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1. INTRODUCTION

Economic models often make set-valued predictions when the researcher works with

weak assumptions. We consider models in which, given observable and unobservable ex-

ogenous variables (X,U), an outcome variable Y is known to take values in a discrete

set G(U |X; θ) with probability 1. This general discrete choice model nests widely-used

models such as binary, multinomial, and ordered choice models, where G contains a sin-

gle value of Y . If G contains multiple values, the model is silent about how the observed

outcome gets selected from G. A growing number of empirical models exhibit such set-

valued predictions. The examples that fall into this class include but are not limited to

discrete games (Tamer, 2003, Ciliberto and Tamer, 2009), discrete choice models with het-

erogeneous choice sets (Barseghyan et al., 2021), discrete choice models with endogeneity

(Chesher and Rosen, 2017), English auctions (Haile and Tamer, 2003), and product offer-

ings (Eizenberg, 2014). Following Tamer (2003), we call them incomplete models.

We propose a novel, universally valid inference method for this class of models. In par-

ticular, we consider testing the composite hypotheses

H0 : θ ∈Θ0, v.s. H0 : θ ∈Θ1, (1.1)

for disjoint subsets Θ0,Θ1 of a parameter space. The universality means the proposed test

has a size control property in any finite samples without complex regularity conditions

(Wasserman et al., 2020). Our test compares a tailor-made likelihood-ratio statistic to a

fixed critical value. As such, it does not require the user to choose any moment selection or

other regularization tuning parameters commonly used in the literature. Inverting the test

yields confidence regions for the entire parameter and their functionals, such as parameter

subcomponents and counterfactual probabilities.

A key insight is that any incomplete model has a structure that allows us to calculate

densities corresponding to the least-favorable scenarios for a minimax testing problem. We

use this insight to construct a test statistic. Specifically, we start with a simple problem

of distinguishing a pair of parameters θ0 ∈ Θ0 and θ1 ∈ Θ1. For each parameter value,
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the model admits a set of densities qθ. Heuristically, it suffices to find a pair of densities

(qθ0 , qθ1) such that qθ0 is compatible with θ0 and least favorable for size control, while qθ1 is

least favorable for maximizing power. Building on Huber and Strassen (1973), we ensure

that such a least-favorable pair (LFP) of densities exists and is computable. Forming a

likelihood-ratio statistic from such pairs is the key to universality. We combine it with the

cross-fitting technique proposed by Wasserman et al. (2020) and show that the test controls

its size in finite samples regardless of our lack of understanding of the selection mechanism.

The proposed test also provides robustness against incidental parameters. The true data-

generating process may be characterized by selection mechanisms that are heterogeneous

across cross-sectional units.1 In an extreme case, each cross-sectional unit may have its

own selection mechanism. However, empirical studies often assume the same selection

mechanism generated the observed data across cross-sectional units or impose regularity

conditions for classic limit theorems that implicitly limit heterogeneity of selections. Our

proposed test remains valid without such assumptions.

The proposed procedure has two distinct features that set it apart from the textbook

LR test. However, implementing these additional steps is straightforward. The first feature

is that it uses a custom likelihood function that can be constructed by solving a convex

program. We provide a numerical algorithm and also demonstrate that leading examples

have closed-form likelihoods. The second feature is that the test uses cross-fitting. This

means that we estimate model parameters in a subsample, use the remaining subsample to

evaluate the likelihood-ratio, and aggregate statistics after swapping the roles of the two

subsamples. This enables us to apply a conditioning argument and a Chernoff-style bound.

The method proposed here offers a tractable way for practitioners to perform inference

on general discrete choice models without relying on ad-hoc assumptions. It is particu-

larly effective in settings where the outcome is relatively low-dimensional, involves various

1The selection mechanisms may represent different objects depending on contexts. In discrete games, they
represent equilibrium selection mechanisms (Jovanovic, 1989). In panel dynamic discrete choice models, they
represent unobserved initial conditions (Honoré and Tamer, 2006). In discrete choice models with heterogeneous
choice sets, they represent unknown choice-set formation processes (Barseghyan et al., 2021). They may vary
across cross-sectional units such as markets and individuals.
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types of covariates, and θ may contain nuisance parameters. The method can be applied to

both small and large samples. For the theoretical front, this paper provides a new likelihood-

based test with finite sample validity for incomplete models. To our knowledge, this is the

first such procedure.

1.1. Relation to the literature

The study of incomplete structural models has a long history dating back to the work

of Wald (1950). Economic models with multiple equilibria are well-known examples of

incomplete models. Jovanovic (1989) developed a formal framework to examine the em-

pirical content of such models. It is worthwhile to note that the class of incomplete models

considered here also covers a wide range of empirical models beyond games with multiple

equilibria. Systematic ways to derive partially identifying restrictions for such models have

been developed (Tamer, 2003, Galichon and Henry, 2011, Beresteanu et al., 2011, Chesher

and Rosen, 2017). Building on this line of work, we use the sharp identifying restrictions to

incorporate all information in the original structural model to construct a likelihood func-

tion.

We contribute to the literature on inference by providing a novel test that has the fol-

lowing properties: (i) it has finite sample validity without complex regularity conditions

(universality); (ii) it is robust to the incidental parameter problem; (iii) it is applicable to

models with mixed data types (e.g., continuous and discrete covariates); and (iv) one can

construct confidence regions for the entire parameter or its functionals.2 We do so by using

a likelihood-ratio statistic. Likelihood-based methods are also considered by Chen et al.

(2011, 2018), Kaido and Molinari (2024), but they aim at asymptotically uniformly valid

2Each of the problems above is studied somewhat separately. For (i), Horowitz and Lee (2023) develop a
method with finite sample validity for models characterized as an optimization problem; For (ii), Hahn and Moon
(2010) tackles the problem using panel data. Epstein et al. (2016) develop a central limit theorem robust to the
incidental parameter problem; (iii) For discrete covariates one can use unconditional moment inequalities (see
Canay and Shaikh, 2017, and references therein). For continuous covariates, one needs to work with a continuum
(or increasing number) of moment inequalities (Andrews and Shi, 2013, Chernozhukov et al., 2013). See also
Kaido and Molinari (2024) for this point who develop a method related to this paper’s approach; (iv) Subvector
inference is studied, for example, by Bugni et al. (2017), Kaido et al. (2019), Cox and Shi (2022), Andrews et al.
(2023).
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inference. This paper builds on an earlier work by the authors (Kaido and Zhang, 2019),

which evolved into two separate papers, including this one. The other ongoing work fo-

cuses on the finite-sample and asymptotic optimality properties of the related likelihood-

ratio tests.

Likelihood-based inference is commonly used in discrete choice models. However, as

Wasserman et al. (2020) notes “The (limiting) null distribution of the classical likelihood-

ratio statistic is often intractable when used to test composite null hypotheses in irregu-

lar statistical models.” Their universal inference technique is simple and does not require

complex regularity conditions. Hence, it is also attractive in the context of discrete choice

models. Nonetheless, we cannot directly apply their framework since they make two key

assumptions. First, they assume the model yields a unique likelihood function. Second,

they assume random sampling as a baseline.3 Neither of these assumptions is guaranteed

in incomplete models. For each value of exogenous variables and a structural parameter,

the model implies multiple (typically infinitely many) likelihoods since the model does not

specify an unknown selection mechanism. Furthermore, the unspecified selection mecha-

nism can vary arbitrarily across experiments. Each selection mechanism may depend on the

observable and unobservable variables. It can introduce unknown heterogeneity to the sam-

pling distribution across experiments. We address these issues by constructing a likelihood

robust to the worst case scenario.

2. SET-UP

Let Y ∈ Y ⊆ RdY and X ∈ X ⊆ RdX denote, respectively, observable endogenous and

exogenous variables, and U ∈ U ⊆ RdU denote latent variables. For a metric space Z , let

∆(Z) denote the set of all Borel probability measures on (Z,ΣZ), where ΣZ is the Borel

σ-algebra on Z . For Z = Y × X , we let ΣZ equal the product σ-algebra ΣY × ΣX . Let

Θ denote a parameter space.4 Let Fθ(·|x) denote a family of conditional distributions of U

3To be precise, they assume the knowledge of the conditional likelihood based on a subsampleD0 given another
subsample D1, which is not guaranteed in incomplete models. See Section 2.1.

4The theoretical framework below accommodates both finite-dimensional and infinite-dimensional parameters.
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given X = x. We let F = {Fθ, θ ∈ Θ} be the collection of the conditional laws. For any

vector of random elements, we let Zn = (Z1, . . . ,Zn).

For each θ ∈Θ, let G(·|·; θ) : U ×X � Y be a weakly measurable correspondence. This

map summarizes the model prediction. It maps the exogenous variables (x,u) ∈ X ×U to

permissible outcomes. For example, in discrete games, G(U |X; θ) may collect all pure-

strategy Nash equilibrium outcomes given observable and unobservable payoff shifters

(X,U) (see Example 1). The observable outcome Y is a measurable selection of the pre-

diction satisfying

Y ∈G(U |X; θ), a.s. (2.1)

The model does not impose any restrictions on how Y is selected. This structure nests

models with complete predictions as a special case. A model makes a complete prediction

if there is a function g(·|·; θ) :X ×U →Y such that Y = g(U |X; θ).

Let C be the collection of all closed subsets of Y . Define the containtment functional of

G by

νθ(A|x)≡
∫

1{G(u|x; θ)⊆A}dFθ(u|x), A ∈ C. (2.2)

This functional characterizes all conditional distributions of the measurable selections of

G(U |x; θ) by the following set (Artstein, 1983, Theorem 2.1):

core (νθ(·|x))≡ {Q ∈M(ΣY ,X ) :Q(A|x)≥ νθ(A|x), A ∈ C}, (2.3)

whereM(ΣY ,X ) is the collection of laws of random variables supported on Y conditional

on X . The moment inequalities Q(·|x) ≥ νθ(·|x) characterizing core (νθ(·|x)) are known

as the sharp identifying restrictions as they can partially identify θ without losing distri-

butional information (Galichon and Henry, 2011, Molchanov and Molinari, 2018). Our

method applies to any model characterized by such restrictions.
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2.1. An Overview of the Main Results

Consider testing

H0 : θ ∈Θ0, v.s. H0 : θ ∈Θ1 (2.4)

for disjoint subsets Θ0,Θ1 of the parameter space. The proposed procedure combines a

likelihood ratio test (LRT) with a cross-fitting technique. In a nutshell, it takes the following

steps.

