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Abstract

This paper provides a unified framework for the selection of valid moment condi-

tions and detection of latent group structure based on the moment condition validity

in general nonlinear generalized method of moments (GMM) panel data models, which

can accommodate a diverging number of moment conditions and group-specific het-

erogeneous validity of moment conditions across agents. The proposed method inte-

grates the pairwise adaptive fused Lasso and the adaptive Lasso regularization into the

GMM estimation. The estimator is shown to be consistent and achieve classification

and moment selection consistency simultaneously. The asymptotic distribution of a

post-regularization estimator is derived, and its oracle properties are established. The

finite-sample performance of the proposed method is evaluated through a Monte Carlo

simulation experiment.
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1 Introduction

Panel data models are extensively employed in empirical economics research, utilizing

data that encompass various units—such as workers, firms, or countries—observed over

time. These models offer the distinct advantage of enabling the analysis of critical economic

relationships while controlling for unobserved heterogeneity. However, this unobserved het-

erogeneity also presents statistical challenges for accurate estimation and inference, leading

researchers to navigate trade-offs in the degree of unobserved heterogeneity accommodated

by the model.

Recent years have seen a surge in interest towards developing panel data models that

incorporate latent group structures, a concept pioneered by Hahn and Moon (2010); Bon-

homme and Manresa (2015); Su et al. (2016). These models assume that units are categorized

into a finite number of groups with homogeneous parameters within each group but hetero-

geneity across groups. This approach strikes a balance between model flexibility, statistical

efficiency, and empirical interpretability.

Panel data models are often characterized by sets of moment conditions, such as en-

dogenous regression models with instrumental variables and nonlinear structural models. In

many cases, the available moment conditions, which are possibly misspecified, significantly

outnumber the parameters of interest. It is, therefore, crucial to selectively use valid mo-

ment conditions in the estimation process to prevent biased and misleading outcomes. For

instance, approaches for shrinkage GMM estimation (Liao, 2013; Cheng and Liao, 2015) have

been proposed to address these challenges by penalizing slackness parameters that signify

the validity of moment conditions.

Given the prevalence of unobserved heterogeneity in panel data, assuming universal va-

lidity of moment conditions across all units is overly restrictive. It is more pragmatic to

acknowledge the heterogeneity in the validity of moment conditions across units. For ex-

ample, in instrumental variable (IV) models, the exogeneity of instruments typically hinges

on foundational model assumptions or empirical evidence. Given the inherent heterogeneity

across units, it is unrealistic to assume a universal applicability of any single IV. Recogniz-

ing this, it becomes essential to accommodate the notion that varied units may necessitate

distinct sets of IVs for accurately identifying causal relationships of interest. Similarly, in

the context of moment conditions derived from economic theory, assuming a one-size-fits-all

model that uniformly represents all facets of the data-generating process for every unit is

overly optimistic. A more nuanced approach involves tailoring the model to accurately reflect

specific subsets of features for different units, as defined by corresponding sets of moment

conditions, thereby ensuring a more accurate and nuanced representation of the underlying
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economic realities.

This paper introduces a unified framework for selecting valid moment conditions and

detecting latent group structures in nonlinear GMM panel data models, accommodating an

expanding number of moment conditions and group-specific heterogeneity in the validity of

these conditions. By integrating the pairwise adaptive fused Lasso with the adaptive Lasso

regularization for moment selection, our method offers a comprehensive solution for achiev-

ing consistent and efficient parameter estimation, accurate classification of latent groups,

and the selection of valid moment conditions for each group simultaneously. This is the

inaugural work, to the best of my knowledge, that integrates the moment selection and

group classification in the nonlinear GMM panel data models. This integration bridges the

gap between moment selection methodologies and panel data models featuring latent group

structures and leverages the strengths of both approaches.

This work contributes to various strands of the literature. Firstly, it is related to the

vast literature on the generalized method of moments (GMM) since Hansen (1982), with

a particular emphasis on overidentifying moment conditions with possible misspecification.

In early works, Andrews (1999); Andrews and Lu (2001) develop moment selection criteria

based on J overidentification test statistic. Han and Phillips (2006) derive the asymptotic

properties of the GMM estimator with many moment conditions. Liao (2013); Cheng and

Liao (2015) propose shrinkage GMM estimation with adaptive Lasso regularization of the

slackness parameters for moment selection. Another strand of the literature focuses on

the empirical likelihood approach to moment models. For example, Moon and Schorfheide

(2009) study the properties of the empirical likelihood estimator with overidentifying moment

inequalities. Shi (2016); Chang et al. (2018); Ando and Sueishi (2019); Chang et al. (2022)

investigate the penalized empirical likelihood estimation in high-dimensional environments.

As an important class of moment condition models, linear IV models with high-dimensional

instruments have attracted wide attention. Selection of IVs via regularization has been

extensively studied, see Okui (2011); Belloni et al. (2012); Fan and Liao (2014); Luo (2014);

Windmeijer et al. (2019); Gautier and Rose (2021); Liang et al. (2022); Lin et al. (2022) and

the references therein.

In this work, the wisdom from these works, particularly the shrinkage GMM estimation

approach in Cheng and Liao (2015), is brought to the nonlinear panel data settings with

latent group structures to account for heterogeneity in the validity of moment conditions.

Panel data models with latent group structure become increasingly popular in the lit-

erature during the past decade. Several prominent approaches have been developed. The

k-means algorithm has been introduced to the panel data literature for estimation of la-

tent group structures and group-specific parameters by Lin and Ng (2012); Bonhomme and
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Manresa (2015) and this line of research has been flourishing, see Bonhomme et al. (2019,

2022); Liu et al. (2020, 2023); Miao et al. (2020); Okui and Wang (2021); Wang et al. (2023);

Lumsdaine et al. (2023); Cytrynbaum (2020); Cheng et al. (2023). Some works borrow the

sequential binary segmentation algorithm initally applied in the structural break detection

literature, for examples Ke et al. (2016); Wang and Su (2021); Su et al. (2023), and recent

works focus on spectral clustering algorithms, see Ma et al. (2022); Chetverikov and Manresa

(2022); Yu et al. (2022). The Bayesian approach has been proposed in Zhang (2023); Huang

(2023). Last but not least, a major strand of the literature focuses on identifying group

structures in panel data models via dedicated penalization schemes. Su et al. (2016) pro-

pose the classifier-Lasso (C-Lasso) penalty to identify group structure in a nonlinear profile

likelihood framework and the linear IV models. Following their work, the method has been

extended to a variety of settings, for example, Su and Lu (2017); Su and Ju (2018); Su et al.

(2019); Huang et al. (2020, 2021), and the computational issues of C-Lasso is discussed in

Gao and Shi (2021); Huang et al. (2023).

Many of the existing works on grouped panel models focus on linear or nonlinear re-

gression models or linear IV models, with Cheng et al. (2023) as an exception in which

the authors study a nonlinear GMM model with an emphasis on multi-dimensional grouped

heterogeneity. This work contributes to the nonlinear GMM panel data models with la-

tent group structure with a focus on heterogeneity in the validity of moment conditions.

In addition, the model in this paper deals with parameters with increasing dimensions by

allowing for a diverging number of moment conditions and facilitates variable selection in

the estimation.

Our work adopts the pairwise adaptive fused Lasso (PAFL) penalization regularization

to identify the grouped structure in the validity of moment conditions. The PAFL penalty

originates from of idea of the adaptive Lasso (Zou, 2006), group Lasso (Yuan and Lin, 2006),

fused Lasso (Tibshirani et al., 2005) and the group fused Lasso (Qian and Su, 2016; Okui and

Wang, 2021; Lumsdaine et al., 2023) and is proposed for clustering problems as in Hocking

et al. (2011); Radchenko and Mukherjee (2017). The method is applied for the detection of

group structures in panel data models in Gu and Volgushev (2019) and Mehrabani (2023).

This technique offers computational benefits over alternatives like the Classifier-Lasso, k-

means clustering, and the sequential binary segmentation algorithm, thanks to its convex

nature, and simplifies the training process with a single tuning parameter and provides a

spectrum of tuning parameters to accurately determine the number of groups. Discussion

and comparison of the PAFL penalty with other methods will be delineated in Remark 2.

Gu and Volgushev (2019) adopts a scaler version of the L1-norm-baed PAFL penalization

to study the quantile regression models with grouped fixed effects, while our model deals
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with increasing dimensional parameters. The PAFL penalty in our work has the same form

as in Mehrabani (2023). However, the proof in Mehrabani (2023) was found to only support

individual classification consistency with a few technical gaps in the development of the

asymptotic theory. This paper provides a novel proof to first rigorously establish uniform

classification consistency with the pairwise adaptive fused Lasso, which can also serve as a

remedy for Mehrabani (2023) in the linear panel data models with latent group structures.

1.1 Notations

For any positive integer N , IN ∈ RN×N , 0N ∈ RN×1 and ιN ∈ RN×1 denotes the

N × N identity matrix, N × 1 zero vector and N × 1 vector of ones, respectively. Denote

[N ] = {1, 2, · · · , N}. For generic vectors a ∈ RN and matrices A ∈ RN×K , ∥·∥ denotes

Frobenius norm; A′ is the transpose of A; σmax (A) and σmin (A) denote the largest and

smallest singular values ofA, respectively. Let ai and aik denote the i-th element of a and the

(i, k)-th element of A, respectively. For a vector-valued function f (a) : RN → RK , ∂f(a)
∂a′ ∈

RK×N denotes the Jacobian matrix with (i, k)-th element as ∂fi(x)
∂ak

where fi (·) is the i-th

component of f (·). Let S =
{
i(1), i(2), · · · , i(S)

}
⊂ [N ], denote aS =

(
ai(1), ai(2), · · · , ai(S)

)′
and fS (·) =

(
fi(1) , fi(2) , · · · , fi(S)

)′
as the subvectors of a and f(·), respectively. For a

generic set A, |A| is the cardinality of A. We use C (c) to denote generic large (small)

positive constants. Define a ∧ b := min (a, b) and a ∨ b := max (a, b). ∆xit := xit − xi,t−1

denotes the first difference operator. “
p→” and “

d→” denote convergence in probability and

convergence in distribution, respectively; “w.p.a.1” abbreviates “with probability approach

1”. Denote aN = oP (bN) if for any ε > 0, Pr (|aN/bN | > ε) → 0 as N → ∞; aN = Op (bN)

if for any ε > 0, there exist finite Cε > 0 such that limN→∞ Pr (|aN/bN | ≥ Cε) < ε. We use

(N, T ) → ∞ to signify that N and T jointly go to infinity.

The rest of the paper is organized as follows. Section 2 presents the model setup and

motivating examples and proposes the penalized GMM estimator. Section 3 investigates

the asymptotic properties of the proposed method. The finite sample performance of the

proposed method is evaluated through a Monte Carlo simulation experiment in Section 4.

Section 5 concludes. Proofs are relegated to the Appendix A.1.

2 Framework

This section lays the foundation for our investigation of moment models with grouped

heterogeneous validity of moment conditions with panel data. Firstly, we delineate the
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model’s framework and examine illustrative econometric examples that motivate our study

in Section 2.1 and 2.2. Subsequently, in Section 2.3 we introduce a penalized GMM estimator,

specifically designed for parameter estimation, classification, and moment selection.

