefs are affected by the belief vector is unique. Thus, A− is
invertible.

A.3 Proof of steady-state beliefs inducing Cournot-Nash equi-
librium

Proof. If we consider one row of the system defining steady state beliefs α vec G −
Aā = 0,

α −
∑

i∈Jm\{j}
Liā

i − ām,j = α − β

2
∑

i∈Jm\{j}
q̄m,j − ām,j = 0 . (47)

In the full information Cournot-Nash equilibrium the first-order condition is given
by

α − β

2
∑

i∈Jm

q̄m,i − βqm,j −
∑

n∈Mj

qn,j = 0 . (48)

If ām,j = βqm,j +∑
n∈Mj

qn,j, the steady state beliefs imply the Cournot-Nash equi-
librium quantities. Using the expression for quantities as a function of beliefs we can
show that this is indeed the case:

ām,j = βqm,j +
∑

n∈Mj

qn,j (49)
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ām,j = 2tjMj ā
j + ām,j + 2tj

M2
j

β
āj + Mj

β
āj (50)

ām,j = 2tj
Mj

β
(Mj + β) + Mj

β
āj + ām,j (51)

ām,j = −2 1
2 (Mj + β)

Mj

β
(Mj + β) + Mj

β
āj + ām,j (52)

ām,j = ām,j . (53)

A.4 Full proof of main results for the general network
Let us first consider the eigenvalues of Lj.

Lemma A.1. Lj is positive semi-definite and all eigenvalues are in
[
0, 1

2

]
∀j. If the

degree Mj ≥ 2 then there is at least one eigenvalue λ = 1
2 .

Proof. Recall, Lj = diag GjKj diag Gj and Kj = tj1+ 1
2I is a symmetric matrix with

positive elements on the diagonal and negative elements on the off-diagonal

Kj =


tj + 1

2 tj . . . tj

tj tj + 1
2 . . . tj

... ... . . . ...
tj tj . . . tj + 1

2

 .

Let us first consider the eigenspaces of Kj. Take λ1 = sj − tj = 1
2 . Then, Kj − 1

2I =
tj1, which has rank 1 and is thus not invertible. So, λ1 is an eigenvalue of Kj with
geometric multiplicity M − 1. As tj1 is a matrix with every element equal to tj

the associated eigenvectors are given by the orthogonal complement to the vector
of ones, 1⊥. Next consider λ2 = sj + (M − 1) tj = Mtj + 1

2 = β
2(M+β) . Then,

Kj −
(
Mtj + 1

2

)
I = tj1 − MtjI which has rank M − 1 and is thus not invertible.

So, λ2 is an eigenvalue of Kj with geometric multiplicity 1. It can be seen that each
row of Kj − λ2I sums to zero, so 1 is the eigenvector associated with λ2. Note that
0 < λ2 < 1

2 . Thus, Kj is positive definite.

Since diag Gj = (diag Gj)⊤, we have for any vector v

v⊤Ljv = (diag Gjv)⊤ Kj diag Gjv = w⊤Kjw ≥ 0 , (54)
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because Kj is positive definite. This inequality is strict if v ̸∈ ker diag Gj. Thus, Lj

is positive semi-definite as well. We may distinguish three cases: if the degree Mj

of firm j is equal to the number of markets M then diag Gj = I and Lj = Kj and
the eigenvalues are as described above. If 1 < Mj < M the eigenvalues of Lj are the
same as the eigenvalues of Kj except the M in the expressions for the eigenvalues
is replaced by Mj as some of the rows and columns are of Kj are set to zero. In
addition, there is a third eigenvalue, corresponding to these zero columns, λ3 = 0
with geometric multiplicity dim Eλ3 = M − Mj, reducing the geometric multiplicity
of λ1 to Mj −1. If Mj = 1 then Lj has only one nonzero element, sj = β

2(1+β) ∈
(
0, 1

2

)
which is on the diagonal and the eigenvalues are λ1 = sj with geometric multiplicity
1 and λ2 = 0 with geometric multiplicity M − 1. Thus, in general Lj is positive
semi-definite and all eigenvalues are in

[
0, 1

2

]
.

Let me define for future use the block matrix I ∈ RMJ×MJ with all blocks being the
M × M identity matrix.

Based on the eigenvalues of Lj we can find an upper bound on the eigenvalues of L,
which in turn will give us an upper bound on the eigenvalues of the learning matrix
A.

Let me introduce two concepts from linear algebra we will need. The spectrum
of a matrix A is the set of its eigenvalues, σ (A) = {λ1, . . . , λn}. The spectral
radius of a matrix A is the maximum absolute value of its eigenvalues, ρ (A) =
max {|λ1|, . . . , |λn|}.

