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INFERENCE ON NETWORK STATISTICS FROM ESTIMATED ADJACENCY
MATRICES

JÉRÔME R. SIMONS

Abstract. PRELIMINARY, PLEASEUSEONLY FORCONFERENCEREVIEWPURPOSESAND

DO NOT CIRCULATE WITHOUT PERMISSION. We establish conditions under which a wide

class of network statistics such as eigenvector centralities or clustering coefficients are con-

sistent estimators of their population counterparts whenever we encounter an estimate of the

adjacency matrix. Furthermore, we derive analytical expressions of standard errors of these

statistics and characterise their asymptotic distributions. We shall use the delta method via the

associated Jacobians of the aforementioned transformations. To arrive at this result, we prove

that the maps assigning singular and invariant subspaces of general matrices are smooth. Our

proof strategy is two-fold: building on perturbation expansions of invariant subspaces in Sun

(1991) and singular subspaces in J. Liu, X. Liu, and Ma (2007), we derive methods for generic

inference on normalised bases of these subspaces. Thereby, we extend the inference proce-

dure of Tyler (1981) to generic invariant subspaces of non-symmetric and non-diagonalisable

matrices. We establish distribution theory for a Wald and t-test for full-vector and individual

coefficient hypotheses, for both invariant and singular subspaces respectively. We demonstrate

the utility of our approach through finding confidence intervals for eigenvector centralities es-

timated from weighted, directed graph adjacency matrices and demonstrate the quality of the

approximations through a Monte Carlo study.

1. Introduction

Network statistics are fundamental in quantifying structure and quality of a graph. For

example, researchers may ask whether a given network has large clusters or cliques. Alter-

natively, they may want to know how important individual nodes are. If networks, and the

associated adjacency matrices, are estimated or measured with error, it is natural that associ-

ated network statistics inherit this randomness and appear as stochastic objects themselves.

This study establishes methods to derive the induced (asymptotic) distributions of network

statistics from those of estimated adjacency matrices. We shall supply consistency proofs and

expressions for Jacobians to convert standard errors of estimated network links into those for

associated network statistics.

The underlyingmethodology for these results occurs via finding both invariant and singular

subspaces of general matrices. Indeed, most network statistics are expressible as either singu-

lar or invariant vectors of adjacency matrices. We therefore establish results for inference on

those vectors. For invariant vectors, we note that these inference procedures are new for the

case of potentially non-diagonalisable, non-symmetric matrices and are an extension of Tyler

(1981). For singular vectors, most of the literature has focussed on the case of matrices of
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growing dimension. In our case, however, the matrix is of fixed size, but measured with error

or estimated via some other scheme with arbitrary covariance structure among the columns.

Our study proceeds via formally characterising subspaces of such matrices and deriving

their Jacobians. In the presence of random noise, these subspaces to appear as stochastic ob-

jects for which we offer hypothesis tests. In particular, we are interested in testing for mem-

bership in subspaces and the construction of confidence regions for associated basis matrices.

In the special case of a diagonalisable, non-symmetricmatrix, our invariant subspacemethod-

ology provides inference procedures for eigenvectors. If we specialise further to symmetric

matrices, invariant and singular vectors coincide so that those otherwise distinct inference

procedures coincide. Once we have characterised invariant and singular subspaces as induced

maps on Banach spaces we fill in the link between these subspaces and subspace-dependent

network statistics, with the eigenvector centrality being the most prominent example. For this

chain of maps, we prove that an inverse mapping theorem applies to a large class of functions

of matrices and compute their Jacobians.

Setup. For a p×pmatrixM , the columns of the p×qmatrixR span a right-invariant subspace

SI (M) of dimension q iff the relation

(1.1) MR = RΛ

holds for some not necessarily full-rank q × q matrix Λ.1 In the above example, the rows of

matrices LT
span a left invariant subspace whereby LTM = ΛLT

. If M is instead an m × l

general matrix of rank q ≤ min (m, l), the columns of the l × q andm× q matrices V and U

span the left- and right singular subspaces of dimension q iff instead the relation

MV = UΣ

holds for a diagonal q × q matrix Σ.

Our study provides inference methods for right-invariant and left-singular subspaces for

M .
2

IfM is a symmetric, square matrix and hence diagonalisable, left- and right-invariant as

well as singular subspaces coincide and R = L = U = V .

For either type of subspace, we assume that we observe a sample of nmatricesM1, . . . ,Mn,

whence we estimate the mean M̂n so that the columns of an

(
M̂n −M

)
converge weakly to a

multivariate normal distribution centered at zero for an increasing sequence an. Our approach

is to construct test statistics formembership of υ of invariant and singular subspaces. Themaps

ψ (M ; υ) and Ψ(M ; υ) represent these statistics and have informative null distributions for

invariant and singular subspaces ofM , spanned by the columns of R or V . We derive these

distributions using the delta method to find the distributions of

√
n
(
ψ
(
M̂n

)
− ψ (M)

)
and

1
If A is rank-deficient, then some columns in X belong to the kernel of the linear transformationM .

2
Confusingly, an eigendecomposition of M = RΛLH

implies that R contains right eigenvectors, while for a

singular value decomposition, M = UΣV T
, U contains left singular vectors. Our study focusses on those

matrices appearing ‘on the left.’
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√
n
(
Ψ
(
M̂n

)
−Ψ(M)

)
based on that of

√
n
(
M̂n −M

)
. Inverting coefficient-wise versions

of ψ (M ; υ) and Ψ(M ; υ) yields confidence regions for υ for either subspace.

We are interested in testing the associated null hypothesis of υ belonging to a subspace

of M potentially indexed by elements of a set L, which in the case of eigenspaces contains

characteristic roots and singular values otherwise. Formally, the null hypothesis to test is

(1.2) H0 : υ ∈ SI (M)

against the one-sided alternative H1 : υ /∈ SI (M). To introduce inference on invariant sub-

spaces, we will use the case of diagonalisableM and introduce eigenvalues and singular values

into the discussion where necessary. Associating subspace vectors with a set of such values,

we assume in either case that the elements of L split according to

L := LI ∪ LJ ,

where LI denotes a set of interest and LJ the remainder. For eigenspaces, LI contains the

roots associated with the directions of interest.

Throughout, we assume that rk υ = q ≤ |LI | , i.e. the number of linearly independent

columns in υ is less than or equal to the dimension of the subspace spanned by the vectors

associated with elements in LI . If rk υ = r > |LI |, i.e. the number of linearly independent

columns in υ exceeds the number of elements in LI , we define the alternative null hypothesis

H∗
0 : SI (M) ∈ sp υ,

which can be tested by constructing the p× q matrix υ⊥ such that

(1.3) υT⊥υ = 0.

Consequently, we write

(1.4) H∗
0 : υ⊥ ∈ SJ (M) .

The case of rk υ = r ≤ |LI | is intuitive because the columns of υ span a lower-dimensional

subspace than SI (M)while rk υ = r > |LI | is equivalent to an overdetermination of the sub-

space of interest so that the estimand SI (M), under the null hypothesis, is wholly contained in

the candidate space sp υ. For eigenvectors, Tyler (1981) implements this scenario by inverting

the hypothesis (1.2) to achieve (1.4) which reduces to H0 again. The orthocomplement, υ⊥, is

always easy to compute from υ using, e.g. an LU factorization or the Gram-Schmidt algorithm.

Moreover, working with H∗
0 and hence υ⊥ implies normalisation-invariant test statistics and

offers numerical advantages asMonte Carlo experiments showed. We shall therefore write our

arguments in the form of H∗
0 , where inference on υ⊥ is equivalent to inference on υ without

loss of generality.

The main limitation of the existing approaches for invariant subspaces is that per Tyler

(1981), we have to assume that M is such that ΓM is symmetric for a positive definite sym-

metric matrix Γ. We illustrate this issue with
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Example 1. The matrixM1 is symmetric in the metric of Γ for

Γ =

[
2 1

1 6

]
M1 =

[
1 3

1 1

]
whereasM2 is not symmetric in the metric of Γ,

M2 =

[
λ a

0 λ

]
.

A 2×2matrix Γ is not guaranteed to be positive-definite forM2Γ to be symmetric. Moreover,

M2 only has a single eigenvector [ 1 0 ]T, and is therefore not diagonalisable although its single

eigenvector obviously spans an invariant subspace. Therefore, inferential procedures for non-

symmetric matrices apply toM1 but not toM2. In the following, we shall establish that no such

requirement is necessary for inference on invariant subspaces of non-symmetric matrices.

1.1. Related literature on subspace inference. Statistical analysis of eigenvectors and eigen-
values finds use in diverse applications such as quasi-cointegration analysis, the study of cen-

trality in social networks (Bonacich 1987), or in radio signal processing (Penna, Garello, and

Spirito 2009).

The study of inference and estimation of eigenvectors of more general, dense square random

matrices M ∈ Rp×p
with p fixed began with the seminal study of Davis (1977) in the non-

normal case. James (1977) posed the problem of eigenvector inference for general eigenvectors

without associating them with a particular set of eigenvalues. Tyler (1981) considers null

hypotheses of eigenvectors associated with particular eigenvalues. His study served as the

inspiration for our paper and requires quasi-symmetry ofM , which we relax.

The first study to examine spectra of symmetric random matrices is the seminal paper by

Anderson (1963), which provided joint density functions for eigenvectors and eigenvalues of

covariance matrices and a testing procedure for equality of eigenvalues. Subsequently, James

(1964) offered a general method to obtain the distribution of statistics derived from random

matrices. Since then, the field of invariant subspace statistics based on random matrices has

progressed along two strands.