Step 1: Split samples into D0 and D1. Let a likelihood function based on D0 be

L0(θ) =
∏
i∈D0

qθ(Yi|Xi), (2.5)

where θ 7→ qθ(y|x) is a “tailor-made” likelihood function;

Step 2: Let θ̂1 be any estimator of θ constructed from sample D1. Let θ̂0 be the restricted

maximum likelihood estimator (RMLE) based on D0:

θ̂0 ∈ arg max
θ∈Θ0

L0(θ); (2.6)

Step 3: Let

Tn =
L0(θ̂1)

L0(θ̂0)
. (2.7)

The cross-fit likelihood-ratio (LR) statistic is

Sn =
Tn + T swap

n

2
, (2.8)

where T swap
n is calculated in the same way as Tn after swapping the roles of D0 and D1.

Step 4: Reject H0 if Sn > 1/α. Do not reject H0 otherwise.

One can also construct a confidence region for functionals ϕ(θ) of the parameter by

inverting the test (see Section 3).
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We focus on key properties of the proposed test for now and defer discussion of how to

construct θ̂1 and L0 to Sections 2.2-2.3. The cross-fit LR test controls its size in any finite

samples. That is, for a wide class Pn0 of data-generating processes (DGPs) compatible with

the null hypothesis,

sup
Pn∈Pn0

Pn
(
Sn >

1

α

)
≤ α, (2.9)

and this size control result holds for any n.

Following Wasserman et al. (2020), we call the procedure above universal inference (or

universal hypothesis test). The idea is that the inference applies universally to any model

described by (2.1) without further regularity conditions. This point is important because

many of the existing inference methods require additional regularity conditions, some of

which are hard to verify. 5

Our test builds on the recent work of Wasserman et al. (2020), which demonstrated the

universality of their statistical test for a model consisting of probability distributions, de-

noted as {Pθ, θ ∈Θ}, over an arbitrary set Θ. Our statistical model is {Pθ, θ ∈Θ}, where

Pθ itself is a set of probability distributions. Hence, we cannot directly apply their frame-

work to our setting. To extend the scope of universal inference, this paper introduces two

innovations. First, they assumed the availability of a unique likelihood function. Incom-

plete models admit infinitely many likelihoods. We address this issue by constructing a

tailor-made likelihood qθ. Second, they assumed the researcher could calculate the likeli-

hood of D0 conditional on D1 and vice versa. Their baseline assumption is that (Yi,Xi) are

drawn independently from an identical distribution. In our setting, the joint distribution of

outcomes across units (and hence across D0 and D1) is not uniquely determined (see (3.1)

below). Hence, one cannot calculate the conditional likelihood required by their framework.

We address this issue by constructing a product likelihood from a least favorable density.

That is, pretending as if data were generated from qθ for some θ ∈Θ0 independently across

i ∈D0 conditional on D1 allows us to control the test’s size.

5See discussion in Kaido et al. (2022)
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Finally, we note that the selection mechanism can be heterogeneous across experiments

because the model does not restrict how it varies across i.6 To see this, write the conditional

law of Yi|Xi = x as

Pi(·|x) =

∫
U
ηi(·|u,x)dFθ(u|x), ηi(·|u,x) ∈∆(G(u|x; θ)), (2.10)

where the conditional distribution ηi over the predicted set of outcome values G(u|x; θ)

represents the unknown selection mechanism. It is allowed to vary across experiments ar-

bitrarily. In an extreme case, each experiment can have its own selection mechanism. As in

the fixed-effects approach, we aim to make inferences about the common parameter θ and

its functionals, while staying agostic about how the incidental parameters {ηi} are related

to the observables. This feature does not appear in Wasserman et al.’s (2020) framework.

In short, we develop a universal inference procedure that is robust to the model incomplete-

ness and incidental parameter problem.

REMARK 2.1: Most of the existing inference methods that apply laws of large num-

bers and central limit theorems implicitly impose assumptions on the heterogeneity of ηi.

A leading example is to assume the identity of the selection mechanism ηi = η for all i.

An alternative assumption is samples are stationary and strongly mixing (Chernozhukov

et al., 2007, Andrews and Soares, 2010), which imposes implicit restrictions on the selec-

tion mechanisms. An exception is the central limit theorem of Epstein et al. (2016), which

allowed arbitrary heterogeneity and dependence.

The result above is also related to the asymptotic uniform validity results shown for

many of the existing proposals (see Canay and Shaikh, 2017). Relative to them, Theorem

1 is novel in the following respects. First, it establishes the finite-sample validity of the

proposed method instead of asymptotic validity. To our knowledge, such results have not

been available outside a class of models formulated as optimization problems (Horowitz

6More generally, the outcomes can be arbitrarily correlated across experiments. With a slight modification, our
procedure remains valid in this setting (see Appendix B).
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and Lee, 2023). Second, it does not require tuning parameters for moment selection and

additional regularization commonly used to ensure the asymptotic uniform validity.7

In the next few sections, we provide details on how to construct the LR statistic. The

key is to construct L0 from a “least favorable” parametric model {qθ, θ ∈ Θ0} against a

“representative” alternative hypothesis qθ̂1 .

2.2. Choice of θ̂1

Any existing estimator of θ based on sampleD1 can be used as θ̂1. A leading choice is an

extremum estimator θ̂1 that minimizes a sample criterion function θ 7→ Q̂1(θ). For example,

Q̂1 can be based on sample moment inequalities (Chernozhukov et al., 2007, 2013)

Q̂1(θ) = sup
j,x

νθ(Aj |x)− P̂1(Aj |x)

ŝθ,1(Aj |x)
, (2.11)

where P̂1(Aj |x) is an estimator of the conditional probability P (Aj |x) based on D1, and

ŝθ,1 is an estimator of the standard error of P̂1. Another possibility is to use a negative

log-likelihood:

Q̂1(θ) =
∑
i∈D1

lnpθ(Yi|Xi; p̂n), (2.12)

where pθ(·|·; p̂n) is the Kullback-Leibler projection of the empirical distribution (Kaido and

Molinari, 2024).

2.3. How to Construct L0

Below, we condition on D1, assume θ̂1 is already computed, and treat it as fixed. We first

discuss why we construct a certain likelihood. For each x ∈ X , let

qθ,x ≡ {q : q(·|x) = dQ(·|x)/dµ, Q ∈ core (νθ(·|x))}, (2.13)

7For confidence regions for the entire parameter or identified sets, tuning parameters for selecting moments
are commonly used (Chernozhukov et al., 2007, Andrews and Soares, 2010). For subvector inference, additional
regularization parameters may be needed (Kaido et al., 2019).
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and let qθ ≡ {qθ,x, x ∈ X}. Given θ̂1, let p(·|x) ∈ qθ̂1,x be a conditional density that is

compatible with θ̂1. Now consider testing whether the data in D0 is compatible with the

null hypothesis or the “representative” alternative p. For each θ ∈ Θ0, consider forming a

likelihood ratio between an element of qθ,x and p(·|x) ∈ qθ̂1,x. Some elements of qθ,x may

be very easy to distinguish from p. Using such densities for the denominator of the LR

statistic can lead to overrejection if the true DGP differs from it.

To address this issue, we construct a family of least favorable densities for distinguishing

each θ ∈Θ0 from θ̂1. Define the Kullback-Leibler (KL) divergence by

I(f(·|x)||f ′(·|x))≡
∫
Sx

ln
f(y|x)

f ′(y|x)
f(y|x)dµ, (2.14)

where Sx = {y ∈ Y : f(y|x)> 0}. We construct a parametric model as follows.

DEFINITION 2.1—LFP-based parametric model: A family of densities {qθ, θ ∈ Θ0 ∪
{θ̂1}} is an LFP-based parametric model if (i) for each θ ∈Θ0 and x ∈ X ,

qθ(·|x) = arg min
q(·|x)∈qθ,x

I(q(·|x) + p(·|x)||q(·|x)) (2.15)

for p(·|x) ∈ qθ̂1,x; and (ii) qθ̂1(·|x) = p(·|x).

Given the representative density qθ̂1 = p under the unrestricted model, the challenge is

to identify the density that is compatible with θ ∈Θ0 and is appropriate for L0. Using the

theory for minmax tests, it can be shown that qθ in Definition 2.1 is the least-favorable

density for distinguishing qθ from qθ̂1 (see Proposition 5.1 below). We compute the LFP-

based parametric model as follows. First, p ∈ qθ̂1 can be found by solving the following

linear feasibility problem:

Find p(·|x) ∈∆Y (2.16)

s.t.
∑
y∈A

p(y|x)≥ νθ̂1(A|x), A ∈ C.



12

Since we condition on D1, we also view p as fixed. Next, given p and θ ∈Θ0, and x ∈ X ,

solve the following convex program:

qθ(·|x) = arg min
q(·|x)∈∆Y

∑
y∈Y

ln
(q(y|x) + p(y|x)

q(y|x)

)
(q(y|x) + p(y|x)) (2.17)

s.t.
∑
y∈A

q(y|x)≥ νθ(A|x; θ), A ∈ C, x ∈X.

As we will show, qθ can be derived analytically in leading examples. Also, we note that

numerically solving (2.17) is straightforward as long as the cardinality of Y is moderate

(see Remark 2.2). We then compute MLE θ̂0 in (2.6). Finally, compute

Tn =
L0(θ̂1)

L0(θ̂0)
=

∏
i∈D0

qθ̂1(Yi|Xi)∏
i∈D0

qθ̂0(Yi|Xi)
, (2.18)

and let Sn be defined as in (2.8).8

REMARK 2.2: The computational cost of solving (2.17) (or (2.16)) remains low as long

as Y does not contain many elements. For example, for an entry game with two players, one

may characterize the core of νθ by two inequality and two equality restrictions. Our proce-

dure is most effective in such settings. Also, there exists a sub-collection A⊂ C, known as

the minimal core determining class, which characterizes the core of νθ and has the smallest

cardinality (Luo and Wang, 2017, Ponomarev, 2022). It can be identified by an algorithm

that does not require any data (Ponomarev, 2022). Thus, for Y with high cardinality, it is

useful to first reduce the number of constraints by focusing on A.

