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Abstract

We simulate behaviour of independent reinforcement learning algorithms playing the Crawford
and Sobel (1982) game of strategic information transmission. We show that a sender and a receiver
training together converge to strategies approximating the ex-ante optimal equilibrium of the game.
Communication occurs to the largest extent predicted by Nash equilibrium. The conclusion is
robust to alternative specifications of the learning hyperparameters and of the game. We discuss
implications for theories of equilibrium selection in information transmission games, for work on
emerging communication among algorithms in computer science, and for the economics of collusions
in markets populated by artificially intelligent agents.
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1 Introduction

Consider the classic signalling game: a sender is informed about a payoff-relevant state of the world
drawn from a known distribution and takes one of several possible actions; an uninformed receiver
observes the action but not the state, and makes a decision. In a landmark paper, Crawford and
Sobel (1982) (henceforth CS) showed that, even if the payoff of both agents is independent of the
sender’s action, there are equilibria where the action transmits information about the state, as long
as the conflict of interest between the agents about the ideal receiver’s decision is not too large. By
interpreting the payoff-irrelevant actions of the sender as “cheap talk”, CS delivers a powerful formal
theory of communication. Non-committal and purely symbolic behaviour can convey information and
help coordinate subsequent interactions even if rational agents do not share identical goals.

In this paper, we compute stationary points of independent reinforcement learning algorithms
playing the CS’s game of information transmission.1 These algorithms work roughly as follows. For
each of a finite set of states, the sender keeps track of a vector, which stores its current estimates
of the value of taking each action in that state. The receiver, instead, holds a vector for each of
the signals the sender may send. Any such vector contains the receiver’s estimate of the value of
each action following a given signal. In each period, the algorithms select actions following a softmax
policy. Most likely, they take the highest-reward action according to their estimates, but with some
probability they experiment with different actions. Such probability decays over time, depending on
a hyper-parameter (i.e., the temperature-decay factor). After both agents have moved, the relevant
estimates are updated to account for the payoffs received. Another hyper-parameter (i.e., the learning
rate) establishes how much the current experience is weighted vis-a-vis the past.2

Our main finding is that a sender and a receiver training together converge to behaviour with
sizeable information transmission. The mutual information between the distribution of the state and
that of the action taken by the sender (i.e., the informativeness of the sender’s cheap talk) is very
close to the level arising in the maximally informative and Pareto optimal equilibrium in CS, for any
given level of the bias that parameterises the conflict of interest. Both the sender and the receiver
(nearly) best respond to each other and obtain payoffs close to the theoretical benchmark. Hence, the
receiver is not misled by the sender, nor is the sender forgiving communication opportunities. Despite
the fact that Nash equilibria are focal points of convergence for reinforcement learners, this result
is not a priori obvious since there are many equilibria in the CS game, including an uninformative
“babbling” one.

Language is, eminently, a social phenomenon. Therefore, it is natural to ask whether the success
of communication in one-on-one settings extends to environments where multiple agents learn by

1Computational techniques are necessary because finding limit points of independent learning algorithms training
together is, to date, an intractable problem. The available methods, which rely on approximation through systems of
differential equations are not applicable here (e.g., see Börgers and Sarin (1997) and Banchio and Mantegazza (2022)).

2The machine learning literature has proposed numerous learning algorithms. Given the simplicity of the task at
hand, we chose one of the purest forms of reinforcement learning. Since results align with the best game-theoretical
benchmark, we do not expect more complex algorithms to perform less successfully.
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interacting in a casual way. We confirm this is the case by considering a scenario where multiple
senders and receivers are, at each iteration in the learning process, randomly matched. We therefore
keep track of the value estimates of all the agents in our population and stop the learning algorithms
when they all have converged. Our simulations show that, despite requiring more time to converge,
agents are able to learn a common language. All senders encode information in the same way, by
using an identical mapping from states to signals, and all receivers decode signals in a similar manner,
leading them to choose nearly the same actions given any signal. This common language delivers
payoffs analogous to those in our baseline scenario to all agents, no matter who interacts with whom
once policies have been learned.

Having outlined our main findings, in the remainder of the introduction we elaborate on the
motivations for this work and the significance of the results by discussing how we aim to contribute
to the literature in three distinct fields: computer science, economics and game theory.