2.1 Model Setup

We examine an observed dataset wherein each observation zit ∈ Rpz , indexed by i ∈ [N ]

and t ∈ [T ]. This dataset may be conceptualized as either classical panel data or as clustered

data. Within the framework of panel data, the index i represents the individual dimension,

while t pertains to the time dimension. In the case of clustered data, on the other hand, i

indicates the cluster dimension, with t identifying units within these clusters.

2.1.1 Moment Conditions

Consider g(z,θ) ∈ RL, which represents a vector of moment functions associated with

the parameter θ ∈ Θ ⊂ Rpθ , where pθ is a predetermined positive integer. Let θ0 denote the

true parameter values of interest for θ.

There exists a subset S ⊂ [L] of the moment conditions, satisfying pθ ≤ LS = |S| < L,

such that

E [gS (zit,θ)] = 0 (2.1)

is fulfilled if and only if θ = θ0, thus identifying the structural parameter θ in accordance

with (2.1). We assume that both pθ and LS are constant, while L ≡ LNT may increase with

the sample sizes N and T .

The set S of sure moment conditions, which are correctly specified as per (2.1) and are

sufficient for the identification of θ, is presumed to be known to the researchers based on

economic theory or prior empirical evidence. Let D = [L] \ S, with LD = L − LS , denote

the set of doubtful moment conditions, which may be potentially misspecified. Without loss

of generality, let D = [LD] . To model the pattern of misspecification, we introduce slackness

parameters δi ∈ Θδ ⊂ RLD , i ∈ [N ], such that

E
[
gD
(
zit,θ

0
)]

= δi, (2.2)

thereby allowing for heterogeneous validity of moment conditions across i. Specifically,

δil = 0 indicates that moment condition l ∈ D is correctly specified for i, whereas δil ̸= 0

signifies that moment condition l ∈ D is misspecified for i. For each individual i, the set of

doubtful moment conditions, D, is partitioned into Vi and Ii, where Vi = {l ∈ [LD] : δil = 0}
represents the subset of conditions correctly specified, and Ii = {l ∈ [LD] : δil ̸= 0} denotes
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those misspecified. The parameter

ζNT = min
1≤i≤N

min
l∈Ii

|δ0il|

quantifies the minimum degree of misspecification across individuals and conditions, which

is permitted to approach zero.

2.1.2 Grouped Structure

Consider that G = {Gk}K
0

k=1 constitutes a partition of the set [N ], such that
⋃K0

k=1 Gk =

[N ] and Gk ∩ Gj = ∅ for all j ̸= k. This partitioning organizes the sample into K0 ≥ 1

distinct groups. Define Nk =
∑N

i=1 1 {i ∈ Gk} as the number of observations within group

k, for k ∈ [K0]. Furthermore, the group membership function k(i) =
∑K0

k=1 k1 {i ∈ Gk} is

introduced, alongside the indicator function λik = 1 {i ∈ Gk}, for each i ∈ [N ] and k ∈ [K0].

Rather than assuming arbitrary patterns of heterogeneity in δi, we introduce a latent

group structure by positing that

δ0
i =

K0∑
k=1

α0
k1 {i ∈ Gk} = α0

k(i), (2.3)

where α0
k ̸= α0

j for all j ̸= k, signifying that the validity of moment conditions is homo-

geneous within groups but varies across different groups.1 Accordingly, we define Vk =

{l ∈ D : αkl = 0} and Ik = {l ∈ D : αkl ̸= 0} for each group k ∈ [K0]. Define

Z0 = {(i, j) ∈ [N ]× [N ] : k (i) = k (j) and i < j} ,

Z1 = {(i, j) ∈ [N ]× [N ] : k (i) ̸= k (j) and i < j} , (2.4)

to represent the sets of observation pairs within the same group and across different groups,

according to their true latent group memberships, respectively. The notation of Z0 and Z1

is particularly helpful for rigorous analysis of the asymptotic properties of the estimator that

will be proposed in Section 2.3 based on the adaptive fused Lasso penalty. Let

ρNT = min
1≤k<k′≤K0

∥∥α0
k −α0

k′

∥∥ = min
(i,j)∈Z1

∥∥δ0
i − δ0

j

∥∥ ,
1It is a direct extension to allow the structural parameters θi to be heterogeneous and share the latent

group structure with the slackness parameters δi. In this case, (2.1) and (2.2) are modified to E [gS (zit,θi)] =
0, which is fulfilled if and only if θi = θ0

i , and E
[
gD
(
zit,θ

0
i

)]
= δi. Denote βi = (θ′

i, δ
′
i)

′
. We impose the

latent group structure on βi by modifying (2.3), β0
i =

∑K0

k=1 α
0
k1 {i ∈ Gk} = α0

k(i), where α0
k ̸= α0

j for all
j ̸= k. With minimal modification, we can propose the penalized GMM estimator for β and develop the
same set of asymptotic properties as in Section 2.3 and 3.
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which delineates the minimum degree of separation between groups, a measure that is per-

mitted to approach zero as the sample sizes N and T increase.

Remark 1. Define the matrix D
N×LD

= (δ1, δ2, . . . , δN)
′, the group membership matrix

Λ
N×K

= (λik), and the loading matrix A
LD×K

= (α1,α2, . . . ,αK). Consequently, in matrix

notation, we have D = ΛA′, which reveals a low-rank factor structure, as highlighted in the

works of Ma et al. (2022); Chetverikov and Manresa (2022); Bonhomme et al. (2022). Within

this framework, λi represents the factor loading, while αk denotes the latent factor. The

interconnection between these two strands of literature and their implications for directions

of extensions are briefly discussed in Remark 9.

The primary objective of this study is to facilitate the efficient estimation and inference

of θ0, alongside the detection of the group structure G and the validity parameters αk, for

k ∈ [K0].

2.2 Motivating Examples

Example 1 (Measurement Errors and Linear IV). Consider a first-differenced linear

panel model, articulated as

∆yit = θ0∆xit +∆εit,

where i indexes individuals in the set [N ] and t denotes time periods within [T ]. The

researcher is concerned about the endogeneity of ∆xit caused by possible measurement errors,

and identifies θ0 by an exogenous IV, zS,it, satisfying

E
[
zS,it

(
∆yit − θ0∆xit

)]
= 0. (2.5)

In addition to zS,it, suppose there exists an alternative measure to xit, x̃it, such that

xit = x
⋆

it + uit + γivit, γi = 1 {i ∈ N1} ,

x̃it = x
⋆

it + ũit + γ̃iṽit, γ̃i = 1 {i ∈ N2} ,

where x
⋆

it is the latent explanatory variable, with E
(
∆εit | ∆x

⋆

it

)
= 0, measured by ob-

served proxy variables xit and x̃it, uit and ũit are classical measurement errors such that

E (∆εit | ∆uit) = E (∆εit | ∆ũit) = 0 while vit and ṽit are nonclassical measurement errors

that are correlated with the structural shocks ∆εit and consequently the source of endogene-

ity. N1,N2 ⊂ [N ] denote the set of individuals for which the proxy variables, xit and x̃it, are

endogenous due to the entering of vit and ṽit, respectively. Let zD,it = (∆xit,∆x̃it) and we
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then have the set of doubtful moment conditions,2

E
[
zD,it

(
∆yit − θ0∆xit

)]
= δi,

where

δi =



(δ1, δ2)
′ if i ∈ N1 ∩N2,

(δ1, 0)
′ if i ∈ N1 \ N2,

(0, δ2)
′ if i ∈ N2 \ N1,

(0, 0)′ otherwise,

and δ1 = E (∆vit∆εit) ̸= 0 and δ2 = E (∆ṽit∆εit) ̸= 0. δi exhibits a group structure as in

(2.3) capturing the heterogeneity of the validity of moment conditions across individuals. In

a concrete empirical context, consider a simplified labor supply model, as in Liao (2013),

that is specified as follows3

∆ log (yit) = θ0∆ log (xit) + ∆εit,

where yit denotes the annual hours worked, xit represents the hourly wage rate and the pa-

rameter θ0 captures the inter-temporal substitution elasticity of labor supply in response to

evolutionary changes in wages. As discussed in MaCurdy (1981); Altonji (1986), researchers

are concerned about measurement errors in ∆ log (xit), which cause the OLS estimator to be

inconsistent. MaCurdy (1981) suggest employing a set of family background variables (par-

ents’ education; parents’ economic status when the individual is young; education, age and

interaction between education and age) as IVs, whereas Altonji (1986) advocate alternative

wage measures x̃i,t to construct IVs.4 The set S can be formed by including IVs for which

there is a higher degree of confidence in their exogeneity, such as the economic status of the

parents as in Liao (2013), and we investigate the potential group structure of the validity of

moment conditions by including ∆ log (xit), ∆ log (x̃it) and other IVs proposed in MaCurdy

(1981) in zD,it.

2If ∆xit is exogenous, the generalized least squares (GLS) estimator, which can be constructed as GMM
estimator based on (2.5) together with E

[
∆xit

(
∆yit − θ0∆xit

)]
= 0, is consistent and efficient. We can

include ∆xit in zD,it to check the exogeneity of ∆xit.
3We abstract the time-varying constant term from the model presented in Liao (2013) for illustration

purposes.
4As also summarized in Liao (2013, Note 11), xit is constructed by dividing the annual labor income of

individual i by the annual labor supply and gross national product (GNP) price deflator in MaCurdy (1981);
Altonji (1986). x̃it is the hourly wage rate of individual i if the person is paid on hourly basis in Altonji
(1986).
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Example 2 (Dynamic Panel). Consider the dynamic panel model

∆yit = θ0∆yi,t−1 +∆εit,

i ∈ [N ] and t ∈ [T ]. ∆yi,t−1 and ∆εit are naturally correlated, which leads OLS estimator to

be inconsistent. Suppose εit is distributed independent across i and has no serial correlation,

then yi,t−2−j, j = 0, 1, · · · , t− 2 are valid instruments for ∆yi,t−1 (Arellano and Bond, 1991)

satisfying E (yi,t−2−j∆yi,t−1) ̸= 0 and

E (yi,t−2−j∆εit) = 0,

which can be used to construct the S set, i.e.

gS (zit, θ) = [yi,t−2−j (∆yit − θ∆yi,t−1)]j=0,1,··· ,t−2 .

We can derive additional moment conditions to form D by imposing more restrictions on the

data-generating process. For example,

E (yi,t∆εi,t+1 − yi,t+1∆εi,t+2) = 0, t = 1, 2, . . . , T − 2

E (εi∆εi,t+1) = 0, t = 1, 2, · · · , T − 1, (2.6)

where εi = T−1
∑T

t=1 εit, hold under homoskedasticity across time E (ε2it) = σ2
i (Ahn and

Schmidt, 1995). However, the homoskedasticity assumption may not hold uniformly across

unit i, say E (ε2it) = σ2
i + γiωit, where γi = 1 (i ∈ N ) for some subset of individuals N ⊂ [N ]

and ωit captures the heteroskedasticity across t. In this case, we have at least two groups

based on the validity of the homoskedasticity assumption and in turn the moment conditions

in (2.6). Additional linear or nonlinear moment conditions can be derived under homoskedas-

ticity or initial condition restrictions (Arellano and Bover, 1995; Ahn and Schmidt, 1997;

Blundell and Bond, 1998). See Hsiao (2022, Chapter 3) or Pesaran (2015, Chapter 37) for a

textbook treatment.