The first branch of the literature considers the spectra of Wishart matrices. To see how

they arise, consider a matrix A ∈ Rp×n
whose columns Ai are independent and normal ac-

cording toAi ∼ Np(0,Ω)whereΩ ∈ Rp×p
is a positive-definite covariancematrix. The variate

M := AAT
will then have a central, p-variate Wishart distribution with n degrees of freedom,

usually denoted byM ∼ Wp (Ω, n). A representative study with a further overview of the de-

velopment of density functions of such matrices is given in Zanella, Chiani, and Win (2009).
3

Further refinements include expanding or restricting the spectral structure such as the study

by Takemura and Sheena (2005) who derive the asymptotic distribution of eigenvalues and

eigenvectors of Wishart matrices in the case of infinitely dispersed population eigenvalues.

3
Owing to their use as representations of physical systems, studies in eigenstatistics of Wishart matrices tend

to prioritize those with complex entries. For the social sciences, this literature is therefore less useful because

results derived using complex matrices do not, in general, apply to real matrices.
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A second strand of inference on invariant subspaces are the spectra of symmetric square

matricesM ∈ Rp×p
with p → ∞. The often sparse nature of this type of matrix implies that

one can truncate spectral data or singular value decomposition to estimate low-rank represen-

tations of such matrices. This literature began with the semi-circle law of Wigner (1958) for

the joint eigenvalue distribution and Tracy andWidom (1994) for the distribution of the largest

eigenvalue. For applied researchers, Chen, Cheng, and Fan (2020) develop a method to con-

duct inference on low-rank representations of randommatrices that obtain from deterministic

symmetric matrices that are (potentially asymmetrically) perturbed. As a further refinement of

this case, Cheng, Wei, and Chen (2021) consider matrices with finely spaced eigenvalues while

Iain M Johnstone, Onatski, et al. (2020) develop a testing framework for high-dimensional ma-

trices with a single, dominant eigenvalue, or spike. That latter phenomenon arises for example

in auto-covariance matrices of embedded time series if the process possesses a root of unity. In

the class of low-rank matrices with p→ ∞, Cheng, Wei, and Chen (2021) offer an estimation

and inference procedure for eigenvectors of such random matrices. Bura and Pfeiffer (2008)

add theory for inference on singular vectors.

A subspecialty of the aforementioned literature studies estimation and inference procedures

for eigenvectors and principal component vectors of covariance matrices, as they arise in in

factor models. If the column dimension ofAn diverges as n→ ∞, central limit theorems imply

that a suitably normalizedMn := AnA
T
n converges to a central Wishart matrix as above. This

result nests the limiting distributions of a large class of covariance matrix estimators. Tyler

(1983) provides a procedure to compute asymptotic confidence sets for principal components

which obtain from invariant subspaces of covariance matrices. Iain M. Johnstone (2001) and

Lee and Schnelli (2016) contribute results on the largest eigenvalue statistics of principal com-

ponent estimators and covariance matrices. Koltchinskii, Löffler, Nickl, et al. (2020) consider

a representative functional extension and focus on efficiently estimating linear functionals of

principal components, which have symmetric underlying covariance matrices.

A related literature studies the singular value decomposition of rectangular random ma-

trices M ∈ Rp×d
where p, d < ∞ and p and d are fixed. Cai et al. (2019) offer a method

to estimate the column space via a singular value decomposition and Girko (1999) provides

conditions for and derive a convergence law for associated singular values.

Organisation. The rest of this article is organised as follows. Section 2 defines the set of

matrices that forms the domain and distinguishes between invariant and singular subspaces.

The currently proposed matrix estimator is a mere placeholder intended to induce a well-

behaved distribution. Section 3 defines perturbation expansions and informally discusses their

connections with Gateaux derivatives and provides Jacobian matrices. Section 4 introduces

practically useful estimators of normalised basis matrices for invariant and singular subspaces

and uses the results of the previous section to derive their asymptotic distributions. Section

5 derives hypothesis tests for invariant and singular subspaces. Section 6 details results of a

Monte Carlo study of the inference procedures for generic subspaces. Section 7 extends the

framework to general network statistics and displays how the methods can be used to derive
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asymptotically valid confidence intervals for centrality scores if networks are estimated with

error. Section 8 concludes while Section 9 contains all proofs.

Notation. We consider tests on the invariant subspaces ofM ∈ Rp×p
with an associated se-

quence of estimates M̂n. In the context of tests on singular subspaces,M denotes a rectangular

matrixM ∈ Rm×n
. To simplify the subsequent exposition and to easily define test statistics,

we vectoriseM , so that the vecM represents its stacked columns. The notation BH
denotes

conjugate transposition whereasBT
refers to transposition without conjugation even ifB has

complex entries as in vec AXB =
(
BT ⊗ A

)
vec X . Finally, λ∗ denotes complex conjugation

of the scalar λ. The expression A+
refers to a generalised inverse of matrix A. We define

generic null hypotheses viaH0 andH
∗
0 but may changeH0 depending on the context. We use

A · B and A ⊗ B to denote the Hadamard and Kronecker products, respectively. Finally, 1

denotes a column vector of ones of appropriate dimension. Matrices with a tilde, M̃ (t) are

perturbed versions of their exact counterparts M where t ∈ C is a parameter that helps us

keep track of the expansion order and M̃ (0) =M .

2. Setup

2.1. General framework.

Assumption 1. Let Ω ∈ Rml×ml denote a positive-definite covariance matrix andM ∈ Rm×l

be a general matrix. Then,

(1) ThemodelMt =M+εt generates data {Mt}nt=1 where εt are i.i.d.with general covariance
matrix Ω = Evec εi vec εTj for all i, j = 1, . . . , T and m = l = p for the case of square
M .

(2) We can consistently estimate the covariance matrix by some covariance estimator Ω̂ so
that Ω̂

p→ Ω.

Assumption 1.1 implies that for an estimator

(2.1) M̂n := n−1

n∑
t=1

Mt

we have √
n vec

(
M̂n −M

)
⇝ N (0,Ω) .

This setup admits a general covariance structure within Ω and imposes a stationary error

distribution over the index t. An important special case arises when the columns of the error

matrix are homoskedastic themselves, which we define for εt := [a1 a2 . . . ap]t via

(2.2) Eaia⊺j = ΩMδij

so that Ω = Ip ⊗ ΩM . None of our results are sensitive to these restrictions and, if equipped

with a suitable covariance matrix estimator, one could allow for autocorrelated errors and

heteroskedasticity across time, as well, an application of which we offer in Section 7.2.

Finally, Assumption 1.2 ensures that we can estimate the covariance matrix of the residuals.
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2.2. CovarianceMatrix Estimation. A covariance matrix estimator associated with (2.1) is,

lettingm := vecM ,

Ω̂ := T−1

n∑
t=1

(m̂n −mt) (m̂n −mt)
T ,

which we can make more efficient if we know that Ω = Ip ⊗ ΩM by enforcing this structure

during estimation. If we interpret the index t as referring to time, we can also accommodate

autocorrelation in the residuals, see Newey and West (1987) and the empirical application in

Section 7.2. To be able to construct Wald tests, we need to consistently estimate estimate

Ω−1
. However, neither the rank nor a generalised inverse of Ω are continuous. To deal with

this issue, we recommend the procedure outlined in Lütkepohl and Burda (1997) and invoke

Yuchen Xu and Matteson (2023, Lemma 2.1) to establish that Ω̂+ p→ Ω−1
.

2.3. Frameworks for invariant and singular subspace inference. To characterise our

setup for invariant subspace inference, we have

Assumption 2. LetM ∈ Rp×p have a non-trivial invariant subspace. Then,

(1) There exists an invariant subspace of interest spanned by the columns of RI ∈ Rp×q

such that MRI = RIA11 for some matrix A11 ∈ Rq×q
. In particular, there exists a

non-singular matrix R := [ RI RJ ] ∈ Rp×p
such that

R−1MR =

[
ΛI ΛIJ

0 ΛJ

]
=: Λ

where ΛI ∈ Rq×q
and ΛJ ∈ Rr×r

for r = p− q.

(2) The eigenvalues of ΛI and ΛJ denoted by LI and LJ obey LI ∩ LJ = ∅ and λ ∈ LI

implies that λ∗ ∈ LI , i.e. LI is closed under conjugation.

Assumption 2.1 defines our setup as that of estimating invariant subspaces. The most impor-

tant special case of invariant subspaces are eigenspaces which obtain if ΛIJ = 0 and ΛI and

ΛJ are diagonal. An intermediate case is that of a partially diagonalisable matrix, which we

could achieve by requiring ΛI to be diagonal with distinct eigenvalues, ΛIJ = 0, and ΛJ to be

in Jordan normal form with blocks of arbitrary size.

Assumption 2.2 ensures that the map from M to its invariant subspaces spanned by the

columns of M is differentiable and that we can discriminate between vectors of interest in

sets I and those in J .

For singular subspaces, our setup changes ever so slightly.

Assumption 3. Let M ∈ Rm×l, with m < l, have a non-trivial singular subspace and be of
rank F ≤ m subspace. Then,

(1) The singular subspaces split according toM = UIΣIV
T
I + UJΣJV

T
J where rkM = F

implies that ΣI ∈ RF×F
is a diagonal, square matrix and ΣJ = 0.

(2) For a subspace of dimension q, we have UI ∈ Rm×q
where q ≤ F .
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Assumption 3.1 is innocuous in the context of our leading application, graph models, where

M is usually sparse so that F << min (m, l). Without loss of generality, we further assume

thatm < l, i.e. that we encounter a wide matrix.

3. Matrix subspaces

This section develops our approach to building inference methods of matrix functionals

based on perturbation expansions. Readers whowish to advance straight to the networkmodel

application may proceed to Section 7 without loss of continuity.