Computer science. While experimental evidence shows that informative communication in
cheap talk games with partial conflict of interests is achieved by human subjects (e.g., see Blume et al.
(2020) for a survey), to our knowledge an analogous conclusion has not yet been robustly established
for artificially intelligent agents (AI agents). Most of the machine learning literature has focused on
games with common interest, observing that AI agents learn to communicate successfully (e.g., see
Lazaridou et al. (2016), Havrylov and Titov (2017), Foerster et al. (2016)). Instead, mostly negative
results have been obtained in games where there is scope for information exchange but agents have
conflicting interests (e.g., see Cao et al. (2018)). An important exception is Noukhovitch et al. (2021).
They consider a CS game played on a circle, for which equilibrium characterization is not available.
Employing AI agents controlled by neural networks they show that some degree of communication
is achieved even when the bias of the sender is non-zero. We depart from Noukhovitch et al. (2021)
by employing simple reinforcement learners and by looking at the original (discretized) CS game.
Doing this allows us to compare simulation outcomes to the theoretical benchmark and establish that
communication takes place at the highest level predicted by theory even when a very simple model of
learning is adopted.

Economics. The observation that private information can be successfully communicated be-
tween AI agents, opens up new questions within a growing literature in economics which, motivated
by policy concerns, looks at AI agents playing various market games. Contributions to this recent
literature include Calvano et al. (2020), Banchio and Skrzypacz (2022), Asker et al. (2022), John-
son et al. (2023) and Decarolis et al. (2023).3 A central theme of this research agenda is showing
that AI agents learn to play strategies that deliver supra-equilibrium profits, which would be deemed
implicitly collusive if played by humans.

Two questions come to mind in light of our findings, which we hope will stimulate further
work. First, since communication expands the equilibrium set in a game-theoretic sense (e.g., see
Aumann and Hart (2003)), what outcomes should we expect in market games played by algorithms

3The literature on market games played by AI agents was initiated by computer scientists with early contributions
including Waltman and Kaymak (2008) and Tesauro and Kephart (2002) among others.
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if collusion can be explicit? This is not a moot concern, even when a direct communication channel
is not part of market design. In fact, as auction practice has shown, bidders learn to exchange infor-
mation in very imaginative ways, for instance by using the last digits of their submitted bids.4 Since
we expect sophisticated AI agents to exploit all communication opportunities, our results suggest
that explicit collusion between algorithms with a sufficiently large state space and a long history of
interaction may be as worrisome as the implicit one uncovered by the existing literature.

Second, would collusion emerge when agent valuations for the goods being sold are private infor-
mation and potentially change period by period? While the existing literature has focused on market
games with complete information, it is well known that asymmetric information hinders collusion but
does not necessarily eliminate it, especially if bidders can communicate.5 Our results indicate that AI
bidders might be able to implement successful collusive schemes even under asymmetric information
if they are able to identify a channel for cheap information exchange.

Game Theory. Following pioneering work in psychology (e.g., Bush and Mosteller (1955)) and
in game theory (e.g., Erev and Roth (1998)), we can interpret reinforcement learning agents as sim-
plified models of human subjects, in the spirit of the bounded rationality approach to the modelling
of economic behaviour.6 Then, our results complement the game theoretic approach to communica-
tion developed by CS. In particular, we show that information transmission in cheap talk games is a
robust feature of play, emerging also from alternative modelling approaches to strategic interaction.
As was hoped for by Erev and Roth (1998), simple reinforcement learning algorithms seem to fit the
experimental data better than equilibrium does. In fact, slight under-communication when the most
informative equilibrium predicts perfect information transmission, and tangible over-communication
when it predicts partial or no communication, seem to be robust features of experimental implemen-
tations of the CS game involving human subjects. (see Dickhaut et al. (1995) and, especially, Cai and
Wang (2006)).

In a similar vein, our work may also complement the vast game-theoretic literature on equilibrium
selection in games with information transmission. These games, as we have mentioned, normally have
multiple Nash equilibria, including a completely uninformative one. Our main result then agrees with
the consensus reached in the uniform-quadratic setting around the selection of the most informative
and Pareto optimal equilibrium. In fact, focusing on the most informative equilibrium was advocated
by CS themselves and in the majority of subsequent work (see Chen et al. (2008) for a key contribution
to this literature). Most closely related to our work along this direction is perhaps the evolutionary
and learning approach to selection, given the connection between limit points of reinforcement learning
and evolutionary dynamics elucidated in Börgers and Sarin (1997). Research using this methodology

4There is evidence that in some FCC spectrum auctions bidders used such form of code-bidding to communicate
their intentions and avoid competing on the same portions of the spectrum for sale (see Bajari and Yeo (2009)).