Example 3 (Shift-share (Bartik) IV). The shift-share IV has become increasingly pop-

ular in empirical studies. Recent developments including Borusyak et al. (2022), Goldsmith-

Pinkham et al. (2020) and Adao et al. (2019) provide theoretical justification of the shift-

share IV. Consider the model with N locations, T time periods, and J industries,

yit = θ0xit + εit,

9



where the endogenous variable employs the accounting identity xit =
∑J

j=1 sijtvijt, and the

location-industry-time shift can be decomposed as vijt = vjt+ ṽijt, where vjt is the industry-

time shift and ṽijt is idiosyncratic shock. The shift-share IV is constructed by

zit =
J∑
j=1

sij0vjt, (2.7)

which is the inner product of initial shares and aggregated level industry-time shifts. A

notable example is provided by Autor et al. (2013), who investigate the causal impact of

increased import penetration from China on local labor markets within the United States.

In their analysis, the endogenous variable xit quantifies the local exposure to the surge in

imports from China, sij0 represents the employment share of the manufacturing industry j

within location i, measured a decade prior to each period t, and vjt denotes the growth of

imports of products in industry j from China into the eight comparable economies over the

period t.

The validity of the shift-share instrumental variable (IV) hinges on the exogeneity of

either vjt or sij0, with the other variable being treated as fixed. However, the exogeneity

assumption may not hold for each location-industry pair (i, j) since locations have different

industrial structures and local amenities. In this case, the IV constructed in (2.7) by com-

bining all industries for all i can be invalid. For instance, considering a scenario where the

geographical location is Silicon Valley and the analysis incorporates the technology sector

as part of (2.7), it is not plausible that the exogeneity condition holds. Consequently, it is

crucial to select suitable subsets of industries for different groups of locations to construct

valid shift-share IVs. In practice, we can construct the set of IVs as

zS,it =
∑
j∈JS

sij0vjt and zl,it =
∑

j∈JS∪J̃l

sij0vjt,

where JS is a subset of industries for which the exogeneity condition holds based on prior

knowledge or empirical evidence, and we add more industries in J̃l, l ∈ [LD], to construct

additional IVs whose validity is subject to detection. Denote zD,it = [zl,it]
LD
l=1. It is expected

that the validity of constructed IVs is heterogeneous across locations.
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2.3 Penalized GMM Estimation

To facilitate understanding, we introduce the following notations. Let

m (z,θ) =

[
gS (z,θ)

gD (z,θ)

]
, g (z,θ, δ) =

[
gS (z,θ)

gD (z,θ)− δ

]

represent the moment functions with and without slackness parameters, respectively. Cor-

respondingly,

mi (θ) = E [m (zit,θ)] , gi (θ, δ) = E [g (zit,θ, δ)] ,

mS,i (θ) = E [gS (zit,θ)] , mD,i (θ) = E [gD (zit,θ)] .

The empirical counterparts are denoted as

m̂i,T (θ) =
1

T

T∑
t=1

m (zit,θ) , ĝi,T (θ, δi) =
1

T

T∑
t=1

g (zit,θ, δi) ,

m̂S,i,T (θ) =
1

T

T∑
t=1

gS (zit,θ) , m̂D,i,T (θ) =
1

T

T∑
t=1

gD (zit,θ) .

We also define the Jacobian matrices as

ΓS,i (θ) =
∂mS,i (θ)

∂θ′ , ΓD,i (θ) =
∂mD,i (θ)

∂θ′ , Γi (θ) =

[
ΓS (θ) 0LS×LD

ΓD (θ) −ILD×LD

]
.

We propose the penalized GMM estimator,(
θ̂, D̂

)
= argmin

θ∈Θ,D∈Θδ
N

Q̂NT (θ,D) + Pψ1,ψf
(D) , (2.8)

where

Q̂NT (θ,D) =
1

N

N∑
i=1

Q̂i,NT (θ, δi) ,

Q̂i,NT (θ, δi) = ĝi,T (θ, δi)
′ Wi,NT ĝi,T (θ, δi) ,

Pψ1,ψc (D) =
ψ1

N

N∑
i=1

LD∑
l=1

ẇil |δil|+
ψf
N2

∑
1≤i<j≤N

µ̇ij ∥δi − δj∥ , (2.9)

and Wi,T is a positive definite weighting matrix.

The penalty scheme Pψ1,ψc (D) integrates a variant of the adaptive Lasso penalty (Zou,
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2006; Cheng and Liao, 2015) and the pairwise adaptive fused Lasso (PAFL) penalty (Mehra-

bani, 2023) with the adaptive weights ẇil =
∣∣∣δ̇il∣∣∣−κ1 and µ̇ij =

∥∥∥δ̇i − δ̇j

∥∥∥−κf based on a

preliminary consistent estimator Ḋ, where κ1, κf ≥ 2.

The adaptive Lasso penalty is designed to differentiate the valid and invalid moment

conditions by shrinking the slackness parameter δil associated with valid moment conditions,

l ∈ Vi, to zero while leaving δil stay away from zero for l ∈ Ii. In the case of valid moment

conditions, i.e. l ∈ Vi, the adaptive weights ẇil tends to be large since δ̇il is close to zero

by its consistency, which imposes heavy penalties to ensure δ̂il = 0 for l ∈ Vi. In contrast,

invalid moment conditions are subject to small penalties so that they are asymptotically

associated with nonzero estimated slackness parameters.

We employ the PAFL penalty to achieve the classification of individuals based on the

validity of moment conditions. The penalty encourages δi = δj if i and j belong to the same

group, i.e. δ0
i = δ0

j . The adaptive weights µ̇ij works similarly as ẇil following the intuition

of the adaptive Lasso (Zou, 2006).

Remark 2. It is also possible to utilize other methodologies to handle the latent group

structure. For example, we can consider the classifier-Lasso (Su et al., 2016),

Pψc (D,A) =
ψc
N

N∑
i=1

K∏
k=1

∥δi −αk∥ .

The estimation with the classifier-Lasso penalty, even associated with convex moment con-

ditions, is a non-convex optimization problem. The numerical solution is approximated by

solving a sequence of convex optimization problems (Gao and Shi, 2021), which is compu-

tationally expensive, and the convergence is not guaranteed. Furthermore, the number of

groups K is a tuning parameter, in addition to the regularization parameter ψc, that needs

to be selected in advance. On the contrary, the PAFL penalty is convex and relies on a single

tuning parameter ψf to control the strength of the penalty.

2.3.1 Preliminary Estimator

Consider the GMM estimator using moment conditions in S for initial estimation of θ0

and the plug-in estimator for δi,

θ̇i = argmin
θ∈Θ

m̂S,i,T (θ)
′ Wi,T m̂S,i,T (θ) and δ̇i = m̂D,i,T

(
θ̇
)
, (2.10)

for i ∈ [N ], whereWi,T is a positive definite weighting matrix. Denote Ḋ =
(
δ̇1, δ̇2, · · · , δ̇N

)′
.

The asymptotic properties of Ḋ will be developed in Lemma A.1 in the appendix. Theoret-
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ically, any preliminary estimator satisfying the properties in Lemma A.1 can be employed.

3 Asymptotic Properties

This section is devoted to investigating the asymptotic properties of the penalized GMM

estimator introduced in Section 2.3. Initially, we outline the assumptions necessary for the

estimator’s consistency and proceed to derive the convergence rates of θ̂ and δ̂i. Subse-

quently, we establish the consistency of classification and moment selection, in the sense

that the estimated group structure and the selected set of moment conditions for each group

coincide with the true underlying sets with probability approaching 1. In the final part of

this section, we study the asymptotic distribution of the penalized GMM estimator and its

oracle properties. Detailed proofs are relegated in Appendix A.1.

3.1 Consistency and Preliminary Rate of Convergnce

To begin with, we introduce the following regularity conditions.

Assumption 1. (i) zi = {zit : t ∈ [T ]} are independently distributed across i. For each

i, zi is stationary strong mixing with mixing coefficients ai (·), where

a (·) = sup
N

max
1≤i≤N

ai(·)

satisfies a(s) ≤ car
s for some ca > 0 and r ∈ (0, 1).

(ii) θ0 lies in the interior of a compact set Θ.

(iii) There exists f (zit) s.t. supθ∈Θ ∥m (zit,θ)∥ ≤ f (zit) and∥∥m (zit,θ)−m
(
zit,θ

)∥∥ ≤ f(zit)
∥∥θ − θ

∥∥ ,
for all θ,θ ∈ Θ. E |f (zit)|q <∞ for some q ≥ 6.

(iv) N = O(T
q
2
−1) where q ≥ 6 is the constant in (iii).

Remark 3. Assumption 1 is comparable to Assumption A1 in Su et al. (2016), which is

essential to guarantee the convergence of the sample moments to the population moments

uniformly over the parameter space and i at a desired rate, which is formally shown in Lemma

A.1. The observations are assumed to be cross-sectionally independent and the dependence

across t within each i is controlled by a mixing condition as in Assumption 1(i). Assumption
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1(ii) regulates the parameter space. Assumption 1(iii) imposes a Lipschitz bound on the

moment functions. Alternatively, one can follow Bonhomme and Manresa (2015); Liu et al.

(2020) to impose tail conditions on f (zit) directly. Finally, Assumption 1(iv) specifies the

relative growth rate of N and T depending on q ≥ 6.

Assumption 2. (i) mS,i (θ) is continuous in θ for all i, and for any ϵ > 0,

inf
N

min
1≤i≤N

inf
∥θ−θ0∥>ϵ

∥mS,i (θ)∥ > 0.

(ii) |δ0il| ≤ C for i ∈ [N ] and l ∈ [LD].

(iii) There exists a sequence of constants τT → 0 with τ−1
T = O

(
T

1
2

)
and a fixed constant

η such that

sup
∥θ−θ0∥≤η

∥m̂i,T (θ)−mi (θ)∥ = Op (τT ) ,

for i ∈ [N ].

(iv) There exist nonrandom matrices Wi,NT and some constant cw, Cw > 0 such that

Pr

(
max
1≤i≤N

∥Wi,NT −Wi∥ ≥ ϵ

)
= o (1)

for any ϵ > 0, and

cw < inf
N

min
1≤i≤N

σmin (Wi) ≤ sup
N

max
1≤i≤N

σmax (Wi) < Cw.

(v) mi (θ) is continuously differentiable for any θ in the local neighborhood of θ0 ∈ Θ for

all i, and there exists a constant cΓ, CΓ > 0 such that for some η > 0

cΓ < inf
N

min
1≤i≤N

inf
∥θ−θ0∥≤η

σmin

(
Γi (θ)

′ Γi (θ)
)
≤ sup

N
max
1≤i≤N

sup
∥θ−θ0∥≤η

σmax

(
Γi (θ)

′ Γi (θ)
)
< CΓ.

Remark 4. Assumption 2(i) ensures the structural parameter θ is identifiable by the mo-

ment conditions in S as in (2.1). Assumption 2(ii) imposes a compactness condition on

the true parameter δ0, which is essentially assuming the existence of moments for moment

conditions in D. Assumption 2(iii) is a high-level condition on the convergence rate of the

empirical process indexed by the moment function m (zit,θ). When the number of mo-

ment conditions, L is fixed, standard empirical process theory for dependent data implies

τT = T− 1
2 (Dehling and Philipp, 2002). The τT is introduced for an increasing number of

moment conditions. Cheng and Liao (2015, Lemma D.1) provides sufficient conditions for
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τT =
√
L/T to hold. Assumption 2(iv) imposes regularity conditions on the weighting ma-

trix as in Su et al. (2016, Assumption B1(iv)) and (v) regulates the first-order derivatives of

the moment conditions.