Proposition A.1. The smallest eigenvalue λmin of L satisfies λmin ≥ −1
2 .

Proof. Let8 λmin (A) = min σ (A) be the smallest eigenvalue of a matrix A and
λmax (A) = max σ (A) the largest eigenvalue of a matrix A.

The dynamics of the system are given by −A = − diag G (L + I). So if we can find
a lower bound on the eigenvalues of L this will also allow us to find a lower bound
on the eigenvalues of A. We will show that the smallest eigenvalue of L is greater or
equal to −1

2 .

If σ (L) = {λ1, . . . , λN} with the eigenvalues ordered from smallest to largest, then
σ (−L) = {−λN , . . . , −λ1}. So by showing that the most positive eigenvalue of −L

8I thank user1551 (2023) for help with this proof.
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satisfies λmax (−L) = −λ1 ∈
(
0, 1

2

]
, we can also conclude that λmin (L) ≥ −1

2 .

Let us first assume that there is at least one firm that is connected to more than one
market. Then, by Lemma A.1 ρ (Lj) ≤ 1

2 with strict equality for at least one j.

2 diag L = diag (2L1, 2L2, . . . , 2LM) , (55)

is a symmetric positive semi-definite matrix. Its square root is,

P = diag
(√

2L1,
√

2L2, . . . ,
√

2LM

)
,

which is also positive semi-definite and

σ (P ) = ∪jσ
(√

2Lj

)
= ∪j

√
2σ (Lj) ,

as 2 diag L is a block-diagonal matrix.

Let ∥A∥2 be the spectral norm of the matrix A, which is defined as ∥A∥2 =
√

λmax (A⊤A).

Since maxj ρ (Lj) = 1
2 , ∥P∥2 = 1.

Note that

L =


0 L2 . . . LM

L1 0 . . . LM
... ... . . . ...

L1 L2 . . . 0

 = (I − I)


L1 . . . 0
... . . . ...
0 . . . LM

 = 1
2 (I − I) P 2 , (56)

and

−L = 1
2 (I − I) P 2 . (57)

Since for square matrices σ (XY ) = σ (Y X) (see e.g. Horn & Johnson, 2013), we
have

λmax(−L) = 1
2λmax

(
(I − I) P 2

)
= 1

2λmax (P (I − I) P ) . (58)

From there it follows that

λmin (L) = −λmax (−L) = −1
2λmax (P (I − I) P ) . (59)
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P (I − I) P is a real, symmetric matrix, so it has real eigenvalues as does L. In
addition, tr L = 0 so its maximum eigenvalue is nonnegative.

Let v be a unit eigenvector corresponding to the maximum eigenvalue of P (I − I) P .
Then

0 ≤ 1
2λmax (P (I − I) P ) = 1

2v⊤P (I − I) Pv (60)

= 1
2∥Pv∥2

2

(
Pv

∥Pv∥2

)⊤

(I − I)
(

Pv

∥Pv∥2

)
(61)

≤ 1
2

(
Pv

∥Pv∥2

)⊤

(I − I)
(

Pv

∥Pv∥2

)
(62)

≤ 1
2 max

∥y∥2=1
y⊤ (I − I) y (63)

= 1
2λmax (I − I) (64)

= 1
2 . (65)

The first equality comes from

v⊤P (I − I) Pv = v⊤λmaxv = λmax . (66)

The second inequality stems from the fact that

∥Pv∥2 ≤ ∥P∥2∥v∥2 = 1 , (67)

and the third follows from seeing that if we multiply any matrix with a unit vector
from the left and right x⊤Mx ∈ R the result needs to be less or equal to the product
with the vector maximizing the same expression, max∥y∥2=1 y⊤My.

The last equality follows from λmax (I − I) = 1.

Thus
1
2λmax (P (I − I) P ) ≤ 1

2 . (68)

Using Equation (59) we can conclude that

λmin (L) = −1
2λmax (P (I − I) P ) ≥ −1

2 . (69)
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We can thus conclude that the most negative eigenvalue of L is greater or equal to
−1

2 .

If there is no firm that is connected to more than two markets, sj = s ∀j and
max|σ (Lj)| = |s| ∀j. Thus, by replacing 2 with 1

s
in Equation (55) and 1

2 with s
in Equation (56), respectively, we obtain the desired result, with the tighter bound
λmin (L) ≥ −s ≥ −1

2 .