5On how asymmetric information can reduce collusion see Ortner and Chassang (2018). On collusion with incomplete
information see McAfee and McMillan (1992), Marshall and Marx (2012), Che et al. (2018). These papers discuss both
explicit collusion (strong cartels) and implicit collusion (weak cartels).

6Erev and Roth (1998) wrote: “well-developed, cognitively informed adaptive game theory will complement conven-
tional game theory, both as a theoretical tool and as a tool of applied economics.”
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also finds that, when stable outcomes in the CS game exist, they tend to be informative (e.g., see
Blume et al. (1993) and Gordon et al. (2022)).

In the next section, we present our simulation design. Section 3 presents the results obtained in
a baseline scenario where agents play the classic uniform-quadratic specification of CS with learning
hyperparameters that deliver quick convergence. In Section 4 we illustrate the robustness of our
findings, both in terms of hyperparameters and the parameters of the game. Section 5 concludes with
some avenues for future work.

2 RL agents playing the cheap talk game

We now present the key elements of the environment we study. We start by describing the discretized
game of information transmission. Then, we introduce the reinforcement learning algorithms. The
details of the simulations we performed and the results are in the next section.

In the cheap talk game we consider, there are two agents, a sender (S) and a receiver (R). At the
outset, a state θ is drawn from a known uniform distribution p with support over a finite set Θ, which
is composed by n uniformly spaced points in the interval [0, 1]. The sender privately observes the
realized θ and sends a message m ∈ M to the receiver, with |M | = |Θ|. Then, the receiver observes
message m and takes an action a ∈ A, with A formed by 2n− 1 uniformly spaced points in [0, 1]. The
receiver wants the action to match θ. Her payoff is uR(θ, a) = −(a− θ)2. Given some bias b ∈ [0,∞),
the sender wants the action of the receiver to match θ+b. Thus, his payoff is uS(θ, a) = −(a− θ − b)2.
The bias parameter measures their divergence of interest.

Frug (2016) (Proposition 2) shows that in the model above, the set of Pareto efficient equilibria
is a singleton. This equilibrium, which also exists in the CS’s version of the model with a continuous
state space, is referred to as the “ex-ante optimal” equilibrium. As this will be useful later, we denote
the ex-ante expected utility of receiver and sender in the ex-ante optimal equilibrium, computed using
Frug (2016)’s algorithm, with ŪR(b) and ŪS(b).7 A so-called “babbling” equilibrium exists also in
the discretized version of the model. In this equilibrium, the sender’s strategy is independent of the
state and the receiver plays her ex-ante optimal action. We denote with UR(b) and US(b) the ex-ante
expected utilities in the babbling equilibrium. Note that UR(b) does not depend on b.8

We let two independent reinforcement learning agents play, as sender and receiver, the discretized
cheap talk game. To allow learning, the two agents play the game multiple times, up to a maximum

7Frug (2016) endows the receiver with a continuum of actions. This ensures that a single optimal action corresponds
to each belief the receiver may have. Given our discretization of Θ and A, the optimal action is unique as long as
the strategy of the sender is partitional. Hence, in principle, the receiver might find herself indifferent for some beliefs
generated by non-partitional strategies of the sender. In this case, there might exist an equilibrium in our game different
from the one identified in Frug (2016) that is also Pareto optimal. The Pareto optimal equilibrium built from Frug
(2016) remains an optimal equilibrium in our setting because it is partitional.

8The existing literature does not offer a complete characterization of equilibria. Frug (2016) shows that even restricting
to partitional equilibria comes with a loss.
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of T = 107 periods (or episodes). Both are programmed to take an action conditional on a state, first
the sender and then the receiver. In each period, a state for the sender is drawn from Θ according to
p, independently of previous interactions. Then, the sender takes an action from M , which represents
the state for the receiver. Finally, the receiver takes an action from A and agents collect their rewards.
Because the underlying learning model is the same for both agents (i.e., both take action conditional
on some state), we now describe it for a generic agent, with states and actions taking appropriate
meaning based on which agent is playing.