3.1. From perturbation expansions to derivatives. To identify the correspondence be-

tween a perturbation expansion and the appearance of derivatives, it is instructive to consider

the following:

Example 2. Consider a continuous function f (x) and a small ϵ, that perturbs x, such that

x̃ := x+ ϵ. Recall the difference quotient

d (x̃;x) :=
f (x̃)− f (x)

x̃− x

and observe that lim
x→x̃

d (x̃;x) = f ′ (x). Now, let f (x) = x2. Define a perturbation expansion

for f with first-order perturbation term ḟ like so

f (x̃) = f (x) + ḟ (x) +O (|x̃− x|)

x2 + 2ϵx+ ϵ2 = x2 + 2xϵ+O (|x̃− x|)

and recognise that the relationship, as x̃ → x or ϵ → 0, between the first-order perturbation

expansion term ḟ and the derivative f ′
satisfies

(3.1) ḟ = f ′ϵ,

where we can identify the derivative from a perturbation expansion without taking the limit.

Magnus and Neudecker (2019, Thm. 11) extends this relationship to matrix-valued functions.

In non-scalar cases, it is important that the perturbation ϵ in (3.1) appears at the end of the

expression, which we achieve in practice by vectorising matrix expressions and applying the

identity vec AXB =
(
BT ⊗ A

)
vec X .

We recall the maps delivering invariant and singular subspaces, ψ (M ; υ) and Ψ(M ; υ),

respectively, which carry information about invariant and singular subspaces. Further recall

that, if υ belongs to a subspace of interest, i.e. υ ∈ SI (M) iff ψ (M ; υ) = 0 andΨ(M ; υ) = 0.

Exploiting the information thus expressed, we can build inferencemethods for subspaces based

on these maps if we can derive the asymptotic distribution of the sample analogues of ψ and

Ψ from that of

√
nvec M̂n. The critical ingredient for the extraction of the distribution are

the Jacobians of these maps and appear in our central results in Lemma 1 and Lemma 2. In

short, we shall apply the delta method to transform the covariance matrix of

√
n vec M̂n into

those of ψ and Ψ. To derive the Jacobians, we use expansions of ψ and Ψ that originate from
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a perturbed version of M analogously to Example 2, denoted by M̃ . A typical perturbation

expansion of this type appears as ψ
(
M̃

)
about ψ (M), so that

(3.2) ψ
(
M̃

)
= ψ (M) + ψ̇

(
M − M̃

)
+O

(∥∥∥M − M̃
∥∥∥) .

An exact analogue with Ψ̇ in lieu of ψ̇ holds for Ψ. Importantly, we shall argue that the first-

order term indeed corresponds to the Gateaux derivative of ψ (Ψ).

In the spirit of Example 2, we consider the perturbation explicitly, E := M̃ −M , as the

deviation from the trueM . Following Magnus and Neudecker (2019), we define the Jacobian

matrix in the direction of E of a vectorized, matrix-valued function F (X) : Rm×l → Rr×q
via

first differentials as the matrix J ∈ Rml×rq
satisfying

dvec F (X;E) = Jvec E,

whence Magnus and Neudecker (2019, Thm. 11) establishes that J is indeed unique. In such

case,

ψ
(
M̃

)
− ψ (M) → dψ as E → 0 so that, by (Sun 1991, Remark 4.2), (3.2) turns into the

definition of the Gateaux derivative. Therefore, vec ψ̇
(
M − M̃

)
will allow us to derive the

Jacobian J of the transformation ψ. More details appear in Section 9.1 and Section 9.4, while

Section 3.2 and Section 3.3 sketch the steps required to derive the Jacobians for invariant and

singular subspace maps.

3.2. Expansion of invariant subspace map ψ. The object of interest that we wish to con-

duct inference on is the column span of RI , implicitly defined via the invariant subspace de-

composition

(3.3) M = RI

(
ΛIL

H
I + ΛIJL

H
J

)
+RJΛJL

H
J ,

where we use conjugate transposition on the matrices LI and LJ to allow for the fact that

some eigenvectors may be complex. Subsequently, we partition the matrices according to

their column spans to obtain

R =
[
RI RJ

]
L =

[
LI LJ

]
Λ =

[
ΛI ΛIJ

0 ΛJ

]
,(3.4)

where ΛIJ = 0 implements the familiar eigendecomposition.

Consider the invariant subspace colRI , whose invariance depends on Λ in (3.4) being block

upper-triangular. If Λ fails this requirement, i.e. that ΛJI ̸= 0, we have

(3.5) MRI = RIΛI +RJΛJI .

We learn from the preceding that ∥ΛJI∥ measures how far colRI is from being an invariant

subspace. Therefore, we introduce the off-diagonal element corresponding to ΛJI as

(3.6) ∆JI = LH
J

(
M̃ −M

)
RJ ,
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which for M̃ =M implies ΛJI = 0. In this case, based on (3.3), (3.5) becomes

(3.7) MRI = RIΛI .

We conclude for now that perturbations toM affect the column span of RI via ∆JI.

To motivate a test statistic, we introduce the skew projection

(3.8) PI := RIL
H
I .

If the roots in the set LI are closed under conjugation, then we may take RI and LI to be

real without loss of generality. However, even ifM itself is a real matrix, we may encounter

estimation error that may induce complex invariant vectors and, in the case of an eigendecom-

position, complex eigenvalues. Naturally, if invariant vectors of interest are real, the imagi-

nary parts of their estimators shall converge to zero in probability. Under the hypothesis

H0 : υ ∈ SI (M), we obtain υT⊥PI = 0. Let the ring of matrices satisfying Assumption 1 be

Q. Define ψ : Q 7→ Rr×q
by

(3.9) ψ (M) := υ⊺⊥PI (M) .

To write out the first-order term ψ̇, introduce the operator S : Rr×q → Rr×q
such that

(3.10) S (Q) = QΛI − ΛJQ,

where Q ∈ Rr×q
.

Then, the first-order term

(3.11) ψ̇ (M ; ∆JI) = υ⊺⊥RJS
−1 (∆JI)L

H
J .

Per the reasoning in Section 3.1, we can now find the Jacobian of ψ based on vectorising the

first-order perturbation expansion term ψ̇ to obtain vec ψ̇ = Bvec

(
M̃ −M

)
, which we

summarise formally in our result below.

Lemma 1. Let the map ψ (M) be as in (3.9). Then, the Jacobian matrix with respect toM in the
direction of E ∈ Rp×p of ψ is the matrix B ∈ Rp2×rq such that dvec ψ (M ;E) = Bvec E where

(3.12) B =
(
LI ⊗ υT⊥RJ

) {(
ΛH

I ⊗ IJ
)
− (II ⊗ ΛJ)

}−1 (
RH

I ⊗ LH
J

)
.

3.3. Expansion of singular subspacemapΨ. This section focusses on themapΨ that helps

us conduct inference on the column span of UI . To motivate our test statistic and sketch the

argument of its asymptotic distribution, consider the singular value decomposition

(3.13) M = UIΣIVI + UJΣJVJ ,

where rkUI = F ≤ min (m, l) so thatΣJ = 0. To study the derivative of the implicit map that

delivers UI , we consider a perturbation toM , M̃ , which in turn triggers perturbed versions of

the singular factors in (3.13). The aim is to construct an expansion

(3.14) Ψ
(
M̃

)
= Ψ̇

(
M − M̃

)
+O

(∥∥∥M − M̃
∥∥∥) .

Our focus is on left-singular vectors, which motivates the map
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(3.15) Ψ(M) := υT⊥UI (M) ,

Using the expansion in J. Liu, X. Liu, and Ma (2007), we obtain the first-order term

(3.16) Ψ̇
(
M − M̃

)
= υT⊥

(
UIK − UJU

H
J

(
M − M̃

)
VIΣ

−1
I

)
for K := D ·

(
UT
I

(
M − M̃

)
VIΣI + ΣIV

T
I

(
M − M̃

)T

UI

)
and Dij :=

(
ι2i − ι2j

)−1
where

i ̸= j, Dii = 0, and i, j = 1, . . . , F . From the first-order term (3.16), we see that it collapses

to zero whenM = M̃ . We shall also apply Magnus and Neudecker (2019, Thm. 11) and (Sun

1991, Remark 4.2) to (3.14) to obtain the Jacobian of the right-singular subspace map, collected

in

Lemma 2. Let the map Ψ(M) be as in (3.15). Then, for a null hypothesis υT⊥ ∈ Rm×(m−h)

where h ≦ F is the size of the hypothesised singular subspace, we obtain the Jacobian matrix
with respect to M in the direction of E ∈ Rm×l of Ψ as BSVD ∈ RF (m−h)×ml. In particular,
dvec Ψ(M ;E) = BSVDvec E where

BSVD =
(
Σ−1T

I V T
I ⊗ υT⊥UJU

T
J

)
(3.17)

+
(
IF ⊗ υT⊥UI

) [(
1T ⊗ vec D

)
·
((
ΣT

I V
T
I ⊗ UT

I

)
+
(
UT
I ⊗ ΣIV

T
I

)
K
)]
.

3.4. Projections and generalised inverses. In this section we briefly review the theory of

projections onto subspaces following Tyler (1981). To further motivate the introduction of

the map (3.9) and aid the exposition of our method, we shall in the following assume that the

eigenvalues of ΛI are semi-simple so that each corresponds to a linearly independent column

of RI and that ΛIJ = 0, which corresponds to a diagonalisableM . Define the eigenprojection

onto the subspace spanned by eigenvectors associated with roots in LI as

PI :=
∑
λ∈LI

λrλl
H
λ ,

where rλ and lλ belong to root λ. Now, consider

Example 3. Let

(3.18) M =

[
0.8 0.5

0 0.4

]
.

