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Abstract

Estimates of peer e�ects may su�er from bias if the network data has miss-

ing links. Moreover, if links are not missing at random, estimates of para-

meters in network formation models may also be biased. I contribute to the

literature on identi�cation of peer e�ects and network-formation models with

partially sampled network data in three ways. My �rst contribution is to de-

velop a consistent peer-e�ects estimator that uses link-formation probabilities

from the true network-formation model. My second contribution is to develop

two estimators of a network formation model that are robust to the missing-

ness of links correlating with unobservable link-speci�c shocks. These are an

inverse-probability-weighted likelihood estimator that uses the probabilities of

observing links as weights, and a semi-parametric estimator. The �rst estim-

ator requires the researcher to estimate the probability of a link being observed,

while the second does not at the cost of a slower convergence rate. My third

contribution is to show sharp partial identi�cation of endogenous peer e�ects

when there is no information on how the network is formed. The bounds from

this exercise will be more informative if the researcher has information about

the unobserved network. I apply my peer-e�ect estimator to a new dataset from

two Norwegian schools that I merge with administrative data. In this data, I

observe the complete network as well as a partial sample of links constructed

by restricting students to only list some of their friends. Using the complete

and partial sample of network links from the data, I �nd that my method re-

duces the bias in the peer-e�ect estimator by 65%. Finally, I demonstrate that

naive estimators can lead to misleading results about household behavior in

micro�nance take-up by applying my peer-e�ect estimator to the dataset of

Banerjee et al. (2013).
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1 Introduction

People do not make decisions in a vacuum. Every day, decisions are made based on the

behavior of our peers, be they friends, classmates, coworkers or others we interact

with. Moreover, consequences of these decisions are also a�ected by the behavior

of our peers. There is a growing literature within economics exploring how these

peer e�ects a�ect economic outcomes (Bramoullé et al., 2020) and how networks

form (Graham, 2020). For example, a student's school results can be a�ected by his

friends' classroom behavior and abilities. Households' decisions are a�ected by the

information it obtains from the peers of its members, and the decisions of a �rm can

a�ect the behavior of the �rms it interacts with.

Empirical studies of peer e�ects and network formation models generally have

missing data on network links, and do not have good ways to correct for the miss-

ing data. A survey of applied papers in development economics found an average

sampling rate of 44% of individuals in each network (Chandrasekhar and Lewis,

2016). When researchers gather information on interactions, it can be prohibitively

costly, or impossible, to gather information about every agent's interaction with all

other agents. Usually researchers work with partial data on the network structure,

but have access to census data on covariates and outcomes for everyone (see for ex-

ample Banerjee et al. (2013), Oster and Thornton (2012) and Gri�th (2022)). For

example, a researcher interested in educational peer e�ects can gather data on aca-

demic results and family background of students from the school. To obtain data on

interactions between the students, the researcher would need to survey the students

directly. If some students refuse to do the survey, or simply are not in the school

when the survey is given, the researcher will have missing data on network links.

Similarly if the survey has limited space for the students to list their friends, we will

have missing data on the network links even for those students who completed the

survey.

Interpreting the aggregate economic implications of peer e�ects depends on the

structure of the network. In a school setting, this means that the way students choose

their friends will decide how peer e�ects a�ect the average and variance of learning,

as measured by test scores. Therefore, if a school wants to maximize average learning,

minimize variance, or some combination of the two, it needs to take the links into

account. Suppose there is a positive peer e�ect, meaning a student's test score is

increased by having friends who have high test scores. Imagine a classroom with four

students. Two of the students would have had high test scores with no peer e�ects
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(�high type� students), while the two others would have had low test scores (�low

type� students). Suppose friendships are formed between the two high types and the

two low type students. Then the high type students will amplify each other's scores

through the positive peer e�ect. The peer e�ect would then allow them to achieve

much better results than the low type students. If friendships are instead formed

between the high and low type students, the peer e�ect would make the high and

low type students' test scores more similar. As such the same peer e�ects can both

increase and reduce average outcomes, and the dispersion of outcomes, depending on

which individuals are connected. Understanding the aggregate economic implications

of peer e�ect therefore requires knowledge about how agents choose who to interact

with. When we do not observe all links in the network, it's therefore important to

study how links form in order to understand the impact of peer e�ects.

In this paper I develop methods that allow researchers to identify peer e�ects

and network formation models when they only have partial information about the

network. These methods are robust to the missingness of network links potentially

correlating with unobservable shocks in both the outcome equation and the network

formation model. This expands the settings where researchers can credibly estimate

these models, as previous work has focused on settings where network links are ran-

domly missing (Chandrasekhar and Lewis, 2016). I will show that as the researchers

obtains more information about the network, they get sharper identi�cation of the

parameters of interest. Speci�cally, if the researcher assumes a speci�cation for the

network formation model, my methods gives point identi�cation of all parameters in

the peer e�ect regression.

This paper has three main contributions to the literature on identi�cation of

peer e�ects and network formation models with missing data. The �rst contribu-

tion is constructing a point identi�ed estimator of the parameters of a peer e�ect

regression by specifying a network formation model. The estimator uses networks

drawn independently from the same distribution as the true network, allowing for

the construction of a consistent estimator using simulated instruments and covari-

ates. Importantly, this estimator is robust to the missingness of links correlating with

unobservable determinants of the outcome.

The second contribution is to derive two estimators of a network formation model

that are robust to the missingness of links correlating with unobservable link-speci�c

preference shocks. The �rst of these estimators models the probability of a given link

being observed. I then recover the parameters of the model by solving an inverse-

probability weighted likelihood, which gives consistent estimates under a conditional
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independence assumption. My second estimator instead puts weak conditions on the

missingness process and estimates the parameters of the network formation model

using a semi-parametric estimator. I then derive conditions on the sampling that

allow me to estimate the necessary parameters to generate probabilities of links

forming from the semi-parametric parameter estimates.

The third contribution is to show sharp partial identi�cation of endogenous peer

e�ects in settings where the researcher has no information about how the network

forms. To achieve this I optimize over all possible realizations of the unobserved net-

work structure. I show that this optimization has, depending on the peer e�ect model,

either a linear or a quadratic representation, making it computationally feasible to

obtain the bounds of the identi�ed set using linear or quadratic integer programs.

These bounds can be improved by restricting the set of potential con�gurations of

the unobserved parts of the network. This approach can be computationally costly in

large networks, but the researcher can easily obtain valid bounds for the endogenous

peer e�ect by relaxing the integer constraints in the linear and quadratic programs.

These bounds can be improved through the branch-and-bound algorithms used by

most modern solvers.

Together these contributions for a framework allow researchers to correct for miss-

ing links based on their knowledge of the network. In the case where the unobserved

network is completely unknown, the researcher can calculate the bounds as described

above, which will give the smallest set of parameters consistent with the observed

data. As the researcher gains more information about the network, these bounds

will become more informative. Finally, if the researcher is able to specify a network

formation model, they can obtain point identi�cation despite the missing links.

To evaluate the performance of the estimators I propose, I collect data from

Norwegian middle schools that allow me to observe both the true and the counter-

factually observed data with missing links. This partial network data is constructed

to be similar to what a researcher might have observed if they could only observe

up to �ve male and female friendships per student.1 This allows me to compare my

consistent estimators using the partial data to the �true� e�ect, as estimated using

the complete dataset. I �nd that my estimator reduces the bias in the endogenous

peer e�ect by 65%.

The estimators are next applied to the dataset of Banerjee et al. (2013) to further

assess the relevance of the bias in economic applications. I show that the uncorrected

1Importantly this dataset is constructed through respondents choosing which �ve male/female
students to list, letting me construct a dataset as if I only had data on this limited list of friends.
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estimators would lead researchers to mistakenly conclude that the network a�ects

micro-�nance uptake through information di�usion, when in reality the corrected es-

timators suggest the primary e�ect is through risk-sharing and joint decision making

among connected households.

Several papers have previously studied ways to correct for missing link biases in

peer e�ect regressions. Chandrasekhar and Lewis (2016) was the �rst paper to dis-

cuss biases due to partial network data. They develop corrections in cases where the

missingness is fully at random (uncorrelated with observed or unobserved character-

istics) especially in the context of regressions on network characteristics. They also

develop an �analytical correction� for peer e�ect regressions, which involves running

the peer e�ect regression only on a sub sample of individuals for whom we observe

all the links. I add to their results by allowing the missingness of the links to be

correlated with observed and unobserved characteristics in the peer e�ect regression,

and my estimators do not require researchers to observe all the links for any indi-

viduals.2 Chandrasekhar and Lewis (2016) also develop a GMM estimator that uses

draws from the distribution of the network. This estimator is di�erent than the one I

develop in this paper as it requires the researcher take a stance on the distribution of

the outcome conditional on the observed parts of the network. I will instead develop

an estimator that is robust to missingness correlating with unobserved shocks in the

network formation model.

Other papers have followed up the seminal contribution by Chandrasekhar and

Lewis (2016) by investigating the missing link bias in di�erent settings. Gri�th (2022)

studies censored networks where agents can only list a certain number of their total

links. He then derives bias corrections and bounds of the bias under an assumption of

order irrelevance implying students select which friends to list randomly, and assum-

ing there is no endogenous peer e�ect. I improve upon these methods by constructing

bounds for the bias in a more general setting, as well as achieving point identi�c-

ation by specifying the distribution of the network. Boucher and Houndetoungan

(2020) develop an estimator that uses a maximum likelihood approach, estimating

the network formation model and the peer e�ect equation jointly. This requires the

researcher to make parametric assumptions about the error term in the peer e�ect

regression. My estimator that does not require this parametric assumption.

Semi-parametric estimation of panel models is a well established literature in

econometrics. My semi-parametric estimator uses similar logic to the estimators de-

2These results are especially important for symmetric networks, where researchers often de�ne
links as existing only if both agents respond that the link exists. In these situations, we do not know
all the links for anyone, unless we observe the complete network
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veloped in Manski (1987), see also Manski (1975) and Manski (1985). The work

of Manski has been further developed in the literature by, for example, Abrevaya

(2000), Pakes et al. (2015) and Shi et al. (2018). Unlike these papers I will work in

a static network setting, which induces additional di�culties due to the structure of

the unobserved heterogeneity (Graham, 2017). Applying these methods to a network

setting is also done by Gao (2020)3. My approach is di�erent as I do not require the

estimation of the conditional expectation of each individuals degree conditional on

covariates. This is especially important in the context of missing links, as we may

have very few observations for each individual, which may make these conditional

expectations infeasible to estimate.

Peer e�ects in education has for a long time been a topic of great interest to

economic researchers. Sacerdote (2011) surveys the results in the literature, which

�n broadly positive peer e�ects that vary signi�cantly in magnitude. The majority of

these papers focus on peers as de�ned by classmates, rather than through friendships

(Boozer and Cacciola, 2001; Imberman et al., 2012; McEwan, 2003). Other papers

focus instead on peer e�ects through friends, both on test scores (Gri�th (2022) and

Cohen-Cole et al. (2012)), but also on other outcomes for students such as criminal

activity (Patacchini and Zenou, 2012) and health outcomes (Trogdon et al., 2008). I

contribute to these literatures by o�ering a new identi�cation scheme for peer e�ects

in test scores using peer forecast errors as instruments. The dataset gathered for this

paper also shows how typical forms of sampling network links lead to misleading

insights about how friendships are distributed amongst students.

The rest of this paper is structured as follows. Section 2 gives an overview of

the problem of missing data in peer e�ect and network formation models. Section 3

discusses the concrete issues for peer e�ect regressions and introduces my estimator

of peer e�ects under a high level assumption about the network formation model.

Section 4 introduces my two estimators of network formation models that are robust

to partial data. Section 5 develops partial identi�cation of the endogenous peer ef-

fect when the researcher has no information about the network formation model. In

section 6, I apply my method to micro�nance take-up in India, as well as educational

peer e�ects in Norwegian secondary schools. Section 7 concludes.

3Similar approaches using maximum score methods have also been considered by Toth
(2017),Kim (2018), Candelaria (2020) and Gao et al. (2022)
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2 The anatomy of the problem with partial network

data

In this section I will discuss how missing data on network links a�ect peer e�ect

regressions, and show through a simple example how this bias behaves. As we will

see, this bias is structured very di�erently than the classical measurement error most

researchers are familiar with.

Researchers investigating peer e�ects are often interested in both endogenous peer

e�ects and contextual e�ects. That is the feedback between an individuals outcome

and their peers outcomes and the the e�ect on an individuals outcome from their

peers covariates respectively. This motivates a speci�cation like the one below, called

the linear-in-sums model.

yi = α(Ay)i +Xiβ + (AX)iγ + ϵi (1)

Let N be the number of individuals in the network, and de�ne A to be a symmetric

N ×N matrix with Ai,j = 1 if agent i and j are connected, and Ai,j = 0 otherwise.

This implies that we can write each element of Ay as (Ay)i =
∑N

j=1Ai,jyj, the

sum of outcomes for all individuals connected to person i. In some cases researchers

are instead interested in the e�ects of average peer outcome and peer covariates. In

these cases we can use an alternative speci�cation where we replace A in the outcome

equation with G, de�ned as

Gi,j =


1∑N

k=1 Ai,k
Ai,j if

∑N
k=1Ai,k > 0

0 Otherwise

This is called the linear-in-means model, and is generally the more studied model

(Bramoullé et al., 2020). Since G is a deterministic function of A, which speci�cation

we use will not a�ect the results in most cases.

As discussed, to fully understand network e�ects researchers will also be interested

in how links form. I will, when necessary, model each link Ai,j as forming according

to the following equation

Ai,j = 1{Wi,jθ + Vi + Vj + Ui,j ≥ 0} (2)

Where Wi,j are observed characteristics of nodes i and j, Vi is a measure of node
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(b) Observed graph

Figure 1: These �gures indicate the actual and observed interactions between four
nodes, labeled by their numbers. Solid lines indicate two nodes are linked, while a
dotted line indicate two nodes are not linked. The question marks mean the link is
unobserved by the researcher.

i's �charisma�, that is an intrinsic quality about i that makes them form more links.

Ui,j is a link speci�c preference shock. This type of model is well developed in the

literature, see Graham (2017). I will go into further details about this model in section

4. This speci�cation implies that links form independently conditional on observed

characteristics and latent charisma. While I maintain this speci�cation throughout

the paper, it is not needed for all of my results. In section 3 I will instead work with

the high-level assumption that the researcher has access to consistent estimates of

some network formation model.