Let S be the finite set of possible states and A the finite set of actions, for either the sender or
the receiver. Each time t ∈ {1, 2, . . . , T} an agent is called to play in state s ∈ S, it chooses action
a ∈ A following a parameterized softmax probability distribution

πt(a | s) = eQt(s,a)/τt∑
a′∈A eQt(s,a′)/τt

,

where Qt(s, a) (discussed in the next paragraph) represents the agent’s estimate in period t of the
value of taking action a in state s. The parameter τt, called temperature, modulates the intensity of
exploration: for smaller values of τt, the probability mass increasingly concentrates on the action(s)
that are most rewarding according to the current estimate Qt(s, a). We reduce exploration at each
interaction by letting the temperature decay according to τt = λτt+1, where λ ∈ [0, 1) is the decay
rate and τ1 = 1. Hence, the exploration goes to zero in the limit as t→∞.

The initial estimate, Q0(s, a), is arbitrarily initialized for all (s, a) ∈ S × A. If the agent takes
action a in state s in period t, the estimate associated with that specific state-action pair is updated
iteratively according to

Qt(s, a) = Qt−1(s, a) + α [rt(s, a)−Qt−1(s, a)] ,

where the step-size parameter α ∈ (0, 1], called learning rate, regulates how quickly new information
replaces the old and rt(s, a) (discussed in the next paragraph) denotes the reward the agent obtains
by playing action a in state s in period t. For all other (s′, a′) pairs, Qt(s′, a′) = Qt−1(s′, a′).

In multi-agent reinforcement learning, the reward that an agent obtains is not drawn from a
stationary distribution, as it generally depends on the action taken by the other agent. In particular,
let (a′, s′) be the pair of state and action taken by the other agent in t. Then, we have rt(s, a) =
−(a′ − b− s)2 for the sender’s algorithm and rt(s, a) = −(a− s′)2 for the receiver.

If the distribution of rt were to depend only on the agent’s own actions, existing results would
guarantee convergence of the policy πt( · | s) to an optimal one. However, because the underlying
distributions of rewards the agents face are non-stationary, convergence is not guaranteed. For this
reason, we consider agents to have converged and stop the simulation if, before reaching the maximum
number of interactions T , the policies of both agents exhibit relative deviations in L2,2 norm smaller
than 0.1% for K = 104 < T consecutive interactions.

Pseudocode for the simulation is given in Algorithm 1 below.
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Algorithm 1 Independent reinforcement learning in the discretized cheap talk game
Initialize QS and QR arbitrarily
for each episode do

θ ∼ p(θ)
m ∼ πS(m | θ)
a ∼ πR(a | m)
QS(θ, m)← QS(θ, m) + α[uS(θ, a)−QS(θ, m)]
QR(m, a)← QR(m, a) + α[uR(θ, a)−QR(m, a)]
if πS and πR converged then break

end for

3 Baseline Results

In this section, we discuss the baseline simulation we have singled out to present our main results.
The robustness of our findings is demonstrated in the next section.

For our base-case, we consider the discretized cheap talk game with n = 21 states in [0, 1], so that
any two adjacent states are separated by a 0.05 increment. Hence, Θ = {0.00, 0.05, . . . , 0.95, 1.00},
M = Θ and A = {0.00, 0.025, . . . , 0.975, 1.00}.9

We implement algorithms for both the sender and the receiver that use the same learning rate
α = 0.1 and exploration decay λ = 0.99999. The decay parameter was chosen to deliver the minimal
amount of exploration, thus time of play, necessary for the agents to achieve full communication when
b = 0. The learning rate is the one commonly used in applications.10 The Q-matrices of the sender
and of the receiver have dimensions 21 × 21 and 21 × 41, respectively. Their entries are initialized
using a uniform distribution in the interval [US(b), 0] for the sender, and [UR(b), 0] for the receiver.11

We study interactions for different levels of bias taking 51 points spaced 0.01 apart from each
other in the interval [0, 0.5]. For each level of bias b, we repeat the same simulation 1000 times. At
the end of each simulation, if the agents’ policies have converged, we record the Q-matrices at the
point of convergence and compute the implied policies for the sender and receiver, denoted πS

∞( · | θ)
and πR

∞( · | m), respectively. Using these policies we can compute the ex-ante expected rewards of the
agents from playing the information transmission game together. These are

US = −
∑

θ

p(θ)
∑
m

πS
∞(m | θ)

∑
a

πR
∞(a | m)(a− θ − b)2,

UR = −
∑

θ

p(θ)
∑
m

πS
∞(m | θ)

∑
a

πR
∞(a | m)(a− θ)2.