Then, the right eigenvectors are r⊺1 = [ 1 0 ] and r⊺2 = [ 1 −0.8 ]with eigenvalues are λ1 = 0.8 and

λ2 = 0.4. Its left eigenvectors are l⊺1 = [ 1 1.25 ] and l⊺2 = [ 0 1.6 ]. The associated eigenprojections

are

(3.19) Pλi
= ril

H
i

for i ∈ {1, 2} the pair of matrices

Pλ1 =

[
1 1.25

0 0

]
Pλ2 =

[
0 −1.25

0 1

]
11



We see that Pλi
are rank-1 projection matrices for which Pλi

Pλj
= I2δij and if υ belongs to an

eigenspace associated with root λi, we have υPλi
= Pλi

υ and Pλ1 + Pλ2 = I . Finally, under

the maintained null hypothesis that υ ∈ SI (M) for I = {1},

Pλ1υ⊥ = 0.

Based on eigenprojections, it is easy to construct generalised inversesA+
such thatAA+A =

A. For a matrix of rank s, let the eigenprojection of A be as in Example 3. Then, a generalized

inverse

(3.20) A+ =
s∑

i=1

λ−1
i Pλi

.

If we wish to relax the diagonalisability assumption, we may easily construct a generalised

inverse via a singular value decomposition, which exists independently of diagonalisability.

Proceed via

(3.21) A+ =
s∑

i=1

ι−1
i viu

T
i ,

where {ιi}si=1 collects the non-zero singular values and ui and vi are left- and right-singular

vectors ofA. For the purpose of inverting estimated covariance matrices, either (3.20) or (3.21)

would be suitable.

4. Asymptotic distribution of estimators

This section details estimators of basis vectors for singular and invariant subspaces. In

general, neither invariant nor singular vectors are uniquely determined from the associated

matrix decompositions. For example, colRI is an invariant subspace iff MRI = RIΛI for

some general ΛI and continues to hold also for col R̄I = colRI for R̄I := RIQ for some full-

rank matrixQ ∈ Rq×q
. Similarly, forM = UIΣIV

T
I , onlyΣI is unique if we order the singular

values. The matrix UI is in general not unique.

To circumvent the lack of uniqueness, we shall normalise our estimates of RI and UI in the

following manner. For a candidate υ, we partition

υ =:

[
υ1

υ2

]
,

where υ1 ∈ Rr×q
and υ2 ∈ Rq×q

. Then, requiring υTNυ = Iq for

N =

[
(υT

2 υ2)
−1

0

0 υ−1T
2

(
Iq−υT

1 (υT
2 υ2)

−1
υ1

)
υ−1
2

]
,

or, equivalently, letting DT := υ1υ
−1
2 , we have

(4.1) υ :=

[
DT

Iq

]
,

and

12



(4.2) υ⊥ :=

[
Ir

−D

]
Unfortunately, uniqueness comes at the steep cost of making the second order moment poten-

tially unbounded moments as Anderson (2010) discusses. Letting ΩM be as in (2.2), we have

in the case of homoskedastic columns of M̂ the alternative normalization υTΩMυ = Iq, but

shall not pursue these arguments further.
4

To estimate basis vectors, we define for r′ ≤ r the set estimator

(4.3) υ̂⊥,n :=
{
υ⊥ ∈ Rp×r′ : Φ̂

(
υT⊥

)
= 0

}
for

Φ̂
(
υT⊥

)
:=

ψ
(
M̂n, υ

T
⊥

)
invariant subspace.

Ψ
(
M̂n, υ

T
⊥

)
singular subspace.

4.1. Invariant subspaces. We define the estimator of ψ (M) by evaluating ψ at the estimate

M̂ , so that ψ
(
M̂n

)
= υ⊺⊥P̂I

(
M̂n

)
. Using Lemma 1, we obtain the asymptotic distribution of

the sample analogue of ψ (M) in the following result.

Proposition 1. Suppose Assumption 1 holds and letB as in (3.12) and let υ⊥ be as in (1.3). Then,
√
n vec υ⊺⊥P̂I

(
M̂n

)
⇝ N

(
0, BΩBH

)
.

Proposition 1 forms the basis for the Wald statistic. For general eigenvectors, i.e. if the

set of eigenvalues LI is not closed under conjugation,

√
n vec υ⊺⊥P̂I

(
M̂n

)
converges to a

multivariate complex normal distribution, with covariance BΩBH
and relation BΩBT

. For

now, we shall continue to assume that LI is indeed closed under conjugation or, in the case of

|LI | = 1 that the principal invariant vector is real so that we can avoid the complex normal

distribution. However, we shall return to this issue in Section 7.1, when we deal with absolute

values of the coefficients in υ.

For P̂I := R̂I,nL̂
H
I,n using sample analogues of RI and LI , we have the estimator in (4.3).

For a closed-form expression of D̂n under the normalization (4.2), partition RI conformably

for RI,1 ∈ Rr×q
and RI,2 ∈ Rq×q

with rkRI,2 = q.

(4.4)

[
RI,1

RI,2

]
:= RI .

Consequently, define

(4.5) D̂T
I,n := R̂I,1,nR̂

−1
I,2,n.

4
For an approach that avoids normalizations see Silin and Fan (2020) in the context of symmetric matrices.
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and observe that (4.5) supplies a unique estimator. Our next result characterises the asymptotic

distribution of D̂T
I,n. Define

(4.6) BDT :=
(
RT−1

I,2 ⊗ υT⊥RJ

) {(
ΛT

I ⊗ IJ
)
− (II ⊗ ΛJ)

}−1 (
RT

I ⊗ LT
J

)
Theorem 1. Let D̂n be as in (4.5) and suppose Assumption 1 holds. Then,

n1/2vec
{
D̂T

n −DT
}
⇝ N

(
0, BDTΩBH

DT

)
.

To obtain some intuition for how the distribution in Theorem 1 arises, it is instructive to

consider the first term in the Jacobian matrix (4.6), RT−1
I,2 , which is exactly the factor post-

multiplying RI,1 in (4.4), which demonstrates that we can derive the distribution of the esti-

mator for the normalised basis coefficients collected in D from the same mapping ψ defined

in (3.9). The above results rely on consistent covariance matrix estimators. To establish those,

we have

Theorem 2. Under Assumption 1, the following hold:

(1) M̂n
p→M .

(2) Ω̂n
p→ Ω.

(3) col R̂n
p→ colR.

(4) col L̂n
p→ colL.

(5) Λ̂
p→ Λ.

(6) B̂
p→ B.

(7) B̂jΩ̂B̂
T
j

p→ BjΩBj for j ∈
{
∅, DT,W

}
.

(8) D̂n
p→ D.

The proof of Theorem 2 appears in Section 9.5. Note that Theorem 2.3 and 4 implies that

we identify only the column spans R and L. The main utility of this result is the application

of Slutsky’s theorem to establish weak convergence of our test statistics.

4.2. Singular subspaces. We define the estimator of Ψ(M) by evaluating Ψ at the estimate

M̂ , so that Ψ
(
M̂n

)
= υ⊺⊥ÛI

(
M̂n

)
. Using Lemma 2, we obtain the asymptotic distribution of

the sample analogue of Ψ(M) in the following result.

Proposition 2. Suppose Assumption 1 and Assumption 3 hold and let BSVD be as in (3.17) and
let υ⊥ be as in (1.3). Then,

√
n vec υ⊺⊥ÛI

(
M̂n

)
⇝ N

(
0, BSVDΩB

T
SVD

)
.

The result in Proposition 2 forms the basis for a Wald test for the orthocomplement of basis

vectors of the right-singular subspace ofM .

5. Hypothesis tests

5.1. Invariant subspaces.
14



5.1.1. Wald test for matrix hypothesis. To test H∗
0 : υ⊺⊥PI = 0 for a fully specified υ⊥ corre-

sponding to some υ0, we define aWald test statistic based on Proposition 1. Letting Ω̂+
W denote

a generalised inverse of Ω̂W , defined in either (3.20) or (3.21), for Ω̂W := B̂W Ω̂B̂W , we have

(5.1) Ŵn (υ⊥) := vec

(
υ⊺⊥P̂I

)H

Ω̂+
Wvec

(
υ⊺⊥P̂I

)
and an associated Jacobian matrix estimator for

(5.2) B̂W :=
(
L̂I ⊗ υT⊥R̂J

){(
Λ̂T

I ⊗ IJ

)
−
(
II ⊗ Λ̂J

)}−1 (
R̂T

I ⊗ L̂T
J

)
,

which we obtain by simply replacing sample analogues into the expression for the Jacobian of

ψ (X) defined in (3.12). Consequently, we obtain the asymptotic distribution of the Wald test

in

Theorem 3. Suppose Assumption 1 holds. Then,

Ŵn (υ⊥)⇝ χ2
qm.(5.3)

The proof of Theorem 3 appears in Section 9.1 and builds on the result in Proposition 1,

which establishes the asymptotic normality of the vectors associated with theWald test statis-

tic. Section 6.1 collects information on the quality of the offered asymptotic approximation.

The advantage of this test is that it is relatively straightforward to compute although a re-

searcher has to specify a full vector or matrix hypothesis. We imagine that this scenario is

most likely of interest when testing whether localised basis vectors belong to an invariant

subspace ofM .

5.1.2. t-test for individual coefficients. If researchers wish to conduct inference on individual

coefficients of invariant vectors or matrices, it may be more useful to consider a scalar-valued

t-test. This scenario is useful when We therefore consider a null hypothesis about individual

entries ofD, dij := eTi Dej for ei ∈ Rq×1
and ej ∈ Rr×1

where the vectors ei have unit entries

at i and zero elsewhere.

Let R̂−1
I,2 be the empirical analogue of R−1

I,2 defined in (4.4) and define analogously to (5.2),

Bij =
(
eTi R

T−1
2,I ⊗ eTj υ

T
⊥RJ

) [(
ΛT

I ⊗ IJ
)
− (II ⊗ ΛJ)

]−1 (
RT

I ⊗ LT
J

)
,

to be able to write the scalar variance σ2
ij := BijΩB

H
ij of

√
n
(
d̂ij − d

)
Then, we define the

t-test statistic for inference on the ijth coefficient of D,

(5.4) tij,n (d0) :=
d̂n,ij − d0√

σ̂2
ij/n

.