2.1 An example with four individuals

To show the anatomy of the biases caused by partial network data, suppose we have

a dataset consisting of 4 people, with links as described in Figure 1a and outcomes

y1 = 1 y2 = −3 y3 = 2 y4 = 4

We can write the adjacency matrix of the true network, as shown in Figure 1a,
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as

A =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

 ⇒ Ay =


6

6

−2

−2


Suppose a naive researcher is interested in how individual outcomes co-vary with

peer outcomes, and wants to calculate Cov((Ay)i, yi). A simple calculation yields

that Cov((Ay)i, yi) = −6. However in reality the researcher only observes the partial

network as shown in �gure 1b. We can write the adjacency matrix of this network as

Aobs =


0 0 1 1

0 0 ? ?

1 ? 0 0

1 ? 0 0


where the question marks denote that a given link is not observed. Note that since

A is symmetric, we only have two missing values. Suppose the researcher ignores

the two missing links, assuming they equal zero. We would then obtain the estimate

Cov(yi, (A
Sy)i) = 6 > −6 = Cov(yi, (Ay)i). One might think that this is simple

measurement error, but the error is both more systematic and unpredictable than

normal classic measurement error. Figure 2 shows a histogram of the possible values

of the covariance when we two links are dropped. This distribution is not normally

distributed or even centered around the true value.

How can we the researcher then obtain identi�cation of Cov(yi, (Ay)i) while only

observing Aobs? Without further information, we cannot get point identi�cation, but

we can get partial identi�cation by using our knowledge about what the network

could potentially look like.

Since the network is symmetric, we have four complete adjacency matrices that

are consistent with the observed data, shown below

Ã1 =


0 0 1 1

0 0 0 0

1 0 0 0

1 0 0 0

 Ã2 =


0 0 1 1

0 0 0 1

1 0 0 0

1 1 0 0

 Ã3 =


0 0 1 1

0 0 1 0

1 1 0 0

1 0 0 0

 Ã4 =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0


The identi�ed set for Cov(yi, (Ay)i) would therefore be the setΘ = {Cov(yi, (Ãky)i)}4k=1.
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Figure 2: Histogram of possible values of Cov(yi, (ASy)i) when two links are dropped.

Calculating this with our outcomes gives us the values

Cov(yi, (Ã1y)i) = 6 Cov(yi, (Ã2y)i) = −2.5 Cov(yi, (Ã3y)i) = 2.5 Cov(yi, (Ã4y)i) = −6

Since we know one of these combinations is the true network, we know Cov(yi, (Ay)i) ∈
Θ. Note that with the information we have, there is no way to exclude any of the four

possible networks. This means this is also the sharp identi�ed set for Cov(yi, (Ay)i).

While this exercise is simple in this small example, it will in general entail an

integer program, either linear or quadratic, to �nd the largest and smallest value in

Θ. This is how I will construct the partially identi�ed sets in my paper.

2.2 Peer e�ect models

Usually the object researchers are interested in is not a covariance like Cov(yi, (Ay)i).

Instead they want to be able to look at the e�ect of friends outcomes on an agents own

outcome controlling for covariates, and taking into account the inherent endogeneity

between yi and (Ay)i. This motivates looking at peer e�ect regressions, like the

linear-in-sums model shown in (1)
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Estimating (1) by OLS will not give us consistent estimates of α. This is because

the existence of the peer e�ects makes Cov(ϵi, (Ay)i) ̸= 0, since a high value of ϵi
leads to higher values of yi, which increases the outcome of all nodes connected to i

by α. This is called the re�ection problem (Manski, 1993), which can be resolved by

using (AX)i as an instrument for (Ay)i (Bramoullé et al., 2009).

De�ne Zi = ((AX)i, Xi) and Ti = ((Ay)i, Xi). The IV-estimate of ξ = (α, β) is

then given by solving the equations

E[Ziy] = E[ZiTi]ξ̂.

ξ is identi�ed by the standard IV-assumptions of relevance (E[ZiTi] is invertible)

and exogeneity (E[Ziϵi] = 0). As discussed in Bramoullé et al. (2009), this holds as

long as covariates are exogenous and there is a su�cient lack of transitivity in the

network.

However our researcher doesn't know the true network, and so cannot use (AX)i

as an instrument. Suppose they instead wants to use (ASX)i. The problem for this

researcher is then not just that the variable of interest is mismeasured, but also that

his instruments are mismeasured.

We can rewrite the outcome equation as

y = αASy +Xβ + ϵ+ α(Ay − ASy).

De�ning ZS
i as the residuals from regressing each component of (ASX)i on Xi, and

assume Cov(ZS
i , (A

Sy)i) ̸= 0. We can write the IV-estimate as

α̂PI
n =

ˆCov(ZS
i , yi)

ˆCov(ZS
i , (A

Sy)i)
.

The probability limit of α̂PI
n can be written as

plimn→∞α̂PI
n = α +

Cov(ZS
i , ϵi)

Cov(ZS
i , (A

Sy)i)
+ α

Cov(ZS
i , (Ay)i − (ASy)i)

Cov(ZS
i , (A

Sy)i)
(3)

It's standard in the literature to assume E[ϵi|X,A] = 0, where X is the matrix of

all covariates for every i. This would make our instrument valid if we observed the

complete graph, that is AS = A. However when AS ̸= A, ZS
i may not be a valid

instrument. De�ne Si,j ∈ {0, 1} as an indicator for whether we observe link i, j, and

S as the N ×N matrix with Si,j as it's (i, j)'th component. Then the strengthened
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assumption under partial information becomes E[ϵi|X,A, S] = 0. In this case the

second element of (3) equals 0 as Cov(ZS
i , ϵi) = 0. This is a strong restriction on the

missingness of the data, and I will introduce estimators that relax this assumption

later in the paper.

Let SN = {i : 1
N

∑N
j Si,j = 1}, that is the set of individuals for whom we observe

all links. For any i in this set, (Ay)i = (ASy)i, implying the third term of (3) equals

zero. This is the �analytical correction� of Chandrasekhar and Lewis (2016). However

in many settings we do not observe all links for any agents, due to a requirement of

links being reciprocal. For example, in an educational setting, it's common to de�ne

a friendship as both students listing each other as friends. In this case, the set of

individuals who are fully sampled becomes vanishingly small as N increases.4

In these settings we can still partially identify α by the same arguments as we

used on the covariance earlier. Note that since ZS
i is a valid instrument (as long as

E[ϵi|X,A, S] = 0), we could obtain valid instruments of α using ZS
i if we observed

(Ay)i. This insight and some algebra shows that

α = α̂PI
n

Cov(ZS
i , (A

Sy)i)

Cov(ZS
i , (Ay)i)

We can use our earlier method to �nd the identi�ed set for Cov(ZS
i , (Ay)i), which

will imply an identi�ed set for α. Manually checking the covariance for every possible

value of the network is infeasible when many links are missing. To get around this,

I will instead re-write the covariance into an object I can optimize over, to �nd the

largest and smallest values of Θ. Note that E[ZS
i ] = 0 by construction as ZS

i is de�ned

as the instrument residualized by the X's, including a constant. We can therefore

write

Cov(ZS
i , Ay) =

N∑
i=1

ZS
i

N∑
j=1

Ai,jyj =
N∑
i=1

N∑
j=1

Ai,jZ
S
i yj :=

N∑
i=1

N∑
j=1

ci,j︸︷︷︸
=ZS

i yj

Ai,j.

which is linear in Ai,j. This means we can solve an integer linear program to obtain

the largest and smallest values of the identi�ed set. If we're instead interested in a

model where outcomes depend on the average outcome of your peers, the problem

4For example, consider a case where we randomly sample a subset of individuals and observe
the links between them. Then SN satis�es |SN | → 0 as N → ∞, as P(Ai,j = 1|Si = 1, Sj = 0) → 1
in a dense network. That is the probability of one of your friends not being sampled approaches 1
for every individual.

12



becomes an integer quadratic program.5 Furthermore, we can obtain fast valid bounds

by solving the relaxed program, where we allow Ai,j to take non-integer values in

[0, 1].

However these methods are all dependent on the missingness of data being condi-

tionally independent of ϵi. This is a strong assumption. For example, in cases where

researchers are interested in how information �ows through the network, an in-depth

survey may a�ect the types of information the agents seek out. Alternatively, stu-

dents choosing to not respond to surveys may depend on their unobserved ability.

I will relax this assumption by estimating the distribution of the network, and

using draws from this distribution to estimate the peer e�ects. This will yield point

identi�cation, and not depend on the assumption of missingness being independent

of ϵ, as the estimator does not use the observed network directly when estimating the

peer e�ect regression. A key feature of this method will be that there is heterogeneity

in network formation behavior. This will ensure that there is non-zero correlation

between instruments constructed by one network drawn from the distribution, and

the peer outcomes constructed from a di�erent network. Intuitively, consistency will

follow from these networks having the same asymptotic distribution as the true

network, though the proof is made complicated by the correlation between the true

network and the observed outcomes.

Of course, for this approach to be valid it must be possible to credibly estimate the

network formation model consistently even when we have missing data. I therefore

develop two estimators that are consistent even when the missingness of the data

correlates with unobserved link-speci�c preference shocks in the network formation

model.

In this section I've focused on the linear-in-sums model for ease of exposition.

However in many empirical applications researchers are instead interested in the

e�ect of the average outcome of your peers on your own outcome, the linear-in-

means model. As this is the more common model, I will focus on that speci�cation

for the rest of the paper.

2.3 Empirical examples

Peer e�ect regressions and network formation models are used in many empirical

settings. Below are three examples of applications where my methods are relevant.

The crucial connection between these applications are the researcher having access

5Unless the researcher has prior knowledge of di =
∑N

j=1 Ai,j , that is the number of friends of
each individual. See Section 5 for details.
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to data on some outcomes and covariates for the entire population, and the networks

of interest being relatively large. This latter part is crucial as the asymptotic setting

of my estimator is for the size of the network to grow in�nitely large. Settings with

many networks, such as Example 3, are valid as long as each network is growing in

size.

Emprical Example 1 (Production networks). Suppose a researcher has access to

tax registry data on �rm covariates, as well as a separate dataset containing inform-

ation on which �rms trade with each other, such as the Compustat database. See for

example Atalay et al. (2011), Shimamoto et al. (2022). Similarly, Lim (2018) estim-

ates a network formation model on this data to investigate how production networks

form.

Emprical Example 2 (Educational surveys with partial responses). Many research-

ers are interested in both how friendships form in schools, as well as how those

friendships a�ect educational, health and criminal outcomes. By gathering data from

a school a researcher can get a lot of data about the students, but gathering friendship

data requires a survey. Often, not all students will complete the survey, and which

students completes the survey may not be random. For example, students who struggle

in class may also struggle to �ll out a long survey, leading to them not �nishing the

survey. There will therefore be non-randomly missing links in the network data. A

good example of this setting is the well-used AdHealth dataset (see for example Grif-

�th (2022), Patacchini and Zenou (2012), Cohen-Cole et al. (2012) and Trogdon

et al. (2008)), as well as one of the empirical applications of this paper.

Emprical Example 3 (Micro�nance take-up in villages). Information di�usion

and joint decision making are common traits amongst households in the developing

world, especially in the context of seeding information in a network (see for example

Banerjee et al. (2013) and Akbarpour et al. (2020)). Researchers are interested in

how households spread information and risk between themselves and their connected

households, but network data is often limited due to budgetary reasons. A peer e�ect

framework of this problem is also studied in Chandrasekhar and Lewis (2016), and

is also one of the empirical applications of this paper.
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3 Using the network formation model to achieve

point identi�cation

In this section I will show how a researcher can obtain point estimates of the peer

e�ect regression by specifying an etwork formation model. I will work under a high-

level assumption about the network formation model and will give estimators that

allow us to estimate the network formation model with missing links in section 4.

Note however, that other estimators, such as the methods using aggregate relational

data of Breza et al. (2020) could also be used. Alternatively, researchers with access

to this kind of data could use it to improve the bounds on the endogenous peer e�ect

without specifying a network formation model using the methods discussed in section

5.

As already stated, the standard assumptions in the literature to estimate peer

e�ect regressions with complete network information is that the network is exogenous,

outcomes are non-explosive and that peer e�ects don't cancel out (Bramoullé et al.,

2020). In my setting these assumptions can be stated as follows

Assumption 1 (Existence). |α| < 1 and α + βγ ̸= 0.

This assumption guarantees that the outcomes remain �nite, and that the peer

e�ects don't �cancel out�.

Assumption 2 (Exogeneity of Network and Covariates).

E[ϵi|W,V, U,X] = 0.

This assumption is common in the literature, though often instead stated in terms

of the network A, instead of the determinants of the network, which in my setting

are W,V, U . As we will see, even under this assumption identi�cation and estimation

of peer e�ects is non-trivial with partial network information. I discuss some ways

this assumption can be relaxed in Appendix A.3.

I'll make the following assumption about the missingness of the data

Assumption 3. Si,j ∼ FS ∀i, j. Where FS is potentially unknown to the researcher

and may depend on other r.v. in them model.

I will be making restrictions on FS at various points of the paper. However im-

portantly this assumption implies that missingness process follows the same process

for everyone, and doesn't depend on the sample size.
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In many of the cases economists are interested in, we want to be able to include

contextual e�ect, as well as be robust to the sampling potentially correlating both

with ϵ and U . In this setting I will only be making the following assumption

Assumption 4 (Consistent network formation model). The researcher has access to

estimates P̂ (Ai,j = 1|Wi,j, V̂i, V̂j) for all individuals i, j, and these estimates satisfy

P̂ (Ai,j = 1|Wi,j, V̂i, V̂j)
p−→ P(Ai,j = 1|Wi,j, V0,i, V0,j)

Where V0,i is the true charisma of individual i, and P(Ai,j = 1|Wi,j, V0,i, V0,j) is the

true distribution that generated the observed network.

This assumption is a high-level assumption on the researchers knowledge of the

network formation model. I will discuss models that imply Assumption 4 hold in

settings where the researcher has data with missing network links in Section 4.

Removing biases stemming from missing network links by specifying the distribu-

tion of the network was suggested in Chandrasekhar and Lewis (2016), who developed

an OLS and GMM estimators of the e�ect of network characteristics on outcomes

of interest. The key intuition for these solutions goes back to Rubin (1976), who

suggested using distributions to �integrate out� missing data. In this section I will

introduce a simulation based IV estimator that will do exactly this. This estimator

will give us point identi�cation of the parameters in the peer e�ect model.

If we observed the true network, we could use G2X as an instrument. De�ne

Zi = ((G2X)i, Xi, (GX)i) and Ti = (Gy)i, Xi, (GX)i. Let ξ = (β, γ, α), then the

IV-estimator for ξ is

ξ̂IVn = (
1

N

∑
i

Z ′
iTi)

−1(
1

N

∑
i

Z ′
iyi)

p−→ (E[Z ′
iTi])

−1E[Tiyi]

That is asymptotically, the IV-estimand is the fraction of two expectations. With

missing data on network links we can't calculate ξ̂IV , but by specifying the network

formation model we can construct simulated instruments and covariates that will

allow us to compute similar objects.