9We confirmed via additional simulations that endowing the sender with a message space larger than the state space
does not affect the final results.

10With α = 0.1, the weight rewards have in the estimate is less than 1% after 23 interactions and with λ = 0.99999
the temperature is approximately 10−3 after 6.9 × 105 interactions. After that number of iterations the probability mass
of policies is concentrated around a few relatively highly rewarding actions.

11We confirmed via additional simulations that the initialization of the matrices is irrelevant for the final results.
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In the next Figure 1, we compare the average ex-ante payoffs arising from the simulations to the
theoretical bounds provided by the babbling equilibrium and the ex-ante optimal equilibrium for the
different levels of bias in the discretized [0, 0.5] interval.

0.0 0.1 0.2 0.3 0.4 0.5
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ex-ante expected reward (sender)

0.0 0.1 0.2 0.3 0.4 0.5
−0.1

−0.08

−0.06

−0.04

−0.02
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ex-ante expected reward (receiver)

simulations optimal equilibrium babbling equilibrium best response

Figure 1: Ex-ante expected reward for the sender (left) and receiver (right) for different levels of
bias. The average value across 1000 simulations is shown in blue; 95% of the outcomes fall inside
the blue-shaded areas. The value associated with the ex-ante optimal equilibrium is in red and
the one associated with the babbling equilibrium is dotted gray.
Also applies to all subsequent figures: The ex-ante optimal equilibrium entails perfect information
transmission for biases identified by the shaded grey area to the left, while babbling is the unique
equilibrium for biases in the shaded grey areas to the right; Green dotted lines indicate payoffs
that agents would get by best-responding.

The two panels illustrate that communication between the sender and the receiver is successful
and at the highest level predicted by theory. At any level of the bias, ex-ante payoffs of both the sender
and the receiver (blue lines) are in line and often even exceed those arising in the ex-ante optimal
equilibrium (red lines). In particular, learned behaviour closely matches equilibrium when the bias is
very high (i.e., no communication is the only equilibrium) or very low (i.e., perfect information trans-
mission is the ex-ante optimal equilibrium outcome). When the ex-ante optimal equilibrium entails
partial communication, AI agents always tend to exchange more information than Nash equilibrium
predicts. However, as we illustrate in Section 4, for given level of exploration, the fewer the states,
the closer the agents’ payoffs get to the ones in the ex-ante optimal equilibrium.

This finding can be reinforced by looking at a direct measure of communication implied by
the sender’s policy. To this end, we compute the mutual information between state and message,
normalised by the entropy of the message. This is equivalent to the percentage reduction in the
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entropy of the state arising from knowing the message. Formally,

I =
(∑

θ

p(θ) log
( 1

p(θ)

))−1∑
θ

∑
m

πS
∞(m | θ)p(θ) log

(
πS

∞(m | θ)∑
θ πS

∞(m | θ)p(θ)

)
.

This metric takes value 1 if knowledge of the message implies knowledge of the state, as in the perfectly
informative equilibrium. It takes value 0 when state and message are statistically independent, as in
the babbling equilibrium.

As Figure 2 below illustrates, at each level of the bias, the average normalised mutual information
from our simulations (in blue) is in line with and often exceeds the one obtained for the ex-ante
optimal equilibrium (in red). An analogous result is obtained by measuring the normalised mutual
information between states and actions, indicating that at convergence the receiver correctly decodes
the information contained in the messages.

0.0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

b

I

normalised mutual information

simulations optimal equilibrium babbling equilibrium

Figure 2: Mutual information between the distribution of messages induced by the sender’s
policy and the distribution of states of the world. Average across 1000 simulations is shown in
blue; 95% of simulation outcomes fall inside the shaded area. The value associated with the
optimal equilibrium is in red and the one associated with the worst equilibrium is dotted gray.