3. MAIN THEORETICAL RESULTS

We make the following assumption on sampling.

8To compute Tn, we only need qθ to be defined over a smaller parameter space Θ0 ∪ {θ̂1}, which is a non-
random domain conditional on D1.
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ASSUMPTION 1: (i) (Yi,Xi,Ui), i= 1, . . . , n are independently distributed across i; (ii)

for each i, Ui|Xi = x∼ Fθ(·|x).

Independently distributed (Xi,Ui) is often assumed. Yi’s independence across i is subtle

as it rules out the cross-sectional dependence of outcomes through selection.9 However,

this assumption does not rule out the possibility that the selection mechanism ηi differs

across experiments. Hence, the selection can be arbitrarily heterogeneous across i. We also

provide a modified version of the procedure that relaxes Yi’s independence across i (see

Appendix B).

For each θ ∈Θ, let

Pnθ ≡
{
Pn ∈∆(Zn) : Pn =

n⊗
i=1

Pi, Pi(·|x) =

∫
U
ηi(·|u,x)dFθ(u|x),

ηi(·|u,x) ∈∆(G(u|x; θ)), a.s.
}
. (3.1)

Let Pn0 ≡ {Pn ∈ Pnθ : θ ∈Θ0} be the set of data generating processes (DGPs) compatible

with H0. The following theorem establishes the universal validity of the proposed test.

THEOREM 1: Suppose Assumption 1 holds. Then, for any n ∈N,

sup
Pn∈Pn0

Pn
(
Sn >

1

α

)
≤ α. (3.2)

We build on this result to construct a finite-sample valid confidence region for func-

tions of θ. Let ϕ : Θ→ Rdϕ . For each ϕ∗ ∈ Rdϕ , let Θ0(ϕ∗) ≡ {θ ∈ Θ : ϕ(θ) = ϕ∗} and

Θ1(ϕ∗)≡ {θ ∈Θ : ϕ(θ) 6= ϕ∗}. For example, a leading example of ϕ is the counterfactual

choice probability.10 Let Tn(ϕ∗) be defined as in (2.18) for this hypothesis, and let Sn(ϕ∗)

9See Epstein et al. (2016) for further discussion on the matter and its consequences on limit theorems.
10One can also construct confidence regions for the entire parameter by taking ϕ to be the identity map and

letting Θ0(θ∗) = {θ ∈Θ : ϕ(θ) = θ∗}= {θ∗} or a subvector of θ by taking ϕ to be the projection map to suitable
coordinates.
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be defined similarly. Define

CSn ≡
{
ϕ∗ ∈Rdϕ : Sn(ϕ∗)≤ 1

α

}
. (3.3)

Finally, define Fn0 ≡
{

(ϕ∗, Pn) : Pn ∈ Pnθ , ϕ(θ) = ϕ∗, for some θ ∈ Θ
}
. Then, the fol-

lowing coverage result holds.

COROLLARY 1: Suppose Assumption 1 holds. Then, for any n ∈N,

inf
(ϕ∗,Pn)∈Fn0

Pn
(
ϕ∗ ∈CSn

)
≥ 1− α. (3.4)

4. EXAMPLES

We illustrate the main theorem through examples.

Example 1 (Tests of Strategic Interaction). Consider a two-player static game of complete

information (Bresnahan and Reiss, 1990, 1991). Each player may either choose y(j) = 0 or

y(j) = 1. The payoff of player j is

π(j) = y(j)
(
x(j)′δ(j) + β(j)y(−j) + u(j)

)
, j = 1,2 (4.1)

where y(−j) ∈ {0,1} is the opponent’s action, x(j) is player j’s observable characteris-

tics, and u(j) is an unobservable payoff shifter. Suppose the players play a pure strategy

Nash equilibrium (PSNE). Let θ = (β′, δ′)′, and assume β ≤ 0. For each θ, the following
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u(1)

u(2)

S{(0,1)}|x;θ

S{(1,0)}|x;θ

S{(0,1),(1,0)}|x;θ

−x(2)δ(2) − β(2)

−x(1)δ(1) − β(1)

−x(2)δ(2) − β(2)

S{(1,1)}|x;θ

S{(0,0)}|x;θ

−x(2)δ(2)

−x(1)δ(1)

FIGURE 1.—Level sets of G(·|x;θ) with β(j) < 0, j = 1,2.

u(1)

u(2)

S{(0,1)}|x;θ

S{(1,0)}|x;θ

S{(1,1)}|x;θ

S{(0,0)}|x;θ

−x(2)δ(2)

−x(1)δ(1)

FIGURE 2.—Level sets of G(·|x;θ) with β(j) = 0, j = 1,2.

correspondence gives the set of equilibria: (Beresteanu et al., 2011, Proposition 3.1):

G(u|x; θ) =



{(0,0)} u ∈ S{(0,0)}|x;θ ≡ {u : u(j) <−x(j)′δ(j), j = 1,2},

{(0,1)} u ∈ S{(0,1)}|x;θ ≡ {u(1) <−x(1)′δ(1), u(2) >−x(2)′δ(2)}

∪{−x(1)′δ(1) < u(1) <−x(1)′δ(1) − β(1), u(2) > x(2)′δ(2) − β(2)},

{(1,0)} u ∈ S{(1,0)}|x;θ ≡ {u(1) >−x(1)′δ(1) − β(1), u(2) <−x(2)′δ(2) − β(2)}

∪{−x(1)′δ(1) < u(1) <−x(1)′δ(1) − β(1), u(2) <−x(2)′δ(2)},

{(1,1)} u ∈ S{(1,1)}|x;θ ≡ {u : u(j) >−x(j)′δ(j) − β(j), j = 1,2},

{(1,0), (0,1)} u ∈ S{(0,1),(1,0)}|x;θ ≡ {u :−x(j)′δ(j) < u(j) <−x(j)′δ(j) − β(j), j = 1,2}.

(4.2)

The model admits multiple equilibria {(1,0), (0,1)} when β(j) < 0 (see Figure 1).

Let Fθ(·|x) be the conditional distribution of U |X . The set qθ,x of densities compatible

with θ is
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qθ =
{
q ∈∆ : q((0,0)|x) = Fθ(S{(0,0)}|x;θ|x); q((1,1)|x) = Fθ(S{(1,1)}|x;θ|x);

Fθ(S{(1,0)}|x;θ|x)≤ q((1,0)|x)≤ Fθ(S{(1,0)}|x;θ) + Fθ(S{(0,1),(1,0)}|x;θ|x), x ∈ X
}
.

(4.3)

Consider testing

H0 : β(j) = 0, j = 1,2 v.s. H1 : β(j) < 0, for some j. (4.4)

Let θ̂1 be an estimator of θ based on D1. For example, it can be the minimizer of a sample

criterion function based on the moment restrictions in (4.3). For any p(·|x) solving (2.16),

the least-favorable density solving (2.17) is unique. This is because the model implies a

unique density under H0 (see Figure 2).11 For example, suppose U = (U (1),U (2)) follows

the bivariate standard normal distribution. The following is the LFP-based likelihood:

qθ(y|x) =
∏
ȳ∈Y

Fθ(S{ȳ}|x;θ|x)1{y=ȳ}

= (1−Φ(x(1)′δ(1)))(1−Φ(x(2)′δ(2)))1{y=(0,0)}

× (1−Φ(x(1)′δ(1)))Φ(x(2)′δ(2))1{y=(0,1)} ×Φ(x(1)′δ(1))(1−Φ(x(2)′δ(2)))1{y=(1,0)}

×Φ(x(1)′δ(1))Φ(x(2)′δ(2))1{y=(1,1)}.

Let θ̂0 be the restricted maximum likelihood estimator (RMLE) from D0:

θ̂0 ∈ arg max
θ∈Θ0

L0(θ), (4.5)

which consists of β(j) = 0, j = 1,2, and a maximizer of δ 7→
∏
i∈D0

q(0,δ)(Yi|Xi). Now,

one can compute the test statistic Sn via (2.7)-(2.8).

11Completeness under the null hypothesis also occurs in other contexts such as dynamic discrete choice models
(Chen and Kaido, 2023). Our framework does not need this requirement. In general, the solution to (2.17) can be
derived analytically even if the model is incomplete under H0 (see Proposition 4.1).
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The next example is on the counterfactual probabilities.

Example 2 (Counterfactual Probabilities). Consider the same example. Define the potential

entry of player j by

Y (j)(x(j), y(−j)) = 1{x(j)′δ(j) + β(j)y(−j) +U (j) ≥ 0}. (4.6)

This is the counterfactual entry decision by player j when the covariates and the other

player’s action are set to (x(j), y(−j)). Define the counterfactual entry probability by

ϕ(θ)≡ P (Y (j)(x(j), y(−j)) = 1) = Fθ({u : x(j)′δ(j) + β(j)y(−j) ≥−u(j)}), (4.7)

where Fθ is the marginal distribution of U . Consider testing,

H0 : ϕ= ϕ0, v.s. H1 : ϕ 6= ϕ0. (4.8)

We derive the LFP-based density in closed form. Let us introduce the following objects:

η1(θ;x) = 1− Fθ(S{(0,0)}|x;θ|x)− Fθ(S{(1,1)}|x;θ|x), (4.9)

η2(θ;x) = Fθ(S{(1,0)}|x;θ|x) + Fθ(S{(0,1),(1,0)};θ|x), (4.10)

η3(θ;x) = Fθ(S{(1,0)}|x;θ|x). (4.11)

Here, η1(θ;x) is the probability allocated by the model to either (1,0) or (0,1) occurring as

an equilibrium outcoe of the game; η2(θ;x) (η3(θ;x)) is the upper (lower) bound implied

by the model on the probability that (1,0) is the equilibrium outcome of the game.