Adding the identity matrix to L simply shifts the spectrum by 1 but multiplying
by diag G is less trivial. However, after some linear algebra, we can show that the
eigenvectors of A are the same as the eigenvectors of L + I. The same holds for the
eigenvalues except that the eigenvalues λ = 1 of L+ I, which are associated with the
eigenvectors in the kernel of diag G, are replaced with λ = 0 for A.

Lemma A.2. The eigenvectors of A = diag G (L + I) are the same as the eigenvec-
tors of L + I. In addition, also the eigenvalues are the same except the eigenvalues
λ = 1, which are associated with the eigenvectors in the kernel of diag G, are replaced
with λ = 0.

Proof. Note that ker diag G ⊆ ker L, as L diag G = L, so if diag Gx = 0, Lx = 0. We
thus know that L has at least M2−tr diag G standard unit vectors, ej, as eigenvectors,
where j corresponds to the zeros of diag G with eigenvalue λ = 0.

We also know that σ (L + I) = σ (L) + 1. Note, however, that the eigenvectors of
L + I are the same as the eigenvectors of L.

Next, we want to show that the ej are still eigenvectors of diag G (L + I) but now no
longer with eigenvalue λ = 1 but with λ = 0. As the ej are in the kernel of diag G,
i.e. diag Gej = 0,

diag G (L + I) ej = diag Gλ′ej = λ′0 = 0 ,

so again the eigenvalues of diag G (L + I) corresponding to the eigenvectors ej are
λ = 0.

All other eigenvalues of L + I remain unchanged by the multiplication with the
projection matrix diag G as eigenvectors corresponding to different eigenvalues are
linearly independent. Then, the other eigenvectors are not in the kernel of diag G,
so we can choose vectors v such that diag Gv = v, and as diag G is a projection
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σ (diag G (L + I)) = σ (diag G (L + I) diag G). So,

diag G (L + I) diag Gv = diag G (L + I) v = λ diag Gv = λv ∀v /∈ ker (diag G) .

Thus, if v is an eigenvector of L + I not in the kernel of diag G with eigenvalue λ
then diag Gv is an eigenvector of A with eigenvalue λ.

So far we have shown that all eigenvalues of A are nonnegative and that the zero
eigenvalues correspond to the beliefs of firms about markets they are not connected
to and which thus remain constant at zero. For the remaining eigenvalues, we have
found a lower bound of 1

2 . With this, we can conclude that the learning process is
stable as then the relevant eigenvalues of −A are negative.

Next, we will show that Proposition 3.2 is indeed true.

Proof of Proposition 3.2

Proof. Combining Proposition A.1 and Lemma A.2 we can conclude that the largest
nonzero eigenvalue of A is greater or equal to 1

2 . Now we will show that λ2 = 1
2 is

indeed an eigenvalue for weakly connected networks.

We can further decompose L as

L = (I − I) diag G


K1 . . . 0
... . . . ...
0 . . . KM

 diag G . (70)

So

A = diag G

(I − I) diag G


K1 . . . 0
... . . . ...
0 . . . KM

 diag G + I

 = (71)

= diag GB diag G , (72)

where

B = (I − I) diag G


K1 . . . 0
... . . . ...
0 . . . KM

+ I (73)
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= (I − I) diag G




t11 . . . 0
... . . . ...
0 . . . tM1

+ 1
2I

+ I . (74)

Let us consider the kernel of the matrix (B − λI). We assume that v = (v1, . . . , vM)⊤

∈ RM×J is such that diag Gv = v and that if we ordered the vectors vi in a matrix
V ∈ RM×J where the j-th column is vj such that V 1 = 0 and V ⊤1 = 0. Note that if
a firm is only connected to one market the only vector vj satisfying these conditions
is the zero vector. For the existence of such vectors, it is necessary that the condition
in Definition 3.1 holds, as can be seen by the dimension of the eigenspace.

Economically this can be interpreted as aggregate beliefs across firms and within
firms being correct. Then

(B − λI) v =

(I − I) diag G




t11 . . . 0
... . . . ...
0 . . . tM1

+ 1
2I

+ (1 − λ) I

 v (75)

=

(I − I) diag G


t11 . . . 0
... . . . ...
0 . . . tM1

+ 1
2 (I − I) diag G + (1 − λ) I

 v

(76)

= (I − I) diag G


t11 . . . 0
... . . . ...
0 . . . tM1

 v + 1
2 (I − I) v + (1 − λ) v (77)

=
(1

2 − λ
)

v , (78)

which is equal to zero for λ2 = 1
2 . Here we have made use of the fact that Iv =(∑

j vj,1 . . .
∑

j vj,M

)⊤
= 0 because V 1 = 0 and 1vj = 0 because V ⊤ = 0.