We construct the estimator of the variance, σ̂ij by replacingBij with B̂ij which in turn contains

sample analogues of R̂i and L̂i for i ∈ {I, J}which are similar to the replacements appearing

in (5.2). Our next result collects the weak limit of tij,n (d0).

Theorem 4. Suppose Assumption 1 holds, then

tij,n (d0)⇝ N (0, 1) .
15



The result Theorem 4 is particularly convenient for constructing confidence intervals on

individual coefficients. Furthermore, we consider an important special case that arises in the

study of eigenvector centralities that graph adjacency matrices induce. In such cases, we are

interested in the distribution of

∣∣∣d̂ij∣∣∣, which will be a folded normal distribution with cumula-

tive distribution function

(5.5) FG (x; dij, σij) := Φ

(
x− dij
σij

)
− Φ

(
−x− dij
σij

)
where Φ

(
x−µ
σ

)
denotes the normal cumulative distribution function with mean µ and vari-

ance σ2
. For the asymptotic distribution of the absolute values of the normalised eigenvector

entries, we record

Corollary 1. Suppose Assumption 1 holds, then
√
n
∣∣∣d̂ij∣∣∣ ⇝ G where G is a random variable

that has a folded normal distribution with c.d.f. FG (x).

Proof. See Tsagris, Beneki, and Hassani (2014). □

The result in Corollary 1 allows one to construct one-sided confidence intervals, which

appear in Section 7.1.

5.2. Inference on clustering coefficients and singular subspaces. In this section, we de-

velop methods to conduct inference on singular subspaces in the case ofM being an m × n

rectangular matrix. We begin by considering a Wald test statistic which is amenable for in-

ference on subspaces or individual vectors and then move on to consider t-tests for individual

coefficients. We specialise the latter to clustering coefficients as they arise in network models.

5.2.1. Wald test for matrix hypothesis on singular subspaces.

5.2.2. t-test for individual coefficients of singular vectors.

6. Simulation study

We ran simulations to study the performance of the t- andWald tests using quantile-quantile

plots as well as the empirical cumulative distribution functions comparedwith their theoretical

counterparts. These visual aids demonstrate the quality of the asymptotic approximations

found in Section 5.2 and Section 5.2.
5

6.1. Monte Carlo evidence for invariant subspace inference.

6.1.1. Data-generating processes. We used a simplified covariance matrix Ω = Ip ⊗ ΩM for

a matrix with p = 2 and detail the data-generating process in Algorithm 6.1. The online

supplement to this paper contains further DGPs as well as examples on how to include het-

eroskedasticity and autocorrelation-robust covariance matrix estimators.

5
Complementary to the results presented in this section, we refer the reader to the supplementarymaterial hosted

at https://github.com/jsimons8/networkmodelssubspaces.
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Algorithm 6.1 DGP underlying results in Figure 6.1.

Input: Dimension of the matrix p, sample size n, Monte Carlo repetitionsK , Dimension of in-

variant subspace of interest q, a candidate matrixM , and a null hypothesis υ⊥ = ( Ir −DT )
Output: K samples of t and Wald statistic.

1: Generate n samples ofMt =M+Et ∈ Rp×p
,K times, where the columns ofE are drawn

from a mean zero multivariate normal distribution with covariance matrix ΩW . Store the

result.

2: for i = 1 to K do
3: Estimate M̂n via n−1

∑n
t=1Mt.

4: Estimate R̂n and L̂n and partition them like in (3.4), RI = R [:, 1 : q] and RJ =
R [:, q + 1 : p]. Find L = ( LI LJ ) via (generalised) inversion.

5: Construct D̂ based on (4.5), take the (i, j) element for di,j .
6: Construct Wald or t-statistic for null hypothesis υ based on (5.1) or (5.4), respectively.

7: For the t-statistic, take the real part only. The Wald statistic will necessarily be real.

8: end for

(a) Wald test quantiles. (b) t-test quantiles.

(c) CDF comparisons of Wald test statistic. (d) CDF comparisons of t-test statistic.

Figure 6.1. Quality of asymptotic approximation. Left column: Wald test, right

column: t-test. 5000 MC repetitions were used for a sample size of 100. : QQ
plots are theoretical (y) vs. empirical (x).

6.1.2. Results. Figure 6.1 shows that both the Wald and t-test statistics perform well in sim-

ulation exercises. The left panel lets us judge the approximation made in Theorem 3 while

the right panel displays the quality of the t-test approximation of Theorem 4. The overall

performance is very good with only few outliers. Panel (b) shows that the t-test has slightly

weaker tails compared with the standard normal distribution, although they are in the ac-

ceptable range. Histograms overlain with densities displayed the same tendency and appear

in the online supplement. The bottom panels show the same tendency where the cumulative

distribution functions track their empirical counterparts fairly well.
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Algorithm 6.2 DGP underlying results in Figure 6.2.

Input: Dimension of the matrixm× l, sample size n, Monte Carlo repetitionsK , Dimension

of singular subspace of interest F , (if applicable) a singular vector of interested indexed

by f , a candidate matrixM , and a null hypothesis υ⊥ = ( Ir −DT )
Output: K samples of t and Wald statistic.

1: Generate n samples ofMt =M+Et ∈ Rm×l
,K times, where the columns ofE are drawn

from a mean zero multivariate normal distribution with covariance matrix ΩW . Store the

result.

2: for i = 1 to K do
3: Estimate M̂n via n−1

∑n
t=1Mt.

4: Estimate Ûn and V̂n and partition them like in (3.4), RI = R [:, 1 : q] and RJ =
R [:, q + 1 : p]. Find L = ( LI LJ ) via (generalised) inversion.

5: Construct D̂ based on (4.5), take the (i, j) element for di,j .
6: Construct Wald or t-statistic for null hypothesis υ based on (5.1) or (5.4), respectively.

7: For the t-statistic, take the real part only. The Wald statistic will necessarily be real.

8: end for

(a) Wald test quantiles.

(b) CDF comparisons of Wald test statistic.

Figure 6.2. Quality of asymptotic approximation forWald test-based inference

on singular vectors. 2000 MC repetitions were used for a sample size of 500. :
QQ plots are theoretical (y) vs. empirical (x).

6.2. Monte Carlo evidence for inference on singular vectors.

6.2.1. Data-generating processes. We considered a data-generating process using a covariance

matrix Ω = Im ⊗ ΩW for a positive-definite ΩW ∈ Rm×m
. Algorithm 6.2 details the steps of

how we generate samples for the t- and Wald statistics.

6.2.2. Results. The quantile-quantile plots in the top row of Figure 6.2 show that the overall

performance of the asymptotic approximations is very good with few outlier. Similarly, the
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bottom row details that the cumulative distribution functions track their empirical counter-

parts well. These results are encouraging that the perturbation theory delivers good approxi-

mations to the derivatives of the singular subspace maps.

7. Network statistics

In this section, we apply the methods of invariant and singular subspace inference to the

empirical questions of estimating adjacency matrices and eigenvector centrality measures. We

focus on directed graphs with potential self-loops, which trigger non-symmetric adjacency

matrices and whose principal invariant subspaces collect information on the popularity of

nodes.

We begin by connecting the theory of invariant subspaces to centrality measures as they

arise from a network adjacency matrix. To study the performance of our inference methods

in this setting, we therefore being by explicitly simulating adjacency matrices from a directed

graphmodel. Subsequently, we consider two empirical examples and estimate trade and input-

output networks from noisy data for which we estimate eigenvector centralities with associ-

ated confidence intervals. We find that in the case of input-output networks, the inclusion of

confidence intervals reorders the nodes according to their importance in the network.

7.1. Network centralities. We interpret M as the adjacency matrix representing an un-

weighted, directed graph with pairs of vertices indexed by i and j. The importance score

si,

(7.1) si :=
1

λ

∑
j∈Ni

sj,

measures the relative importance of firm i in the network. The sum runs over all j that are

direct neighbours of firm i, denoted by Ni and λ is a constant. The measure si is known as

the eigenvector centrality. For the full vector of scores s, making the substitution

∑
j∈Ni

sj =∑N
j=1mijsj , we obtain the relationship

(7.2) Ms = λs,

which defines an eigenvector problem. We consider an estimate of M , M̂n, estimated with

uncertainty which arises for example in the setup of de Paula, Rasul, and Souza (2023). We

aim to test hypotheses of the form

H0 : si is the relative importance of node i.

against the alternative that it is not. We use the absolute value version of the coefficient-wise

t-test based on Corollary 1 to construct one-sided confidence intervals. We define a one-sided

confidence interval with level α for |si| via

Ci := [|ŝi| , x0] ,
19



(a) Directed graph belonging to the adjacency matrixM . (b) Quality of approximation

Figure 7.1. Example graph measured with noise and quality of the asymptotic

approximation for inference on eigenvector centralities. 1000 MC repetitions

were used for a sample size of 500. : QQ plots are theoretical (y) vs. empirical

(x).

(a) Centralities for trade network (logarithms). (b) Centralities for input-output network.

Figure 7.2. Left column: One-sided confidence intervals (95%) for eigenvector centralities.

Code Description

23 Construction

31G Manufacturing

42 Wholesale trade

44RT Retail trade

48TW Transportation and warehousing

FIRE Finance, insurance, real estate, rental, and leasing

PROF Professional and business services

7 Arts, entertainment, recreation, accommodation, and food services

81 Other services, except government

G Government

Table 7.1. Sector codes for the input-output network model.

where the upper limit x0 > 0 solves FG (x0; |si| , σi) = 1− α for x0 > 0 and (5.5) defines FG

and with consistent point estimates |ŝi|and σ̂i substituted for |si| and σi for i = 1, . . . , p − 1.