PROPOSITION 4.1: For any p and θ such that p /∈ qθ, the LFP-based density qθ has the

following closed-form:

qθ((0,0)|x) = Fθ(S{(0,0)}|x;θ|x) (4.12)

qθ((1,1)|x) = Fθ(S{(1,1)}|x;θ|x) (4.13)
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qθ((0,1)|x) =


p((0,1)|x)

p((1,0)|x)+p((0,1)|x)η1(θ;x) θ ∈Θ1(x, p)

η1(θ;x)− η2(θ;x) θ ∈Θ2(x, p)

η1(θ;x)− η3(θ;x) θ ∈Θ3(x, p)

(4.14)

qθ((1,0)|x) =


p((1,0)|x)

p((1,0)|x)+p((0,1)|x)η1(θ;x) θ ∈Θ1(x, p)

η2(θ;x) θ ∈Θ2(x, p)

η3(θ;x) θ ∈Θ3(x, p)

, (4.15)

where

Θ1(x, p)≡
{
θ ∈Θ : η3(θ;x)≤ p((1,0)|x)

p((1,0)|x)+p((0,1)|x)η1(θ;x)≤ η2(θ;x)
}

(4.16)

Θ2(x, p)≡
{
θ ∈Θ : p((1,0)|x)

p((1,0)|x)+p((0,1)|x)η1(θ;x)> η2(θ;x)
}

(4.17)

Θ3(x, p)≡
{
θ ∈Θ : p((1,0)|x)

p((1,0)|x)+p((0,1)|x)η1(θ;x)< η3(θ;x)
}
. (4.18)

The test statistic Sn(ϕ0) can be calculated at any null counterfactual probability ϕ0.

Corollary 1 ensures inverting this test yields a universally valid confidence interval for the

counterfactual probability.

In the analysis above, we considered the potential entry of a player when we set the

other player’s action to a certain value. Instead, one may be interested in the potential (or

counterfactual) equilibrium outcome Y (x), which is an equilibrium outcome that would

realize when we set X to x. It is a measurable selection of G(U |x; θ). In general, we

cannot uniquely determine the counterfactual equilibrium probability P (Y (x) = y), y ∈ Y .

However, we can express its bounds as functions of θ. For example, the sharp upper bound

on the counterfactual probability of Y (x) = (1,0) is

ϕ(θ)≡ sup
P∈Pθ

P (Y (x) = (1,0))

= Fθ(G(U |x; θ)∩ {(1,0)} 6= ∅) = Fθ(S{(1,0)}|x;θ) + Fθ(S{(0,1),(1,0)};θ), (4.19)
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where Fθ is the marginal distribution of U . The analysis for this object is essentially the

same as before.

Example 3 (Set-Valued Control Functions). Consider a triangular model

Y = 1{αD+W ′β + ε > 0}, (4.20)

D = 1{Z ′δ + V > 0}, (4.21)

where Y is a binary outcome, D is a binary treatment, and W is a vector of observable

control variables. Suppose that ε is independent of D conditional on (W,V ). This means

(W,V ) serve as a set of control variables. With a binary endogenous variable, we cannot

recover V as a function of other observables. However, we can construct the following

set-valued control function:

V (D,Z; δ) =

[−Z ′δ,∞) if D = 1

(−∞,−Z ′δ] if D = 0.
(4.22)

Suppose the conditional distribution of ε|V belongs to a location family and one can

write ε = ηV − U , where U ⊥ D|W,V . Let x = (l,w, z). Without further assumptions,

the model’s prediction is

G(u|x; θ) =
{
y ∈ {1,0} : y = 1{αd+w′β + ηv− u > 0}, v ∈ V (d, z; δ)

}
, (4.23)

One can simplify G with additional sign restrictions. For example, if η < 0,12

G(u|x; θ) =


{1} if d= 0, u < w′β − ηz′δ

{0} if d= 1, u≥ α+w′β − ηz′δ

{0,1} otherwise.

(4.24)

12See Lemma A.1 for a full description of G.
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The following proposition characterizes the LFP-based density.

PROPOSITION 4.2: Let Fθ(·|w) be the conditional CDF of U |W .13 For any p and θ such

that p /∈ qθ, the LFP-based density qθ has the following closed-form:

qθ(1|x) =



Fθ(w
′β − ηz′δ|w) if η < 0, d= 0, p(1|x)≤ Fθ(w′β − ηz′δ|w),

1− Fθ(α+w′β − ηz′δ|w) if η < 0, d= 1, p(1|x)≥ 1− Fθ(α+w′β − ηz′δ|w),

Fθ(αd+w′β|w) if η = 0,

Fθ(w
′β − ηz′δ|w) if η > 0, d= 0, p(1|x)≥ Fθ(w′β − ηz′δ|w),

Fθ(α+w′β − ηz′δ|w) if η > 0, d= 1, p(1|x)≤ Fθ(α+w′β − ηz′δ|w),

p(1|x) otherwise.

qθ(0|x) = 1− qθ(1|x). (4.25)

We may examine the effect ofD by testingH0 : α= 0. Furthermore, we may examine the

exogeneity of D by testing if H0 : η = 0 is true. In addition, bounds on structural estimands

can be obtained. For example, the lower bound on the average structural function ASF(d) =

E[1{αd+W ′β + ε > 0}] studied in Blundell and Powell (2003, 2004) is

ϕ(θ) =E
[

inf
v∈V (D,Z;δ)

FU |W (αd+W ′β + ηv|W )
]
,

where expectation is taken with respect to (D,Z,W,η).14 We may conduct a one-sided

hypothesis test on ϕ(θ) and invert it to obtain a confidence interval.

5. THEORY BEHIND UNIVERSAL INFERENCE FOR INCOMPLETE MODELS

This section outlines the machinery behind Theorem 1.

13Note that U is independent of L (a function of Z) conditional on (W,V ). Hence U ’s distribution only
depends only on W .

14Similarly, the lower bound on the average treatment effect is

ϕ(θ) =E
[

inf
v∈V (D,Z;δ)

(
FU |W (α+W ′β + ηv|W )− FU |W (W ′β + ηv|W )

)]
.
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5.1. Universal inference & Least Favorable Pair

Wasserman et al. (2020) consider a probabilistic model {Pθ, θ ∈Θ}, where Pθ ∈∆(Z).

Let pθ be the density of Pθ. Their split LR statistic is

Tn =
L0(θ̂1)

L0(θ̂0)
=

∏
i∈D0

pθ̂1(Zi)∏
i∈D0

pθ̂0(Zi)
, (5.1)

where θ̂1 is an estimator computed from D1, θ̂0 = arg maxθ∈Θ0
L0(θ). They apply a

Chernoff-type bound to the log-likelihood ratio to show the universal validity of their pro-

cedure.15 For their argument to go through, the likelihood L0(·) must represent the condi-

tional distribution of {Zi, i ∈D0} given D1 when evaluated at the true parameter value. In

our setting, the form of this distribution is unknown due to the selection mechanism. Instead

of applying their argument directly, we let L0(·) represent the least-favorable distributions

for a certain testing problem. Specifically, given θ̂1 and a distribution qθ̂1(·|x) = p(·|x)

computed in (2.16), we consider distinguishing {qθ, θ ∈Θ0} against a “representative” al-

ternative qθ̂1 . For each θ ∈Θ0, we compute the least favorable distribution qθ ∈ qθ, which

is most difficult to distinguish from qθ̂1 . We outline below the formal argument.

In what follows, let Z = (Y,X) denote the vector of observable variables, and let Z =

Y × X . Let P be the joint distribution of (Y,X), PY |X be the conditional distribution of

Y |X , and PX be the marginal distribution of X , and we assume PX is known. For each

θ ∈ Θ, the following is the set of distributions of Z that are compatible with the model

assumption:

Pθ ≡
{
P ∈∆(Z) : PY |X(·|x) =

∫
U
η(·|u,x)dFθ(u|x),

for some η(·|u,x) ∈∆(G(u|x; θ))
}
, (5.2)

15To be precise, they apply Markov’s inequality to Tn, which can be viewed as bounding the tail probability
using the moment generating function (MGF) of the log-likelihood. The key is to use a simple yet nontrivial result
EPθ [elnTn ]≤ 1. They call this approach “poor man’s Chernoff bound”. See their discussion on page 16882.
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where η is a conditional law of Y supported on G(u|x; θ).

Our starting point is an analog of the Neyman–Pearson framework. For θ0, θ1 ∈Θ such

that Pθ0 and Pθ1 are disjoint, consider testing a simple null hypothesis, H0 : θ = θ0, against

a simple alternative hypothesis, H1 : θ = θ1. In complete models, a well-defined reduced

form induces a unique likelihood function. In such settings, an optimal test is an LR test

by the Neyman–Pearson lemma. In incomplete models, however, the model generally ad-

mits a (non-singleton) set Pθ of distributions, which prevents us from directly applying the

Neyman–Pearson lemma.

Hence, we consider minimax tests building on Huber and Strassen (1973, 1974).16 Let φ :

Z 7→ [0,1] be a (possibly randomized) test. For each P on (Z,ΣZ), the rejection probability

of φ is EP [φ(Z)] =
∫
φ(z)dP. Let πθ(φ)≡ infP∈Pθ EP [φ(Z)] be the power guarantee of φ

under θ. This is the power value certain to be obtained regardless of the unknown selection

mechanism. We call φ a level-α minimax test if it satisfies the following conditions:

sup
P∈Pθ0

EP [φ(Z)]≤ α , (5.3)

and

πθ1(φ)≥ πθ1(φ̃), ∀φ̃ satisfying (5.3). (5.4)

Here, (5.3) imposes a uniform size control requirement. In (5.4), tests are ranked in terms

of their power guarantee.

The lower envelope of Pθ

νθ(A)≡ inf
P∈Pθ

P (A) (5.5)

16See Ch. 8 of Lehmann and Romano (2006) for a general treatment of the topic.
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is a non-additive set function called belief function (or totally monotone capacity).17 We

also define the upper envelope ν∗θ (A)≡ supP∈Pθ P (A), which satisfies the conjugacy rela-

tionship ν∗θ (A) = 1− νθ(Ac) to the belief function.18

We summarize the model’s prediction by the correspondence Γ :X ×U ×Θ→Z :

Γ(x,u; θ)≡ {(y,x) ∈Z : y ∈G(u|x; θ)}. (5.6)

This map collects all values of the observable variables compatible with θ. By Choquet’s

theorem (e.g., Choquet, 1954, Philippe et al., 1999, Molchanov, 2006), we may represent

νθ and ν∗θ using the distribution of the random set Γ(X,U ; θ):

νθ(A) =

∫
X

∫
U

1{Γ(x,u; θ)⊂A}dFθ(u|x)dPX(x)

ν∗θ (A) =

∫
X

∫
U

1{Γ(x,u; θ)∩A 6= ∅}dFθ(u|x)dPX(x).