Assumption 3. Let κ̃NT =
(
LD
T

) 1
2 (log T )3 and κNT =

(
LD
T

) 1
2 (log T )3+υ for some υ > 0.

(i)
(
ρ−1
NT ∨ ζ−1

NT

)
κNT = o(1).

(ii) ψf = O
(
L
− 1

2
D ρ

κf
NT τT

)
and ψ1 = O

(
LD

− 1
2 ζκ1NT τT

)
.

Remark 5. Assumption 3 is a set of rate conditions. As shown in Lemma A.1 and Theorem

2(i), the rates κ̃NT and κNT controls the uniform convergence of the preliminary estimator

defined in (2.10) and the penalized GMM estimator, respectively. Assumption 3(i) ensures

that the estimators converge to the true parameters faster than the minimal degree of group

separation ρNT and the minimal degree of misspecification ζNT so that we can still correctly

separate different groups and identify the invalid moment conditions based on δ̂i even when

ρNT , ζNT → 0. Assumption 3(ii) specifies upper bounds on the tuning parameters ψ1 and

ψf to ensure that the penalty scheme cannot dominate the GMM objective so that the

consistency of the penalized GMM estimator pertains.

With the assumptions outlined above, we can derive the rate of convergence of the pe-

nalized GMM estimator θ̂ ∈ Rpθ and D̂ ∈ RLD×N in the following Theorem.

Theorem 1. Suppose Assumption 1 - 3 holds, then

(i)
∥∥∥θ̂ − θ0

∥∥∥ = Op (τT ) and
∥∥∥δ̂i − δ0

i

∥∥∥ = Op (τT ) for i ∈ [N ].

(ii) N−1
∑N

i=1

∥∥∥δ̂i − δ0
∥∥∥2 = Op (τ

2
T ).

Remark 6. Theorem 1 establishes the pointwise and mean square convergence δ̂i. As

shown in (A.16) in the proof in Appendix A.1, the rate of convergence depends on aNT =

ψf
(
max(i,j)∈Z1 µ̇ij

)
and bNT = ψ1max1≤i≤N ∥ẇi,Ii∥ , where ẇi,Ii is the subvector of ẇi with

element wil, for l ∈ Ii = {l ∈ D : δ0il ̸= 0}, in addition to τT , which is comparable to the

results in Cheng and Liao (2015, Theorem 3.2) and Su et al. (2016, Theorem 2.1). With

Assumption 3(ii), we can simplify the results as in Theoreom 1 by showing aNT = Op (τT )

and bNT = Op (τT ).

3.2 Classification and Moment Selection Consistency

In addition to Assumptions in Section 3.1, we further introduce the following assumption.
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Assumption 4. (i) ψf = O
(
ρ
κf
NTL

− 1
2

D κ̃2
NT

)
and ψ1 = O

(
ζκ1NTL

− 1
2

D κ̃2
NT

)
.

(ii) ψ−1
f = o

((
τT
√
LDκ̃

κf
NT

)−1
)
and ψ−1

1 = o
(
(τT κ̃κ1

NT )
−1).

(iii) limN→∞min1≤k≤K0 Nk/N → πmin ∈ (0, 1).

Remark 7. As we will see in Theorem 2, the classification and moment selection consistency

relies on the uniform consistency of the penalized GMM estimator across i, which is a stronger

result than Theorem 1(i). Consequently, it necessitates a more restrictive upper bound on the

tuning parameters ψf and ψ1 in Assumption 4(i) than that in Assumption 3(ii). Assumption

4(ii) delineates lower bounds for ψf and ψ1. This ensures that for any (i, j) ∈ Z0 and l ∈ Vi,
ψf and ψ1, in conjunction with the adaptive weights µ̇ij and ẇil, levy sufficiently heavy

penalties on ∥δi − δj∥ and |δil|, respectively, which is imperative for the consistency of the

classification and moment selection. The upper and lower bounds for the tuning parameters

also hinge on the range we can allow for ζNT , ρNT and the number of moments LD, and

guide the choice of κ1 and κf . Consider the case where τT =
√

LD
N
. Let ζNT = T−ϕζ ,

ρNT = T−ϕρ and LD = T ϕL take polynomial rates of T for some ϕζ , ϕρ, ϕL > 0. It is required

that
τT κ̃κ1

NT

ζ
κ1
NTL

− 1
2

D κ̃2
NT

= op (1) , which leads to 1
2
− 1

2
(1− 2ϕζ − ϕL)κ1 < 0. With κ1 = 2, we can

allow

2ϕζ + ϕL <
1

2
. (3.1)

Similarly, we can derive conditions for κf , ϕρ and ϕL that
(
1
2
+ ϕL

2

)
− 1

2
(1− 2ϕρ − ϕL)κf < 0,

which call for a large choice of κf . With κf = 3, we can allow

3ϕρ + 2ϕL < 1. (3.2)

With (3.1) and (3.2), Assumption 3(i), which requires ϕL+2 (ϕζ ∨ ϕρ) < 1, is automatically

satisfied under the current setting.

Remark 8. In instances where the degree of misspecification of moment conditions is mini-

mal, as indicated by a large value of ϕζ , or when groups are not well separated, i.e. ϕρ takes

a large value, our methodology may not consistently identify invalid moment conditions or

accurately discern the underlying group structure. Moreover, as we shall show in Theorem

2, the penalized GMM estimator can detect invalid moment conditions up to the rate of con-

vergence κNT while it fails to achieve consistent moment selection when ζNT ≍ 1√
T
, which

is the case when the moment conditions are locally misspecified for at least one group.

These intricacies prompt the exploration of robust bias-aware inference techniques in

future research. Armstrong and Kolesár (2021) propose bias-aware confidence intervals, in
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the presence of local misspecification at
√
T -rate, that can be constructed by taking the GMM

estimator and adding and subtracting the standard error times a critical value that takes into

account the potential bias from misspecification of the moment conditions. It is a fruitful

direction to consider the post-regularization estimation as in (3.7) and constructing bias-

aware confidence intervals for the structural parameters following Armstrong and Kolesár

(2021).

Remark 9. As noticed in Remark 1, the group structure admits a factor structureD = ΛA′.

The approximate moment conditions with αkl =
c√
T
for a constant c ̸= 0 for some l ∈ [LD]

corresponds to weak factor issues in the interactive fixed effects models, for which the robust

inference method is investigated in the recent work by Armstrong et al. (2023).

Remark 10. Assumption 4(iii) imposes the condition that no group has an asymptotically

trivial size, which is a convenient handle for the technical derivation. At the cost of cumber-

someness in notations and derivations, we can relax this condition to allow for πmin = 0.

Now we are readily to establish the following theorem, which directly implies classification

and moment selection consistency which will be elaborated in Remark 13.

Theorem 2. Suppose Assumption 1 - 4 hold, then as (N, T ) → ∞,

(i) max1≤i≤N

∥∥∥δ̂i − δ0
i

∥∥∥ = Op (κNT ) .

(ii) Pr
(
max(i,j)∈Z0

∥∥∥δ̂i − δ̂j

∥∥∥ > 0
)
→ 0 and Pr

(
min(i,j)∈Z1

∥∥∥δ̂i − δ̂j

∥∥∥ > 0
)
→ 1.

(iii) Pr
(
max1≤i≤N maxl∈Vi

∣∣∣δ̂il∣∣∣ > 0
)
→ 0 and Pr

(
min1≤i≤N minl∈Ii

∣∣∣δ̂il∣∣∣ > 0
)
→ 1.

Remark 11. As in Appendix A.1, we show the first statement of Theorem 2(ii) in the first

place by investigating the Karush-Kuhn-Tucker (KKT) conditions of (2.8) and making use

of Assumption 4(ii). With this result, for any i ∈ [N ] such that
∥∥∥δ̂i − δ0

i

∥∥∥ > κNT , we have∥∥∥δ̂j − δ0
i

∥∥∥ > κNT for all j ∈ Gk(i), which is essential to prove the uniform consistency in

Theorem 2(i). It is then guaranteed that we can separate different groups and detect invalid

moment conditions up to the rate κNT . Together with Assumption 3(i), we can show the

second part of both Theorem 2(ii) and (iii).

Remark 12. Mehrabani (2023, Theorem 3.2) claim a similar results to the first statement

in Theorem 2(ii). However, the proof in Mehrabani (2023) actually attempts to show

Pr

(
min
j∈Gk(i)

∥∥∥δ̂i − δ̂j

∥∥∥ > 0

)
→ 0
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as (N, T ) → ∞ for each individual i ∈ [N ], which is neither a proper notion of classification

consistency nor a property uniform over i. Since the uniform consistency is not established

in Mehrabani (2023), the second statement in Theorem 2(ii) is not guaranteed and hence the

classification consistency is not established as claimed therein. The proof in A.1 can serve

as a remedy in their setting.

Remark 13. Denote

Ẑ0 =
{
(i, j) ∈ [N ]× [N ] : δ̂i = δ̂j, i < j

}
and Ẑ1 =

{
(i, j) ∈ [N ]× [N ] : δ̂i ̸= δ̂j, i < j

}
.

Theorem 2(ii) shows that

Pr
(
Z0 ⊂ Ẑ0

)
→ 1, Pr

(
Z1 ⊂ Ẑ1

)
→ 1, (3.3)

as (N, T ) → ∞. By triangle inequality, Theorem 2(i) and the rate condition Assumption

3(ii), we have

Pr

(
max

(i,j)∈Ẑ0

∥δ0
i − δ0

j∥ ≥ ρNT

)
≤ Pr

(
max

(i,j)∈Ẑ0

∥∥∥δ̂i − δ̂j

∥∥∥+ ∥∥∥δ̂i − δ0
i

∥∥∥+ ∥∥∥δ̂j − δ0
j

∥∥∥ ≥ ρNT

)

≤ Pr

(
max
1≤i≤N

∥∥∥δ̂i − δ0
i

∥∥∥ ≥ ρNT
2

)
→ 0,

as (N, T ) → ∞, which implies that Pr
(
Ẑ0 ⊂ Z0

)
→ 1 and together with (3.3), we have

Pr
(
Ẑ0 = Z0, Ẑ1 = Z1

)
→ 1 as (N, T ) → ∞. (3.4)

Similarly, Theorem 2(iii) implies

Pr

(
N⋂
i=1

{
V̂i = Vi

})
→ 1 as (N, T ) → ∞, (3.5)

where V̂i = {l ∈ [LD] : δil = 0}, for i ∈ [N ].

Let
{
α̂1, α̂2, · · · , α̂K̂

}
be the distinct values of

{
δ̂1, δ̂2, · · · , δ̂N

}
. For k = 1, 2, · · · , K̂,

let Ĝk =
{
i ∈ [N ] : δ̂i = α̂k

}
and V̂k = {l ∈ D : α̂kl = 0} denote the estimated group mem-

bership and the set of selected moment conditions for group k, respectively. We formalized

the classification and moment selection consistency in the following corollary.
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Corollary 3. Suppose Assumption 1 - 4 hold, then

Pr
({
K̂ = K0

})
→ 1, Pr

(
K0⋂
k=1

{
Ĝk = G(k)

})
→ 1 and Pr

(
K0⋂
k=1

{
V̂k = V(k)

})
→ 1, (3.6)

as (N, T ) → ∞, where {(1) , (2) , · · · , (K0)} is a suitable permutation of [K0].