Consequently, ∀s ∈ C, we cannot reject H0 : |dij| = d.

7.2. Network model of international trade. We next consider a setting where network

ties are observed with error repeatedly, resulting in a noisy adjacency matrix. In particular,

we are taking the
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(a) Estimated trade network. (b) Estimated input-output network.

Figure 7.3. Estimated networks.

8. Conclusion

This paper has extended the theory of Tyler (1981) to cover non-symmetric matrices. In

addition to testing full vector hypotheses, we also provide a t-test on individual coefficients of

the vector and derive the asymptotic distribution of the estimator for normalised eigenvectors.

We caution the reader that normalised estimates may suffer from a potentially unbounded

second moment. However, we believe that the benefits of being able to normalise coefficients

outweigh its drawbacks.

We have also seen how to apply the analytic perturbation theory of Sun (1991) to the prob-

lem of inference on eigenvectors and hope that our exposition can aid researchers in similar

settings. The perturbation theory of Kato (1995) delivers the same symbolic results but lacks

the discussion on the smoothness of maps. For readers who are new to the literature on per-

turbation theory, Greenbaum, Li, and Overton (2019) contains a pedagogic and wonderfully

detailed treatment of the subject.

The leading application of our results is to graph Laplacians or adjacency matrices that

directed graphs induce. We leave further development of a full model for inference on noisy

graph Laplacians for future work.

9. Appendix

This section contains proofs of the main results of the paper. In particular, we will see how

theχ2
and normal approximations to the limiting distributions to theWald and t-tests statistics

in Theorem 3 and Theorem 4 arise by considering asymptotic perturbation expansions that

depend on the spectral data of M . Following on, we shall study how these expansions arise

from perturbation theory and establish that the implicit function theorem in our setup implies

that the unnormalised basis vectors are analytic functions of the underlying matrices. This

discussion then leads us to furnish a consistency proof that takes advantage of the implied

continuity of eigenvectors and eigenvalues. We note that this result is of independent interest
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because eigenvectors are not in general continuous functions of the underlying matrix. They

admit continuous representations if the eigenvalues split according to Assumption 1.2.

9.1. Asymptotic distribution of Wald test statistic. To prove Theorem 3, recall that

(9.1) υT⊥P̂n,I = υT⊥

(
P̂n,I − PI

)
because υT⊥PI = 0 under the maintained hypothesis. We introduce the notation

(9.2)

[
∆I

∆IJ ∆J

]
:=

[
LH
I ERI

LH
J ERI LH

J ERJ

]
,

which introduces ∆· to denote the diagonalisation of a perturbing matrix E ∈ Rp×p
.

To expand the right-hand side of (9.1), we introduce the derivatives in

Lemma 3. Suppose Assumption 1 holds. Then, the first and second order Gateaux derivatives of
ψ (M,E) atM are

ψ̇ (X,E) |X=M =υT⊥RJS
−1 (∆SL)L

H
I .(9.3)

ψ̈ (X,E) |X=M =2υT⊥RJS
−1

((
∆JS

−1 (∆IJ)− S−1 (∆IJ)∆I

))
LH
I .(9.4)

The Gateaux derivatives in Lemma 3 crucially depend on the perturbation E. To opera-

tionalise these results for a first order expansion of ψ
(
M̂n

)
about ψ (M), we invoke Magnus

and Neudecker (2019, Thm. 11) to write them as

Corollary 2. Suppose Assumption 1 holds. Then, the first order differential form of ψ (M,E) at
M is

vec dψ (M) = vec υT⊥RJS
−1 (∆SL)L

H
I ,

which lets us identify the Jacobian matrix B via

vec dψ (M ;E) = (LJ ⊗ υ⊺⊥RI)
{(

ΛT
I ⊗ IJ

)
− (II ⊗ ΛJ)

}−1 (
RT

I ⊗ LT
J

)︸ ︷︷ ︸
B

vec E

The first derivative (9.3) thus identified allows assembly of a first-order expansion, which

we pursue in

Lemma 4.

(1) The standardized term admits the expansion centered around the truth
√
nυT⊥

(
P̂n,I − PI

)
=

√
nυT⊥R̂n,JS

−1 (∆n,IJ) L̂
H
n,I +

√
nr

(
M̂n −M

)
.

(2) The remainder term obeys r
(
M̂n −M

)
= O (n−1) .

(3) Let ∆̂n,i with i ∈ {I, IJ, J} be as in (9.2). Then[
∆̂n,I

∆̂n,IJ ∆̂n,J

]
=

[
Op

(
n−1/2

)
Op

(
n−1/2

)
Op

(
n−1/2

)] .
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Lemma 4.1 lets us derive an estimator of the covariance matrix while Lemma 4.2 ensures

that the approximation error is O
(
n−1/2

)
and therefore converges in probability to zero. Our

next result ensures the desired convergence. Define BT
IJ
:= RI ⊗ LJ . Then, we have

Lemma 5. Let ∆n,IJ be as in Lemma 3. Then, for υ⊥ ∈ Rp×(p−m) ,

(1)

√
nvec ∆n,IJ ⇝ N

(
0, BIJΩB

H
IJ

)
.

(2)

√
nvec

{
υT⊥R̂n,JS

−1 (∆n,IJ) L̂
H
n,I

}
⇝ N (0,ΩW ) .

(3) rkΩW = qm.

Proposition 1 follows from application of Lemma 5.2 to Lemma 4.1. Similarly, Theorem 3

follows from Lemma 5.2 where the degrees of freedom follow from Lemma 5.3. The consis-

tency of the covariance matrix and right and left eigenvector column space estimates that is

necessary for the convergences to hold jointly follows from Theorem 2.

9.2. Asymptotic distributions of estimator forD and t-test statistic. To prove Theorem
1, apply to

√
n
(
D̂T

n −DT
)
the expression given in

Lemma 6. Let the estimator D̂T
n = R̂n,1,IR̂

−1
n,2,I . Then, the centered estimator

(9.5)

(
D̂n −D

)T

= υT⊥R̂n,1,IR̂
−1
n,2,I + op (1) .

To study the standardised and centred estimator, we can work with the right-hand side of

(9.5). For the asymptotic limit, we have in analogy to Lemma 4,

Corollary 3. We have the expansion for the centered estimator
√
n
(
D̂T

n −DT
)
=

√
nυT⊥R̂n,JS

−1 (∆n,IJ) R̂
−1
n,2,I +

√
nr

(
M̂n −M

)
We note that Lemma 4.2 and 3 remain unchanged in the case of expansions for D̂n and the

associated t-test statistic.

Theorem 1 follows from applying Lemma 5 to the expansion in Corollary 3 by substituting

R−1
n,2,I for L

H
n,I .

We now turn to proving Theorem 4. By Theorem 1 and Assumption 1,

√
n
(
B̂DΩ̂M B̂

T
D

)−1/2 (
vec D̂T

n − vec DT
)
⇝ N(0, Irq×rq).

Let es,i ∈ Rs
denote a vector with zero everywhere except for a 1 in the sth position so that

dij := eTi,qD
Tej,r is the entry of DT

in row i and column j, which corresponds to the ijth

element of vec D̂T
n − vec DT

0 . To find its associated standard error, we let σ2
ij denote the ijth

diagonal entry of

(
B̂DΩ̂M B̂

H
D

)−1

. Then, we define as the standard error for dij , σ̂ij :=

√
σ̂2
ij

n

and find that
d̂ij−dij

σ̂ij
⇝ N (0, 1). Note that B̂DΩ̂M B̂

H
D is always real by construction in analogy

to the covariance matrix of the Wald test statistic.
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9.3. Perturbation theory for left singular vectors. We write for the mapping that repre-

sents the test statistic

Ψ(M (t))

=υT⊥UI (t)

=υT⊥

(
ŨI − UI

)
(t) .

To first-order, we expand Ψ(M (t)), using the expansion in Liu et al.:

Ψ(M (t))

=υT⊥UI

(
D ·

(
UT
I E (t)VIΣI + ΣIV

T
I E

T (t)UI

))
+ υT⊥UJU

T
J E (t)VIΣ

−1
I .

In order to identify the Jacobian of the perturbation expansion of Ψ(M (t)), we need to find

vec Ψ(M (t)), for which we write

vec Ψ(M (t))

=vec υT⊥UI

(
D ·

(
UT
I E (t)VIΣI + ΣIV

T
I E

T (t)UI

))
+ vec υT⊥UJU

T
J E (t)VIΣ

−1
I .

We focus on the second term first:

vec υT⊥UJU
T
J E (t)VIΣ

−1
I

=
(
Σ−1T

I V T
I ⊗ υT⊥UJU

T
J

)
vec E (t)

Regarding the first term,

vec υT⊥UI

(
D ·

(
UT
I E (t)VIΣI + ΣIV

T
I E

T (t)UI

))
IF

=
(
IF ⊗ υT⊥UI

) [
(vec D) · vec

(
UT
I E (t)VIΣI + ΣIV

T
I E

T (t)UI

)]
=
(
IF ⊗ υT⊥UI

) [
(vec D) ·

((
ΣT

I V
T
I ⊗ UT

I

)
vec (E (t)) +

(
UT
I ⊗ ΣIV

T
I

)
Kvec E (t)

)]
=
(
IF ⊗ υT⊥UI

) [
(vec D) ·

(((
ΣT

I V
T
I ⊗ UT

I

)
+
(
UT
I ⊗ ΣIV

T
I

)
K
)
vec E (t)

)]
where IF is an F ×F identity matrix and F is the true rank ofM . We now apply Lemma 7 to

(vec D) ·
[(
ΣT

I V
T
I ⊗ UT

I

)
vec E (t)

]
to obtain

[(
1T ⊗ vec D

)
·
(
ΣT

I V
T
I ⊗ UT

I

)]
vec E (t) and

similarly, (vec D) ·
(
UT
I ⊗ ΣIV

T
I

)
Kvec E (t) =

[(
1T ⊗ vec D

)
·
(
UT
I ⊗ ΣIV

T
I

)
K
]
vec E (t).