A belief function is a special case of two-monotone capacities whose properties have

proven powerful for conducting robust inference (Huber, 1981).19 In particular, for models

whose lower envelopes are two-monotone, Huber and Strassen (1973) showed that the

rejection region of a minimax test takes the form {z : Λ(z)> t} for a measurable function

Λ. Further, the following results follow from their Theorems 4.1 and 6.1. For this, let dQ1
dQ0

=

{q1q0 : qj ∈
dQj
dυ , qj ≥ 0, j = 0,1, q0 + q1 > 0} be the Radon-Nikodym derivative, where υ

is a measure that dominates Qj , j = 0,1. Below, we take υ to be the counting measure.

17It is not a probability measure due to the lack of additivity. When the model is complete (i.e.,Pθ is a singleton)
νθ is a probability measure.

18The total monotonicity of νθ follows from Philippe et al. (1999) (Theorem 3). The foundations of belief
functions are given by Dempster (1967) and Shafer (1982). See Gul and Pesendorfer (2014) and Epstein and Seo
(2015) for the axiomatic foundations of the use of belief functions in incomplete models.

19See Appendix A.1
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PROPOSITION 5.1: Suppose Assumption 1 holds. Let Pθ0 be defined as in (5.2). Then,

(i) a least-favorable pair (LFP) (Q0,Q1) ∈ Pθ0 ×Pθ1 exists such that for all t ∈R,

ν∗θ0(Λ> t) =Q0(Λ> t) (5.7)

νθ1(Λ> t) =Q1(Λ> t), (5.8)

where Λ is a version of dQ1/dQ0.

(ii) The LFP densities qj = dQj/dυ, j = 0,1 solve the following convex program:

(q0(·|x), q1(·|x)) = arg min
p0(·|x),p1(·|x)

∑
y∈Y

ln
(p0(y|x) + p1(y|x)

p0(y|x)

)
(p0(y|x) + p1(y|x)) (5.9)

s.t. νθ0(B|x)≤
∑
s∈B

p0(y|x), B ⊂Y , x ∈X

νθ1(B|x)≤
∑
s∈B

p1(y|x), B ⊂Y , x ∈X;

Heuristically, Q0 is the probability distribution consistent with the null parameter value,

under which the size of the test is maximal. Similarly, Q1 is the distribution consistent with

the alternative parameter value, which is the least favorable for power maximization.20

We use Proposition 5.1 to construct the LFP-based likelihood. Namely, for each θ ∈
Θ0, we form the LFP (Qθ,Qθ̂1) ∈ Pθ × {Qθ̂1}, where Qθ̂1/dυ = qθ̂1 , and we set qθ =

dQθ/dυ. The key is that, for each θ ∈ Θ0, we set qθ to be the density (within qθ) that is

most difficult to distinguish from qθ̂1 . Hence, we observe a large value of Tn only if there is

strong evidence against the null hypothesis. This construction allows us to control the test’s

size even if the nature generates data from the least-favorable scenario for the size control

(i.e., generating data from qθ for some θ ∈Θ0).

20An extension of the classic Neyman–Pearson lemma is known to hold (Huber and Strassen, 1973). That is,
an LR-test of the form

φ(z) =


1 if Λ(z)>C

γ if Λ(z) =C

0 if Λ(z)<C,

is a level-α minmax test.
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6. AN EMPIRICAL APPLICATION

As an illustration, we apply the proposed tests to the model of Lambert (2019) who stud-

ied the effects of lobbying on regulatory actions taken by the U.S. financial regulators.21

One of the primary tools used by financial regulators to ensure the stability of the financial

system is regulatory enforcement actions. These actions can take different forms, including

fines, penalties, cease-and-desist orders, and other measures.

Our goals here are two-fold. First, revisiting the empirical question studied by Lambert

(2019), we aim to test whether the banks’ lobbying actions have any effects on the regu-

latory enforcement actions. The banks’ lobbying behavior can be explained by the bank’s

rent-seeking behavior for receiving preferential treatment from the regulator (Stigler, 2021,

Peltzman, 1976) or their voluntary information provision to reduce the chance of facing

severe enforcement actions. This suggests the bank’s lobbying decision is likely endoge-

nous. In particular, their unobserved characteristics (e.g., unmeasured credit risk exposure),

may affect their lobbying decisions and the regulator’s enforcement decisions. Hence, we

use the set-valued control function approach as in Example 3 to account for self-selection.

Second, we also formally test whether the lobbying decisions are made endogenously.

Let Yi be a binary outcome that takes 1 if the regulatory agency issues a severe enforce-

ment action on bank i at time t. Suppose

Yi = 1{αDi +W ′iβ + εi > 0}, (6.1)

Di = 1{Z ′iδ + Vi > 0}, (6.2)

where Di = 1 if bank i engaged in a lobbying activity, otherwise Di = 0, and Wi represents

additional control variables. The latent variable εi in the outcome equation may be related

to the unobservable characteristics Vi, which are relevant to the banks lobbying decision.

Hence, we assume εi = ηVi +Ui, where Ui satisfies Ui ⊥Di|Wi, Vi.

21We consider the Office of the Comptroller of the Currency (OCC), the Federal Deposit Insurance Corporation
(FDIC), and the Federal Reserve System (Fed).
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With a binary endogenous variable, we cannot uniquely recover Vi. We construct the

following set-valued control function

V (Di,Z
′
iδ) =

[−Z ′iδ,∞) if Di = 1

(−∞,Z ′iδ] if Di = 0
(6.3)

Following Example 3, we construct the model’s set-valued prediction as follows

G(Ui|Xi; θ)≡
{
y ∈ {0,1} : y = 1[αDi +W ′iβ + ηVi +Ui > 0], Vi ∈ SelV (Di,Zi, δ)

}
,

(6.4)

where SelV is the set of all measurable selections of V .22

We examine the effect of lobbying on the regulator’s actions by testing

H0 : α= 0 v.s. H1 : α 6= 0.

For this, we follow the construction of L0 in Section 2.3. Specifically, we first compute θ̂1,

an estimator of θ = (α,β′, δ′, η)′ by minimizing the sample criterion function as in (2.11)

with

νθ({1}|d= 0,w, z) = 1− Fθ(w′β − ηz′γ|w), for θ such that η < 0, (6.5)

νθ({0}|d= 1,w, z) = Fθ(α+w′β − ηz′δ|w), for θ such that η < 0, (6.6)

νθ({1}|d= 1,w, z) = Fθ(α+w′β − ηz′δ|w), for θ such that η ≥ 0, (6.7)

νθ({0}|d= 0,w, z) = 1− Fθ(w′β − ηz′δ|w), for θ such that η ≥ 0. (6.8)

We then obtain qθ̂1 by solving (2.16). Next, using Proposition 4.2, we maximize L0 subject

to the constraint α = 0, which yields θ̂0. We obtain the split-LR statistic Tn in (2.18). Re-

22Lambert (2019) assumed the latent variables εi and vi were bivariate normal distributions with mean zero
and unit variance independent of Zi. Here, we work with an assumption on the conditional law of εi only.
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peating them while swapping the roles ofD0 andD1 and aggregating the resulting statistics

yields the cross-fit LR statistic Sn. Finally, we compare Sn to 1/α.

Furthermore, we test the endogeneity of lobbying decisions by considering

H0 : η = 0 v.s. H1 : η 6= 0.

This can be done by taking the same steps as above but replacing the constraint α= 0 with

η = 0 upon maximizing θ 7→ L0(θ).

6.1. Data

Our primary data consists of annual records of regulatory enforcement actions, lobbying

activities, and other variables from 2008 to 2019, obtained from three sources. The first

source is the S&P Capital IQ Pro database, which includes enforcement actions, financial

activities, and demographic information.23 The second source is the Center for Respon-

sive Politics (CRP), which provides information on the lobbying activities of commercial

banks. The third source is the Bureau of Economic Analysis, which provides county-level

personal income, which serves as a regional economic control variable (see Lambert, 2019,

for details). We have merged the data obtained from CRP and the Capital IQ Pro database

to obtain the full set of banks’ lobbying activities used for our analysis.

6.1.1. Regulatory Enforcement Actions

The Capital IQ Pro database provides information on the year and type of regulatory

enforcement actions. Various actions may be taken if a regulator identifies financial weak-

nesses, managerial issues, or violations of banking regulations during the examination.

These actions either request banks to adopt a resolution or require them to sign agreements

to address the problem. When the bank and regulator sign on a bilateral written agreement

about necessary actions, we treat it as a form of enforcement action. We also treat cease

23Since the original data (SNL Financial Database) used by Lambert (2019) is not publicly available, we use
data from Capital IQ Pro (also called S&P Global Market Intelligence) established in 2016, which builds on
datasets that used to be part of S&P Capital IQ and SNL Financial Database.



28

and desist orders, prompt corrective action directives, and deposit insurance threats as en-

forcement actions.24 We let Yi = 1 if a federal agency (OCC, FDIC, or Fed) issues a severe

enforcement action against a given bank in the year the action becomes effective and zero

otherwise.

6.1.2. Bank Lobbying

We use lobbying disclosure reports of commercial banks to determine each bank’s lob-

bying activity in a given year.25 All lobbying activities are recorded at the parent financial

institution level rather than at the individual bank (subsidiary) level. A bank’s lobbying sta-

tus Di is 1 if the parent institution is active in lobbying in a given year, otherwise Di = 0.

We identify 196 banks that were active in lobbying in any of the years from 2008 to 2019.

This corresponds to 1489 lobbying bank-year observations.26 In our analysis below, we

use year 2010, which contained the largest number of lobbying activities between 2008

and 2012.27

6.1.3. Instrumental variables and Control variables

Following Lambert (2019), we use two instrumental variables (IV). The first IV is the

initial market size, measured by a bank’s total assets in 1998 relative to its within-state

peers’ total assets. The second IV is the distance (in kilometers) between the bank’s head-

quarters and Washington, DC. The control variables include various covariates capturing

the banks’ financial characteristics and regional economic conditions (see Section D in the

Online Supplement). The control variables we consider in the model are six proxies vari-

ables for CAMELS ratings. They are capital adequacy, asset quality, management quality,

earnings, liquidity, and sensitivity to market risk. Additionally, we also control for a set of

24These are considered “severe” actions. There are also less severe actions, which we do not consider. They are
usually issued against individuals associated with banks. See Section D.3 in the Online Supplement for details.