The estimator is constructed from M repetitions of two independent draws of

the network. The reason to use M repetitions is to avoid instability issues that can

occur when the estimator is generated from only one set of draws. De�ne the draw

that generated the data as A0. The �rst draw (A1) is used to construct the vector of

instruments Zsim
i . The second draw (A2) is used to construct the covariates, T sim

i ,

including the endogenous peer e�ect. Speci�cally, for the m′th draw of A1, A2 we
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have Zsim
i,m = (G2

1,mX,X,G1,mX) and T sim
i,m = (X, (G2,mX)i, (G2,my)i). We can then

de�ne the simulated equivalent of ξ̂IV as

ξ̂SIV =

 1

M

M∑
m=1

1

N

N∑
i=1

Zsim
i,m T sim

i,m

−1 1

M

M∑
m=1

1

N

N∑
i=1

Zsim
i,m yi


The estimator uses simulated instruments and covariates to estimate the parameters

of the peer e�ects. To show ξ̂SIVn is consistent for the true parameters I will make

the following assumptions.

Assumption 5 (Regularity Assumptions for SIV).

1. Xi, ϵi are Lebesgue integrable i.i.d. random variables

2. The moments E[Zsim
i,m T sim

i,m ] and E[Zsim
i,m y] exist.

3. E[Zsim
i,m T sim

i,m ] is invertible.

Note that Assumption 5.3 requires there to be su�cient correlation across draws

of the network to generate correlation between Zsim
i,m , T sim

i,m . This can be achieved

by the network formation model containing su�cient heterogeneity in link formation

through observed covariatesWi,j and the latent charisma, Vi. If instead the network is

generated through an Erd®s-Rényi graph, where every link has a constant probability

of forming, Assumption 5.3 is unlikely to hold.

Proposition 1. Let Assumptions 1,2, 4 and 5 hold. Then ξ̂SIV
p−→ ξ as N,M → ∞.

Proof. See Appendix A.5

Appendix A.5 also gives an estimator for over-identi�ed IV, which lets researchers

include several instruments, such asG2X,G3X,G4X, ... etc. Note that the asymptotic

regime of the estimator is for the network to grow large. In applications with many

networks, this can be interpreted as every network growing large as the sample size

grows.

De�ne G0 to be the true network that generated the outcomes. The key part of

the consistency proof is then that as N increases, the mismeasurement G0y−G2,my

equals zero in expectation due to G0 and G2 being drawn from the same distribution.

An important complication is due to y being a function of G0. Despite this the

structure of the bias still allows us to get consistency. As Zi is not constructed using

either G0 or G2, it's correlation with G0y and G2y is also the same, implying the
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bias is asymptotically zero. A similar argument goes through for the mismeasured

contextual e�ects. Had we instead constructed Z using G2, it would have a di�erent

correlation with G2y than with G0y, leading to an asymptotic bias. Similarly, as

the number of draws increases, Assumption 5.2-3 guarantees the limit of the SIV

estimator exists.

The main challenge in the over-identi�ed case is to ensure that the weighting

of the instruments does not use T sim
i , as this would induce a di�erent correlation

between Zsim
i and G0y and G2y. I therefore suggest to either separately estimate the

�rst stage coe�cients, or to use a third draw A3 to calculate them. We could also

construct a simulated GMM estimator to achieve more e�cient weights. I suggest a

GMM estimator and show it's consistency in A.12.

4 Network formation models with missing network

links

This section will discuss estimators that will satisfy Assumption 4 when the missing-

ness of network links potentially correlate with unobservable preference shocks in the

network formation model. Estimators for network formation that can be estimated on

random subsets of network links have been developed by Chandrasekhar and Lewis

(2016) and Graham (2017). Similarly, Breza et al. (2020) discuss methods when the

researcher has no information on links, but has access to aggregate relational data.

My estimators will instead focus on cases where the missingness of links correlates

with the unobserved link-speci�c preference shocks.

Recall the network formation model discussed previously,

Ai,j = 1{Wi,jθ + Vi + Vj + Ui,j ≥ 0}.

Implying a model of transferable utility where two agents form a link if the surplus

of the link is positive, and the surplus depends on a k-dimensional observable char-

acteristics (Wi,j), the sum of their respective social in�uence (Vi, Vj), and random

preference shock.

The model allows for some dependence between how links form through Vi. How-

ever conditional on observable characteristics and {Vi}Ni=1 the network links form

independently. Other network formation models allow for richer types of preferences.

For example, Gao et al. (2022) give estimators for models with non-transferable

utility, and Menzel (2015); De Paula et al. (2018); Graham (2016) develop estim-
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ators that allow for more strategic interactions between agents when forming links.

However as these estimators are either computationally costly, do not yield point

estimates or require panel data, I will focus on the model of (2).

Graham (2017) suggested two estimators for the parameters of (2) by assuming

Ui,j followed a logistic distribution, and that the sample is a random selection of

agents and the links connecting them. This leads to the following maximum likelihood

estimator for θ, V

(θ̂, V̂ ) = argmax
θ,V

(
N

2

)−1 N∑
i=1

∑
j<i

pθ,V (Ai,j|Wi,j) = argmax
b,V

ln(θ, V )

Before I introduce missing links, I will consider the Assumptions needed to ob-

tain consistent estimates of (2) when the researcher has a random sample of links.

Estimation of this model is made di�cult by Vi, which grows as N increases. I will

make the following Assumption, which are the assumptions of Graham (2017)'s Joint

Maximum Likelihood estimator (JMLE) in my notation.

Assumption 6.

1. θ ∈ int(Θ), supp(W ) = W, where W ,Θ are compact subsets of Rk.

2. Network formation follows 2 with Ui,j as i.i.d. draws from a standard logistic

distribution.

3. The support of V is V, a compact subset of R.

4. The likelihood E[ln(b, v)|W,V0] is uniquely maximized at b = θ, v = V .

Are these assumptions su�cient to guarantee consistency when we have missing

data that may correlate with Ui,j? When we have missing data on network links, the

likelihood a researcher would use if they naively implemented JMLE is

lSn(θ, V ) =

(
N

2

)−1 N∑
i=1

∑
j<i

Si,j log pθ,V (Ai,j|Wi,j)

That is the likelihood evaluated only on the observed links. Consider the following

conditional independence assumption for the sampling indicator Si,j

Assumption 7. Si,j ⊥⊥ Ui,j|Wi,j, V0,i, V0,j.
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Where V0,i is the true value of Vi. It turns out that Assumption 7 is a su�cient

condition for the consistency of the estimator with missing data on network links.

Should it not hold, we can construct counterexamples that allow us to break identi-

�cation. Consider the case of Si,j = 1{Ui,j > 0}. Intuitively, the logistic assumption

no longer holds in sample due to the sampling, which means the likelihood is misspe-

ci�ed, leading to inconsistent estimates. The following proposition summarizes these

results.

Proposition 2 (Potential inconsistency of sampled likelihood). Let assumption 6

hold. Then assumption 7 is su�cient for the consistency of (θ̂S, V̂ S), and if assump-

tion 6 does not hold, there exists counterexamples where V̂ , θ̂ are inconsistent.

Proof. See Appendix A.6

The independence relation of assumption 7 might be di�cult to justify in many

applications. For example, in surveys with non-response bias we may worry that the

response rate depends on things that correlate with Ui,j. In settings where agents

are only able to list a certain amount of their friends, they may choose who to list

based on how much they like each person, which likely correlates with the preference

shock Ui,j. The following section will therefore introduce an alternative estimator

that allows the researcher use auxiliary variables to re-establish an independence

relation similar to the one in assumption 7. Section 4.2 will discuss a semi-parametric

estimator that will be consistent under more general types of missing data, like the

second case discussed above.

4.1 Estimation using knowledge about sampling

While researchers may not want to use Assumption 7, they may have credible reasons

to believe an expanded version, which allows for variables not included in Wi,j, to

hold. Such an assumption is given below

Assumption 8.

Si,j ⊥⊥ Ui,j|Wi,j, V0,i, V0,j, X
S
i , X

S
j

Assumption 8 for some auxiliary variables, XS
i , not contained in W , to generate

the desired independence. I will use these variables to generate inverse probability

weights that will adjust the observed likelihood so that it behaves like the randomly

sampled likelihood asymptotically. To do this I make the following assumptions

Assumption 9.
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1. P (Si,j = 1|Wi,j, Vi, VjX
S
i , X

S
j ) > 0 for all

Wi,j, Vi, Vj, X
S
i , X

S
j ∈ supp(Wi,j, Vi, Vj, X

S
i , X

S
j ).

2. (a) P (Si,j = 1|Wi,j, Vi, Vj, X
S
i , X

S
j ) is known

(b) P̂N(Si,j = 1|Wi,j, Vi, Vj, X
S
i , X

S
j ) is known and satis�es

lim
N→∞

P̂N(Si,j = 1|Wi,j, Vi, Vj, X
S
i , X

S
j ) = P (Si,j = 1|Wi,j, Vi, Vj, X

S
i , X

S
j )

The �rst part of assumption 9 ensures that there are no values of Wi,j, X
S, V

which never have observed links, ensuring that our re-weighted estimator will even-

tually recover the true distribution of Ui,j. The second part is challenging due to the

inclusion of Vi, which is an unobservable variable. In this section I will assume that

Si,j ⊥⊥ Vi, Vj|Wi,j, X
S
i , X

S
j , implying

P (Si,j = 1|Wi,j, Vi, Vj, X
S
i , X

S
j ) = P (Si,j = 1|Wi,j, X

S
i , X

S
j )

. See appendix A.2 for an alternative approach without this assumption.

Estimating P (Si,j = 1|Wi,j, X
S
i , X

S
j ) can be done through knowledge of how the

sampling process works. For example, suppose a researcher has data on students at

a school, and observes links going between students who answered a survey. De�ne

Si = 1 if individual i answered the survey, with Si = 0 otherwise. Then we can write

Si,j = SiSj, a so called induced sub-sample.6 If each student's decision to respond to

the survey is independent conditional on Wi,j, X
S
i , X

S
j , then

P (Si,j = 1|Wi,j, X
S
i , X

S
j ) = P (Si = 1|Wi,j, X

S
i , X

S
j )P (Sj = 1|Wi,j, X

S
i , X

S
j )

The researcher can estimate the probability of each student answering the survey to

construct the probability of observing a link. If Wi,j = f(Wi,Wj) and answering the

survey does not depend on other people's covariates the expression simpli�es to

P (Si,j = 1|Wi,j, X
S
i , X

S
j ) = P (Si = 1|Wi, X

S
i )P (Sj = 1|Wj, X

S
j )

These assumptions are not necessary for the estimator, but should be thought of

as an example of how a researcher can construct the probabilities of links being

observed. The key point for the estimators described below is that the researcher

either has prior knowledge of the probabilities or can estimate them consistently.

6Alternative types of sampling have similar forms. If we observe all links including a node (star
sampling), we can write Si,j = Si + Sj − SiSj .
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De�ne the re-weighted estimator as

lCn (θ, V ) =
1

n

∑
i<j

1

P̂N(Si,j = 1|Wi,j, XS
i , X

S
j )

Si,j log pθ(Ai,j|Wi,j, V )

Proposition 3 (Consistency of corrected likelihood). Assume Assumptions 6, 8

and 9 hold, then

(θ̂Cn , V̂
C
n ) = argmax

b,v
lCn (b, v)

p−→ (θ0, V )

Proof. See appendix A.6

The proof of Proposition 3 shows that the re-weighted likelihood converges to the

randomly sampled likelihood, as the sample size grows. Consistency of the estimates

then follows by the arguments used in Graham (2017).

Note that more complex maximum likelihood estimators can be adapted to have

re-weighing results similar to the estimator discussed here. For example, we can

construct a version of the tetrad logit estimator of Graham (2017) by considering

the variable Si,j,k,l, an indicator that the links connecting the four individuals i, j, k, l

are observed, rather than Si,j. Assuming we observed the induced subsample of links

between individuals sampled in a conditionally independent way, the estimator is

easily constructed in a similar manner to above, using the de�nition of Si,j,k,l =

SiSjSkSl.

In datasets with these kinds of missing data it's also likely that there are many

individuals for whom we observe no links. This in turn implies we cannot recover Vi

for such individuals. I develop a way to extrapolate these values and recover estimates

of link probabilities satisfying Assumption 4 in Appendix A.11.

4.2 Semi-parametric estimation

Some forms of sampling use the edges directly to sample, which will make the inde-

pendence relation of Assumption 8 unlikely to hold. Similarly, some datasets have

missingness patterns that are too complicated for the researcher to credibly estimate

the probability of edges being missing, or may not have su�cient data available to

estimate a credible model for the sampling. I will therefore propose a second estim-

ator in this section. I will develop an estimator based on the relative local linking

decisions of agents. This estimator is based on previous work on semi-parametric

estimators like the maximum rank correlation estimators of Han (1987); Abrevaya

(2000), and the maximum score estimator developed in Manski (1975) and Manski
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(1985). Additionally, this estimator can also be used to obtain estimates of θ, V up to

scale without making parametric assumptions about U . However to correct the peer

e�ect regression, the distributional assumptions on U will have to hold in population.

Otherwise, we have no way of mapping our parameter estimates to the probability

of two agents forming a link.

The key insight of the estimator stems from the following lemma, building on

similar ideas in Manski (1987) and Abrevaya (2000).

Lemma 1. Let ∆A∗
i,k,l = (Wi,k −Wi,l)θ+ Vk − Vl and ∆Ai,k,l = Ai,k −Ai,l. Then for

(i, j, k, l) ∈ [1, ..., n]4

∆A∗
i,k,l > ∆A∗

j,k,l ⇒ E
[
1{∆Ai,k,l ≥ ∆Aj,k,l}

]
> E

[
1{∆Ai,k,l ≤ ∆Aj,k,l}

]
Proof. See Appendix A.7.

I will refer to combinations of four individuals like i, j, k, l as a �square�. Import-

antly the event ∆A∗
i,k,l > ∆A∗

j,k,l ⇔ (Wi,k −Wi,l)θ > (Wj,k −Wj,l)θ does not depend

on any element of V . This allows me to construct an estimator for θ without es-

timating V at the same time. This feature is especially important for computational

feasibility, as the objective function will be non-convex.

Note that when ∆Ai = ∆Aj, this square provides no information on θ as the

inequalities in lemma 1 are not strict. However the expressions are not invariant to

re-labeling the nodes. In fact for any given square there are 24 potential ways to

relabel nodes to get di�erent versions of the expressions in lemma 1. However it's

easy to check that all these possible con�gurations will reduce to one of the following

inequalities in an undirected network.