The observation that both the payoff and the mutual information implied by the sender’s strategy
at convergence are close to those in the ex-ante optimal equilibrium indicates that the strategy played
at convergence is also close, in terms of the distribution of posteriors it generates, to that played in
the ex-ante optimal equilibrium benchmark. This, together with the fact that the receiver obtains a
payoff in line with that arising from play of the ex-ante optimal equilibrium, also suggests that the
receiver’s strategy at convergence is near, in terms of response to the implicit posterior induced by a
message, to the one played in the theoretical benchmark.

These results paint a rosy picture for algorithmic communication. Artificially intelligent agents
often learn to communicate more than in the ex-ante optimal equilibrium. However, when this hap-
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pens, they are not best responding to each other. Then, the question that arises is how close to
equilibrium are the sender and receiver playing. In fact, it may be argued that agents are not learning
robustly to communicate unless they are playing close to an equilibrium. To address this issue, in
Figure 3 we measure how distant the sender and the receiver are playing from Nash equilibrium. We
compute the additional ex-ante expected reward they would achieve if, instead of playing the learned
policy, they best replied to the policy learned by the opponent.

0.0 0.1 0.2 0.3 0.4 0.5
0

0.002

0.004

0.006

0.008

0.01

b

ε

gain from best response

sender receiver 90% ε-Nash threshold

Figure 3: Potential gains from best responding to the opponent. Average value over 1000 simu-
lations; 95% of simulation outcomes fall inside the shaded areas.

Consistently with our previous observations, Figure 3 indicates that agents are playing further
away from equilibrium at intermediate levels of the bias. The maximal gain the receiver (sender)
obtains on average from best-responding is when the bias is around 0.2 (0.4). At that level of bias,
the receiver (sender) could gain around 0.005 (0.001) on average from best-responding, which is about
10% (5%) of her payoff given the learned policy. This suggests the loss of payoff from playing the
learned policy compared to best-responding is not large. In 90% of our simulations, agents converge
to play, in the worst case scenario, an ε-equilibrium (Radner, 1980) with ε equal to 0.008.

In addition, as we show in Section 4, allowing for more exploration and a longer time to con-
vergence results in agents getting closer to equilibrium play. As a theoretical matter, the result that
agents often do better than equilibrium play should not come as a surprise. It is a common phe-
nomenon, which can be explained by the complex dynamic system generated by the two algorithms
learning together (see Banchio and Mantegazza (2022)).

We conclude this section by presenting the results of simulations in which 10 senders are randomly
matched to 10 receivers at each iteration of the learning process. This setup introduces additional
learning difficulties. For example, senders who have been given positive feedback regarding a certain
policy while training with some receivers might find themselves interacting with other receivers with
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a very different interpretation of the same messages given their own past history of interactions.
Nonetheless, we show that agents are able to learn a common language. That is, at any level of the
bias, all senders within any given simulation employ the same policy, mapping states to messages,
and all receivers take approximately the same action for any given message received. Consider the
following figures.
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0 0.2 0.4 0.6 0.8 1

Figure 4: Average policy across the 10 senders (left) and 10 receivers
(right) in a single simulation with b = 0.1. The mean deviation from the
modal policy averages 0 across senders and 0.017 across receivers. Mes-
sages above or to the right of the dotted line are played with negligible
probabilities and are considered off-the-path.
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0

0.01

0.02

0.03

b

deviation from modal policy

sender receiver

Figure 5: Mean deviation from
modal policy. Average over 100 sim-
ulations; 95% of outcomes fall inside
the shaded areas. Computed with
only on-the-path messages.

Figure 4 above demonstrate a high level of homogeneity in the policies learned by senders and
receivers present within a single simulation. There is hardly any variability in senders’ behaviour at
any given state. There is only minor variability in the receivers’ decoding of messages, once messages
from 10 to 21 are excluded because they are not sent by senders following convergence. Figure 5
shows that, on average across 100 simulations for each bias level, the mean deviation from the modal
action played by the set of receivers within a simulation following a given message (played with non-
negligible probability) is at most 0.02. Roughly speaking, this corresponds to receivers differing in
their reaction to a message by, on average, taking the nearby action to that played by the majority of
them. Notably, the less communication takes place, that is the higher the bias, the more vague the
language.