25The Lobbying Disclosure Act (LDA) of 1995 requires banks to report information on their lobbying activities
to the Senate Office of Public Records (SOPR).

26Lobbying made by coalitions or associations is not considered in our sample, as they do not disclose mem-
bership information. This may result in an underestimation of some banks’ lobbying activities.

27Table C.I presents the time distribution of lobbying banks. The proportion of lobbying banks was relatively
high from 2008 to 2012 but has decreased since 2013 and remained fairly low from 2013 to 2019.
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financial and demographic variables, including the deposit to asset ratio, total core deposits,

size of total assets, bank ages and real personal income growth at the county level.

6.2. Results

In an ongoing work, we conduct tests of the the hypotheses discussed above. The results

will be added to a revised version of the paper.

7. MONTE CARLO EXPERIMENTS

We examine the performance of the proposed test through simulations. First, we use the

two-player entry game example with the following payoff:

π(j) = y(j)
(
θ(j)y(−j) + u(j)

)
, j = 1,2. (7.1)

We then test H0 : θ(j) = 0, j = 1,2 against H1 : θ(j) < 0 for some j. As discussed in Exam-

ple 1, the model is complete under the null hypothesis, which determines L0. Hence, one

only needs to determine θ̂1. We consider two options. Both are extreme estimators. The

first one is a minimizer of a sample criterion function based on the sample analog of the

sharp identifying restrictions as in (2.11). We call this estimator a moment-based estima-

tor. The second one maximizes the information-based objective function, which uses the

Kullback-Leibler projection pθ(Yi; p̂n) of the empirical distribution p̂n to the incomplete

model (Kaido and Molinari, 2024). For each θ ∈ Θ, The estimator θ̂1 is a maximizer of

Q̂1(θ)≡
∑

i∈D1
lnpθ(Yi; p̂n). We call this estimator an MLE.

We set the sample size to n = 100 and 200. We calculate the rejection probability of

the test at the alternatives with θ(j) =−h with h≥ 0. Under each alternative, the outcome

Yi = (1,0) is selected with probability 0.5 whenever the model admits multiple equilibria.

Figure 3 plots the power of the two cross-fit tests and the power envelope. The two tests

have similar power curves, suggesting the choice of the initial estimator θ̂1 does not seem to

matter, at least for this example. Overall, the proposed tests are conservative. Their rejection

probabilities at h = 0 are nearly 0. However, they could detect mild strategic interaction
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effects (e.g., h = 0.5) with reasonable rejection probabilities (approximately 0.7 for n =

100 and 0.98 for n= 200) even in small samples.

In the second experiment, we use the specification of payoff functions in (4.1). For each

j, X(j) is a covariate that takes K = 5 discrete values {−2,−1,0,1,2}, and the two co-

variates are generated independently. When multiple equilibria are predicted, one of them

gets selected with probability 0.5. We test H0 : δ(j) = 0, j = 1,2 against H1 : δ(j) 6= 0 for

some j. A difference from the previous specification is that the model is incomplete under

the null hypothesis. While the model remains incomplete under H0, carrying out the test is

straightforward because L0 can be derived analytically (Proposition 4.1). We evaluate the

power of the test against alternatives with δ(j) = h,h > 0 for samples of size n= 100 and

200. For this experiment, we use the moment-based estimator as θ̂1.

Figure 4 summarizes the result. As in the previous example, the test tends to be conser-

vative. Nonetheless, it has meaningful power against alternatives, even in small samples,

and it exhibits monotonically increasing power curves. We also compare our test to the

test developed by Bugni et al. (2017). Their test uses a statistic based on the sample ana-

log of moment inequalities. We hence call it a moment-based test. Note that the previous

designs use small sample sizes. The covariates (X(1),X(2)) take 25 different values with

equal probabilities, which makes the essential sample size in each bin very small. This

feature was not an issue for the cross-fit LR test. However, it caused computational issues

for implementing Bugni et al.’s (2017) test.28 Hence, we compare the performance of the

two tests with n = 5000. Figure 5 reports the power curves of the two tests. Both tests

show monotonically increasing power curves, and neither of them is uniformly dominant.

Finally, Table I reports the computation time required to implement the tests.29 To mimic a

realistic scenario, we parallelized Bugni et al.’s (2017) bootstrap repetitions across multiple

28For example, when evaluating their objective functions in the sample or with bootstrap samples, the moments
based on empty bins caused computational issues. To avoid adding modifications not considered in their original
paper, we work in an environment in which their procedure is reliable. With n = 5000, we can ensure that we
have 200 observations in each bin on average.

29They were computed using Boston University’s Shared Computing Cluster (SCC) nodes equipped with 2.6
GHz Intel Xeon processor (E5-2650v2) and 128GB memory (per node).



31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crossfit-LR (MLE,n=100)
Crossfit-LR (MLE,n=200)
Crossfit-LR (Moment-based,n=100)
Crossfit-LR (Moment-based,n=200)

FIGURE 3.—Power of the Cross-Fit Tests for testing H0 : β(j) = 0, j = 1,2.
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Cross-fit LR test Moment-based test

4 cores 8 cores 16 cores

13.75 111.65 56.64 41.84
TABLE I

COMPUTATION TIME (IN SECONDS)
Note: The median computation time is calculated based on S = 1000 simulations for the Cross-fit LR test. For

the moment-based test of Bugni et al. (2017), we parallelized bootstrap replications with 4, 8, and 16 cores. The
median computation time is calculated based on S = 100 simulation repetitions.

processors. The table shows that the cross-fit LR test takes about 14 seconds, which is sig-

nificantly below the computation time (about 42 seconds) required for the moment-based

test with 16 cores.

In sum, the simulation results show that the cross-fit LR test has non-trivial power even

in small samples. In large samples for which existing tests are applicable, the proposed test

has power properties comparable to a well-established test.

8. CONCLUSION

This paper develops a novel likelihood-based test and confidence regions for incomplete

models. They apply to a wide range of discrete choice models involving set-valued pre-

dictions. Yet, they are simple to implement because they do not require any resampling

or moment selection. To retain simplicity, this paper uses a simple two-fold cross-fitting

method. An avenue for further research is to examine whether alternative sample-splitting

schemes (e.g., K-fold cross fitting) can improve the statistical properties of the proposed

test.
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APPENDIX A: PROOFS

A.1. Preliminaries

Below, we introduce capacities and their basic properties. We refer to Denneberg (1994)

for technical treatments.

Let ΣZ be the Borel σ-algebra. A function ν : ΣZ → R with v(∅) = 0 is a capacity.

Throughout, we assume ν(A)≥ 0, ∀A ∈ ΣZ , ν(Z) = 1 (i.e. normalized). We also assume

ν is monotone. That is, for any A,B ∈ ΣZ , A⊆ B⇒ ν(A)≤ ν(B). Capacity ν is said to

be monotone of order k or, for short, k-monotone if for any Ai ⊂ S, i= 1 · · · , k,

ν
(
∪ki=1 Ai

)
≥

∑
I⊆{1,··· ,k},I 6=∅

(−1)|I|+1ν
(
∩i∈I Ai

)
. (A.1)

If the property holds for any k, it is called a totally monotone capacity. The conjugate

ν∗(A) = 1 − ν(Ac) of a k-monotone capacity is called a k-alternating capacity. For any

capacity ν and a real-valued function f on Z , the Choquet integral of f with respect to ν

is defined by

∫
fdν ≡

∫ 0

−∞
(ν({s : f(s)≥ t})− ν(Z))dt+

∫ ∞
0

ν({s : f(s)≥ t})dt. (A.2)

Let A(D1) ∈ΣZ be a measurable set, which is allowed to depend on subsample D1. For

each θ ∈Θ, let

ν∗θ (A(D1)|D1)≡
∫

1{G(u|X; θ)∩A(D1) 6= ∅}dFθ(u). (A.3)

The set function ν∗θ (·|D1) is then a totally-alternating capacity (Philippe et al., 1999).

A.2. Proof of Theorems

PROOF OF THEOREM 1: We present a version of the proof for the split-sample statistic

Tn first. Let θ ∈ Θ0 and let Pn ∈ Pnθ . Let PDj be the marginal distribution of Pn on Dj ,

and let Pn(·|D1) be the conditional distribution given {(Yi,Xi), i ∈ D1}. By Markov’s
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inequality,

Pn(Tn >
1

α
)≤ αEPn [Tn] = αEPD1 [EPn [Tn|D1]]. (A.4)

For each i ∈D0, let Λi = qθ̂1(Zi)/qθ(Zi) and define T ∗n(θ) = L0(θ̂1)/L0(θ) =
∏
i∈D0

Λi.

We may bound EPn [Tn|D1] as follows.

EPn [Tn|D1]≤ sup
P̃n∈Pnθ

EP̃n [Tn|D1]

(1)
≤ sup

P̃n∈Pnθ

EP̃n [T ∗n(θ)|D1]

(2)
=
∏
i∈D0

sup
P̃∈Pθ

EP̃ [Λi|D1]

(3)
=
∏
i∈D0

∫
Λidν

∗
θ (·|D1), (A.5)

where (1) is due to Tn ≤ T ∗n(θ) for any θ ∈ Θ0 due to θ̂0 being the maximizer of L0, (2)

follows because of Assumption 1 (i) and the definition of Pnθ in (3.1), and (3) follows

from supP̃∈Pθ EP̃ [Λi|D1] =
∫

Λidν
∗
θ (·|D1), a property of the Choquet integral for two-

alternating capacities (Schmeidler, 1986). Observe that∫
Λidν

∗(·|D1) =

∫ ∞
0

ν∗θ (Λi ≥ t|D1)dt=

∫ ∞
0

ν∗θ (Λi > t|D1)dt. (A.6)

By Proposition 5.1 (i), there exists Qθ ∈ Pθ such that, for all t,

ν∗θ (Λi > t|D1) =Qθ(Λi > t|D1), (A.7)

and Qθ’s conditional density qθ solves (2.17) by Proposition 5.1 (ii). Let A be the support

of qθ. Then,

∫ ∞
0

ν∗θ (Λi > t|D1)dt=

∫ ∞
0

Qθ(Λi > t|D1)dt
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=EQθ

[qθ̂1(Zi)

qθ(Zi)

∣∣∣D1

]
=

∫
A

qθ̂1(z)

qθ(z)
qθ(z)dz ≤

∫
qθ̂1(z)dz = 1. (A.8)

Combining (A.5)-(A.8) yieldsEPD1 [Tn|D1]≤ 1.Conclude that Pn(Tn >
1
α)≤ αEPn [Tn]≤

1 from (A.4) and observe that the bound applies uniformly across Pn ∈ Pn0 .