We may notice that the above restrictions on v define three subspaces of which v
needs to be in the intersection. First, all eigenvectors with nonzero eigenvalue will
be in the subspace

U =
{
v ∈ RMJ | v = diag Gv

}
,

with dim U = D.
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Let us denote by W1 the subspace such that the aggregate production across markets
is correct, i.e.

W1 = {v | V 1 = 0} ⊂ U . (79)

This imposes M conditions on W1 so that dim W1 = D − M .

The second subspace, W2, is given by vectors such that aggregate production within
firms is correct, i.e.

W2 =
{
v | V ⊤1 = 0

}
⊂ U . (80)

This imposes J conditions on W2 so that dim W2 = D − J .

Then,
Eλ2 (A) = W1 ∩ W2 .

We know that codim W1 = M and codim W2 = J and max (M, J) ≤ codim (W1 ∩ W2)
≤ M + J . Now, we know that for each row we have M restrictions from W1 and
we know that for each column we would have J restrictions from W2 leading to
a total of M + J restrictions. This, however, counts one restriction twice since
if we restrict the M rows there are only J − 1 columns left to restrict. Thus,
codim (W1 ∩ W2) = M + J − 1 and dim Eλ2 (A) = D − (M + J − 1). Assuming,
without loss of generality, that we can use the elements in the last row and column
to satisfy the restriction we can represent this visually as

,

which shows that if we simply added the codimensions we would count one restriction
twice.

Now it only remains to prove the remaining two results.
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Proof of Theorem 1

Proof. Combining the result of Proposition 3.2 with the learning problem leads us
to this theorem.

If the network is weakly connected we have shown in Proposition 3.2 that the smallest
nonzero eigenvalue of A is 1

2 and thus −1
2 is the largest nonzero eigenvalue of −A.

This eigenvalue will determine the long-run convergence rate of the belief system. In
addition, if the network is strongly connected then each belief is influenced by the
eigenvector associated with the eigenvalue −1

2 .

Note that the component of the eigenvectors associated with the eigenvalue −1
2 of

firms who are only connected to one market is the zero vector as shown in the proof
of Proposition 3.2. Since there are no eigenvalues in

(
−1

2 , 0
)

individual quantities of
firms connected to only one market converge faster than the quantities of firms who
need to learn about more markets.

This is also true for the case where two firms are active on one market one of which
is also active on other markets, then the quantity of the multi-market firm for this
particular market will converge at a faster rate.

Take for example the network,

G =

1 1 0
1 1 0
1 0 1

 .

This network is weakly but not strongly connected. There is one eigenvector with
eigenvalue −1

2 and the component of this eigenvector associated with firm one is of
the shape, v1 =

(
b −b 0

)⊤
because v3 = 0. Firm one’s beliefs can be aggregated

to quantities for market three with the vector, u3,1 =
(
t t s

)⊤
. Now, it is clear

that u3,1 ⊥ v1 so that the dynamics of q3,1
t is not influenced by this eigenspace.

Proof of Theorem 2

Proof. Aggregate production is given by

qm
t = umat−1 , (81)
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with um the aggregation mapping transforming beliefs into aggregate quantities for
a particular market, given by

um = 2
β




gm1t1G1
...

gmJtJGJ

+ 1
2


gm1em

...
gmJem




⊤

. (82)

As we assume am,j
t = 0 for all m, j such that gmj = 0 we know that the eigenvector

associated with the eigenvalue λ1 = 0 is not relevant for the dynamics and thus v1

in the solution of the differential equation is the zero vector. This naturally implies

umv = 0 if v ∈ Eλ1 . (83)

Next, take a vector v ∈ E− 1
2

(A). Then

umv = 2
β

∑
k

gmktk

∑
n

vn,k + 1
β

∑
j

vm,j = 0 , (84)

where the last equality follows from the fact that v ∈ E− 1
2

⊂ W1 ∩ W2.

Then

q̂m
t = qm

t − q̄ = (um)⊤

 ∑
i∈{3,...,N}

(
vi

t−1 − v̄i
) . (85)

We know that the eigenvector with the eigenvalue closest to zero that is not per-
pendicular to u will dominate the dynamics. We have not characterized the other
eigenspaces so we will assume this to be λ3, but it may also be an eigenvalue even
further from zero. We can approximate the dynamics of aggregate quantities as

qm
t − q̄ ≈ u⊤

(
v3

t−1 − v̄3
)

. (86)

Thus,

qm
t − q̄ ∼ t−λ3 . (87)

Therefore, the convergence rate of aggregate quantities is given by the eigenvalue λ3
in contrast to individual quantities which are given by the eigenvalue −1

2 .
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The aggregation mapping transforming beliefs into quantities for a particular firm
follows straightforwardly from the Lj matrix

qt = 1⊤qj
t = 1⊤ 2

β
Lja

j
t−1 . (88)

Take a vector v ∈ E− 1
2

(A), but only consider the component vj that corresponds to
firm j, i.e. rows [(j − 1)M + 1, jM ]. Then

ujvj = 1
β

1⊤vj = 0 , (89)

which follows from the fact that vj ∈ W2.