In addition, when playing together after learning is completed, any two agents achieve payoffs
analogous to those obtained in the baseline scenarios. Therefore, also in this case communication is
at the highest level possible predicted by equilibrium. We omit to visually present the results as the
difference with the baseline case (Figure 1 and Figure 2) is not noticeable.
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4 Robustness

In this section, we demonstrate that communication emerges robustly in CS games played by AI
agents. To do so, we report the results of simulations obtained for a wide variety of alternative
assumptions. We first keep the game fixed and we look at the effect of employing different learning
hyperparameters. Then, we look at different specifications of the information transmission game.
We consider a higher and lower number of states, non-uniform distributions of the state, and utility
functions that are not linear-quadratic.

4.1 Learning parameters

We run our simulations of the cheap talk game for a grid of reinforcement learning hyperparam-
eters. We consider 10 uniformly spaced learning rates in [0.05, 0.5] and 10 different exploration
decay rates in [0.99998, 0.999998]. The exploration decay rates are spaced such that the number of
interactions required to converge scales linearly.12 Figure 6 below superposes the average ex-ante
expected rewards of the agents over 100 simulations for each of the 100 (α, λ) pairs in the discretized
[0, 0.5]× [0.99998, 0.999998] grid.
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Figure 6: Ex-ante expected reward for the sender (left) and receiver (right) for different levels of
bias. Each blue-toned line is the average across 100 simulations with a different learning rate, α,
and exploration decay, λ. The lines’ hue gets darker as λ gets closer to 1 and agents’ exploration
increases.

The figure shows that the results described in the previous section extend to a range of different
12In practice, with λ = 0.99998 it takes approximately 5 × 105 interactions for the agents’ policies to converge, and

with λ = 0.999998 it takes approximately 5 × 106 interactions.
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reinforcement learning hyperparameters’ configurations. Moreover, it highlights that letting agents
explore more extensively yields outcomes that are progressively closer to the ex-ante optimal equilib-
rium. The same trend naturally extends to the normalised mutual information between messages and
states of the world.

Figure 7 shows, for different combinations of reinforcement learning hyperparameters, the thresh-
old level for ε such that 90% of simulations outcomes (across all bias levels) are ε-Nash equilibria.
The heatmap further confirms that more exploration results in agents playing closer to exact equi-
librium behaviour. Conversely, limited exploration results in larger mistakes and overcommunicative
outcomes.
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Figure 7: Required level of ε to have at least 90% of simulations over all bias levels at an ε-Nash
equilibrium.

4.2 Game form

We now keep fixed the reinforcement learning hyperparameters as in our baseline configuration and
consider variations of the cheap talk game. We show for each case the average ex-ante expected reward
of the agents over 1000 simulations. We look at cases with different numbers of states of the world,
different utility specifications and different distributions over the states of the world.

In Figure 8 we consider simulations with n = 6, n = 11 and n = 41 states of the world, so that
any two adjacent states are spaced 0.2, 0.1 and 0.025 from each other, respectively. The figure shows
that agents play closer to the theoretical benchmark when the number of states is small. With a
large number of states instead, communication tends to exceed the theoretical benchmark, especially
when babbling is the unique equilibrium. This is explained by the relative increase (reduction) in
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exploration due to the change in size of the agents’ Q-matrices. As we keep λ fixed to the base case
configuration, each state-action pair is on average visited more (less) often depending on the size
of the agent’s Q-matrix. This eventually results in improving (worsening) the agent’s learning. We
see that when n is smaller than our base case, agents explore more in relative terms and are closer
to equilibrium behaviour. The opposite is true when n is larger. For the latter case, letting agents
explore more extensively at the expense of longer times of play gives back outcomes closer to the
theoretical benchmark.

For cases where we vary the utility functions and the distribution of states, existence of the ex-
ante optimal equilibrium is no longer guaranteed. Nonetheless, Frug (2016, Proposition 1) shows
that the receiver-optimal equilibrium is partitional if the action space is sufficiently large, the utilities
are concave and the sender is upwardly biased.13 Hence, in cases where these three assumptions
are satisfied, we rely on the ex-ante receiver-optimal equilibrium as our benchmark (see Figure 9).
Instead, in the case of non-uniform distributions of states, where the first of those three assumptions
fails, we rely on the receiver-preferred partitional equilibrium, which turns out to exist, as comparator
(see Figure 10).