Corollary 3 can be directly implied from Theorem 2 and Remark 13. Note that Ẑ0 ⊂ Z0

implies K0 ≤ K̂ and Z0 ⊂ Ẑ0 implies K̂ ≤ K0. By (3.4), we have the consistency of the

estimated number of groups. With K̂ = K0, Ẑ0 ⊂ Z0 implies Ĝk ⊂ G(k), for k ∈ [K0] and

{(1) , (2) , · · · , (K0)} is a permutation of [K0]; conversely Z0 ⊂ Ẑ0 implies G(k) ⊂ Ĝk, for
k ∈ [K0], which implies classification consistency. Together with (3.5), we have the moment

selection consistency.

3.3 Asymptotic Distribution

Under Theorem 2 and Corollary 3, α̂k,Vk
= 0 w.p.a.1 for k ∈ [K0]. It remains to develop

the asymptotic distribution for θ and αk,Ik . Denote β0
k =

(
θ0′,α0

k,Ik
′)′
. For αk,Îk ∈ R|Îk|,

denote α̃k ∈ RLD with α̃k,Ik = αk,Ik and α̂k,Vk
= 0. Let

g̃
(k)
i,T

(
θ,αk,Îk

)
=

1

T

T∑
t=1

[
gS (zit,θ)

gD (zit,θ)− α̃k

]
.

We define the post-regularization estimator β̂post
k , k ∈

[
K̂
]
, as

(
θ̂post′ , α̂post′

k,Îk

)′
= argmin

θ∈Θ,α
k,Îk

∈Θ|Îk|
δ

 1

N̂k

∑
i∈Ĝk

g̃
(k)
i,T

(
θ,αk,Îk

)′

Wk,NT

 1

N̂k

∑
i∈Ĝk

g̃
(k)
i,T

(
θ,αk,Îk

) ,

(3.7)

and we let β̂post
k =

(
θ̂post′ , α̂post′

k,Îk

)′
Assumption 5. (i) Let ν̂i,T = m̂i,T (θ) −mi,T (θ). There exists a sequence of constants

ςT → 0 such that

sup
θ1,θ2∈{θ∈Θ:∥θ−θ0∥≤ηT }

∥ν̂i,T (θ1)− ν̂i,T (θ2)∥
T− 1

2 + ∥θ1 − θ2∥
= Op(ςT ), (3.8)

for some sequence ηT → 0 with η−1
T τT = o (1), ∀i ∈ [N ].
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(ii) For k ∈ [K0], define the variance of the moment conditions as

Ωi,T =
1

T

T∑
t=1

T∑
s=1

E
[
g
(
zit,θ

0, δ0
i

)
g
(
zis,θ

0, δ0
i

)′]
and Ωk = lim

(N,T )→∞
N−1
k

∑
i∈Gk

Ωi,T ,

and the Jacobian matrix is

Γk = lim
N→∞

N∑
i=1

[
ΓS (θ

0) 0LS×LD

ΓD (θ0) −Υk

]

where Υ = diag (υ) in which υIk = −ι|Ik| and υVk
= 0|Vk|. Assume that Ωk and Γk

exists and

c < σmin (Ωk) ≤ σmax (Ωk) < C,

c < σmin (Γ
′
kΓk) ≤ σmax (Γ

′
kΓk) < C,

for constant c, C > 0, for k ∈ K0.

(iii) Assumption 2(iv) holds with Wi,NT and Wi replaced by Wk,NT and Wk, respectively,

for k ∈ [K0].

(iv) For any γ ∈ RLD with ∥γ∥ = 1, γ ′
(

1√
NT

∑
i∈Gk

∑T
t=1 g (zit, θ

0, α0
k)
)

d→ N (0,γ ′Ωkγ).

(v)
√
LDτ

2
T = o

(
T− 1

2

)
and ςT τT = o

(
T− 1

2

)
.

Remark 14. Assumption 5(i) restates the stochastic equicontintuity condition in Cheng

and Liao (2015, Assumption 3.5). The rate of convergence ςT is introduced to accommodate

a diverging number of moments LD. If LD is fixed, we can replace the right-hand side of

(3.8) with op (1). Cheng and Liao (2015, Lemma D.2) provides primitive low-level conditions

under which (3.8) holds with ςT =
√
LD/T . Assumption 5(ii) and (iii) regulate the covariance

of the moment conditions, the Jacobian matrix and the weight matrix. Assumption 5(iv)

assumes the Lindeberg-Feller central limit theorem holds for the moment conditions, for

which Su et al. (2016, Lemma S1.12) provides verification details based on the same set of

Assumptions.

Theorem 4. Let Σk = (Γ′
kWkΓk)

−1 (Γ′
kWkΩkWΓk) (Γ

′
kWkΓk)

−1. For any γ ∈ Rpθ+|Ik|

with ∥γ∥ = 1, √
NkTγ

′
(
β̂post
k − β0

(k)

)
d→ N (0,γ ′Σkγ) ,

as (N, T ) → ∞, for all k ∈ [K0], where {(1) , (2) , · · · , (K0)} is a suitable permutation of

[K0].
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Remark 15. The post-regularization estimator has the same asymptotic distribution as

the infeasible estimator based on the true group membership and the set of invalid moment

conditions being known, i.e. it possesses the oracle property.

4 Monte Carlo Simulation

In this section, we present a simulation experiment with a simple linear IV model to

verify that our proposed method is feasible and effective. In later updates, a comprehensive

simulation study will be conducted to evaluate the finite-sample performance of the proposed

method in a variety of settings.

4.1 Simulation Design

The structural equation is

yit = θxit + ε
(0)
it , i ∈ [N ] ,

where ε
(0)
it is the structural error and xit is an endogenous regressor. The reduced-form

equation for the endogenous variable is

xit = z′
itγ + ε

(1)
it ,

where ε
(1)
it is the reduced-form error. zit ∈ RL is a vector of instruments. Let(

ε
(0)
it

ε
(1)
it

)
∼ N

(
02×1,

(
1 ρε

ρε 1

))
,

and

zit,l = δilε
(0)
it +

√
1− δ2ilz̃il,

where z̃it ∼ N (0L×1,Σz) and Σz =



1 ρz ρz . . . ρz

ρz 1 ρz . . . ρz

ρz ρz 1 . . . ρz
...

...
...

. . .
...

ρz ρz ρz . . . 1


. The non-zero correlation be-

tween ε
(0)
it and ε

(1)
it , ρε, is the source of endogeneity. |ρz| > 0 ensures the relevance conditions

hold for each instrument zil. In the experiment, θ = 1, γ = (1, 1, 0, · · · , 0), ρε = 0.5,

ρz = 0.5. We consider sample sizes N = 250, 500, T = 50, 100 and fix L = 8. There
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are 3 groups, i.e. K0 = 3. Denote Nk as the number of observations in each group and

let N1 : N2 : N3 = 0.3 : 0.3 : 0.4. The validity of instruments are characterized by

D = (δ1, δ2, · · · , δN)′ ∈ RN×L, where D = ΛA′, where λik = 1 if i ∈ Gk and λik = 0

otherwise, for i ∈ [N ] and k ∈ [K0]. A = (α1,α2,α3), where αk1 = 0 for all k = 1, 2, 3,

α12 = α13 = α23 = α24 = α34 = α45 = 0, and we generate αkl ∼ unif (0.5, 0.9) elsewhere and

fix it across replications. This means that the sure set S = {1} and V1 = {2, 3}, V2 = {3, 4}
and V3 = {4, 5}.

4.2 Tuning Parameter Selection and Optimization Routine

In the experiment, we choose κ1 = 2 and κf = 3. Following the discussion in Remark

7, the tuning parameters are set as ψ1 = c1Var (y)T
− 5

6 and ψf = cf Var (y)T
− 3

2 based on
logL
log T

≈ 1
3
according to the simulation design. In future updates of the paper, we will develop

a data-driven guidance based on Cheng and Liao (2015) and the information criteria as in

Mehrabani (2023) and provide supporting asymptotic results.

For a linear IV model, the optimization problem (2.8) is nicely convex. Leveraging

on modern convex optimization solver, MOSEK (MOSEK ApS, 2024) for example, and the

modeling techniques summarized in Gao and Shi (2021), the estimation problem can be

efficiently solved. If the (2.8) is nonconvex, we can use the Gauss-Newton algorithm which

has been justified for nonconvex GMM problems by Forneron and Zhong (2023).

4.3 Results

We report the finite sample performance across 1, 000 replications in Table 1. As ex-

pected, the penalized GMM estimator achieves a high classification correct ratio and moment

selection accuracy. The bias and RMSE of the estimator are small.

5 Conclusion

In this paper, we provide a unified framework for the selection of valid moment conditions

and detection of latent group structure based on the moment condition validity in general

nonlinear generalized method of moments (GMM) panel data models, which can accommo-

date a diverging number of moment conditions and group-specific heterogeneous validity of

moment conditions across agents. The proposed penalized GMM estimator is shown to be

consistent and achieve classification and moment selection consistency simultaneously. The

asymptotic distribution of a post-regularization estimator is derived, and its oracle proper-

ties are established. The extension to incorporate locally misspecified moment conditions
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Table 1: Finite Sample Performance of the Penalized GMM Estimator for Linear IV Model

θ = 1 Classification Moment Selection

N T Bias RMSE % k̂(i) = k(i) % Invalid IV %K̂ = K0

250 50 0.005 0.073 94.4 1.1 99.2
100 -0.004 0.025 97.2 0.5 100

500 50 0.004 0.054 96.2 0.3 99.5
100 0.003 0.019 98.8 0.1 100

Notes: Generically, bias and RMSE are calculated by R−1
∑R

r=1

(
θ̂(r) − θ0

)
and

√
R−1

∑R
r=1

(
θ̂(r) − θ0

)2
,

respectively, for true parameter θ0 and its estimate θ̂(r), across R = 1, 000 replications. We
relabel the estimated group with α̂k to the closest α0

k and compute the percentage of correct

classification by R−1
∑R

r=1 N
−1
∑N

i=1 1

(
i ∈ Ĝk(i)

)
. The percentage of invalid IV is calculated by

R−1
∑R

r=1

∑K
k=1 |Ik|

−1∑
l∈Ik

1 (α̂kl ̸= 0). The percentage of correct number of group is calculated by

R−1
∑R

r=1 1

(
K̂ = K0

)
.

and robust inference is discussed. The finite-sample performance of the proposed method is

evaluated through a Monte Carlo simulation experiment.

The paper is at a preliminary stage and subject to active updates. We plan to complete

the data-driven parameter tuning methods and conduct a comprehensive simulation study

to evaluate the finite-sample performance of the proposed method in a variety of settings.

The method will also be applied to empirical data to illustrate its practical relevance.
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Appendix

A.1 Proofs of Main Results

We first introduce the following notations for simplicity of exposition in the proofs. De-

note ν̂i,T (θ) := m̂i,T (θ) −mi (θ) as in Assumption 5(i) and R̂i,T (θ) := ν̂i,T (θ)
′ Wiν̂i,T (θ) .

In addition, denote Qi (θ, δ) = gi (θ, δ)Wigi (θ, δ). For any two sequences aN and bN , let

aN ≲ bN denote CaN ≤ bN where C > 0 is some fixed finite constant, and aN ≳ bN denote

bN ≲ aN . With abuse of notation, we reuse the notation Ξ to denote algebraic terms for

convenience of exposition.