We, thus, have shown that both market aggregate quantities and firm aggregate
quantities converge faster than individual quantities.

A.5 Proof of Proposition 4.1
Proof. A − λ1 is a square matrix with β

2(1+β) in every position. It has rank one and
therefore λ1 = 1 − β

2(1+β) is indeed an eigenvalue with geometric multiplicity J − 1
and corresponding eigenspace

Eλ1 = 1⊥ .

A − λ2 is a J × J square matrix with β
2(1+β) on the offdiagonal and −(J − 1) β

2(1+β)
on the diagonal. It is, thus, of rank J − 1 and λ2 = 1 + (J − 1) β

2(1+β) is indeed an
eigenvalue with geometric multiplicity 1 and corresponding eigenspace

Eλ2 = span 1 .

A.6 Proof of Proposition 4.2
Proof. The matrix A is a square, symmetric matrix with dimensions MJ × MJ so
it will have MJ eigenvalues and MJ linearly independent eigenvectors.

A and K share a similar structure so let us first characterize the eigenspaces of K.
As before, we can decompose K as

K = t1 + 1
2I . (90)
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Let us consider µ1 = s − t = 1
2 . Then the the matrix K − µ1I = t1 has rank 1 and

µ1 is an eigenvalue with multiplicity M − 1 and has eigenspace

Eµ1 = span 1⊥ ,

with dimension M − 1.

Another eigenvalue is µ2 = s + (M − 1)t = Mt + 1
2 . Then, the matrix K − µ2I =

t1− (Mt) I has rank M −1 and µ2 is indeed an eigenvalue. Its associated eigenspace
is

Eµ2 = span 1 ,

where dim (Eµ2) = 1.

We noted that the structure of A mimics the structure of K, so an educated guess
is that the eigenvectors of the two will also mimic each other. We will confirm this
in the following paragraphs.

Take the potential eigenvector w = (v, . . . , v). Then

Aw =


v + (J − 1)Kv

...
v + (J − 1)Kv

 = (1 + (J − 1) µ)


v
...
v

 = (1 + (J − 1) µ) w ,

and w is indeed an eigenvalue of A. We know there are M − 1 linearly independent
eigenvectors associated with the eigenvalue µ1 = s − t = 1

2 , so

λ1 = 1 + (J − 1)µ1 = 1 + (J − 1)1
2

is an eigenvalue of A with eigenspace Eλ1 with dim (Eλ1) = M − 1. It can be
characterized by

Eλ1 = ⊕v∈1⊥ span (v, . . . , v) .

In words, the eigenspace of the matrix A associated with the eigenvalue λ1 = 1 +
(J −1)µ1 is the direct sum of the span of all vectors of the shape (v, . . . , v) with v the
eigenvectors of the matrix K associated with the eigenvalue µ1. This corresponds to
the case of each firm producing the correct amount in aggregate but markets do not
have the correct aggregate amount yet.
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Another eigenvalue of K is µ2 = s + (M − 1)t with associated eigenvector v =
(1, . . . , 1)⊤. Then λ2 = 1 + (J − 1)µ2 = 1 + (J − 1)s + (J − 1)(M − 1)t is also an
eigenvalue of A with associated eigenspace

Eλ2 = span (1, . . . , 1)

with dim (Eλ2) = 1. This corresponds to the case of neither firms producing the
correct amount in aggregate nor markets having the correct aggregate amount yet.

These eigenvectors with shape w = (v, . . . , v) mimic the eigenvector v = (1, . . . , 1)
of K. The other eigenspaces of K are given by the orthogonal complement to the
eigenspace of this first eigenvector. We will thus further postulate that the other
eigenspaces of A are given by the orthogonal complement to the eigenspace associated
with the eigenvector w = (v, . . . , v). The eigenvectors associated with this other
eigenspace should form a basis for RM(M−1). We will confirm this for the case of a
complete network of size three.

One basis for the orthogonal complement of (v, v, v) is given by

{(v, −v, 0) , (v, 0, −v)} .

Take the first potential eigenvector w = (v, −v, 0). Then

Aw =

v − Kv
Kv − v

0

 = (1 − µ)

 v
−v
0

 = (1 − µ) w .