Ai,k − Ai,l − (Aj,k − Aj,l) ≶ 0

Aj,i − Aj,l − (Ak,i − Ak,l) ≶ 0

Ai,j − Ai,l − (Ak,j − Ak,l) ≶ 0

These three cases will each correspond to one of the three sub-objectives de�ned
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below

s1i,j,k,l(θ) = 1{Ai,k − Ai,l − (Aj,k − Aj,l) ≥ 0}1{(Wi,k −Wi,l − (Wj,k −Wj,l))θ ≥ 0}

+ 1{Ai,k − Ai,l − (Aj,k − Aj,l) ≤ 0}1{(Wi,k −Wi,l − (Wj,k −Wj,l))θ ≤ 0}

s2i,j,k,l(θ) = 1{Aj,i − Aj,l − (Ak,i − Ak,l) ≥ 0}1{(Wj,i −Wj,l − (Wk,i −Wk,l))θ ≥ 0}

+ 1{Aj,i − Aj,l − (Ak,i − Ak,l) ≤ 0}1{(Wj,i −Wj,l − (Wk,i −Wk,l))θ ≤ 0}

s3i,j,k,l(θ) = 1{Ai,j − Ai,l − (Ak,j − Ak,l) ≥ 0}1{(Wi,j −Wi,l − (Wk,j −Wk,l))θ ≥ 0}

+ 1{Ai,j − Ai,l − (Ak,j − Ak,l) ≤ 0}1{(Wi,j −Wi,l − (Wk,j −Wk,l))θ ≤ 0}

All of which are invariant to the values of the V s.

The full objective combines these three cases for all possible squares, and can be

written as

SN(θ) =
1

3
(
N
4

) ∑
(i,j,k,l)∈P

(
s1i,j,k,l(θ) + s2i,j,k,l(θ) + s3i,j,k,l(θ)

)
(4)

where P is the set of all possible squares formed from our N nodes. It's worth noting

that |P | is very large, having 3
(
N
4

)
elements. When estimating θ we only need to

look at informative squares, which is usually a small fraction of all possible squares.

Finding the informative squares can be computationally costly in large networks.

However this procedure only needs to be done once, as the set of informative squares

only depends on the links, and not the values of θ.

I will use the following assumptions to show identi�cation

Assumption 10 (Semi-parametric identi�cation assumptions).

1. Network formation follows Equation (2)

2. There is an element of θ for which θh ̸= 0 which is normalised so that |θh| = 1,

and θ is contained in a compact subset of Rk.

3. Ui,j|Si,j = 1 are distributed i.i.d. for all (i, j).

4. Wi,j ⊥⊥ Ui,j|Si,j = 1, and

(a) The support of Wi,j is not contained in any proper linear subspace of Rk

(b) At least one covariate of W c
i,j has everywhere positive Lebesgue density

conditional on (W 1
i,j, ...,W

c−1
i,j ,W c+1

i,j , ...,W k
i,j)
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(a) No information, as∆Ai,k,l−∆Aj,k,l =
0 (b) Informative, as ∆Ai,k,l −∆Aj,k,l = 2

Figure 3: An informative and uninformative case links for the θ estimation.

The �rst part of the assumption is that the network formation model is well

speci�ed. The second part assumes that the researcher has one variable which they

know is non-zero, that is used to normalize all other variables. The third part is a

conditional version of the common i.i.d. assumption in semi-parametric estimators.

This is a restriction on the sampling procedure, so that Si,j cannot induce di�erent

distributions for Ui,j, or dependencies between the preference shocks of di�erent

linkages. As such we can think of this as a uniformity assumption about sampling.

Finally the fourth part assumes the observable characteristics are independent of Ui,j,

again conditionally, and that at least one of the covariates is continuous conditional

on the other variables.

Proposition 4. Let assumption 10 hold, de�ne θ̂N = argmaxb∈B SN(b), then we

have

lim
N→∞

θ̂N = θ a.s.

Proof. See Appendix A.7

To understand the intuition of this result, it's useful to visualize what combin-

ations of four agents are and are not informative for the objective. Figure 3 shows

two such cases. Case (a) is uninformative since person i and person j are making the

same decisions about person k and l, as both i and j choose to form a link with k but

not with l. In case (b) person i chooses to be friends with person k but not person l,

while j chooses the opposite. Under assumption 10 this must, in expectation, be due

to ∆A∗
i,k,l > ∆A∗

j,k,l, so θ should be adjusted such that this holds in as many squares

as possible.

The next step is to estimate the social in�uence parameters V . Both because

researchers may be interested in them on their own, but also because they are needed
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to obtain consistent estimates of the peer e�ect regressions.

To do this, I de�ne some reference person 0, and I will then aim to recover each

individual's charisma relative to person 0. This means estimating

∆Vk = Vk − V0 ∀k ̸= 0

De�ne A∗
ik = Wi,kθ̂ + ∆Vi. Then using the logic of Manski (1987) and lemma 1,

A∗
ik > A∗

i0 ⇒ E[Aik] > E[Ai0].

This allows us to estimate each ∆Vk separately by �nding the ∆Vk that maxim-

izes.

Sk
N =

1

N − 2

∑
i∈(1,...,n)/(0,k)

1
{
Wi,kθ̂ −Wi,0θ̂ +∆Vk > 0

}
1{Aik ≥ Ai0}

+1
{
Wi,kθ̂ −Wi,0θ̂ +∆Vk < 0

}
1{Aik ≤ Ai0} (5)

Where θ̂ is the estimate of θ from the previous procedure.

Proposition 5. Let Assumption 10 hold. Then the estimates ∆̂V generated from

solving (5) satisfy

plimN→∞∆̂V k = ∆Vk = Vk − V0

Proof. See Appendix A.7

The proof of this proposition follows the same logic as the estimator for θ. In-

tuitively, people with large social in�uence relative to person 0 should have more

friendships with other people than their covariates predict. As such this estimator

constructs the social in�uence estimates through relative decisions, rather than the

degree distribution of agents directly. This is because we do not necessarily have

good knowledge of the total amount of connections for any node. We can again show

informative and uninformative cases graphically. Figure 4 shows an informative and

uninformative case for this objective. By comparing the link decision of each indi-

vidual i relative to individual k and the reference person, we obtain information

about the relative in�uence of individual k relative to 0 whenever person i makes

a di�erent decision about k than person 0. This di�erence in decisions has to be,

correcting for the observable di�erences, due to k being more/less socially in�uential

than person 0.

Note that the estimator described above only uses a small share of the total

number of �triangles� in the network. Ideally we would prefer to use all the triangles
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(a) No information, as Aik −Ai0 = 0 (b) Informative, as Aik −Ai0 ̸= 0

Figure 4: An informative and uninformative case of links for the estimation of V .

available, to take full advantage of all the data. However to do so would mean jointly

estimating every Vi at the same time. Not only is this a more computationally costly

optimization, but since the objective is non-convex, we need to run the algorithm

several times with di�erent starting values to ensure we �nd the global optimum. To

do so for the joint estimation of V would require picking �many� starting values from

RN , which is infeasible with current software. However since my estimator estimates

each Vi separately, this issue is removed.

A standard way to improve both the computational cost and the asymptotic

e�ciency of discontinuous objectives like those in equation (4) and (5) is to use a

kernel to make the objective continuous in the parameters. This both allows easier

computation (since we can use gradient based methods), and can also improve the

asymptotic convergence rate of the estimates (Horowitz, 1992). Consistency of this

smoothed estimator is shown in Appendix A.8, and all the estimates in the empirical

application use the smoothed estimators.

In cases where we're only interested in the parameters of the network formation

model, we now have all we need. However to generate the probability of two agents

linking for the entire network we may also need to have a way to extrapolate the

charisma parameters to unobserved parts of the data, I discuss how to do this in

Appendix A.11. Separately, in cases where we estimated θ using the semi-parametric

estimator, we need to recover the scale and level of U to calculate the probability of

two agents linking.
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4.3 Recovering the scale of U

To use the semi-parametric estimates to calculate probabilities from the network

formation model, we need to recover the scale of the logit parameters. This is due

to the logit parameters being scaled by the variance of Ui,j, while the parameters

of the semi-parametric estimator is scaled by the continuous covariate picked by the

researcher. Unlike the �rst estimator that used assumption 8, the semi-parametric

estimator has made no conditional independence assumption between the Si,j and

Ui,j. However to recover the scale we will need such an assumption, given below.

Assumption 11. Let Ci,j be a binary random variable, and Ui,j |= Si,j|Ci,j = 1.

This assumption states that there is some variable Ci,j such that Ui,j is indendent

of Si,j conditional on it being equal 1. For example, in the empirical application

Ci,j = 1 is the event where neither i nor j lists the total allowable amount of friends.

In this case we can arguably say that the links being observed is independent of the

unobserved preference shock Ui,j, as both students are able to list all friendships.

Crucially we do not use links between censored and uncensored units, as the link

being nominated by the censored student (rather than one of their other friends) may

be due to a high preference shock in the link between the censored and uncensored

student. The exact nature of Ci,j will depend on the types of missingness faced by

researchers, but it is necessary to have some way of recovering the scale of Ui,j to be

able to calculate the linking probabilities needed for the SIV estimator.

Note that I allow for Vi, Vj ⊥̸⊥ Si,j|Ci,j = 1, allowing for there to be lower/higher

amount of links given Ci,j = 1 than in the true network. In fact in the setting where

students are only allowed to list a certain amount of friends, the distribution of Vi

estimated naively with the observed data is likely very di�erent from the overall

distribution of V .

This allows us to recover the scale and level of U by running the logit regression

of Ai,j on Wi,j θ̂ + V̂i + V̂j for the set with Ci,j = 1. Consistency of this procedure

is shown in Appendix A.9. Note that since this involves a logit on an estimated

regressor, there can be signi�cant �nite sample biases. However implementing the

bias correction procedure of Stefanski and Carroll (1985) may alleviate this problem

[in progress].

The following algorithm summarizes the steps to compute the linking probabilities

for the entire population with the semi-parametric estimates.

Algorithm 1.
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1. Estimate θ̂, V̂ by solving the objectives (4) and (5)

2. Recover V̂0 = −E[∆Vi].

3. Estimate the relative scale and level σ1, σ2 by running the logit of Ai,j on Wi,j θ̂+

V̂i + V̂j for the subset T .

4. Calculate P (Ai,j = 1|Wi,j, Vi, Vj) as

exp(σ̂1 + σ̂2(Wi,j θ̂ + V̂i + V̂j))

1 + exp(σ̂1 + σ̂2(Wi,j θ̂ + V̂i + V̂j))

Proposition 6. Assume Assumptions 10 and 11 and 13 hold. Then the predictions

P (Ai,j = 1|Wi,j, Vi, Vj) produced by Algorithm 1 satisfy assumption 4

Proof. See Appendix A.10

5 Partial identi�cation without the network forma-

tion model

In this section I discuss identi�cation in cases where we do not have the network

formation model. I will show how to obtain partial identi�cation by using integer

programming methods to search over possible network con�gurations. Consider the

following Assumptions

Assumption 12 (Partial identi�cation setting).

1. Si,j |= (ϵi, ϵj) ∀(i, j) ∈ [1, ..., N ]2

2. γ = 0.

The �rst part of Assumption 12 assumes that sampling is independent of the

outcomes, which is required for the observed instrument ZS
i to be exogenous, and

therefore valid. The second part assumes away any e�ects from peer covariates on

the outcome (so called contextual e�ects) in the outcome equation.

Importantly, Assumption 12 does not assume that we observe all the links for

some individuals. Formally, this would mean assuming that there exists a set SN

de�ned as

SN = {i ∈ (1, ..., N) :
N∑
j=1

Si,j = N}
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Satisfying limN→∞ |SN | = ∞. This would, together with to part 1 of Assumption 12

and Assumptions 1 and 2, allow us to use the analytical correction in Chandrasekhar

and Lewis (2016) to get a consistent estimate of α, β and γ, even if γ ̸= 0.

The existence of such a set is unlikely in many empirical contexts, as links are

often de�ned based on reciprocity. For example, in an educational context friendships

are commonly de�ned as existing if both students nominating each other as friends.

Restricting attention to students for whom we know all the friendships of would

therefore be a large restriction on the sample size. In empirical settings where network

data is gathered through surveys of parts of the population, SN would be the set of

individuals who only list other households who are surveyed as being linked to them,

which in dense network would satisfy limN→∞ |SN | = 0 for any (constant) sampling

rate less than 1.

De�ne

GS
i,j =


1∑N

k=1 Si,kAi,k
Si,jAi,j if

∑N
k=1Ai,kSi,k > 0

0 otherwise

We can then de�ne (GSy)i =
∑N

j=1G
S
i,jyj, and rewrite the outcome equation to

y = GSyα+Xβ + α(Gy −GSy) + ϵ

Like before, de�ne ZS
i as the residuals of regressing ((GS)2X)i on Xi. The feasible

IV estimator using ZS
i as an instrument for (GSy)i then de�ned by

α̂PI
n =

Cov(yi, Z
S
i )

Cov(ZS
i , (G

Sy)i)
(6)

= α +
Cov(ZS

i , α((Gy)i − (GSy)i))

Cov(ZS
i , (G

Sy)i)
+

Cov(ZS
i , ϵ)

Cov(ZS
i , (G

Sy)i)
+ γ

Cov(ZS
i , (GX)i − (GSX)i)

Cov(ZS
i , (G

Sy)i)

To see why Assumption 12 is needed, consider the case where it doesn't hold.

In this case, both the second, third and fourth terms above could be non-zero. The

�rst bias stems from the instrument correlating with the endogenous measurement

error in GSy. The second stems from the observed instrument ZS
i being invalid, even

if we observe Gy perfectly. This would similarly make the analytical correction of

Chandrasekhar and Lewis (2016) invalid. The second bias stems from the contextual

e�ects, yielding mismeasured covariates. As the residualisation of (GS)2X onX,GSX

does not guarantee that Cov(ZS
i , GX) = 0, this is an additional source of bias.
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With Assumption 12, the only remaining bias is caused by the term

Cov(ZS
i , α((Gy)i − (GSy)i))

This is the covariance between the instrument and the measurement error in peer

outcomes. Note that the bias is zero when α = 0, as the bias is created by the

dependence between an individuals covariates and their peers outcomes, which is

fully driven by the peer e�ect.

I will show that it's possible to construct valid bounds for the endogenous peer ef-

fect by searching over possible network con�gurations. Unlike the methods discussed

in section 3, this does not require any additional assumptions about the network

formation model.

5.1 Constructing a bound

Note that we can rewrite (6) to

α = α̂n
Cov((GSy)i, Z

S
i )

Cov((Gy)i, ZS
i )

We can write out the unobserved covariance Cov(Zi, (Ay)i) as, remembering that

E[Zi] = 0

Cov((Gy)i, Zi) = E

∑
j

Gi,jZ
S
i yj


The empirical counterpart to this is the double sum

1

N

∑
i

∑
j

1∑N
k=1 Ai,k

ZS
i yjAi,j :=

∑
i

∑
j

tici,jAi,j

Where I've de�ned ti =
∑N

k=1 Ai,k, the inverse of agent i's number of peers (di).