Lemma A.1. Let κ̃NT =
√

LD
T

(log T )3. δ̇i is the preliminary estimator defined in (2.10).

ẇil =
∣∣∣δ̇il∣∣∣−κ1 and µ̇ij =

∥∥∥δ̇i − δ̇j

∥∥∥−κf are the adaptive weights introduced in Section 2.3.

Under Assumption 1 - 3,

(i) max1≤i≤N ∥m̂i,T (θ)−mi (θ)∥ = Op (κ̃NT )

(ii) max1≤i≤N

∥∥∥δ̇i − δ0
i

∥∥∥ = Op (κ̃NT )

(iii) max(i,j)∈Z1 µ̇ij = Op

(
ρ
−κf
NT

)
.

(iv) max1≤i≤N maxl∈Ii ẇil = Op

(
ζ−κ1NT

)
and max1≤i≤N ∥ẇi,Ii∥ = Op

(√
LDζ

−κ1
NT

)
where ẇi,Ii

is the subvector of ẇi with element wil, for l ∈ Ii = {l ∈ [LD] : δ
0
il ̸= 0}.

Proof of Lemma A.1. Part (i) restates Lemma S1.2(i) in Su et al. (2016) with the dimen-

sion of the moment function, LD, diverging. By applying the proof arguments element-by-

element to |m̂il,T (θ)−mil (θ)|2, we have the modified convergence rate κNT with the new

term
√
LD showing up compared to the original rate in Su et al. (2016).

Part (ii). Note that we leverage on the identification of θ with fixed dimensional moment

conditions mS,i (θ) = 0 to construct the initial GMM estimator for θ0, standard asymptotic

theory as in Newey and McFadden (1994) yield the
√
T rate of convergence, i.e.

∥∥∥θ̇ − θ0
∥∥∥ =

Op

(
T− 1

2

)
. By mean value theorem,

δ̇i − δ0
i = m̂D,i,T

(
θ̇
)
−mD,i

(
θ̇
)
+mD,i

(
θ̇
)
−mD,i

(
θ0
)

= m̂D,i,T

(
θ̇
)
−mD,i

(
θ̇
)
+ ΓD,i

(
θ̃
)(

θ̇ − θ0
)
,
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where δ̃ is between θ0 and θ̇. Then

max
1≤i≤N

∥∥∥δ̇i − δ0
i

∥∥∥ ≤ max
1≤i≤N

∥∥∥m̂D,i,T

(
θ̇
)
−mD,i

(
θ̇
)∥∥∥+ ( max

1≤i≤N

∥∥∥ΓD,i

(
θ̃
)∥∥∥)∥∥∥θ̇ − θ0

∥∥∥
≤ Op (κ̃NT ) +Op

(
T− 1

2

)
= Op (κ̃NT ) ,

where the first line follows from triangle inequality and Cauchy-Schwartz inequality, and the

second inequality holds under part (i) and Assumption 2(v).

Part (iii). Note that max(i,j)∈Z1 µ̇ij =
(
min(i,j)∈Z1

∥∥∥δ̇i − δ̇j

∥∥∥)−κf . For (i, j) ∈ Z1 and

sufficiently large (N, T ),

min
(i,j)∈Z1

∥∥∥δ̇i − δ̇j

∥∥∥ ≥ min
(i,j)∈Z1

∣∣∣∥∥δ0
i − δ0

j

∥∥− ∥∥∥(δ̇i − δ0
)
−
(
δ̇j − δ0

)∥∥∥∣∣∣ ≥ ρNT − 2 max
1≤i≤N

∥∥∥δ̇i − δ0
i

∥∥∥ .
(A.1)

by triangle inequality. By the uniform convergence in part (ii) and the rate condition in

Assumption 3(i), max(i,j)∈Z1 µ̇ij = Op

(
ρ
−κf
NT

)
.

Part (iv). By parallel arguments as in part (iii), we have max1≤i≤N maxl∈Ii ẇil = Op

(
ζ−κ1NT

)
,

max
1≤i≤N

∥ẇi,Ii∥ = Op

(√
LDζ

−κ1
NT

)
holds by noting that ∥ẇi,Ii∥ ≤

√
LD maxl∈Ii ẇil.

Lemma A.2. Under Assumption 1 - 3, θ̂
p→ θ0 as (N, T ) → ∞.

Proof of Lemma A.2. By the optimality in (2.8),

Q̂NT

(
θ̂, D̂

)
≤ Q̂NT

(
θ0,D0

)
+
ψf
N2

∑
1≤i<j≤N

µ̇ij

(∥∥δ0
i − δ0

j

∥∥− ∥∥∥δ̂i − δ̂j

∥∥∥)

+
ψ1

N

N∑
i=1

LD∑
l=1

ẇil

(∣∣δ0il∣∣− ∣∣∣δ̂il∣∣∣) (A.2)

Note that, ĝi,T (θ
0, δ0

i ) = ν̂i,T (θ
0) = m̂i,T (θ

0) − mi (θ
0) , then by Assumption 2(iv) and

Lemma A.1(i),

Q̂NT

(
θ0,D0

)
=

1

N

N∑
i=1

ν̂i,T
(
θ0
)′
Wiν̂i,T

(
θ0
)
+ ν̂i,T

(
θ0
)′
(Wi,NT −Wi) ν̂i,T

(
θ0
)

≤ 1

N

N∑
i=1

(σmax (Wi) + ∥Wi,NT −Wi∥)
∥∥ν̂i,T (θ0

)∥∥2
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≤
(
Cw + max

1≤i≤N
∥Wi,NT −Wi∥

)(
max
1≤i≤N

∥∥ν̂i,T (θ0
)∥∥)2

=(Cw + op (1)) op (1) = op (1) . (A.3)

The second term on R.H.S. of (A.2) due to the fused Lasso penalty is bounded by

ψf
N2

∑
1≤i<j≤N

µ̇ij

(∥∥δ0
i − δ0

j

∥∥− ∥∥∥δ̂i − δ̂j

∥∥∥)

=
ψf
N2

− ∑
(i,j)∈Z0

µ̇ij

∥∥∥δ̂i − δ̂j

∥∥∥+ ∑
(i,j)∈Z1

µ̇ij

(∥∥δ0
i − δ0

j

∥∥− ∥∥∥δ̂i − δ̂j

∥∥∥)


≤ ψf
N2

∑
(i,j)∈Z1

µ̇ij

(∥∥∥δ̂i − δ0
i

∥∥∥+ ∥∥∥δ̂j − δ0
j

∥∥∥)

≤ψf
(

max
(i,j)∈Z1

µ̇ij

)(
1

N

N∑
i=1

∥∥∥δ̂i − δ0
i

∥∥∥) (A.4)

≤Op

(
ψfρ

−κf
NT

√
LD

)
= op(1)

where the third line follows from (reverse) triangle inequality, and the last line is due to

Lemma A.1(iii) and Assumption 2(ii) and Assumption 3(ii).

It follows from triangle inequality, Assumption 2(ii) and 3(ii) and δ0il = 0 for l ∈ Ii that

ψ1max
i

LD∑
l=1

ẇil

(∣∣δ0il∣∣− ∣∣∣δ̂il∣∣∣) ≤ψ1max
i

{∑
l∈Ii

ẇil

(∣∣δ0il∣∣− ∣∣∣δ̂il∣∣∣)− ψ1

∑
l∈Vi

ẇil

∣∣∣δ̂il∣∣∣}
≤ψ1max

i

∑
l∈Ii

ẇil

∣∣∣δ0il − δ̂il

∣∣∣ ≲ ψ1max
i

∑
l∈Ii

ẇil

≤ψ1max
i

∥ẇi,Ii∥ = op(1), (A.5)

by Lemma A.1(iv) and Assumption 3(ii), which implies the third term of R.H.S. of (A.2) is

of order op(1).

Therefore,

Q̂NT

(
θ̂, D̂

)
=

1

N

N∑
i=1

ĝi,T

(
θ̂, δ̂i

)′
Wi,T ĝi,T

(
θ̂, δ̂i

)
= op(1).
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On the other side,

Q̂NT

(
θ̂, D̂

)
≥
(
min
i
σmin (Wi)

)( 1

N

N∑
i=1

∥∥∥ĝi,T (θ̂, δ̂i)∥∥∥2)+ op(1)

≥cw

(
1

N

N∑
i=1

∥∥∥ĝi,T (θ̂, δ̂i)∥∥∥2)+ op(1),

which implies

1

N

N∑
i=1

∥∥∥ĝi,T (θ̂, δ̂i)∥∥∥2 = op(1). (A.6)

Note that∥∥∥ĝi,T (θ̂, δ̂i)∥∥∥2 = ∥∥∥m̂S,i,T

(
θ̂
)∥∥∥2 + ∥∥∥m̂D,i,T

(
θ̂
)
− δ̂i

∥∥∥2 ≥ ∥∥∥m̂S,i,T

(
θ̂
)∥∥∥2 , (A.7)

and by triangle inequality,∥∥∥m̂S,i,T

(
θ̂
)∥∥∥ ≥

∣∣∣∥∥∥mS,i

(
θ̂
)∥∥∥− ∥∥∥m̂S,i,T

(
θ̂
)
−mS,i

(
θ̂
)∥∥∥∣∣∣ . (A.8)

Combine (A.6), (A.7) and (A.8), we have

op(1) =
1

N

N∑
i=1

∥∥∥ĝi,T (θ̂, δ̂i)∥∥∥2
≥min

i

∥∥∥mS,i

(
θ̂
)∥∥∥2 − 2

(
max
i

∥∥∥mS,i

(
θ̂
)∥∥∥)(max

i

∥∥∥m̂S,i,T

(
θ̂
)
−mS,i

(
θ̂
)∥∥∥)

=min
i

∥∥∥mS,i

(
θ̂
)∥∥∥2 − 2Op (1) op(1)

=min
i

∥∥∥mS,i

(
θ̂
)∥∥∥2 + op(1),

which follows from Assumption 1(ii) and Lemma A.1(i). Then, mini

∥∥∥mS,i

(
θ̂
)∥∥∥ = op(1).

By identification of θ0 imposed by Assumption 2(i), we reach the desired result θ̂
p→ θ0.

Lemma A.3 (Lemma B.1 in Su et al. (2016)). Suppose Assumption 2(iv) holds, then

Pr

(
cQ

(
1

2
Qi (θ, δi)− R̂i,T (θ)

)
≤ Q̂i,T (θ, δi) ≤ CQ

(
2Qi (θ, δi) + 2R̂i,T (θ)

))
= 1− o (1)

for θ ∈ Θ, θi ∈ Θδ, where cQ and CQ are positive constants with 0 < cQ < 1 < CQ <∞.
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Proof of Theorem 1. For simplicity, we denote

aNT = ψf

(
max

(i,j)∈Z1

µ̇ij

)
and bNT = ψ1 max

1≤i≤N
∥ẇi,Ii∥ ,

where ẇi,Ii is the subvector of ẇi with element wil, for l ∈ Ii = {l ∈ [LD] : δ
0
il ̸= 0}. By

Lemma A.1(iii) - (iv) and the rate condition Assumption 3(ii), we have aNT = Op (τT ) and

bNT = Op (τT ).