Therefore, we obtain

vec Ψ(M (t))

=
(
Σ−1T

I V T
I ⊗ υT⊥UJU

T
J

)
vec E (t)

+
(
IF ⊗ υT⊥UI

) [(
1T ⊗ vec D

)
·
((
ΣT

I V
T
I ⊗ UT

I

)
+
(
UT
I ⊗ ΣIV

T
I

)
K
)]

vec E (t) .

Hence, we can write the mapΨ(M (t)) in differential form as dΨ (M ;E) =: BSVDvec E for a

perturbationE and identify the Jacobian matrix invoking Magnus and Neudecker (2019, Thm.
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11) as

BSVD =
(
Σ−1T

I V T
I ⊗ υT⊥UJU

T
J

)
+
(
IF ⊗ υT⊥UI

) [(
1T ⊗ vec D

)
·
((
ΣT

I V
T
I ⊗ UT

I

)
+
(
UT
I ⊗ ΣIV

T
I

)
K
)]
.

Lemma 7. Let A, B, and C be matrices of dimensions a × b, ab × cd, and c × d, respectively.
Then, for a matrix of ones of dimension cd× 1, 1, we have the identities

vec A · (Bvec C) =
[(
1T ⊗ vec A

)
·B

]
vec C

and
vec (A ·B) = vec A · vec B.

Writing out individual entries establishes the result. □

For a single vector of interest, the Jacobian simplifies considerably, for a single vector. Write

for the statistic

Ψs (M (t))

=υT⊥ui (t)

=υT⊥ (ũi − ui) .

=υT⊥UIDiU
T
I E (t) visi

+υT⊥UIDiΣIV
T
I E

T (t)ui

+υT⊥UJU
T
J E (t) vis

−1
i .

Again, we vectorize term by term, to obtain vec υT⊥UIDiU
T
I Evisi =

(
siv

T
i ⊗ υT⊥UIDiU

T
I

)
vec E (t),

to obtain vec υT⊥UIDiΣIV
T
I E

T (t)ui =
(
uTi ⊗ υT⊥UIDiΣIV

T
I

)
Kvec E (t), and

(
s−1
i vTi ⊗ υT⊥UJU

T
J

)
vec E (t) .

vec Ψs (M (t))

=
(
siv

T
i ⊗ υT⊥UIDiU

T
I

)
vec E (t)

+
(
uTi ⊗ υT⊥UIDiΣIV

T
I

)
Kvec E (t)

+
(
s−1
i vTi ⊗ υT⊥UJU

T
J

)
vec E (t) ,

so that we can write the mapΨs (M (t)) in differential form as dΨs (M ;E) =: Bsvec E, again

invoking Magnus and Neudecker (2019, Thm. 11) where

Bs

=
(
siv

T
i ⊗ υT⊥UIDiU

T
I

)
+
(
uTi ⊗ υT⊥UIDiΣIV

T
I

)
K

+
(
s−1
i vTi ⊗ υT⊥UJU

T
J

)
.

9.4. Proofs for perturbation expansions. In this section, we derive the perturbation ex-

pansions of our test statistics explicitly and begin with
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Proof of Lemma 3. We wish to construct the first and second derivatives of the map

ψ (M (t)) = υT⊥RI (t)L
T
I (t) = υT⊥PI (t) ,

where we have made the dependence on t explicit andM (0) =M . Then based on Sun (1991,

Remark 4.2), the Fréchet and Gateaux derivatives coincide and we can write

ψ̇R

(
M̂n −M

)
= υT⊥ṖI (t) |t=0,

which by the product rule implies

υT⊥Ṗ (0) = υT⊥ṘI (0)L
T
I + υT⊥RIL̇

T
I (0) = υT⊥ṘI (0)L

T
I

because υT⊥RI(0) = υT⊥RI = 0. □

Proof of Lemma 1. By Lemma 3,

(9.6) vec ∆JI =
(
RT

I ⊗ LT
J

)
vec (E) ,

and the derivative in (9.3), we take the first differential and vectorise the entire expression to

obtain dvec υT⊥RJL
H = B dvec (M). In particular vectorising S−1

(
∆̂n,IJ

)
obtains from vec-

torising the forward problemS (X) = XΛI−ΛJX = Y to obtain vec Y =
{(

ΛT
I ⊗ IJ

)
− (II ⊗ ΛJ)

}
vec X

so that vec S−1
(
∆̂n,IJ

)
=

{(
ΛT

I ⊗ IJ
)
− (II ⊗ ΛJ)

}
vec ∆̂n,IJ which we insert into (9.6) to

obtain

vec S−1 (∆JI) =
{(

ΛT
I ⊗ IJ

)
− (II ⊗ ΛJ)

}−1 (
RT

I ⊗ LT
J

)
vec (M) .

Combining the above display with (9.3), we obtain

vec υ⊺⊥RIS
−1 (∆JI)L

H
J

=(LJ ⊗ υ⊺⊥RI)
{(

ΛT
I ⊗ IJ

)
− (II ⊗ ΛJ)

}−1 (
RT

I ⊗ LT
J

)
vec (M) .

□

Proof of Lemma 5.

(1) By Lemma 3,

vec ∆̂n,IJ =
(
RT

I ⊗ LT
J

)
vec

(
M̂n −M

)
.

The result follows by the continuous mapping theorem and Assumption 1.

(2) By the preceding argument, and the definition of S−1
in Lemma 3, we see that

υT⊥Rn,JS
−1

(
∆̂n,IJ

)
LT
n,I

is a linear and continuous transformation of ∆̂n,IJ. Vectorizing S
−1

(
∆̂n,IJ

)
and taking

the expectation of the outer product provides the result.

(3) To establish the rank of the covariance matrix, we shall take the constituent elements

apart. For ΩW = BWΩBW where we reproduce (5.2) for convenience as

BW =
(
LI ⊗ υT⊥RJ

) {(
ΛT

I ⊗ IJ
)
− (II ⊗ ΛJ)

}−1 (
RT

I ⊗ LT
J

)
.
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First, we establish that rk υT⊥RJ = m. By Assumption 1.1, RJ ∈ Rp×r
has r linearly

independent columns so that rkRJ = r. By the properties of ranks as linearly inde-

pendent columns we obtain the inequality rk υT⊥RJ ≤ min (m, r) = m where the last

inequality follows from r ≤ m. By Sylvester’s rank inequality, we obtain the lower

boundm+ r − p ≤ rk υT⊥RJ ≤ m, which impliesm− q ≤ rk υT⊥RJ ≤ m. To see that

the lower bound is slack and the upper bound is tight, we induct on q: put q = 1 and

assume without loss of generality thatm = r. Then, r− 1 ≤ rk υT⊥RJ ≤ r, so premul-

tiplication of υT⊥ causes the rank of RJ to drop by one, which implies that one column

of υT⊥ is perpendicular to one column ofRJ . However, by Assumption 1.2, we have that

no columns parallel to any in RI must reside in RJ , which means that rk υT⊥RJ = r.

Therefore, per the induction hypothesis the claim holds for q = 1. Now, we show that it

holds for q+1. Suppose that rk υT⊥RJ = r−q−1, which implies that we have again one

column of υT⊥ that is perpendicular to a column ofRJ , leading to the same contradiction

as before. Therefore, for any q and q + 1 we must have that the lower bound has to be

maximally slack while the upper bound binds, thus establishing the claim for m = r.

As there was nothing special about this choice ofm, the claim also holds for allm ≤ r.

Next, we use the property of the Kronecker product rkLI ⊗ υT⊥RJ = rkLI rk υ
T
⊥RJ =

qm. The Jacobian

{(
ΛT

I ⊗ IJ
)
− (II ⊗ ΛJ)

}−1
is a qr × qr square matrix of full rank.

Then, rk
(
RT

I ⊗ LT
J

)
= qr so that rk

{(
ΛT

I ⊗ IJ
)
− (II ⊗ ΛJ)

}−1 (
RT

I ⊗ LT
J

)
= qr.

Putting A1 :=
(
RT

I ⊗ LT
J

)
and A2 :=

{(
ΛT

I ⊗ IJ
)
− (II ⊗ ΛJ)

}−1 (
RT

I ⊗ LT
J

)
we

have qm ± qr ≤ rkAB ≤ min (qm, qr) = qm where the first relation follows

from Sylvester’s rank inequality and the last equality follows from m ≤ r. Hence,

qm ≤ rkA1A2 ≤ qm or rkA1A2 = rkBW = qm. The same argument then estab-

lishes that rkBWΩBT
W = qm: in detail, qm± p2 ≤ rkBWΩ1/2 ≤ min (qm, p2) = qm.

Then, qm± p2 ≤ rkBWΩBT
W ≤ min (qm, p2) = p2 and the claim follows.

□

Proof of Lemma 4.

(1) We Taylor-expand

√
nυT⊥P̂n,I =

√
nψ

(
M̂n

)
=(2)

√
n
(
ψ
(
M̂n

)
− ψ (M)

)
=

√
nψ̇

(
M̂n −M

)
+
√
nr

(
M̂n −M

)
=(3)

√
nυT⊥Rn,JS

−1
(
∆̂n,IJ

)
LT
n,I +

√
nr

(
M̂n −M

)
where=(2) follows from application of the null hypothesis and=(3) follows fromLemma

3.