Since ti is a non-linear function of Ai,j this is no longer a linear program. However

it can be re-written as a quadratic program with the 2N added variables {ti}Ni=1 and

{di}Ni=1. To see this, note that the objective is quadratic in ti, di, Ai,j in the sense that

if we write v = (A1,2, A1,3, ..., AN−1,N , t1, ..., tN , d1, ..., dN), then the objective can be

written as ∑
i

∑
j

tici,jAi,j = v′Qv
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For correctly de�ned Q. Similarly we can de�ne N quadratic constraints of the form

tidi = 1 ⇔ v′QC
i v = 1

This means we can represent the covariance as a quadratic program with quadratic

constraints.

We can bound this object by solving the problem over the missing links

bmax = max
Ai,j ,ti,di

∑
i

∑
j

tici,jAi,j s.t.

tidi = 1 ∀i

di =
N∑
j=1

Ai,j ∀i

Ai,j ∈ {0, 1} ∀(i, j)

Aj,i = Ai,j ∀(i, j)

Ai,j ∈ A

With the lower bound bmin de�ned for the minimum of the same problem, and A is

a set of linear/quadratic constraints on the network structure. Achieving informative

bounds is dependent on a researchers ability to impose restrictions on this set.

For example, we could assume that sampling is conditionally independent from

links forming, given someX. This would imply that E[Ai,j|Si,j = 1, X] = E[Ai,j|Si,j =

0, X], which is a constraint linear in Ai,j. Alternatively we may have some other in-

formation about the network, such as the aggregate relational data (ARD) of Breza

et al. (2020). This type of data are answers to survey questions of the form "How

many friends do you have with characteristic X?". This can be transformed into con-

straints of the form
∑

i,j 1{Xj = X}Ai,j = dx,i, which is linear in Ai,j and therefore

easy to implement in the program. Similarly we could ask about the total amount

of friends. Simulations in Appendix C.1 show that knowledge about the total degree

of friends makes the bounds much more informative. This knowledge also makes

computation of the bounds easier, as it makes the objective linear.

The bounds are computed through Integer programs, due to the restriction that

Ai,j is binary. These programs can be costly to solve, especially if the network is large

and has many unobserved links. However most modern solvers for these programs

solve them through a method called branch and bound. A nice property of these

solvers is that it naturally generates bounds on the solution to the program while
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solving the problem. The solver then proceeds to improve this bound until it �nds

the optimum, meaning it's possible for a researcher to obtain valid bounds quickly,

and better bounds the longer the researcher is willing to wait.

To see this intuitively, consider replacing the constraints Ai,j ∈ {0, 1} with Ai,j ∈
[0, 1]. As any solution with the �rst set of constraints also satisfy the second set, the

minimum and maximum solution with the second set must be weakly smaller/larger

than the optimal values with the �rst set of constraints. We can therefore obtain

valid bounds fast by solving the problem as if there are no integer constraints.

These bounds are sharp, but can be uninformative. Speci�cally, if the bounds

for Cov((Ay)i, ZS
i ) contain 0, the bounds are completely uninformative, due to the

inverse relation between α and Cov((Ay)i, Z
S
i ). However as long as sign(bmin) =

sign(bmax) ̸= 0 we have informative bounds on α.

De�ne A0 = {Ai,j : Si,j = 0}, that is the true values of the unobserved links.

Proposition 7. Let the restrictions A be such that A0 ∈ A, Assumptions 1, 2 and

12 hold, and sign(bmax) = sign(bmin) ̸= 0, then

α ∈ [b−1
minα̂, b

−1
maxα̂]

and the bounds are sharp

Proof. See appendix A.4

Sharpness follows intuitively from the fact that given a network, the IV-assumptions

give us a value of α that is consistent with the observed data. The added assumption

of A0 ∈ A guarantees that the researcher isn't imposing any restrictions in the pro-

gram that aren't satis�ed by the true network, guaranteeing validity of the bounds.

See Appendix C.1 for simulations showing when these bounds can be informative.

6 Empirical Applications

In this section I will go through two applications, which cover two of the most common

reasons for partial network data.

The �rst application is a new dataset gathered from two secondary schools in

Norway. The survey was constructed to get both the full network of friendships, as

well as the partial data one might have gathered if one only gave students the option

of listing 10 of their friends. This lets me compare the corrected partial estimates to

the �true� estimates obtained from the full network data.
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The second application uses data gathered through surveys in 43 Indian villages

to answer how information di�usion a�ects take up of micro�nance Banerjee et al.

(2013). There I �nd that while the survey was administered almost randomly, the

time di�erence between the survey and the measurement of the outcome lead to the

survey correlating with take-up of micro-�nance.

6.1 Peer e�ects in Norwegian Middle schools

To study the empirical performance of my estimators, I gathered data from two

secondary schools in Norway. The schools are public schools whose students come

from the local geographic area. Since private schools are not common in Norway,

the student body has a very varied background. Some students have highly educated

parents with large amounts of resources, while other students have parents without

much formal education and relatively low income and wealth. This variation in stu-

dent background makes the schools ideal for studying how peers background and

skills a�ect learning of students, as measured by their GPA.

A common issue in network data is that individuals are only able to report up to a

certain amount of connections, see for example (Gri�th, 2022), Oster and Thornton

(2012), Cai et al. (2015) and Kandpal and Baylis (2013). This implies a highly com-

plicated distribution of Si,j, especially if individuals don't list random subsets of their

links. To test the performance of my estimator in this setting, I gathered two sets of

friendship data through a survey. I �rst asked the students which classes they had

friends in, and then let them select all their friends in these classes. This questions

yield a complete network consisting of all the students friends, where a link between

two students is said to exist if both students list each other as friends.

I then asked the students which friends they would have picked if they were only

able to pick up to �ve male and �ve female friends. Using the responses to this

question allows me to construct a sample similar to the kind commonly observed in

the literature. I will refer to this as the restricted sample.

The restricted sample of links is constructed as follows. A link is said to exist

if both students named each other as one of their top friends. Students who list

the maximum allowable male or female friends have missing data on links in classes

which they have friends. For classes which they earlier said they have no friends, the

researcher knows all links are zero.

A comparison of how many friendships remain in the restricted dataset gives

an insight into how the missingness works in these settings. On average students

retain 38% of their friendships in the restricted network data. This reduction is
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Figure 5: Histogram of the degree distribution of the complete network (in blue) and
the restricted one (in red).

not just amongst the most popular students who cannot list all their friends, but

also amongst the less popular students who's popular friends no longer list them

as a friend. De�ning a popular student as one who has more than 10 friendships

in the complete network data, these student's retain 25% of their friendships in

the restricted dataset, signi�cantly less than the average student. The �unpopular�

students still lose over half their friendships (retaining 46%) in the restricted network

data, and the numbers are similar for the �very unpopular� students with less than

�ve friends, who lose 55%. Students who have only one friend have a 30% chance of

losing their one friend in the restricted sample. This exempli�es how the �censoring�

creates missingness for all individuals in the network, not just those who have many

friends.

Figure 5 shows the degree distribution for both the complete and restricted net-

work data. As expected, the restricted data is not just a censored version of the

degree distribution of the complete network. Instead the degree of all students are

pushed towards zero, creating a �squeezed� distribution that appears much more

homogenous than the true distribution.
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(1) (2) (3) (4) (5) (6)
Distance -1 -1 -1 -1 -1 -1
|∆income| 0.03 -0.04 0.03 -0.03 -0.06 -0.04
|∆wealth| -0.02 0.00 -0.06 -0.002 -0.00 -0.00
Same parent educ 0.70 0.14 0.00 0.52 -0.11 -0.20
Same class 21.88 16.7 16.23 17.23 21.81 18.51
Estimator Logit Logit Semi-param. Logit Logit Semi-param.
Sample Complete Complete Complete Restricted Restricted Restricted
V No Yes Yes No Yes Yes

Table 1: Estimates of the network formation model, all estimates are normalized
by the absolute value of the coe�cient on walking distance between the schools.
[Inference in progress]

A similar tendency can be seen in Figure 6, which shows the relation a students

number of friends and the average number of friends their friends have. We again

see that the restricted sample greatly understates the heterogeneity in the data. The

most popular students tend to have friends with similarly large number of friends on

average, suggesting a large amount of clustering in friendships.

Table 1 shows estimates for a logit model and the semi-parametric estimator on

both the complete and restricted network data. All coe�cients have been normalized

by the absolute value of the distance coe�cient, to make the coe�cients comparable.

Ignoring the social in�uence parameters V causes parental education to appear to

have a large e�ect, indicating there is signi�cant correlation between parental educa-

tion and charisma. The semi-parametric estimates for the full network indicate that

the logit parameterization of Ui,j may be misspeci�ed, but the estimates are broadly

similar. When running the estimators on the restricted data, we see that the nor-

mal logit estimator overestimates the e�ect of students being in the same class. The

semi-parametric estimator reduces this bias somewhat, though it misses by more on

the e�ect of having parents with the same education.

My object of interest is the peer e�ects in GPA measured as the average grade of

students in classes they have throughout secondary school. These classes are Norwe-

gian, English, Mathematics, Religious studies and Science. This ensures the average

is taken over the same classes for di�erent cohorts of students. The model also in-

cludes the householde income and the highest obtained education by a household

member as covariates, as well as the average value of these covariates for a students

friends. Our model therefore includes the e�ect of parental background on student

GPA, as well as peer e�ects through the GPA and parental background of friends.
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(a) Complete network data.
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(b) Observed network data

Figure 6: These �gures show the relation between the number of friends a student has,
and the average number of friends of their friends. Subplot (a) shows the complete
network data, while subplot (b) shows the restricted network data.



Estimator Naive Naive SIV
Mean Peer GPA 0.80∗∗ 0.61∗ 0.87

(0.158) (0.152)

HH. Income 0.01∗∗∗ 0.01∗∗ 0.02
(0.004) (0.005)

HH. education 0.29∗∗∗ 0.07∗∗∗ 0.28
(0.070) (0.076)

Mean peer HH. income 0.03∗∗ 0.01 -0.14
(0.012) (0.008)

Mean peer HH. education -0.5∗∗ -0.25∗ -0.5
(0.179) (0.120)

Sample Complete Restricted Restricted
N 592 592 592

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2: Educational peer e�ects estimates, using both the complete and restricted
network data, and the naive and corrected estimator. HH. Education is a dummy
variable that equals 1 if at least one parent has a university degree. HH. income
and wealth is measured in 100 000 NOK, and is the average income/wealth of the
household over the last �ve years.

When estimating these peer e�ects, we may also be worried that there are un-

observable characteristics of an individual that correlate with friends abilities. For

example, if students unobserved ability correlates with the covariates of their friends,

these covariates are not valid instruments. I will therefore instead use the forecast er-

ror of the students friends about their own grades as an instrument for peer outcomes.

My survey contained questions to the students about their expected grade was in the

classes they took. I can therefore construct the forecast errors of each student by tak-

ing the average error of each of the classes not used to construct average GPA. This

forecast error should be independent of anything in the students information set. As

long as the students have full information about their peers underlying ability, these

forecast errors are exogenous. This follows from the long established ideas in labor

economics of agent information sets and forecast errors, see for example Cunha and

Heckman (2007). If the �optimism� of students, measured by the sign and magnitude

of their forecast error, correlates with their ability the instruments are valid.

Table 2 shows the results from estimating peer e�ects using the forecast errors as

instruments. The �rst column is a standard peer e�ects estimator using the complete

network data. The second is the same estimator, but with the restricted network data.

Finally the third column shows the results for the SIV using the restricted network

data.
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The complete network data estimates show a strong endogenous peer e�ect, and

large e�ects of having highly educated parents on GPA. Interestingly, there are neg-

ative e�ects from having a peer group which on average has highly educated parents.

This means that given the ability level of a students friends, it's better if those friends

have parents with worse education. This indicates there may be stronger peer e�ects

from friends who have high grades due to their unobserved ability rather than due

to having resource rich parents.

As expected the restricted network data leads to misleading results. The estimate

of the endogenous peer e�ect is about 25% smaller than in the complete data, and

the other coe�cients are similarly distorted. The e�ect of having had a parent with

university education is underestimated, as is the negative contextual e�ect of having a

peer group with highly educated parents. However when we correct for the restricted

network data using the SIV estimator, we drastically reduce these biases. The bias in

the endogenous peer e�ect is reduced by 65%, and the biases in the other coe�cients

are similarly reduced, except for the contextual e�ect of household income.

The results of this section indicates that the SIV and semi-parametric estimat-

ors have the ability to signi�cantly reduce the bias of the parameters even in small

samples with complicated patterns of missingness. This indicates that while research-

ers should be wary of the biases stemming from restricted network data, it's possible

to greatly reduce them by estimating a network formation model, and using the SIV

estimator. In the next section I will apply the SIV estimator to a publicly available

dataset to investigate how results change when we take the missingness of network

links into account.

6.2 Peer e�ects in micro�nance take-up in Indian villages

Banerjee et al. (2013) studies how information di�usion a�ects micro�nance take-up

in Indian villages. The researchers used census data on 75 villages that a micro�nance

institution was planning to expand to, and surveyed a random subset of individuals

to acquire detailed information about the relationships between households in the

villages (the network survey). Six months later, the micro�nance institution became

active in the villages, and two years later they had spread to 43 of the villages.

This data was then also used in Chandrasekhar and Lewis (2016) who develop

corrections for missing data on network links, speci�cally in terms of regressions of

outcomes on network characteristics. They also develop an �analytical correction�

for peer e�ect regressions as mentioned previously. This correction involves doing

the peer e�ect regression only on the set SN , for whom we arguably observe all
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links. They construct a link as existing if any member of a household says they're

connected to a member of a di�erent household. While this let's us observe all the

links each household nominates, it potentially marks some links of the household as

not-existing. To see this, consider two households i and j where i is not surveyed

and j is surveyed. If i would have claimed to be linked to j, but no member of j

claimed to be linked to i, the restricted data would mark AS
i,j = 0. However in the

counterfactual world where every household was surveyed, by the de�nition of the

paper we would have Ai,j = 1. This makes it di�cult to interpret the data on network

links from surveyed to non-surveyed households.

The network survey was randomly given, strati�ed by religion and geographic

sub-location. The public version of the data does not contain geographic location

data, preventing me from using it. I will instead use other covariates in the model to

approximate the e�ect of including geo-location, but this will be a limitation for all

the analysis of this section. A regression of the indicator of being surveyed on other

variables in the data indicate that there is some heterogeneity in survey responses.

Even then, the deviations from a completely random sampling strategy seem small,

as shown in Table 3 and Figure 7.