So w is indeed an eigenvector of A with associated eigenvalues λ3 = 1−(s + (M − 1)t)
and λ4 = 1 − (s − t) = 1

2 .

Then let us take the second potential eigenvector w = (v, 0, −v). Then

Aw =

v − Kv
0

Kv − v

 = (1 − µ)

 v
0

−v

 = (1 − µ) w .

So w is indeed also an eigenvector of A also with associated eigenvalues λ3 and λ4.

The eigenspace Eλ3 is characterized by

Eλ3 = ⊕v∈span 1 span (v, . . . , v)⊥ ,
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which has dim (Eλ3) = M − 1. This corresponds to the case of firms not having the
correct aggregate amount but markets do.

The eigenspace Eλ4 is characterized by

Eλ4 = ⊕v∈1⊥ span (v, . . . , v)⊥ ,

which has dim (Eλ4) = (M − 1)2. Here both firms and markets have the correct
aggregate amount. Together, these eigenspaces cover all of RM2 .

The eigenvalues of A at the steady state then are from largest to smallest,

(M − 1) : λ1 = J + 1
2 (91)

1 : λ2 = 1
2 (M + β) (2M + (J + 1) β) (92)

(M − 1) : λ3 = 1
2 (M + β) (2M + β) (93)

(M − 1)2 : λ4 = 1
2 (94)

which are positive for β > 0.

Note that the dynamics of the system are given by −A. The relevant eigenvalues are
then λ = {−λ1, −λ2, −λ3, −λ4}, ordered from most negative to least negative.

A.7 Best response dynamics
Another common learning framework is the best response dynamics, which requires
more information than least squares learning. It is interesting to compare how the
two learning dynamics differ in terms of convergence speed. The firm problem under
best response dynamics is

max
{qm,j}m∈Mj

∑
n∈Mj

α − β

2
∑

i∈Jn\{j}
qn,i

t−1 − β

2 qn,j

 qn,j

− 1
2

 ∑
k∈Mj

qk,j

2

, (95)

with first-oder conditions

α − β

2
∑

i∈Jm\{j}
qm,i

t−1 − βqm,j −
∑

k∈Mj

qk,j = 0 (96)
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α − β

2
∑

i∈Jm\{j}
qm,i

t−1 −
∑

k∈Mj

qk,j = βqm,j . (97)

Summing over markets yields

βQj = Mjα − β

2
∑

m∈Mj

∑
i∈Jm\{j}

qm,i
t−1 − MjQ

j (98)

Qj = Mjα

Mj + β
− β

2 (Mj + β)
∑

m∈Mj

∑
i∈Jm\{j}

qm,i
t−1 . (99)

Plugging back in

βqm,j = α − β

2
∑

i∈Jm\{j}
qm,i

t−1 − Mjα

Mj + β
+ β

2 (Mj + β)
∑

n∈Mj

∑
i∈Jn\{j}

qn,i
t−1 (100)

qm,j = α

Mj + β
− 1

2
∑

i∈Jm\{j}
qm,i

t−1 + 1
2 (Mj + β)

∑
n∈Mj

∑
i∈Jn\{j}

qn,i
t−1 (101)

We can vectorize this as

qt = max {α̃ vec G − diag GL diag Gqt−1, 0} , (102)

where L is given by

L = 1
2 (I − I) −


t10 t11 . . . t11
t21 t20 . . . t21
... ... . . . ...

tJ1 tJ1 . . . tJ0

 ◦


diag G1 diag G1 . . . diag G1
diag G2 diag G2 . . . diag G2

... ... . . . ...
diag GM diag GM . . . diag GM

 ,

(103)

tj = − 1
2(Mj+β) , and α̃ = α

Mj+β
.

Let A = diag GL diag G, then we can rewrite the dynamics in deviations from the
steady state

q̂t = −Aq̂t−1 , (104)

with solution

q̂t = (−A)t q̂0 . (105)
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We can equally write this as a sum over the eigenvectors of A (assuming A is diago-
nalizable)

q̂t =
MJ∑
i=1

(−λi)t civi , (106)

where
MJ∑
i=1

civi = q̂0 . (107)

As t increases the dynamics of the system are dominated by the largest eigenvalue
in absolute terms, λmax = maxλi

{|λi|}. The dynamics are thus approximately pro-
portional to

|q̂t| ≈
∣∣∣(−λmax)t

∣∣∣ q̂0 , (108)

or in logarithms

log |q̂t| ≈ t log |λmax| + log q̂0 . (109)

Thus, if a stable steady state exists, quantities will converge exponentially fast with
rate log |λmax| under the best response dynamics. Therefore, learning is faster than
under least-squares learning because under least-squares learning convergence only
happens polynomially fast at the rate −1

2 .