For the cross-fit test, arguing as in (A.4),

Pn(Sn >
1

α
)≤ αEPn [Sn] = αEPn

[Tn + T swap
n

2

]
=
α

2
(EPn [Tn] +EPn [T swap

n ]). (A.9)

The rest of the proof is essentially the same. Q.E.D.

PROOF OF COROLLARY 1: The argument is by the standard test inversion. By Theorem

1, for any n,

Pn(ϕ∗ /∈CSn) = Pn(Sn(ϕ∗)>
1

α
)≤ α,

implying Pn(ϕ∗ ∈CSn)≥ 1− α uniformly in (ϕ∗, Pn) ∈ Fn0 . Q.E.D.

A.3. Proof of the Propositions

PROOF OF PROPOSITION 4.1: By (4.3), it suffices solve the following program

arg min
q(·|x)∈∆Y

∑
y∈{(0,0),(1,1),(1,0),(0,1)}

ln
(q(y|x) + p(y|x)

q(y|x)

)
(q(y|x) + p(y|x))

s.t. q((0,0)|x) = Fθ(S{(0,0)}|x;θ|x)

q((1,1)|x) = Fθ(S{(1,1)}|x;θ|x)

Fθ(S{(1,0)}|x;θ|x)≤ q((1,0)|x)≤ Fθ(S{(1,0)}|x;θ) + Fθ(S{(0,1),(1,0)}|x;θ|x).

Note that qθ((0,0)|x) and q((1,1)|x) are determined by the equality constraints, which

gives (4.12)-(4.13). Therefore, it suffices to solve the problem above for q((1,0)|x). Let z =
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q((1,0)|x) and note that one can express q((0,1)|x) as q((0,1)|x) = η1(θ;x)− z. Consider

min
z∈[0,1]

ln
(z + p((1,0)|x)

z

)
(z + p((1,0)|x))

+ ln
(η1(θ;x)− z + p((0,1)|x)

η1(θ;x)− z

)
(η1(θ;x)− z + p((0,1)|x))

s.t.Fθ(S{(1,0)}|x;θ|x)≤ z ≤ Fθ(S{(1,0)}|x;θ) + Fθ(S{(0,1),(1,0)}|x;θ|x)

If Fθ(S{(0,1),(1,0)}|x;θ|x) > 0, Slater’s condition is satisfied. Solving the Karush-Kuhn-

Tucker (KKT) condition for this problem yields (4.15). (4.14) follows from q((0,1)|x) =

η1(θ;x)− z. If Fθ(S{(0,1),(1,0)}|x;θ|x) = 0, the model is complete, and the solution reduces

to qθ(y|x) = Fθ(S{y}|x;θ|x) for all y, which is a special case of (4.12)-(4.15). Q.E.D.

LEMMA A.1: Suppose the model is characterized by (4.20)-(4.21). Then, G(u|x) takes

the following form.

If η < 0,

G(u|x; θ) =


{1} if d= 0, u < w′β − ηz′δ

{0} if d= 1, u≥ α+w′β − ηz′δ

{0,1} otherwise.

(A.10)

If η > 0,

G(u|x; θ) =


{1} if d= 1, u < α+w′β − ηz′δ

{0} if d= 0, u≥w′β − ηz′δ

{0,1} otherwise.

(A.11)

Finally, if η = 0,

G(u|x; θ) =

{1} u < αd+w′β

{0} u≥ αd+w′β.
(A.12)
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PROOF: We first derive (A.10). Suppose η < 0 and d= 1 first. By (4.20) and ε= ηv−u,

y = 1 if

u < α+w′β + ηv, for some v ∈ [−z′δ,∞). (A.13)

Then, by η < 0, we can write this event as u ∈
⋃
v∈[−z′δ,∞)(−∞, α + w′β + ηv) =

(−∞, α+w′β − ηz′δ). Similarly, y = 0 if

u≥ α+w′β + ηv, for some v ∈ [−z′δ,∞). (A.14)

This means y = 0 is always consistent with the model because ηv is unbounded from below.

Hence,

G(u|1,w, z; θ) =

{0,1} u < α+w′β − ηz′δ

{0} u≥ α+w′β − ηz′δ.
(A.15)

Now consider the case d= 0. By the same argument, y = 1 if

u < w′β + ηv, for some v ∈ (−∞,−z′δ]. (A.16)

This means y = 1 is always consistent with the model because ηv is unbounded from above.

Similarly, y = 0 if

u≥w′β + ηv, for some v ∈ (−∞,−z′δ], (A.17)

which is equivalent to u≥w′β − ηz′δ. Therefore,

G(u|0,w, z; θ) =

{1} u < w′β − ηz′δ

{0,1} u≥w′β − ηz′δ.
(A.18)

Combining (A.15)-(A.18) yields (A.10).



40

Now suppose η > 0. Consider the case d = 1. y = 1 if (A.13) holds. Since ηv is un-

bounded from above, y = 1 is consistent with the model regardless of the value of u. Simi-

larly, y = 0 if (A.14) holds, and this event can be written as u≥ α+w′β − z′δ. Hence,

G(u|1,w, z; θ) =

{1} u < α+w′β − ηz′δ

{0,1} u≥ α+w′β − ηz′δ.
. (A.19)

Suppose d= 0. Again, y = 1 if (A.16) holds, which is equivalent to u < w′β − ηz′δ. Sim-

ilarly, y = 0 if (A.17) holds, which means y = 0 is consistent with the model regardless of

the value of u in this case. Hence,

G(u|1,w, z; θ) =

{0,1} u < w′β − ηz′δ

{0} u≥w′β − ηz′δ.
. (A.20)

Combining (A.19)-(A.20) yields

G(u|x; θ) =


{1} if d= 1, u < α+w′β − ηz′δ

{0} if d= 0, u≥w′β − ηz′δ

{0,1} otherwise.

(A.21)

Finally, consider the case η = 0. By (4.21) and ε= ηv− u,

G(u|x; θ) =

{1} u < αd+w′β

{0} u≥ αd+w′β.
(A.22)

Q.E.D.

PROOF OF PROPOSITION 4.2: Let

qθ,− ≡
{
q(·|x) ∈∆ : q(1|d= 0,w, z)≥ Fθ(w′β − ηz′δ|w),
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q(0|d= 1,w, z)≥ Fθ(α+w′β − ηz′δ|w), x ∈ X
}
,

qθ,+ ≡
{
q(·|x) ∈∆ : q(1|d= 1,w, z)≥ Fθ(α+w′β − ηz′δ|w),

q(0|d= 0,w, z)≥ 1− Fθ(w′β − ηz′δ|w), x ∈ X
}
.

Suppose for the moment η < 0. By Lemma A.1 (with η < 0),

νθ({1}|d= 0,w, z) =

∫
1{G(u|x; θ)⊆ {1}}dFθ(u|w)

=

∫
1{u < w′β − ηz′δ}dFθ(u|w) = Fθ(w

′β − ηz′δ|w).

Similarly,

νθ({0}|d= 1,w, z) =

∫
1{G(u|x; θ)⊆ {0}}dFθ(u|w)

=

∫
1{u≥ α+w′β − ηz′δ}dFθ(u|w) = 1− Fθ(α+w′β − ηz′δ|w).

Recall that 2Y = {∅,{0},{1},{0,1}}, νθ(∅|x) = 0, and νθ({0,1}|x) = 1. Hence, the only

nontrivial restrictions are the ones above. Therefore, qθ = qθ,− if η < 0. Similarly, qθ = qθ,+

if η ≥ 0.

We continue to focus on the case with η < 0. For any p obtained from (2.16), the LFP-

based density solves (2.17). For example, consider x such that l = 0, and let r = q(1|x).

Then,

qθ(1|x) = arg min
r

ln
(r+ p(1|x)

r

)
(r+ p(1|x)) + ln

(1− r+ p(0|x)

1− r

)
(1− r+ p(0|x))

s.t. r ≥ Fθ(w′β − ηz′γ|w).

The KKT conditions for this problem are

− p(1|x)

r
+ ln

p(1|x) + r

r
+
p(0|x)

1− r
− ln

1− r+ p(0|x)

1− r
− λ= 0 (A.23)
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r ≥ Fθ(w′β − ηz′γ|w) (A.24)

λ(Fθ(w
′β − ηz′γ|w)− r) = 0 (A.25)

λ≥ 0. (A.26)

One one hand, if r > Fθ(w
′β − ηz′γ|w), it must be the case that λ = 0 by (A.25)-(A.26).

Then, r = p(1|x) solves (A.23). On the other hand, if r = Fθ(w
′β − ηz′γ|w), (A.23) and

some algebra can show λ≥ 0 holds if and only if p(1|x)≤ Fθ(w′β − ηz′γ|w). Solving the

system above yields the following result:

qθ(1|x) =

Fθ(w
′β − ηz′γ|w) if d= 0, p(1|x)≤ Fθ(w′β − ηz′γ|w),

p(1|x) if d= 0, p(1|x)>Fθ(w
′β − ηz′γ|w),0.

(A.27)

Repeating the same type of analysis for d= 1 gives

qθ(1|x) =

1− Fθ(α+w′β − ηz′γ|w) if d= 1, p(1|x)≥ 1− Fθ(α+w′β − ηz′γ|w),

p(1|x) if d= 1, p(1|x)< 1− Fθ(α+w′β − ηz′γ|w).