Part (i). The proof is again starting with (A.2). From (A.5) and Cauchy Schwartz

inequality, we have

ψ1

LD∑
l=1

ẇil

(∣∣δ0il∣∣− ∣∣∣δ̂il∣∣∣) ≤ ψ1 ∥ẇi,Ii∥
∥∥∥δ̂i − δ0

i

∥∥∥ ≤ bNT

∥∥∥δ̂i − δ0
i

∥∥∥ . (A.9)

From (A.2), (A.4) and (A.9), we have

1

N

N∑
i=1

{
Q̂i,NT

(
θ̂, δ̂i

)
− Q̂i,NT

(
θ̂, δ0

i

)
− (aNT + bNT )

∥∥∥δ̂i − δ0
i

∥∥∥} ≤ 0 (A.10)

By Lemma A.3, w.p.a.1,

Q̂i,NT

(
θ̂, δ̂i

)
− Q̂i,NT

(
θ̂, δ0

i

)
≥ cQ

2
Qi

(
θ̂, δ̂i

)
− 2CQQi

(
θ̂, δ0

i

)
− (cQ + 2CQ) R̂i,T

(
θ̂, δ0

i

)
. (A.11)

With sufficiently large (N, T ),

R̂i,T

(
θ̂
)
= ν̂i,T

(
θ̂
)′
Wiν̂i,T

(
θ̂
)
≤ Cw

∥∥∥ν̂i,T (θ̂)∥∥∥2 = Op

(
τ 2T
)
, (A.12)

where the first inequality follows from Assumption 2(iv) and the last equality is due to

Assumption 2(iii) and consistency of θ̂ shown in Lemma A.2.

Similarly, with sufficiently large (N, T ), by first-order Taylor expansion, Assumption 2(iv)

and (v) and Lemma A.2,

Qi

(
θ̂, δ0

i

)
≤Cw

∥∥∥gi (θ̂, δ0
i

)∥∥∥2 = Cw

∥∥∥∥∥Γi (θ̃)
[
θ̂ − θ0

0LD

]∥∥∥∥∥
2

≤ CwCΓ

∥∥∥θ̂ − θ0
∥∥∥2 , (A.13)

Qi

(
θ̂, δ̂i

)
≥cw

∥∥∥gi (θ̂, δ̂i)∥∥∥2 = cw

∥∥∥∥∥Γi (θ)
[
θ̂ − θ0

δ̂i − δ0
i

]∥∥∥∥∥
2

≥ cwcΓ

(∥∥∥θ̂ − θ0
∥∥∥2 + ∥∥∥δ̂i − δ0

i

∥∥∥2) ,
(A.14)
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where θ̃, θ are between θ0 and θ̂.

Combine (A.10), (A.11), (A.4), (A.9), (A.12), (A.13) and (A.14), we have

1

N

N∑
i=1

{∥∥∥δ̂i − δ0
i

∥∥∥2 − (aNT + bNT )
∥∥∥δ̂i − δ0

i

∥∥∥−Op

(
τ 2T
)
−
∥∥∥θ̂ − θ0

∥∥∥2} ≲ 0, (A.15)

which, together with Lemma A.1(ii) and Assumption 3(ii), implies∥∥∥δ̂i − δ0
i

∥∥∥ ≲ Op (τT + aNT + bNT ) = Op (τT ) . (A.16)

Note that with sufficiently large (N, T ) and consistency of θ̂, (A.13) implies

Qi

(
θ̂, δ0

)
≲
∥∥∥θ̂ − θ0

∥∥∥ ,
which further implies a twist of (A.15),

1

N

N∑
i=1

{∥∥∥θ̂ − θ0
∥∥∥2 − ∥∥∥θ̂ − θ0

∥∥∥+ ∥∥∥δ̂i − δ0
i

∥∥∥2 − (aNT + bNT )
∥∥∥δ̂i − δ0

i

∥∥∥−Op

(
τ 2T
)}

≲ 0.

Plug in the rate of δ̂i in (A.16), we have∥∥∥θ̂ − θ0
∥∥∥ = Op (τT ) (A.17)

which completes the proof of part (i).

Part (ii). Let D̂ = D0 + τT V̂ where V̂ = (v̂1, . . . , v̂N) ∈ RLD×N . Note that

1

N

N∑
i=1

∥∥∥δ̂i − δ0
∥∥∥2 = τ 2T

(
1

N

N∑
i=1

∥v̂i∥2
)
,

and we want to show that
1

N

N∑
i=1

∥v̂i∥2 = Op (1) . (A.18)

For any D̃ = D0 + τTV with
(
N−1

∑N
i=1 ∥vi∥

2
)−1

= op (1) ,

τ−2
T

[(
Q̂NT

(
θ̂, D̃

)
+ Pψ1,ψf

(
D̃
))

−
(
Q̂NT

(
θ0,D0

)
+ Pψ1,ψf

(
D0
))]

=τ−2
T

(
Q̂NT

(
θ̂, D̃

)
− Q̂NT

(
θ0,D0

))
+ τ−2

T

[
ψf
N2

∑
1≤i<j≤N

µ̇ij
(∥∥δ0

i + τTvi − δ0
j − τTvj

∥∥− ∥∥δ0
i − δ0

j

∥∥)]
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+ τ−2
T

[
ψ1

N

N∑
i=1

LD∑
l=1

ẇil
(∣∣δ0il + vil

∣∣− ∣∣δ0il∣∣)
]

:=Ξ1,NT + Ξ2,NT + Ξ3,NT . (A.19)

The first term in (A.19) can be bounded w.p.a.1

Ξ1,NT ≥τ−2
T

(
cQ
2N

N∑
i=1

Qi

(
θ̂, δ0

i + τTvi

)
− 1

N

N∑
i=1

(
R̂i,T

(
θ̂
)
+ R̂i,T

(
θ0
)))

≥cQcwcΓ
2N

N∑
i=1

(
τ−2
T

∥∥∥θ̂ − θ0
∥∥∥2 + ∥vi∥2 −Op(1)

)

≳
1

N

N∑
i=1

∥vi∥2 +Op(1), (A.20)

where the first inequality follows from Lemma A.3 and Q̂NT (θ
0,D0) = N−1

∑N
i=1 R̂i,T (θ

0),

the second inequality is due to (A.12) and (A.14) and the last line holds with the result in

part (i).

By (A.4), Assumption 3(ii) and Cauchy-Schwarz inequality, we have

Ξ2,NT ≥− τ−2
T

[
ψf
N2

∑
1≤i<j≤N

µ̇ij
(∥∥δ0

i − δ0
j

∥∥− ∥∥δ0
i + τTvi − δ0

j − τTvj
∥∥)]

≳− τ−1
T ψf

(
max

(i,j)∈Z1

µ̇ij

)(
1

N

N∑
i=1

∥vi∥

)
≳ −O (1)

(
1

N

N∑
i=1

∥vi∥2
) 1

2

. (A.21)

By (A.9), Assumption 3(ii) and Cauchy-Schwarz inequality, we have

Ξ3,NT =− τ−2
T

ψ1

N

N∑
i=1

LD∑
l=1

ẇil

(∣∣δ0il∣∣− ∣∣∣δ̃il∣∣∣)

≳− τ−1
T bNT

(
1

N

N∑
i=1

∥vi∥

)
≳ −O (1)

(
1

N

N∑
i=1

∥vi∥2
) 1

2

. (A.22)

Combine (A.19), (A.20) and (A.21), for sufficiently large (N, T ),

τ−2
T

[(
Q̂NT

(
θ̂, D̃

)
+ Pψ1,ψf

(
D̃
))

−
(
Q̂NT

(
θ0,D0

)
+ Pψ1,ψf

(
D0
))]

≳
1

N

N∑
i=1

∥vi∥2 −O (1)

(
1

N

N∑
i=1

∥vi∥2
) 1

2

+Op(1)
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>0 (A.23)

w.p.a.1 since N−1
∑N

i=1 ∥vi∥
2 is diverging, which implies

{
θ̂, D̃

}
does not minimize (2.8)

and hence (A.18) holds, which completes the proof of part (ii).

Lemma A.4. Suppose the conditions in Lemma A.1 and Assumption 4(ii) hold, then

(i) ψ−1
f τT

√
LD max(i,j)∈Z0 µ̇

−1
ij = op (1) .

(ii) ψ−1
1 τT maximaxl∈Vi

ẇ−1
il = op (1) .

Proof of Lemma A.4.

ψ−1
f τT

√
LD max

(i,j)∈Z0

µ̇−1
ij = ψ−1

f τT
√
LD max

(i,j)∈Z0

∥∥∥δ̇i − δ̇j

∥∥∥κf
≤ ψ−1

f τT
√
LD max

(i,j)∈Z0

{∥∥∥δ̇i − δ0
i

∥∥∥+ ∥∥∥δ̇j − δ0
j

∥∥∥}κf
≲ ψ−1

f τT
√
LD max

i

∥∥∥δ̇i − δ0
i

∥∥∥κf
≤ ψ−1

f τT
√
LDOp

(
κ̃κf
NT

)
= op (1) , (A.24)

where we apply triangle inequality in the second line, the fourth line invokes Lemma A.1(ii)

and the last line follows from Assumption 4(ii), and (A.24) implies (i).

ψ−2
1 τ 2T max

i
max
l∈Vi

ẇ−2
il = ψ−2

1 τ 2T max
i

max
l∈Vi

δ̇2κ1il ≤ ψ−2
1 τ 2T max

i

∥∥∥δ̇i − δ0
i

∥∥∥2κ1
≤ ψ−2

1 τ 2TOp

(
κ̃2κ1
NT

)
= op (1) , (A.25)

where the second line invokes Lemma A.1(ii) and the last line follows from Assumption 4(ii),

and (A.25) implies (ii).

Proof of Theorem 2. In the proof, we first show the first statement in (ii) and (iii). Then

we can leverage the results to show the uniform consistency of δ̂i in part (i), and the second

statement in (ii) and (iii) directly follow.

Rewrite the objective function (2.8), with notation Ψ̂NT , as

Ψ̂NT (θ,D) =
1

N

N∑
i=1

{
ĝi,T (θ, δi)

′ Wi,NT ĝi,T (θ, δi) +
ψf
2N

N∑
j=1

µ̇ij ∥δi − δj∥+ ψ1

LD∑
l=1

ẇil |δil|

}
.

(A.26)

31



The Karush-Kuhn-Tucker (KKT) condition (with respect to δil) evaluated at
(
θ̂, D̂

)
, scaled

up by τ−1
T , is

0 = 2τ−1
T γ ′

LS+l
Wi,NT ĝi,T

(
θ̂, δ̂i

)
+
ψfτ

−1
T

2N

∑
j /∈Gk(i)

µ̇ij êij,l +
ψfτ

−1
T

2N

∑
j∈Gk(i)

µ̇ij êij,l + ψ1τ
−1
T ẇilŝil

:= Ξil,m + Ξil,Z1 + Ξil,Z0 + Ξil,1, (A.27)

where êij =
δ̂i−δ̂j

∥δ̂i−δ̂j∥ if
∥∥∥δ̂i − δ̂j

∥∥∥ ̸= 0 and ∥êij∥ ≤ 1 otherwise; ŝil = sgn
(
δ̂il

)
if δ̂il ̸= 0 and

ŝil ∈ [−1, 1] if δ̂il = 0; γLS+l ∈ RL is the vector with (LS + l)-th element equal to 1 and

others being 0.