However this random assignment does not guarantee that the sampling indicators

are uncorrelated with ϵ in a micro�nance peer regression. Notably, the outcome was

measured long after the survey was given, and the survey's detailed nature might

have led to information di�usion e�ects that a�ect the outcome.7 This appears to

have happened, as sampled units have an average micro�nance take-up of 19.2%,

compared to a non-sampled average of 17.5%. This di�erence is statistically signi�c-

ant and persists even when we condition on covariates. Table 4 shows the results of a

regression of micro�nance take-up on an indicator for the household being surveyed.

As we can see the e�ect from the sampling is remarkably stable even when we include

covariates and �xed e�ects for villages. This result does not prove that the error term

in the peer e�ect regression would correlate with being surveyed, especially due to

the missing geo-location variable, but it is suggestive that there is some e�ect from

a household being sampled.

These results suggests the analytical correction of Chandrasekhar and Lewis

(2016) is not a good �t for this setting, as it requires ϵi |= Si,j. However the methods

7The authors of Banerjee et al. (2013) were aware of this potential issue, and attempted to
reduce the problem by avoiding mentions of the �rm and explicitly asking �nancial questions. Even
then, they did ask households who they borrowed money from, which may have primed households
to be more aware of their �nancial situation. Alternatively, they may have attempted to obtain
information about why researchers approached them, and succeeded.
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(1) (2)

Bed nr. 0.004 0.005
(0.004) (0.004)

General Caste 0.012 -0.029
(0.02) (0.069)

Minority Caste 0.003 -0.047
(0.048) (0.084)

OBC Caste 0.017* -0.027
(0.013) (0.067)

Schedule Caste 0.032** -0.013
(0.015) (0.067)

Schedule Tribe 0.105*** 0.063
(0.029) (0.072)

Has Electricity 0.064*** 0.062***
(0.02) (0.021)

Has Latrine 0.015 0.02*
(0.013) (0.013)

Hindu 0.023 0.032
(0.037) (0.041)

Muslim 0.437*** 0.439***
(0.1) (0.098)

Village Leader 0.069*** 0.07***
(0.016) (0.016)

Owns property -0.018 -0.02
(0.018) (0.018)

Village FE's. No Yes
N 9,594 9,594

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: This table shows the Average Marginal E�ects from a logit of an indicator
for a household being sampled on economic and cultural covariates, see the text for
a full list of variables included.
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Figure 7: Histogram of the predicted probability of a household being surveyed. As
we can see the probabilities are highly centered.

developed in this paper will allow us to obtain consistent estimates of the peer e�ects.

To estimate the model, I use the network formation model speci�ed in Chandrasekhar

and Lewis (2016), excluding the geographic distance measure as it's absent from the

public version of the data. This model is the same as the model speci�ed in Section

4, setting Vi = 0 ∀i and estimating the model separately for each village. The covari-

ates in the model is the di�erence in number of rooms, beds, electricity access and

roo�ng materials of the households. To correct for any potential biases in estimation

from the sampling process, I use the estimator discussed in section 4.1, setting XS

as the household level covariates in the network formation model as well as the cul-

tural variables in the data set. Our assumption is then that the strati�cation on the

missing geographic variables as well as a household refusing to respond to the survey

is independent of the link-speci�c preference shocks conditional on XS.

I model household micro�nance take up as being driven by the economic situ-

ation of the household, measured by information about their house, the religion of

the household head, as well as the sum of their connected households who use mi-

cro�nance. I also include variables for if the household contains a village leader, and
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(1) (2) (3)

Household Surveyed 0.017∗∗ 0.017∗∗ 0.018∗∗

(0.008) (0.008) (0.008)

Village Leader 0.076∗∗∗ 0.076∗∗∗

(0.012) (0.012)

room nr. −0.007∗∗ −0.002
(0.004) (0.004)

Muslim −0.215∗ −0.172
(0.129) (0.128)

Hindu −0.368∗∗∗ −0.289∗∗
(0.128) (0.126)

Has Electricity −0.011 0.005
(0.017) (0.017)

Has Latrine −0.054∗∗∗ −0.066∗∗∗
(0.010) (0.010)

Bed nr. −0.008∗∗ −0.007∗∗
(0.003) (0.003)

Constant 0.176∗∗∗ 0.549∗∗∗ 0.489∗∗∗

(0.006) (0.131) (0.132)

Rooftypes FE's No Yes Yes
Village FE's No No Yes
N 9,122 9,122 9,122

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: This table shows the results of a regression of micro�nance take up on an
indicator for a household being picked for the detailed survey. Columns two and three
add covariates and village �xed e�ects respectively.

the sum of village leaders the household is connected to. As instrument I use the

sum of the sum of village leaders your connected households are connected to.

Following Chandrasekhar and Lewis (2016), I interpret the coe�cient on the sum

of micro�nance take-up amongst connected households as a risk sharing and joint-
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(1) (2) (3) (4) (5) (6)

Sum Peer Take-up 0.003 −0.012 −0.017∗ −0.051∗∗∗ -0.019 -0.031
(0.004) (0.008) (0.009) (0.017)

Village Leader 0.074∗∗∗ 0.051∗∗∗ 0.076∗∗∗ 0.058∗∗∗ 0.077 0.078
(0.013) (0.018) (0.013) (0.021)

Sum Peer Leaders 0.016∗∗∗ 0.023∗∗∗ 0.004
(0.006) (0.007)

Analytical Correction No Yes No Yes No No
SIV No No No No Yes Yes
N 9,122 4,413 9,122 4,413 9,122 9,122

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Estimates of peer e�ects in micro�nance under di�erent speci�cations and
estimators. The instrument for all the estimators is A2X. All estimators include
covariates for the households economic situation (access to electricity, latrine size
of house) and the religion of the household head. SIV estimates calculcated with
M=1000 [inference for SIV still in development.].

decision making e�ect amongst households. The coe�cient on the sum of village

leaders the household is connected to is interpreted as an information di�usion e�ect,

as all village leaders were informed of the micro�nance program.

As we can see in table 5, a researcher ignoring the missing network links would

conclude that there is no endogenous peer e�ects, but a positive e�ect from being

connected to one of the leaders who was informed about the micro�nance program.

This would imply there is some information di�usion e�ects but that agents do not

take their peers decision about micro�nance into e�ect when deciding if they want

to join the program.

The SIV estimates, which are robust to the missingness potentially correlating

with the ϵ, show that the previous interpretation is driven by biases. The information

di�usion e�ect is very small, implying that the naive estimate is primarily driven by

the endogeneity of Si,j and missing link bias. Instead the SIV estimates show that

the network e�ect is primarily through the endogenous peer e�ect. This means that

having a connected household join the program reduces a households probability

of joining by 3%. This is an e�ect of signi�cant magnitude given that the average

probability of joining the micro�nance program is around 20% in the villages. As such
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a signi�cant dampener of take-up is households not joining because their connected

households joined.

These results show that using estimators robust to non-randomly missing network

links has direct implications for how we understand the network e�ects in the take-up

of micro�nance. Using naive estimators would make researchers mistakenly focusing

on information di�usion e�ects, when in reality the network a�ects links through

linked households making joint decisions about joining the micro�nance program.

7 Conclusion

This paper has developed tools to identify the parameters of peer e�ect and network

formation models with missing links. These tools are �exible enough to �t many

empirical situations, yielding either partial or point identi�cation depending on the

assumptions the researcher can credibly make.

The robust estimators signi�cantly reduce the missing link bias. By taking ad-

vantage of a unique data set containing both complete and restricted data on network

links, we see that the bias is reduced by 65% when robust estimators are used. This

result is encouraging for the �nite sample performance of the estimators.

Partial identi�cation of the peer e�ects without network formation models shows

how much can be learned from the data with canonical assumptions. Simulations

show that in order to obtain informative bounds, researchers need to know a lot

about the structure of the unobserved parts of the network. It's therefore important

for researchers to carefully consider how they gather data on network links, and how

their data gathering might a�ect the processes they observe.

The missing link bias is empirically relevant. Using estimators not robust to the

missing data leads to misleading conclusions about what drives economic decision

making. A researcher that doesn't take the bias into account would have mistakingly

concluded that the network e�ects of micro-�nance di�usion is primarily driven by

information di�usion e�ects, rather than joint decision making.

There are many exciting paths for future research based on the estimators de-

veloped in this paper. Allowing for sparse networks when estimating the network

formation model would increase the settings in which the model is credible. Based

on the results of Graham (2017), it seems likely that the semi-parametric estimator of

θ can be consistent even if the network is asymptotically sparse. Note that the SIV

estimator is consistent under both dense and sparse networks. Another important

point for future research will be to create estimators robust to missing data for more
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general models of peer e�ects, to capture the potential non-linearities discussed in

Sacerdote (2011).
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A Further Theoretical Results

A.1 A Random e�ect approach

Let V ∼iid F , then it's straightforward to show that the likelihood of a random e�ect

estimator of the network formation model is

L =

∫
supp(V )N

Πi<jP (Ai,j|θ, v1, ..., vN)fV (v1|θ)fV (v2|θ)...fV (vN |θ)dv1dv2...dvN (7)

This likelihood is intractable in most settings due to the combination of the N

dimensional integral, as well as the N(N − 1)/2 dimensional product, neither which

factorizes easily.

Suppose we discretize the support of V to R points, then we can instead write

the likelihood as

L =
∑
v1

∑
v2

...
∑
vN

Πi<jP (Ai,j|θ, v1, ..., vN)πV (v1|θ)πV (v2|θ)...πV (vN |θ)

=
∑
v1

∑
v2

...
∑
vN

Πi<jP (Ai,j|θ, vi, vj)πV (v1|θ)πV (v2|θ)...πV (vN |θ) (8)

This is still intractable due to the n-dimensional sum, however it turns out that

the form of this likelihood is very similar to the likelihood considered in Bonhomme

(2021)'s work on team production8, suggesting a variational approach might yield

useful estimates of the distribution of V .

These methods consist of bypassing the intractable likelihood by instead solving

the evidence lower bound, consisting of densities qi(v) that factors across i, yielding

computational tractability.

While these methods have yet to have general proofs of identi�cation, the estim-

ator based on the variational objective 8 has been shown to be equivalent to the full

likelihood in the case with �xed R and no covariates in Bickel et al. (2013). Should

those results generalize, these methods may be a more tractable way of obtaining

estimates of the network formation models going forward.

8Speci�cally we can think of friendships forming (or not forming) being the binary production
of a team of two workers
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A.2 Estimator 1 when S ⊥̸⊥ V

When S is not independent of the �xed e�ects V , we cannot do the two step pro-

cedure described in the main text. Instead I suggest an iterative procedure which

is guaranteed to, eventually, get consistent estimates. The procedure is designed to

get around the two main issues that present themselves. The �rst issue is that since

S and V being jointly decided, we need to �nd a way to feasibly estimate this new

expanded problem. The second issue is that for some individuals, the �xed e�ects

are never estimated, complicating the estimation of S.

For this appendix I will stick to the case used in the main text where Si,j =

SiSj, and the sampling being conditionally independent. I will further assume that

P (Si|Wi, Zi, Vi) follows a logit form, though this is not necessary for the argument.

I will get around the �rst issue by an iterative procedure, similar to that used by

Bai (2009). To overcome the second issue, I will use the distribution of the estimated

�xed e�ect to integrate out the unobserved parts, using assumption 11.2.

Begin with a guess for the �xed e�ects Ṽ0, implying a distribution Fµ. We can then

estimate a logit model for S, integrating out V for individuals with V unobserved. We

can then predict P (S|W,Z, V ) from this logit model. Note that since the individuals

we observe links for are exactly the ones we need the predicted P (S|W,Z, V )'s for,

the lack of some �xed e�ects is not an issue in this step.

Conditional on our estimated P (S|W,Z, V )'s we can then estimate the re-weighted

likelihood as before. We then take these new estimates, call them Ṽ1 and repeat the

previous step, and continue until Ṽt−1 = Ṽt. Consistency follows from

1. The true V and P (S|W,V, Z) are a �xed point of the algorithm

2. It is the asymptotic global minimum as conditional on having the right P (S|W,V, Z),

the re-weighted likelihood is minimized at θ0, V0, and vice versa.

A.3 Relaxing the network exogeneity assumption

Following Johnsson and Moon (2021), we could allow for some endogeneity of the

network by allowing Vi to have a direct e�ect on yi. A complication in this approach

with missing data is that we may not be able to estimate Vi for every individual.

A researcher with su�cient links observed for every individual to estimate Vi could

however directly apply the estimator of Johnsson and Moon (2021), as we estimate

Vi directly when we estimate the network formation model.
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A.4 Proof of sharpness and validity of bounds

When we have a linear in means model, de�ne the bounds by the solutions to the

program

max
ti>0,di∈(dSi ,...,N),Ai,j∈{0,1}M

N∑
i=1

N∑
j=1

tici,jAi,j s.t.

tidi = 1 ∀i

di =
N∑
j=1

Ai,j ∀i

Aj,i = Ai,j ∀(i, j)

Ai,j ∈ A

and the corresponding minimum of the same program.

Validity of the bounds in both cases follow directly from the true network A0 ∈ A.

Let's �rst de�ne the identi�ed set of the model. The unobservables are the para-

meters α, β and the unobserved parts of the network. De�ne this unobserved set,

with some abuse of notation, as A. The sharp identi�ed set is the values of α, β and

A that are consistent with the observed data and satis�es the Assumptions of the

model. Those assumptions are Assumptions 1, 2 and 12. De�ne the set of such para-

meters and unobserved networks as Θ. For the program to generate sharp bounds,

we must therefore show that for every A ∈ A, A and it's implied parameters are in

Θ

Let sign(bmin) = sign(bmax) and pick some A1 ∈ A that satis�es Aj,i = Ai,j

(symmetry). De�ne di and ti as above, then

Cov((G1y)i, Z
S
i ) =

N∑
i=1

N∑
j=1

ti,1ci,jAi,j

Consider the IV-estimate of α using ZS
i if A1 was the true network. This would be a

consistent estimator of α by Assumptions 1, 2 and 12. The IV-estimator would be

α̂A1 =
Cov(yi, Z

S
i )

Cov(ZS
i , (G1y)i)

=
Cov(yi, Z

S
i )

Cov(ZS
i , (G

Sy)i)

Cov(ZS
i , (G

Sy)i)

Cov(ZS
i , (G1y)i)

= α̂SCov(Z
S
i , (G

Sy)i)

Cov(ZS
i , (G1y)i)

That is the value of the bound as de�ned in Proposition 7. We can similarly gen-

erate values for β that are uniquely consistent with A1, α. By the de�nition of our
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model, this set of A1, αA1 , β(A1, αA1) are consistent with the distribution of the data,

implying

A1, αA1 , β(A1, αA1) ∈ Θ

Since this holds for any A1 ∈ A, it must also hold for Amax, Amin corresponding to

bmax, bmin. Therefore αAmax , αAmin
∈ Θ, so our bounds give us the sharp identi�ed

set.