Figure 9 shows simulation outcomes with different utility specifications. We consider the case
of a fourth-power loss function and the case of an absolute loss function. To ensure results are not
determined by the magnitude of rewards we also consider a scaled-up quadratic utility by a factor of
10. The figure confirms that the high level of communication is not dependent on the specific forms of
the utility function. All three scenarios show similar results, in line with our benchmark case. While
we have not run further cases because it is hard to identify the right comparator, we strongly suppose
that the assumptions of concavity and upward bias are not crucial for the emergence of a high level
of communication.

Finally, in Figure 10 we show outcomes for different distributions over the states of the world;
namely, a bell-shaped distribution, a probability distribution with linearly increasing probability mass,
and one with linearly decreasing probability mass. In this case results also indicate communication
in line with the most optimistic theoretical benchmark. A surprising result is obtained in the case
of the decreasing distribution. While in all our simulations agents do better than babbling, here the
receiver obtains a payoff lower than the babbling one. We think this finding is interesting because the
sender seems able to manipulate the receiver even when theoretically it should not be possible and
the receiver is losing out from not just playing the ex-ante optimal action. Unfortunately, we do not
have a cogent explanation for this result.

13The sender is upwardly biased if for all θ ∈ Θ and a, a′ ∈ R with a > a′, if uS(θ, a′) ≥ uS(θ, a) then uR(θ, a′) >

uR(θ, a).
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Figure 8: Ex-ante expected reward for the sender (left) and receiver (right) for different levels of
bias. Cases with 6 states (top), 11 states (middle) and 41 states (bottom).
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Figure 9: Ex-ante expected reward for the sender (left) and receiver (right). Fourth-power loss
(top), absolute loss (middle), scaled quadratic loss (bottom)
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Figure 10: Ex-ante expected reward for the sender (left) and receiver (right) for different levels
of bias. Cases with a bell-shaped distribution distribution (top), linearly increasing distribution
(middle) and linearly decreasing distribution (bottom). We use p(θk) to indicate the probability
mass on the k-th state in Θ = {θ1, . . . , θn}. There are n = 21 states as in the base-case simulations.
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5 Conclusions

We showed that simple reinforcement learning algorithms training together in the classic Crawford and
Sobel (1982) cheap-talk game engage in proficuous information transmission and develop a common
language. Communication is substantial and matches the level predicted by the most informative
equilibrium of the cheap-talk game. This result is robust and extends to the case of a population of
agents randomly interacting with each other.

Equilibria in CS exhibit a nice structure. Both sender and receiver unambiguously benefit from
more communication. This raises the question of what would happen in games with multiple equilibria
that are not Pareto ranked, with some more favourable to the receiver and others to the sender.
Will communication break down? Or will one of the two agents lead the other to their favourite
equilibrium? While our results in Section 4 suggest that communication will persist and favour the
sender, we believe extending the analysis to more general games with communication is an interesting
avenue for future work.

Another natural extension of the present framework would be looking at how populations learn
a common language when agents are heterogeneous (e.g., senders may have different biases) or the
frequency of interactions is not driven by random matching (e.g., agents may be arranged in a network
where a number of receivers interact with a single sender). Would agents still be able to learn a
common language? Will there be winners and losers depending on the level of bias or the network
architecture of interactions? What population structures facilitate learning?

A more speculative next step would be to consider the interaction between humans and algorithms.
Suppose we let a human train with an algorithm, or we let a multitude of humans randomly interact
with multiple algorithms. Will they learn a common language? Will there be more communication
than in human-to-human experiments? Would humans be manipulated or maybe the other way
around? Human-algorithm play also raises interesting questions regarding the interaction between
strategic signalling and natural language. How would reinforcement learning algorithms endowed
with natural language processing abilities, such as those currently possessed by chatGPT and other
large language models, perform? Will the use of natural language result in more or less information
transmission? Will human agents be more easily deceived? We think that human-AI experiments
show promise well beyond the questions raised above.

Finally, it may be worth revisiting some of the existing findings in the economics of AI agents
playing market games. For instance, will the sort of code-bidding collusion described in the introduc-
tion emerge in market played by AI agents? Since a large state space would be required to handle
this sort of “non-verbal” exchange, our finding that communication emerges suggests it may be worth
looking at the behaviour of more complex agents, such as those endowed with deep neural networks.
It would not be surprising to see collusion sustained at higher levels than those already observed
with simple learning algorithms. Such a finding would suggest the need for market design to mitigate
communication possibilities, especially when AI agents interact frequently.
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