Numerical results indicate that aggregate quantities converge at the same rate as
individual quantities. I show this analytically for the single market case.

A.8 Single market
In the single market case

A = β

2 (1 + β) (1 − I) , (110)

and

qt = max
{

α

β
1 − Aqt−1, 0

}
. (111)
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The eigenvalues of A are λ1 = β
2(1+β) , with eigenspace Eλ1 = 1⊥, and λ2 = β

2(1+β) (J − 1)
with eigenspace Eλ2 = 1.

As |λ2| ≥ 1 for J ≥ 2(1+β)
β

+ 1 the dynamics can become unstable if the number of
firms is sufficiently large. The nonnegativity constraint leads to oscillations between
the monopoly solution and 0 in case of instability.

Also, note that aggregate quantities converge at the same rate as individual quantities
as in the single market case the aggregation vector is 1, which is clearly not orthogonal
to Eλ2 .

A.9 Complete Network
In the complete network case

A = 1
2 (I − I) −


t10 t11 . . . t11
t21 t20 . . . t21
... ... . . . ...

tJ1 tJ1 . . . tJ0

 (112)

=


t10 t11 + 1

2I . . . t11 + 1
2I

t21 + 1
2I t20 . . . t21 + 1

2I
... ... . . . ...

tJ1 + 1
2I tJ1 + 1

2I . . . tJ0

 (113)

and tj = t.

Let vj ∈ RM be an eigenvector component corresponding to firm j. Consider a vector

w =


v
...
v

 ,

so vj = v for all j. In addition, if we rearrange w in the familiar matrix with the firm
eigenvector components as columns then v needs to be such that W ⊤1 = 0. Then w
is an eigenvector of A. Let us consider a block of A,

t1v + 1
2v = 1

2v . (114)

There are J − 1 such blocks per row and thus Aw = J−1
2 w and w is an eigenvector

with eigenvalue λ = J−1
2 . For J ≥ 3 this eigenvalue is greater than 1 in absolute

terms. Thus, the steady state is unstable and the system will not converge to the
steady state.
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A.10 Linear costs
If costs are linear, quantities are qm,j

t = am,j
t−1−cj

β
if aj

t−1 > cj. Then

at = at−1 + 1
t

(
α vec G − 1

2 (Aat−1 − C (c ⊗ 1)) + (1 ⊗ εt) ◦ vec G
)

, (115)

where

A = diag G (I + I) diag G (116)
C = diag G (I − I) diag G , (117)

and

c =
(
c1 . . . cJ

)⊤
. (118)

This system is derived under the assumption that initial beliefs and costs are such
that all firms produce for all markets they are connected to and that prices are never
zero. It can well be that some firms do not find it profitable to produce for a market
in equilibrium or the transient phase. In that case, the corresponding columns of
A and C are all zeroes and we would analyze a smaller system. This has no effect
on the convergence properties and without loss of generality we can assume that all
firms produce for all markets they are connected to.

Note that we analyze the eigenvalues of A but the dynamics of at are governed by
the eigenvalues of −1

2A.

Same as before there is an eigenvalue λ1 = 0 with eigenspace Eλ1 = ker diag G and
eigenvectors ei if diag (G)i,i = 0. The dimension of this eigenspace is MJ − D, i.e.
the total possible number of connections minus the actual number of connections.

There are two further types of eigenvectors of A. For the first set we construct a
vector in RMJ using the standard unit vectors em for m ∈ 1, . . . , M as

vm = diag G (1 ⊗ em) = diag G


em

...
em

 , (119)

i.e. the vector vm consists of a combination of standard unit vectors if the correspond-
ing firm is connected to market m, and zero vectors if the firm is not connected to
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market m. With some abuse of notation, we denote the corresponding eigenvalues
by λ2 = Jm + 1 for m ∈ 1, . . . , M , where Jm is the number of firms in market m.
These M eigenvalues may be distinct or not, but the geometric multiplicity of each
is equal to the algebraic multiplicity.

Let us denote the collection of these eigenvectors by

V = {span vm}m∈M , (120)

and vm as described above.

Note that v ∈ V implies v ∈ im diag G. Then,

diag G (I + I) diag Gvm = diag G (Jm(1 ⊗ em) + vm) = (Jm + 1) vm . (121)

Thus, vm ∈ V is indeed an eigenvector with corresponding eigenvalue λ2.