In the case where sign(bmin) ̸= sign(bmax), we cannot reject the possibility that

there is, for some small positive number ϵ two networks (A−, A+) ∈ A such that

Cov(ZS
i , (G−y)i) = −ϵ and Cov(ZS

i , (G+y)i) = ϵ. This in turn implies αA+ =

−∞, αA− = ∞. These values are not in the identi�ed set as they break Assumption

1, but ϵ could be picked such that αA+ = 1− δ, αA− = −1+ δ for some small positive

δ. These would be in the identi�ed set, so the identi�ed set is simply α ∈ (−1, 1).9

A.5 Proof of Proposition 1

Proof. Consider �rst the case of just-identi�ed IV. I show the case for the linear-in-

means model, all results go through with minor modi�cations for the linear in sums

model as G is a deterministic function of A.

To simplify notation, I will start by considering the case whereM = 1 and supress

the sim superscript. Inserting for yi = Xiβ + α(G2y)i + γ(G2X)i + ϵi + α((G0y)i −
(G2y)i) + γ((G0X)i − (G0X)i) in the expression for the estimator we get (ignoring

m subscripts)

ξ̂SIV = (
1

N

N∑
i=1

Z ′
iTi)

−1(
1

N

N∑
i=1

Z ′
iTi)ξ

+ (
1

N

N∑
i=1

Z ′
iTi)

−1 1

N

N∑
i=1

Z ′
i

(
ϵi + α((G0y)i − (G2y)i) + γ((G0X)i − (G2X)i)

)
= ξ + (

1

N

N∑
i=1

Z ′
iTi)

−1 1

N

N∑
i=1

Z ′
i

(
α((G0y)i − (G2y)i) + γ((G0X)i − (G2X)i)

)
+ (

1

N

N∑
i=1

Z ′
iTi)

−1 1

N

∑
i

Ziϵi

To obtain identi�cation we need the probability limit of the second and third term

9This argument ignores that the objective of the program is discrete, but due to the high di-
mensionality of the missing links, these objects will always exist unless the number of missing links
are very small.
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to be zero.

To show this, it's easies to write out the empirical equivalent to the expectation

and do some re-ordering. We want to show that plimN→∞
∑N

i=1 Zi

(
(G0y)i − (G2y)i

)
=

0. We can write out the �rst part as

= plimN→∞
1

N

N∑
i=1

N∑
k=1

Ziyk(
1

di,2
Aik,0)

= plimN→∞
1

N

N∑
i=1

Zi
N

di,2

1

N

N∑
k=1

ykAik,0

= plimN→∞
1

N

N∑
i=1

Zi
1

P̂i(Ai,j = 1)

1

N

N∑
k=1

ykAik,0

= plimN→∞
1

N

N∑
i=1

Zi
1

P̂i(Ai,j = 1)
Ê[ykAik,0]

= E

[
Zi

1

Pi(Ai,j = 1)
E[yk|Aik,0 = 1]P(Aik,0 = 1)

]
= E[ZiE[yk|Aik,0 = 1]]

And similarly for the second term, putting them together gives

E
[
ZiE[yk|Aik,0 = 1]

]
− E

[
ZiE[yk|Aik,2 = 1]

]
= E

[
E
[
ZiE[yk|Aik,0 = 1]− ZiE[yk|Aik,2 = 1]|A1, X, V,W

]]
= E

[
ZiE

[
E[yk|Aik,0 = 1]− E[yk|Aik,2 = 1]|A1, X, V,W

]]
= E

[
ZiE

[
E[yk|Aik,0 = 1]− E[yk|Aik,2 = 1]|X, V,W

]]
= 0

The �rst equality used iterated expectations, the second uses Assumption 4 which

implies that A1 |= (A2, A0)|X, V,W , and A1 |= y|X, V,W . The �nal equality follows

from the law of total expectation.

A similar simpli�ed argument goes through for the contextual e�ects, simpli�ed

by the exogeneity of the covariates

E[Zi(G0X −G2X)] = E[ZiE[G0X −G2X|A1,W, V,X]]

= E[Zi

(
E[G0|X,W, V ]− E[G2|X,W, V ]

)
X] = 0
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Finally the probability limit third term can be written out to

plimN→∞(
1

N

N∑
i=1

Z ′
iTi)

−1 1

N

∑
i

Ziϵi =
(
E[Z ′

iTi]
)−1 E[Ziϵi]

=
(
E[Z ′

iTi]
)−1 E[ZiE[ϵi|Zi]] = 0

By Assumption 2.

However there is no guarantee that E[Zi,myi], or E[Zi,mTi,m] is invertible for the

draw m = 1. Returning to the case with M ̸= 1, note that the sum over M sets of

draws is a numerical integral over the distribution of the network. Assumption 4 and

letting M → ∞ then implies

1

M

∑
m∈(1,...,M)

Zi,mTi,m =
∑

(A1,A2)∈supp(A)

Zi,mTi,mP (A1|W )P (A2|W ) := EA[Zi,mTi,m|W ]

1

M

∑
m∈(1,...,M)

Zi,myi =
∑

A∈supp(A)

Zi,myiP (A1|W ) := EA[Zi,myi|W ]

Where EA is understood to be the expectation over P (A|W ). We can then use As-

sumption 5 to use the WLLN, yielding

plimN→∞ξ̂SIV =
(
E[E[Z ′

i,mTi,m|W ]]
)−1

E[E[Z ′
i,myi|W ]

=
(
E[Z ′

i,mTi,m]
)−1

E[Z ′
i,myi]

These moments all exist and E[Z ′
iTi] is guaranteed to be invertible by Assumption 5.

All together these results yield that

plimN→∞ξ̂SIV = ξ

As desired.

In over-identi�ed IV, the researcher will either need a third draw from the network

(A3) to compute the �rst stage coe�cient, or alternatively �rst compute the �rst stage

coe�cient as

δ̂ =

 1

M

M∑
m=1

1

N

N∑
i=1

Zi,mZi,m

−1 1

M

M∑
m=1

N∑
i=1

Zi,mTi,m


and then performing the procedure for SIV replacing Z with δ̂Z, yielding a �simulated
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two stage least squares� (STSLS) estimator. This extra step is necessary to avoid the

correlation between the predicted covariates and the error terms (A2y−A0y), (A2X−
A2X) when the same draw is used in the �rst stage and to construct the covariates.

With this correction the proof of identi�cation follows exactly as above.

A.6 Proofs for likelihood estimators

We start by proving Proposition 2. The following lemma will be useful

Lemma 2. LS
n

p−→ E
[
log pθ(Ai,j|Wi,j, V )P (Si,j = 1|Ai,j,Wi,j, V0)|Wi,j, V0

]
Proof. Using the arguments of Lemma 3 in the supplementary materials of Graham

(2017) together with Assumption 3 yields

LS
n

p−→ E[Si,j log pθ(A
S
i,j,W

S
i,j, V̂ )|Wi,j, V0]

= E[E[Si,j log pθ(A
S
i,j,W

S
i,j, V̂ )|Wi,j, V, Ai,j]|Wi,j, V0]

= E[E[Si,j|Wi,j, V0, Ai,j] log pθ(A
S
i,j,W

S
i,j, V̂ )|Wi,j, V0]

= E
[
log pθ(Ai,j|Wi,j, V̂ )P (Si,j = 1|Ai,j,Wi,j, V0)|Wi,j, V0

]

We can now proceed to the propositions in the text, restated below for ease of

reading.

Proposition (Potential inconsistency of sampled likelihood). Let assumption 6 hold.

Then assumption 7 is su�cient for the consistency of (θ̂S, V̂ S), and if assumption 6

does not hold, there exists counterexamples where V̂ , θ̂ are inconsistent.

Proof. By lemma 2, we have under Assumption 8 we can write P(Si,j = 1|Ai,j,Wi,j, V0) =

P(Si,j|Wi,j, V0). This in turn yields

LS(θ) = plimn→∞LS
n = E

[
log pθ(Ai,j|Wi,j, V0)P (Si,j = 1|Wi,j, V0)

]
Note that for every value ofWi,j, V0, θ0 is the unique maximizer of

∑
y∈Y log pθ(y|x)g(y|x)

by Assumption 6. As such θ0 = argmaxθ∈Θ LS(θ)

To construct a counterexample, simply set Si,j = 1{Ui,j > 0}. The likelihood is

misspeci�ed, resulting in θ̂Sn ̸ p−→ θ0.

Proposition (Consistency of corrected likelihood). Assume assumption 8 and 9

hold, then

(θ̂Cn , V̂
C
n ) = argmax

b,v
lCn (b, v)

p−→ (θ0, V )
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Proof. De�ne wi,j =
1

P (Si,j=1|Wi,j ,V0,XS
i ,XS

j )
. By similar steps as in lemma 2, we have

LC
n

p−→ E
[
wi,j log pθ(Ai,j|Wi,j, V )P (Si,j = 1|Ai,j,Wi,j, V0, X

S
i , X

S
j )|Wi,j, V0

]
= E

[
wi,j log pθ(Ai,j|Wi,j, V )P (Si,j = 1|Wi,j, V0, X

S
i , X

S
j )|Wi,j, V0

]
= E

[
log pθ(Ai,j|Wi,j, V )|Wi,j, V0

]
Assumption 6 then allows us to apply Theorem 2 and 3 from Graham (2017) to obtain

consistency of θ, V . Intuitively, the re-weighted estimator behaves asymptotically like

an estimator based on a randomly drawn sample, which is exactly the setting of

Graham (2017), allowing us to apply his results to obtain consistency.

A.7 Proofs for section 4.2

We can now prove the consistency of the semi-parametric estimator (Proposition 4).

This closely follows the arguments made in Han (1987) and Abrevaya (2000). It also

uses results from Manski (1987) and Newey and McFadden (1994).

Proof. The proof proceeds by checking the conditions to be able to use theorem 2.1

of Newey and McFadden (1994). The conditions are

1. S(θ) is uniquely maximized at θ0.

2. Θ is compact.

3. S(θ) is continuous.

4. SN(θ) converges uniformly almost surely to S(θ).

Condition 2 holds by assumption, and condition 3 holds by the same argument as

Lemma 5 of Manski (1985). Condition 4 follows from Han (1987) proof of uniform

convergence for monotonic semi-parametric estimators and inspection. (Proof of the-

orem 1, step 2.) See also Abrevaya (2000) for a similar argument.

To show that condition 1 holds, consider the expectation of the �rst type of

contribution (s1), the other cases follow the exact same argument with the indices
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switched around as needed.

E[s1i,j,k,l(θ)] = E[1{∆Ai,k,l ≥ ∆Aj,k,l}1{∆Wiθ > ∆Wjθ}]

+ E[1{∆Ai,k,l ≤ ∆Aj,k,l}1{∆Wi,k,lθ < ∆Wj,k,lθ}]

= E[E[1{∆Ai,k,l ≥ ∆Aj,k,l}|W ]1{∆Wi,k,lθ > ∆Wj,k,lθ}]

+ E[E[1{∆Ai,k,l ≤ ∆Aj,k,l}|W ]1{∆Wi,k,lθ < ∆Wj,k,lθ}]

= E
[
P(∆Ai,k,l ≥ ∆Aj,k,l|W )1{∆Wi,k,lθ > ∆Wj,k,lθ}

+ P(∆Ai,k,l ≤ ∆Aj,k,l|W )1{∆Wi,k,lθ < ∆Wj,k,lθ}
]

Our estimate θ̂ is the value that maximizes this expectation. To show this is a unique

maximum, pick θ̃ ∈ Dδ(θ0) = {θ : θ ∈ Θ, ||θ − θ0|| < δ} s.t. θ̃ ̸= θ0. By assumption

10 there must exist values W1,W2 ∈ RK such that

∆W1θ̃ > ∆W2θ̃ and ∆W1θ0 < ∆W2θ0

We can then de�ne the sets B1, B2 as the corresponding values of ∆W for which this

holds, and by Assumption 10.4b it's possble to �nd such sets with positive density,

letting us write

S(θ0)− S(θ̃)

= E
[
P(∆Ai,k,l ≥ ∆Aj,k,l|W )1{∆Wiθ > ∆Wjθ}+ P(∆Ai,k,l ≤ ∆Aj,k,l|W )1{∆Wiθ < ∆Wjθ}

]
− E

[
P(∆Ai,k,l ≥ ∆Aj,k,l|W )1{∆Wiθ̃ > ∆Wj θ̃}+ P(∆Ai,k,l ≤ ∆Aj,k,l|W )1{∆Wiθ̃ < ∆Wj θ̃}

]
≥ E

[
1{∆W1 ∈ B1}1{∆W2 ∈ B2}1{θ0∆W1 < θ0∆W2}

(P(∆Ai,k,l ≤ ∆Aj,k,l|W )− P(∆Ai,k,l ≥ ∆Aj,k,l|W ))}
]

> 0

Where the �nal inequality follows from lemma 1. Intuitively, in the limit any deviation

from θ0 will lead us to misclassify at least some parts of the support of W . And since

the Wθ is continuous, no matter how small the deviation there will always be some

part with positive density that is misclassi�ed. Since this holds for each of the sj's,

it also holds for the sum. Furthermore, since it holds for any δ > 0, this proves S(θ)

is uniquely maximized at θ0. Since all the conditions now hold, we have consistency

by theorem 2.1 of Newey and McFadden (1994).

The same argument yields consistency for ∆̂V k from Proposition 5, following the
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observation that when θ̂ is consistent, Wi,kθ̂ −Wi,0θ̂
p−→ (Wi,k −Wi,0)θ0.

A.8 Smoothing the semi-parametric estimators

As is common for estimators like my semi-parametric estimators, I will use a smoothed

version which is both easier computationally and tends to have better asymptotic

properties (Horowitz, 1992). De�ne a function K(·) that satis�es

1. limx→−∞ K(x) = 0, limx→∞K(x) = 1.

2. |K(x)| < M for some �nite M for all x ∈ (−∞,∞).

Then we can de�ne

s̃1i,j,k,l(θ) = 1{Ai,k − Ai,l − (Aj,k − Aj,l) ≥ 0}K
((

(Wi,k −Wi,l − (Wj,k −Wj,l))θ
)
σ−1
N

)
with s̃2, s̃3 de�ned equivalently. This gives the smoothed objective

S̃N(θ) =
1

3
(
N
4

) ∑
(i,j,k,l)∈P

(
s̃1i,j,k,l(θ) + s̃2i,j,k,l(θ) + s̃3i,j,k,l(θ)

)

De�ne θ̃ as a solution to maxθ∈Θ S̃N(θ). Then we have

Proposition 8. Assume Assumption 10 holds and let limN→∞ σN = 0 then limN→∞ θ̃ =

θ0 almost surely.