(2) We obtain a remainder term

r
(
M̂ −M

)
:= ψ

(
M̂

)
− ψ (M)− ψ̇

(
M̂ −M

)
.
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To ensure that the first order term dominates the remainder, we need to verify that

standardisation by

√
n does not cause dominant second order terms. By Assumption

1,

∥∥∥M̂ −M
∥∥∥ = Op

(
n−1/2

)
. By Taylor’s theorem, r

(
M̂ −M

)
= O

(
n−1/2

)
. For

simplicity, we can treat

(
M̂n −M

)
as a deterministic sequence and then apply van der

Vaart (2000, Lemma 2.12, Ch. 2) to obtain the relevant statistical result. First, recognize

that S−1 (anM) = anS
−1 (M) for any scalar sequence an and admissible argument

M . Then, rewrite r as the sum of the next higher order term and another unspecified

remainder term of known order via application of Lemma 3:

r
(
M̂n −M

)
= 2υT⊥RJS

−1
((

∆̂n,JV − V ∆̂n,I

))
LT
I + r2

(
M̂n −M

)
,

where r2 collects higher order terms. By Lemma 4.3 and Lemma 3, we obtain the tighter

bound n1/2r
(
M̂n −M

)
= O

(
n−1/2

)
, which implies that a normalization by

√
n is

innocuous and does not affect convergence.

(3) For a consistent and asymptotically normal least-squares estimator Assumption 1.1 and

the definition in (9.2), the result follows by diagonalising M̂n−M via L̂H
I

(
M̂n −M

)
R̂I

□

Proof of Lemma 6. Add and subtract υT⊥ to obtain ([ D̂T
n Ir ]± [DT Ir ]) R̂n,I = 0. Therefore,(

D̂T
n −DT

)
R̂n,2,I =

[
D̂T

n Ir

] (
R̂n,I −RIR

−1
2,IR̂n,2,I

)
,

whence the result follows. □

Proof of Corollary 3. Apply Corollary 4 to the expression in Lemma 6 and the result follows.

□

9.5. Invariant subspace maps and consistency. To complete the argument that renders

the invariant subspaces of interest well-defined, we use the following result to argue that the

map ψ (M (t)) = υ⊺⊥PI (M (t)) is smooth for a perturbation parameter t ∈ C. Letting t ∈ C
we perturb M and obtain the perturbed map M (t) := M + tC. In the following, we shall

make dependence on t explicit.

Lemma 8. Let ψ (t) be as in (3.9). Then, both ψ (t) and the perturbation expansion terms given
in Lemma 3 are analytic functions of t in a neighbourhood around zero.

Proof. To achieve analyticity, we observe that

∣∣(ΛT
I ⊗ IJ

)
− (II ⊗ ΛJ)

∣∣ ̸= 0 by Assumption

1.2 so that the condition in the second display at the top of Sun (1991, p. 90) is satisfied. For

the case of real matrices, we appeal to Lang (1993, Thm. XIV.2.1). □

For the map induced by the normalised estimator D̂T
n , we have in analogy to ψ (M) defined

in (3.9), the map ψD : Q 7→ Rr×q
with ψD (M) := υT⊥RI (M)R−1

2,I . Then, we have

Corollary 4. The Fréchet derivative of ψD,

ψ̇D

(
M̂n −M

)
= υT⊥Rn,JS

−1
(
∆̂n,SL

)
LH
n,IR

−1
n,2,I .
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Proof of Corollary 4. In Lemma 3, replace LT
I by R−1

2,I and the result follows. □

Proof of Theorem 2. Theorem 2.1 follows from a law of large numbers for M̂n =M+n−1
∑n

i=1 εi

andEεi = O. Similarly, Theorem 2.2 follows from a standard argument: let ε̂i(j) denote the jth

column of the ith residual matrix ε̂i ∈ Rp×p
. Then, Ω̂ = 1

np

∑p
j=1

∑n
i=1 ε̂i(j)ε̂

T
i(j)

p→ Ω where

we have exploited the homoskedasticity across columns of M̂ −M . Then, Lemma 8 implies

that perturbation expansions of ψ (M) in terms of basis vectors of right eigenvectors are equal

to their map as defined implicitly by (3.7). Therefore, ψ (M) is smooth inM and thus an im-

mediate consequence of Lemma 8 is that M̂n
p→M implies that R̂n

p→ R because the implicit

map for R defined byMR = RΛ is analytic. Theorem 2.4 follows from the continuous map-

ping theorem and L̂H
n = R̂−1

n where we note that matrix inversion is continuous. For Theorem

2.5, Λ̂n
p→ Λ, we appeal to Tyrtyshnikov (1997, Thm. 3.9.1). Theorem 2.6-Theorem 2.7 follow

from the continuous mapping theorem. Finally, the map underlying the estimator D̂n defined

in (4.5) inherits the analyticity property by Corollary 4. Observing that ψD (M) is smooth in

M , we can apply the continuous mapping theorem whence Theorem 2.8 follows. □

To prove Lemma 3, we find an expansion of basis vectors of invariant subspaces of a matrix

in response to a small perturbation of that matrix. To aid with the general exposition of the

idea behind invariant subspaces and associated perturbations, we harmonise notations of Sun

(1991) with those employed here. Similar results to those considered here are available in

Kato (1995, Ch. 2). Importantly, matrix perturbation theory seldomly considers real matrices.

Lemma 8 ensures that our results apply to both the complex and real fields. Moreover, our test

statistics remain practically useful even when R,Λ ∈ Cp×p
, because they are always real by

construction.

To delve deeper into the underlying perturbation theory,. let X1 ∈ Rp×q
with rkX1 = q,

XT
1 X1 = Iq and MX1 = X1M1 for some matrix M1 ∈ Rq×q

. Then spX1 is an invariant

subspace ofM ∈ Rp×p
if and only if there exists a non-singular matrix X = [X1 X2 ] ∈ Rp×p

with XT
2 X2 = Ip−q such that

X−1MX =

[
M11 M12

0 M22

]
, M11 ∈ Rq×q.

We now introduce the perturbation matrix of A,

C =

[
C11 C12

C21 C22

]
.

The block C21 measures the departure fromM (t) being upper-triangular. For the purposes of

this study, we are interested in the span of the vectors that are orthogonal to the columns of

X1. Recall the operator (3.10),

S (Q) = QM11 −M22Q

and Q ∈ R(p−q)×q. Then, a necessary condition for Theorem 2.1 in Sun (1991) to apply is that

A11 and A22 do not share any eigenvalues as stipulated in Assumption 1.2. Introducing the
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parameter t ∈ C to help us keep track of the order of the expansion. We state Sun (1991, Thm.

1):

Theorem 5. There exists a unique q-dimensional invariant subspace spX1 (t) ofM (t) (t ∈ C)
such that spX1 (0) = spX1 and the basis vectors (columns ofX1) may be defined to be analytic
functions of t in some neighbourhood of the origin of C. Further, the analytic matrix-valued
function X1 (t) has the second order perturbation expansion

X1 (t) = X1(9.7)

+X2S
−1 (C21) t

+X2S
−1

(
C22S

−1 (C21)− S−1 (C21)C11 − S−1 (C21)M12S
−1 (C21)

)
t2

+O
(
t3
)
.

We interpret Theorem 5 to make it amenable for statistical analysis. Expression (9.7) shows

how small perturbations in the matrix A affect the column space of X1. which correspond

to the first and second-order derivatives. The equivalents of X−1MX and X1 are Λ and RI

respectively. Furthermore, M11 := ΛI and M22 := ΛJ , so that by Assumption 1.2, M11 and

M22 have no eigenvalues in common.

9.6. Sufficiency for perturbation theory. We mentioned that Assumption 1.2 was merely

necessary for the perturbative arguments to apply. To furnish sufficiency we show that we can

assumeRH
I RI = Iq without loss of generality. A corollary of this result is that the eigenvectors

do not need to be normalised for the maps ψR and ψD to be smooth.

Importantly, the basis vectors spanning our invariant subspace of interest, colRI , are not in

general biorthogonal, so a relation that left and right eigenvectors fulfill, lTi ri = δij does not

in general hold for right or left eigenvectors alone, i.e. rTi rj = δij is true only for symmetric

matrices when left and right eigenvectors coincide. Therefore, to operationalise the result

Sun (1991, Thm 2.1), we need the invariant subspace, colRI , to come with orthogonal basis

vectors whence we can recover the original eigenvectors. The following result ensures that

the perturbation arguments apply:

Lemma 9. The following are equivalent:

(1) There exists an orthonormal basis of vectors s1, . . . , sq for colRI such that colRI =

sp {s1, . . . , sq}.
(2) There exists a bijection to recover right eigenvectors from the orthonormal basis vec-

tors {s1, . . . , sq}⇄ {r1, . . . , rq}.

Proof. Employ the QR factorisation which exists for every real and complex matrix whereby

RI = SU with STS = Iq and U is an upper triangular matrix. Because rkU = q, colRI =

colS so that the invariant subspace of interest that wewish to conduct inference on can always

be identified. Finally,MRI = RIΛI implies

MS = S UΛIU
−1︸ ︷︷ ︸

upper triangular

,
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so that colS is indeed an invariant subspace ofM . To see why UΛIU
−1

is upper triangular,

we need only show that U−1
is upper triangular whenever U is. Represent U = D (Iq +K)

where D is diagonal and K is strictly upper triangular. Then, (Iq +K)−1 = Iq −K +K2 −
· · · + (−1)q−1Kq−1

which has only strictly upper triangular summands. Moreover, Kq
and

higher powers are zero by the Cayley-Hamilton theorem. Then, the columns of S span the

invariant subspace of M associated with roots in RI . Finally, we have the relation for the

columns of RI , ri =
∑i

k=1 ukisk, where sk are the columns of S and uki is the (k, i)th entry

of U . This mapping is bijective because U is of full rank so that a reverse mapping can be

achieved by swapping r and s and replacing uki with the entries of U−1
. □
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