Similar to the proof of Proposition 3.2 in Appendix A.4, we can construct two sub-
spaces to define the last eigenspace.

Let us for a vector

w =


w1
...

wJ

 ∈ RMJ

again define the corresponding M × J matrix

W =
(
w1 . . . wJ

)
.

Let

U =
{
w ∈ RMJ | w = diag Gw

}
(122)

and

S = {w | W1 = 0} . (123)

Take a vector w ∈ S ∩ U , then

diag G (I + I) diag Gw = diag G (I + I) w = diag Gw = w , (124)
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where Iw =


0
...
0

 because w ∈ S. Thus, w is an eigenvector with eigenvalue λ3 = 1

and the eigenspace Eλ3 = S ∩ U has dimension D − M as shown in the proof of
Proposition 3.2 in Appendix A.4.

Aggregate production for market m is given by

qm
t =

∑
j∈Jm

am,j
t−1 − cj

β
= 1

β

diag G


em

...
em




⊤

(at−1 − c ⊗ 1) . (125)

Take a vector v ∈ Eλ3 , thendiag G


em

...
em




⊤

v = 0 ∀m ∈ M , (126)

because v ∈ S ∩ U .

Thus, also in the linear cost case, we see that vectors v ∈ Eλ3 are orthogonal to the
aggregation mapping and thus aggregate quantities converge faster than individual
quantities. The speed of convergence of individual quantities and beliefs is the same
as in the quadratic cost case.

A.11 Heterogeneous quadratic costs

If we allow cost functions to be heterogeneous then, qj
t = aj

t−1
(cj+β) , and

aj
t = aj

t−1 + 1
t

α − β

2
∑
i ̸=j

ai
t−1

(ci + β) − aj
t−1 + εt

 , (127)

Rewriting leads to a system of linear difference equations,

at = at−1 + 1
t

(α1 − Aat−1) + 1
t

(εt1) , (128)

where

A =


1 β

2(c2+β) . . . β
2(cJ +β)

... . . . ... ...
β

2(c1+β)
β

2(c2β+) . . . 1

 . (129)
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Figure 8: Log-deviations of aggregate and individual beliefs from the equilibrium
values for linear cost functions.
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This matrix is no longer symmetric making it more difficult to deduce the exact
eigenvalues. However, we can bound the eigenvalues of A and show that they are
negative such that also with heterogeneous costs the steady state is stable.

Proposition A.2. Let smax = maxj
β

2(cj+β) ∈
(
0, 1

2

)
. Then, all eigenvalues of −A

are negative and bounded above by λ ≤ smax − 1 ≤ −1
2 .

Proof. This is a slightly modified proof of Theorem A.1. Let sj = β
2(cj+β) ∈

(
0, 1

2

)
.

We can rewrite A as,

A = (1 − I) diag (s1, . . . , sJ) + I .

Furthermore, denote by smax = maxj sj and let P = diag
(√

s1
smax

, . . . ,
√

sJ

smax

)
. Then,

diag (s1, . . . , sJ) = smaxP 2 and P is positive definite and ∥P∥2 = 1.

Then,
A = smax (1 − I) P 2 + I ,

and,
−A = smax (I − 1) P 2 − I .

Thus,
σ (−A + I) = σ

(
smax (I − 1) P 2

)
= smaxσ (P (I − 1) P ) .

A matrix A is congruent to a matrix B if there exists an invertible matrix P such that
A = PBP T . Here P is a square diagonal matrix with positive entries on the diagonal
so it is invertible. Thus, P (I − 1) P is congruent to the matrix I −1. Sylvester’s law
of inertia states that congruent matrices have the same number of positive, negative
and zero eigenvalues.

The matrix I − 1 has J − 1 positive eigenvalues of 1 and one negative eigenvalue of
− (J − 1).

Since, P (I − 1) P is congruent to the matrix I − 1 by Sylvester’s law of inertia it
also has (J − 1) positive eigenvalue. Let v be the unit eigenvector associated with
the largest positive eigenvalue of P (I − 1) P , λmax. Then,

0 < smaxλmax (P (I − 1) P )
= smaxvT P (I − 1) Pv
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= smax∥Pv∥2
2

(
Pv

∥Pv∥2

)T

(I − 1)
(

Pv

∥Pv∥2

)

≤ smax

(
Pv

∥Pv∥2

)T

(I − 1)
(

Pv

∥Pv∥2

)
≤ smax max

∥y∥2=1
yT (I − 1) y

= smaxλmax (I − 1)
= smax.

It follows that 0 < λmax(−A + I) ≤ smax and λmax(A) ≤ smax − 1 ≤ −1
2 .
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