(A.28)

The analysis for the case with η ≥ 0 is similar and is therefore omitted. When η = 0,

the model is complete, and hence qθ(1|x) = Fθ(αd + w′β). Collecting all results yields

(4.25). Q.E.D.

PROOF OF PROPOSITION 5.1: Note that a belief function is a totally monotone capac-

ity. Hence, it is also 2-monotone, implying ν∗θj is 2-alternating for j = 0,1. By Theorem

4.1 of Huber and Strassen (1973). The first claim follows. The second claim follows from

taking Φ(·) =− ln(·) in their Theorem 6.1 and noting the fact that the distribution of X is

not restricted by the hypotheses. Q.E.D.
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APPENDIX B: GENERAL DGPS WITH UNKNOWN DEPENDENCE

We consider more general data-generating processes than F0. For each i, let Gi : U ×
X ×Θ→Y be a weakly measurable correspondence. Let

Gn(un|xn; θ)≡
n∏
i=1

Gi(ui|Xi; θ). (B.1)

Let

P̃nθ ≡
{
Pn ∈∆(Zn) : Pn(·|xn) =

∫
Un
η(A|un, xn)dFnθ (un), ∀A ∈ΣYn ,

η(·|un, xn) ∈∆(Gn(un|xn; θ)), a.s.
}
. (B.2)

This set allows arbitrary dependence of the outcome sequence Y n = (Y1, . . . , Yn) through

the selection mechanism across n units. The following result is from Kaido and Zhang

(2019).

THEOREM 2: Suppose {(Ui,Xi)} are independently distributed across i. Suppose, for

each i, Pθ0,i and Pθ1,i are disjoint. Then, LFP (Qn0 ,Q
n
1 ) ∈ P̃nθ0 × P̃

n
θ1

exists such that for

all t ∈R+,

ν∗,nθ0 (Λn > t) =Qn0 (Λn > t) (B.3)

νnθ1(Λn > t) =Qn1 (Λn > t), (B.4)

where Λn = dQn1/dQ
n
0 . The LFP consists of the product measures:

Qn0 =
n⊗
i=1

Q0,i, and Qn1 =
n⊗
i=1

Q1,i, (B.5)

where, for each i ∈N, (Q0,i,Q1,i) ∈ Pθ0,i ×Pθ1,i is the LFP in the i-th experiment;
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The result above states for distinguishing θ0 against θ1, the least favorable pair consists

of product measures. If (Xi,Ui) are identically distributed across i, the theorem implies the

LFP consists of i.i.d. laws. This allows us to generalize the result in the text.

The i.i.d. sampling assumption in Wasserman et al. (2020) can be relaxed as long as

one can compute a likelihood for D0 conditional on D1. This requirement is crucial for

the sample-splitting (and cross-fitting) to work, but recall that the distribution of outcomes

can be heterogeneous and dependent across i in unknown ways in our setting. This feature

makes it hard to define a conditional likelihood and apply their argument. For the condi-

tioning argument to work, we construct θ̂1 using outcomes that can be uniquely determined

by (Xi,Ui) but not by the selection. Using these insights, Theorem 3 below generalizes the

universal inference result to a wider class of distributions.

We now explain how to construct an estimator θ̂1 of θ under the general model.

DEFINITION B.1—Initial estimator: θ̂1 is an initial estimator of θ such that (i) it is

constructed from {Wi = ϕ(Yi,Xi), i ∈ D1} for a measurable function ϕ : Y × X →W;

(ii) Under H0, one can wirte Wi as Wi = f(Xi,Ui) for some measurable function f :

X ×U →W .

Definition B.1 states θ̂1 is a function of observable variables from D1, which can also be

expressed as a function of the exogenous variables (Xi,Ui) at least under the null hypothe-

sis. In Example 1, the model is complete under H0. Hence, there is a unique reduced form

Yi = g(Ui|Xi; θ). This ensures we can construct θ̂1 using directly Wi = Yi, i ∈D1, i.e., ϕ is

the identity map. For example, one can use an extremum estimator

θ̂1 ∈ arg min
θ∈Θ

Q̂1(θ), (B.6)

where Q̂1 can be an objective function based on moment inequalities as discussed earlier.

In Example 2, the model is incomplete under H0. Hence, some outcomes cannot be

expressed as a function of the exogenous variables (e.g., Yi = (1,0) gets selected from

multiple equilibria). Nonetheless, as shown by Bresnahan and Reiss (1990), Berry (1992),
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the number of entrants

Wi = ϕ(Yi) =
∑
j

1{Y (j)
i = 1} (B.7)

is uniquely determined as a function of (Xi,Ui). For a two-player game, a natural candidate

is

θ̂1 ∈ arg max
θ∈Θ

∑
i∈D1

2∑
k=0

1{Wi = k} lnFθ(Sk,Xi). (B.8)

With this change, the rest of the procedure remains the same. For each i, let qθ̂1,i be a

solution to (2.16). Solve (2.17) to find qθ,i, θ ∈ Θ0. Finally, form the cross-fit LR statistic

as in (2.8). One can use the product LR statistic due to Theorem 2. The following theorem

establishes the validity of the procedure. Let P̃n0 ≡ {Pn ∈ P̃nθ : θ ∈Θ0}.

THEOREM 3: Suppose (Xi,Ui), i= 1, . . . , n are independently distributed across i, and

Ui|Xi = x∼ Fθ,i(·|x).

sup
Pn∈P̃n0

Pn
(
Sn >

1

α

)
≤ α. (B.9)

PROOF: Let θ ∈Θ0 and θ̂1 be an estimator of θ described in Definition B.1. Note that θ̂1

is a function of (Xi,Ui), i ∈D1 only, and (Xi,Ui) are independently distributed across i.

Therefore, conditioning on (Xi,Ui), i ∈D1 does not provide additional information on the

observations from D0 through selection across the two subsamples. Below, we condition

on D1 and treat θ̂1 as fixed. Let Qn
θ̂1
∈ P̃n

θ̂1
. Consider a minimax testing problem between

P̃nθ and {Qn
θ̂1
}. By Theorem 2, there is a product LFP (Qnθ ,Q

n
θ̂1

) ∈ P̃nθ × {Qnθ̂1}. We use

Qnθ below.



46

The proof of the theorem is the same as the proof of Theorem 1 up to (A.4). We may

bound EPn [Tn|D1] as follows.

EPn [Tn|D1]≤ sup
P̃n∈P̃nθ

EP̃n [Tn|D1]

≤ sup
P̃n∈P̃nθ

EP̃n [T ∗n(θ)|D1]

= sup
P̃n∈P̃nθ

∫ ∞
0

P̃n
(
T ∗n(θ)> t

∣∣D1

)
dt

≤
∫ ∞

0
sup

P̃n∈P̃nθ

P̃n
(
T ∗n(θ)> t

∣∣D1

)
dt

=

∫ ∞
0

Qnθ
(
T ∗n(θ)> t

∣∣D1

)
dt,

where the last equality is due to Qnθ being the least-favorable distribution in P̃nθ . Let An be

the support of Qnθ . Then,

∫ ∞
0

Qnθ
(
T ∗n(θ)> t

∣∣D1

)
dt=EQnθ


∏
i∈D0

qθ̂1(Zi)∏
i∈D0

qθ(Zi)



=

∫
An

∏
i∈D0

qθ̂1(zi)∏
i∈D0

qθ(zi)

∏
i∈D0

qθ(zi)dz
D0 =

∫
An

∏
i∈D0

qθ̂1(zi)dz
D0 ≤

∏
i∈D0

∫
qθ̂1(zi)dzi = 1.

(B.10)

Note that the second equality uses the fact
∏
i∈D0

qθ is the density of Qnθ . The rest of the

argument is the same as the proof of Theorem 1. Q.E.D.

APPENDIX C: TABLES AND FIGURES

[HK: I moved the definition of the variables to another file called supplement.tex]
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Panel A: Lobbying Sample 2008-2012

Year
Total number

of banks
Number of

lobbying banks
% of

lobbying banks

2008 7,010 226 3.22
2009 6,813 160 2.35
2010 6,563 143 2.18
2011 6,366 133 2.09
2012 6,181 138 2.23

08-12 32,933 800 2.23

Panel B: Lobbying Sample 2013-2019

2013 5,990 125 2.09
2014 5,782 102 1.76
2015 5,326 102 1.92
2016 5,131 93 1.81
2017 4,956 94 1.90
2018 4,634 94 2.03
2019 4,446 79 1.78

13-19 36,265 689 1.78

All years 69,198 1,489 2.15

TABLE C.I

TIME DISTRIBUTION OF THE LOBBYING SAMPLE RECORD
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FIGURE C.1.—The enforcement action trend across different years
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Panel A: Descriptive Statistics of the Sample Year 2010

Variables Mean 25th
percentile Median 75th

percentile
Standard
deviation

Number of
observations

Dependent Variables (Di and Yi)
Lobbying status 0.022 - - - 0.146 6,201
Severe action 0.067 - - - 0.250 6,201

Instrumental Variables (IVs)
Distance to DC (km) 1,445,030 942.237 1383.535 1803.314 858.964 6,199
Initial Market Size(%) 0.077 0.003 0.009 0.028 0.486 6,201

Independent Variables (Wi)

CAMELS proxy variables (also used in Zi)
Capital adequacy (%) 15.703 11.640 13.758 17.463 7.039 6,199
Asset quality (%) -1.879 -2.240 -1.610 -1.230 0.994 6,056
Management quality -0.024 0.000 0.000 0.000 0.106 6,201
Earnings (%) 0.035 0.031 0.035 0.039 0.007 6,198
Liquidity (%) 10.119 3.575 7.069 13.224 9.553 6,198
Sensitivity to market risk (%) 12.923 4.801 10.330 18.399 10.584 6,080

Financial and Demographic Variables
Deposit-to-asset ratio (%) 83.814 80.754 85.169 88.542 6.545 6,201
Leverage (%) 9.931 8.220 9.290 11.14 3.115 6,200
Total core deposits ($) 714,086 59,586 136,095 358,584 2,859,852 6,201
Size ($) 1,216,969 77,450 176,557 512,906 5,587,400 6,201
Age 79.897 42.000 91.000 108.000 38.961 6,190
Personal income growth (%)
(County-Level) 2.313 0.207 1.809 3.581 4.324 6,153
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