Proof. Follows directly by Theorem 1 in Horowitz (1992).

A.9 Recovering the scale conditions

Consider the following Assumptions, as stated in Stefanski and Carroll (1985).

De�ne nT = |TN |, n =
∑

i,j Si,j, and

r̂i,j = Wi,j θ̂n + V̂i + V̂j

ri,j = Wi,jθ + Vi + Vj

Note that by Proposition 4 and 5, we can write r̂i,j = ri,j + λnei,j, where ei,j is i.i.d.

and λn → 0 as n → ∞.

We now want to apply theorem 5.1 of Stefanski and Carroll (1985) to obtain

consistency of σ̂. To do this we need the following conditions
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Assumption 13 (Regularity conditions for scale recovery). Assumptions C.

1.
∑N

i=1

∑
j<i(||ri,j||)2 = o(n2)

2. E[||ei,j||] < ∞.

Proposition 9. Let Assumption 6 and 13.C hold, then σ̂
p−→ σ.

Proof. Follows directly from Theorem 5.1 of Stefanski and Carroll (1985).

With an expression for λn we could utilize theorem 1 of Stefanski and Carroll

(1985) to correct for �nite sample biases in σ.

A.10 Proof of Proposition 6

Note that we already have θ̂
p−→ θ, ∆̂V

p−→ ∆V, V̂0
p−→ V0. By the continuous mapping

theorem this then means

Wi,j θ̂ + V̂i + V̂j
p−→ Wi,jθ + Vi + Vj

(σ̂1, σ̂2)
p−→ σ by the arguments in Stefanski and Carroll (1985), see Appendix A.9.

All we need then is to note that convergence in probability implies weak conver-

gence, and by de�nition of weak convergence the expectation of any continuous and

bounded function also converges.

The integrals in step 4 of algorithm 1 are bounded between 0 and 1, and continu-

ous in V , implying that the desired probabilities converge by the de�nition of weak

convergence.

A.11 Extrapolating charisma

If our object of interest is the network formation model itself, estimates of V and

β are su�cient. However, in order to use our estimates to obtain the probabilities

P (Ai,j = 1), we need to extrapolate V to agents with no observed links. To do this I

will make broad assumptions on how the charisma parameters are distributed, and

how this distribution depends on Si,j.

Let S̃0 denote the set of individuals for whom we cannot estimate V , and S̃1

denote the set for whom we can. I will then assume the following relation between

the distribution of V |S̃0 and V |S̃1.
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Assumption 14. De�ne f, f̃ as the distributions of V |S̃0, V |S̃1 respectively. Assume

there is a distribution hµ s.t. f = hµ, f̃ = hµ̃, where µ is the mean of h, which may

vary across i through their covariates Xi.

This will allow us to use the distribution of the estimated V 's, to integrate out

the values of the unobserved V 's in P (Ai,j).

An implication of assumption 14 is that our semi-parametric estimates of ∆Vi

can be written as

∆V i = Vi − V0 = −V0 + µ(Xi) + εi

Where εi ∼ h0. This let's us recover V0, which we don't obtain from the RLD

estimator, as −
(
E[∆Vi]− E[µ(Xi)]

)
.10

More importantly though it will allow us to make statements about the probab-

ility of links forming between individuals with unknown charisma. I will detail my

approach to this in algorithm 1.

A.12 GMM approach

Some researchers may prefer a GMM approach to estimating the peer e�ects. This

section introduces an estimator and gives proof of consistency and normality, fol-

lowing Newey and McFadden (1994). Suppose we draw two networks A1, A2 from

P (A|W ), and calculate

mi(ξ, A
1
m, A

2
m) = (Zi(A

m
1 , X))′(yi − E[yi|Am

2 , X; ξ])

Where ξ = (α, β, γ) and E[yi|Am
2 , X; ξ] is calculated from the peer e�ect regression.

We can then estimate the parameters from

ξ̂SGMM = argmin
ξ

1

M

∑
m∈(1,...,M)

 1

N

∑
i

mi(ξ, A
1
m, A

2
m)

W

 1

N

∑
i

mi(ξ, A
1
m, A

2
m)


where E[yi|Am

2 , X] = (I − αA2)
−1(Xβ + γA2X) is the predicted value of y given

covariates X and network Am
2 , and Zi(A

m
1 , X) is the vector of instruments given

network Am
1 and X. I will make the following set of assumptions

10Note that we cannot distinguish between a constant term in µ(X) and V0. It is in general
impossible to distinguish between a constant shift in the mean of V and the constant term in 2.
Recovering the true level parameter requires the extra step discussed in section 4.3.
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Assumption 15.

1. Xi, ϵi are i.i.d.

2. There is only one value ξ̃ s.t. E[mi(ξ̃, A
1, A2)] = 0.

3. ξ ∈ Ξ, where Ξ is compact

4. E[supξ∈Ξ m(ξ, A1, A2, X)] < ∞.

These assumptions are all regular in the non-linear GMM literature. Part 2 of

the assumption is the strongest, and stems from the di�culty of proving global iden-

ti�cation of non-linear GMM estimators. A condition for local identi�cation would

be E[Z▽xi(yi−E[yi|A2, X, ξ])] having rank equal to it's columns, which will hold for

most sets of instruments.

Proposition 10. Let Assumptions 1, 2, 4, 5.2 and 15 hold, then as N → ∞ we

have ξ̂SGMM p−→ ξ0

Proof. The result follows from theorem 2.6 in Newey and McFadden (1994). The

proof proceeds by verifying the four conditions given in the theorem. First, we check

that E[mi(ξ, A
1
m, A

2
m)] = 0 when ξ = ξ0. De�ning the draw of A that generated the

observed data as A0, write

yi = (I − αA0)
−1(Xiβ + (AX)i) + ((I − αA0)

−1ϵ)i = E[yi|A0, X, ξ0] + ϵ̃i

Inserting this into mi we get

mi(ξ, A
m
1 , A

m
2 ) = Zi(A

m
1 , X)(E[yi|A0, X, ξ0]− E[yi|Am

2 , X, ξ] + ϵ̃i)

= Zi(A
m
1 , X)(E[yi|A0, X, ξ0]− E[yi|Am

2 , X, ξ]) + Zi(A
m
1 , X)ϵ̃i

The �rst part of this expression stems from us not knowing A0, and therefore be-

ing unable to construct the true conditional expectation of y. The second part is the

traditional GMM part which we want to minimize to obtain consistent estimates. Fo-

cusing on the �rst part at ξ = ξ0, and taking expectations over i (i.e. the distribution

62



of X) yields

E[Zi(A
m
1 , X)(E[yi|A0, X, ξ0]− E[yi|Am

2 , X, ξ0])]

= E
[
E
[
Zi(A

m
1 , X)(E[yi|A0, X, ξ0]− E[yi|Am

2 , X, ξ0])|Am
1 , X

]]
= E

[
Zi(A

m
1 , X)E

[
(E[yi|A0, X, ξ0]− E[yi|Am

2 , X, ξ0])|Am
1 , X

]]
= E

[
Zi(A

m
1 , X)E

[
(E[yi|A0, X, ξ0]− E[yi|Am

2 , X, ξ0])|X
]]

= E
[
Zi(A

m
1 , X)

(
E
[
E[yi|A0, X, ξ0]|X

]
− E

[
E[yi|Am

2 , X, ξ0]|X
])]

= 0

The expectation of the second term can be written out as

E[Zi(A
m
1 , X)ϵ̃i] = E[E[Zi((I − αA0)

−1ϵ)i|X, V,W,U0]]

= E[Zi(I − αA0)
−1E[ϵi|X, V,W,U0]]

= 0

Where we use assumption 2 as well as the draw of U that generated Zi being inde-

pendent from U0.

Condition 2 of theorem 2.6 of Newey and McFadden (1994) holds by 15.3, condi-

tion 3 holds by the continuity of the inverse, and condition 4 holds by Assumption

15.4. Note that as this holds for any set of draws, it also holds when we use many

draws to compute the moment, so we have ξ̂GMM → ξ0.

It's worth noting some di�erences between α̂SGMM and the GMM based estimator

suggested in Chandrasekhar and Lewis (2016). Importantly, the SGMM estimator

makes no requirements on the distribution of the outcomes, or the conditional dis-

tribution of the observed network given the outcomes. This is because the estimator

only uses the network formation model, not the observed network. Investigating the

potential bias-e�ciency trade-o� between the bias from incorporating parts of the

observed network, and the potential e�ciency gain from reducing the dimensionality

of the integral in the SGMM is left to future research.11

11Thank you to Konrad Menzel for pointing out the existence of this trade-o�.
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B Counterfactual analysis

In the full network setting, we can recover estimates of ϵ once we've obtained estim-

ates of all the parameters in the outcome equation. This means we can discuss the

e�ects of various network con�gurations on aggregate outcomes.

In a setting where some of the links are missing, this is no longer the case. This

is because even as the sample grows, our estimate of ϵ will be contaminated by the

missing data. To see this, note that our partial data estimate ϵ̂S can be written out

as

ϵ̂S = y − α̂GSy −Xβ̂ − γ̂GSX
p−→ ϵ+ α(Gy −GSy) + γ(GX −GSX) ̸= ϵ if γ, α ̸= 0

In this section I will describe some Counterfactuals that can be done in the peer

e�ect setting, and make note of which ones can be accomplished without a consistent

estimate of ϵ.12

Consider a researcher who's interested in how educational peer e�ects could a�ect

the distribution of outcomes in a given school. For any given counterfactual network,

we could get the distribution of outcomes from the relation

y = (In − α̂nG)−1
(
Xβ̂n + ϵ̂

)
(9)

However evaluating how a change in the network a�ects the outcomes through

this equation is made complicated by the binary nature of A as well as the non-linear

nature of equation 9.

In this section I will discuss alternative methods of performing counterfactual

analysis using simulations from our estimated distribution of A, as well as using

quadratic integer programming techniques to �nd the best and worst network con-

�gurations for moments of the distribution of y.

B.1 The e�ect of changes in network formation behaviour

By putting various variables/parameters into the network formation model, we can

derive counterfactual probabilities P̃ (A = 1|W ). For example this could be used

to answer questions such as "what if students were more willing to be friends with

people from disadvantaged backgrounds" etc. We can then calculate the mean of any

12Note that while we cannot estimate ϵ, we may still be able to recover moments of its distribution
using re-sampling methods.
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function of the outcomes through

E[y] = E[E[y|A]] ≈ 1

M

M∑
m=1

E[ym|Am]

Where Am is drawn according to P̃ (A = 1|W ), where P̃ is a counterfactual distri-

bution for the network. We can generate E[ym|Am] from the reduced form in the

previous section,

E[ymi |Am] = (In − α̂nG
m)−1

(
Xβ̂n

)
where we've again used the exogeneity of the error terms.

B.2 Best and worst possible networks

A similarly interesting question might be what the best possible network con�g-

uration would be for student outcomes. Consider a planner who could re-shu�e

friendships freely13. How would average outcomes of students di�er from the realized

ones?

Even without an estimate for ϵ, it can be shown that this problem can be re-

cast into the following Mixed Integer Linear Program with Quadratic constraints

(MILPQC)

max
ỹ,A

1′
nỹ s.t.

Xiβ̂ = ỹi −
α̂

di

∑
j

ỹjAi,j −
∑
j

Ai,j

∑
k

γ̂k
di
Xk

j ∀i

Ai,j ∈ {0, 1} ∀i, j∑
j

Ai,j = di ∀i

Where Xk
i is the k'th covariate of i, and Xi is a vector of individual i's covariates.

The reason this formulation works is due to our assumption that E[ϵ|A,X] = 0,

meaning it will on average "drop out" of our outcome equation. The quadratic form

of the constraint becomes more apparent when we re-write the problem into matrix

form, with ζ = (ỹ, A1,2, A1,3, ..., AN,N−2, AN,N−1) as a vector of all the variables in

13By re-shu�ing friendships I mean that we maintain the same amount of friendships for each
student, but we're free to who's friends with whom.
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the MILPQC.

max
ζ

(1n, 0, ..., 0)
′ζ

ζQiζ + (ei, Fi)ζ = bi ∀i

Dζ = d

Ai,j ∈ {0, 1} ∀i, j

where ei is a vector of length N of zero's with a 1 in the i'th element, Qi is a matrix

with α̂
di
in the row's corresponding to {Ai,j}j=1,..,N in the i′th column. Fi is a vector

with
∑

k
γ̂k
di
Xk

j in the elements corresponding to {Ai,j}j=1,..,N .

D is the matrix form of the adding up constraints on the network. A similar form

can be written for the variance, except the objective becomes quadratic, and we

require a consistent estimate of ϵ. While the quadratic objective is more complicated

to solve, though computation is simpli�ed by the variance being convex in y.

C Simulations

C.1 Bounds

Let I be short for the bounds being informative. I will compare two cases, one where

the researcher has knowledge of the number of friends for each student, and another

where the researcher has no information beyond the symmetry of the network.

I will compare the OLS estimator, the complete information IV estimator, the

naive partial IV estimator, the average lower and upper bounds given that the bounds

were informative (LB|I, UB|I), the share of bounds that were informative, and the

share of the links that are missing. Each row correspond to a di�erent percentage of

individuals being dropped. The setting is 3 networks with 300 individuals each, with

a true peer e�ect of 0.5. I then select 1,5,10 or 15% of individuals and drop all links

involving them. The results can be seen in the tables below.
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Missing persons (%) OLS naive-IV LB |I UB | I % I Missing links (%) % I unknown d
1 0.46 0.39 0.45 0.5 1 0.02 0
5 0.24 0.2 0.29 0.76 1 0.1 0
10 0.16 0.13 0.21 140.49 0.3 0.19 0
15 0.11 0.09 0 0.28 0

Table 6: Simulation results for the bounds of a linear-in-means model. The columns
compare the OLS estimator, the the naive IV estimator, the lower and upper bounds
given that the bounds were informative (LB|I, UB|I), the share of bounds that were
informative, the share of the links that are missing, and the share of informative
bounds when we do not know di.

Missing persons (%) OLS naive-IV LB |I UB | I % I Missing links (%) % I unknown d
1 0.46 0.39 0.49 0.51 1 0.02
5 0.24 0.2 0.42 0.6 1 0.1
10 0.15 0.12 0.36 0.83 1 0.19
15 0.11 0.09 0.31 1.48 1 0.28
20 0.09 0.07 0.27 11.15 0.96 0.36

Table 7: Simulation results for the bounds of a linear-in-means model, where the peer
e�ects are estimated on the sample with

∑N
j=1 Si,j > 0. The columns compare the

OLS estimator, the the naive IV estimator, the lower and upper bounds given that
the bounds were informative (LB|I, UB|I), the share of bounds that were informative,
the share of the links that are missing, and the share of informative bounds when we
do not know di.
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