In the KKT condition (A.27):

|Ξil,m| ≤ 2τ−1
T (∥Wi∥+ ∥Wi,NT −Wi∥)

∥∥∥ĝi,T (θ̂, δ̂i)∥∥∥
≤ 2τ−1

T (Cw + op (1))

(
CΓ

(∥∥∥θ̂ − θ0
∥∥∥2 + ∥∥∥δ̂i − δ0

i

∥∥∥2)) 1
2

≤ 2τ−1
T (Cw + op (1))Op (τT )

= Op (1) , (A.28)

where we apply Cauchy-Schwartz inequality in the first inequality, Assumption 2(iv) and

(v) as in (A.14) for the second inequality, and make use of the convergence rate derived in

Theorem 1(i) to reach the result that Ξil,m is stochastically bounded.

|Ξil,Z1| ≤
ψfτ

−1
T

2N

(
max

(i,j)∈Z1

µ̇ij

) ∣∣∣∣∣∣
∑
j /∈Gk(i)

êij,l

∣∣∣∣∣∣ ≤ ψfτ
−1
T

(
max

(i,j)∈Z1

µ̇ij

)
N −Nk(i)

2N
≤ Op (1) ,

(A.29)

which is due to Assumption 3(ii) and Lemma A.1(iii).

To facilitate the analysis of Ξil,Z0 and Ξil,1, we introduce the following notations. Let

ce ∈ (0, 1
3
) be a constant. Denote

Ẑi,0 =
{
j ∈ Gk(i) :

∥∥∥δ̂i − δ̂j

∥∥∥ = 0
}

and Ẑi,1 =
{
j ∈ Gk(i) :

∥∥∥δ̂i − δ̂j

∥∥∥ > 0
}
.

Define the events EG,i =
{
|Ẑi,1|
NK(i)

> ce

}
and ES,i =

{
maxl∈Vi

∣∣∣δ̂il∣∣∣ > 0
}
.
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Conditioning on EG,i, we have
∣∣∣{j ∈ Gk(i) :

∣∣∣δ̂il − δ̂jl

∣∣∣ > 0
}∣∣∣ > ce

Nk(i)√
LD

, and

|Ξil,Z0| =ψfτ−1
T

(
min

(i,j)∈Z0

µ̇ij

) ∣∣∣∣∣∣ 1

2N

∑
j∈Gk(i)

µ̃ij êij,l

∣∣∣∣∣∣
≳ψfτ

−1
T L

− 1
2

D

(
min

(i,j)∈Z0

µ̇ij

)
ceNk(i)

N

p→ ∞, (A.30)

where µ̃ij :=
µ̇ij

min(i,j)∈Z0
µ̇ij

≥ 1 for (i, j) ∈ Z0 , the inequality holds since the system∑
j∈Gk(i)

µ̃ij êij,l = 0, with ∥êij∥ = 1 if
∥∥∥δ̂i − δ̂j

∥∥∥ > 0, for i ∈ Gk for some k ∈ [K0] and

l ∈ [LD], is over-determined in terms of êij,l and does not vanish, and the probability limit

follows from Assumption 4(iii) that limN→∞Nk(i)/N > πmin and Lemma A.4(i). As a result,

|Ξil,Z1| is asymptotically explosive.

Conditional on ES,i, we have

|Ξil,1| ≥ τ−1
T ψ1min

i
min
l∈Vi

ẇil
p→ ∞ if l ∈ Vi and

∣∣∣δ̂il∣∣∣ > 0, (A.31)

by Lemma A.4(ii).

Combine the KKT condition (A.27) and (A.28), (A.29), (A.30), (A.31), and triangle

inequality, for each i ∈ [N ],

Pr
(
EG,i

⋃
ES,i
)
≤ Pr

(
||Ξil,Z0| − |Ξil,1|| ≤ |Ξil,Z1 |+ |Ξil,m| , EG,i

⋃
ES,i
)
→ 0 (A.32)

as (N, T ) → ∞, since |Ξil,m| + |Ξil,Z1| = Op (1) while ||Ξil,Z0 | − |Ξil,1||
p→ ∞ with suitable

choice of κ1 and κf that guarantees Ξil,Z0 and Ξil,1 do not coincide conditional on EG,i
⋂

ES,i.
Then we turn to the desired uniform results. Denote the event

EG =

{
max

(i,j)∈Z0

∥∥∥δ̂i − δ̂j

∥∥∥ > 0

}
=
{
∃ (i⋆, j⋆) ∈ Z0 s.t.

∥∥∥δ̂i⋆ − δ̂j⋆
∥∥∥ > 0

}
.

By (A.32), we have

Pr (EG) <Pr

EG
⋂

∣∣∣Ẑi⋆,0

∣∣∣
Nk(i⋆)

> ce


+ Pr

EG
⋂

∣∣∣Ẑj⋆,0

∣∣∣
Nk(j⋆)

> ce




+ Pr

EG
⋂

∣∣∣Gk \ (Ẑi⋆,0

⋃
Ẑj⋆,0

)∣∣∣
Nk(i⋆)

≥ 1− 2ce




≤Pr (EG,j⋆) + 2Pr (EG,i⋆) → 0, (A.33)
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as (N, T ) → ∞, which completes the proof of the first statement in part (ii).

Conditioning on
{⋃N

i=1 ES,i
}
, there exist i

⋆ ∈ [N ] such that maxl∈Vi⋆

∣∣∣δ̂i⋆l∣∣∣ > 0. Note that

(A.31) holds uniformly across i, and the above arguments can go through for i⋆, which leads

Pr

(
max
i

max
l∈Vi

∣∣∣δ̂il∣∣∣ > 0

)
→ 0

as (N, T ) → ∞ and the first statement in part (iii) is established.

Next, we turn to the proof of the uniform convergence result in part (i). Note that it

suffices to show

Pr

(
max
i

∥∥∥δ̂i − δ0
i

∥∥∥ > κNT
∣∣∣∣ max
(i,j)∈Z0

∥∥∥δ̂i − δ̂j

∥∥∥ = 0

)
= o (1) , (A.34)

given that Pr
(
max(i,j)∈Z0

∥∥∥δ̂i − δ̂j

∥∥∥ = 0
)
→ 1 as (N, T ) → ∞. Rewrite that the penalized

GMM objective in (A.26) as

Ψ̂NT (θ,D) = Q̂NT (θ,D) +
1

N

N∑
i=1

ψf
2N

N∑
j=1

µ̇ij ∥δi − δj∥+
ψ1

N

N∑
i=1

LD∑
l=1

ẇil |δil| , (A.35)

and denote

ΠNT =

{
D ∈ ΘN

δ : max
1≤i≤N

∥∥δi − δ0
i

∥∥ > κNT , and max
(i,j)∈Z0

∥δi − δj∥ = 0

}
.

It is then desired to show that, w.p.a.1,

inf
D∈ΠNT

Ψ̂NT

(
θ̂,D

)
> Ψ̂NT

(
θ0,D0

)
, (A.36)

which implies that the minimizer D̂ /∈ ΠNT w.p.a.1.

We first establish an upper bound for Ψ̂NT (θ
0,D0). (A.3) together with Lemma A.1(i)

implies

Q̂NT

(
θ0,D0

)
= Op

(
κ̃2
NT

)
. (A.37)

Following the similar arguments as in (A.4) and (A.5), together with Lemma A.1(iii)-(iv)
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and Assumption 4(i), we have

1

N

N∑
i=1

ψf
2N

N∑
j=1

µ̇ij
∥∥δ0

i − δ0
j

∥∥ ≲ max
1≤i≤N

ψf
N

∑
j /∈Gk(i)

µ̇ij
∥∥δ0

i − δ0
j

∥∥
≤ ψf

√
LD

(
max

(i,j)∈Z1

µ̇ij

)
= ψf

√
LDOp

(
ρ
−κf
NT

)
= Op

(
κ̃2
NT

)
,

(A.38)

ψ1

N

N∑
i=1

LD∑
l=1

ẇil
∣∣δ0il∣∣ ≤ ψ1 max

1≤i≤N
∥ẇi,Ii∥ = ψ1

√
LDOp

(
ζ−κ1NT

)
= Op

(
κ̃2
NT

)
. (A.39)

Combine (A.37) - (A.39), we establish the upper bound for Ψ̂NT (θ
0,D0) as

Ψ̂NT

(
θ0,D0

)
= Op

(
κ̃2
NT

)
. (A.40)

Next, we investigate the L.H.S. of (A.36). Denote Πk,NT =
{
D ∈ ΘN

δ : ∥δi − δ0
i ∥ > κNT , ∀i ∈ Gk

}
.

inf
D∈ΠNT

Ψ̂NT

(
θ̂,D

)
≥ inf

1≤k≤K0
inf

D∈Πk,NT

Q̂i,NT

(
θ̂,D

)
≥ inf

1≤k≤K0
inf

D∈Πk,NT

1

N

∑
i∈Gk

Q̂i,NT

(
θ̂, δi

)
≳ inf

1≤k≤K0
inf

D∈Πk,NT

1

N

∑
i∈Gk

∥∥∥m̂D,i,T

(
θ̂
)
− δi

∥∥∥2
≥ inf

1≤k≤K0
inf

D∈Πk,NT

1

N

∑
i∈Gk(i⋆)

∣∣∣∥∥∥m̂D,i,T

(
θ̂
)
− δ0

i

∥∥∥− ∥∥δi − δ0
i

∥∥∣∣∣2
where the second line follows from Assumption 2(iv) and the last line follows from the triangle

inequality. Note that

max
1≤i≤N

∥∥∥m̂D,i,T

(
θ̂
)
− δ0

i

∥∥∥ ≤ max
1≤i≤N

∥∥∥m̂D,i,T

(
θ̂
)
−mD,i

(
θ̂
)∥∥∥+ ( max

1≤i≤N

∥∥∥ΓD,i

(
θ̃
)∥∥∥)∥∥∥θ̂ − θ0

∥∥∥
≤Op (κ̃NT + τT ) = Op (κ̃NT ) ,

where θ̃ is between θ̂ and θ0, the first inequality follows from the triangle inequality and

mean value theorem, the second inequality is due to Assumption 2(v), Theoreom 1(i) and

Lemma A.1(i), and the last equality follows from Lemma A.1(i) because the uniform rate of

convergence must be at least as slow as the rate of convergence of the sample moments for

each i. Meanwhile, for D ∈ Πk,NT and i ∈ Gk, ∥δi − δ0
i ∥ > κNT . Then for sufficiently large
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(N, T ), we have

inf
D∈ΠNT

Ψ̂NT

(
θ̂,D

)
>

(
inf

1≤k≤K0

Nk

N

)(
κNT − max

1≤i≤N

∥∥∥m̂D,i,T

(
θ̂
)
− δ0

i

∥∥∥)2

≳ κ2
NT , (A.41)

where we apply Assumption 4(iii). Combine (A.40) and (A.41), we reach (A.36) and complete

the proof part (i).

The second statement in both parts (ii) and (iii) are directly implied by (i). For sufficiently

large (N, T ),

Pr

(
min

(i,j)∈Z1

∥∥∥δ̂i − δ̂j

∥∥∥ > 0

)
≥Pr

(
ρNT − max

(i,j)∈Z1

{∥∥∥δ̂i − δ0
i

∥∥∥+ ∥∥∥δ̂j − δ0
j

∥∥∥} > 0

)
≥Pr

(
ρNT − 2max

i

∥∥∥δ̂i − δ0
i

∥∥∥ > 0
)

≥Pr
(
max
i

∥∥∥δ̂i − δ0
i

∥∥∥ < κNT
)

=1− o (1) (A.42)

by the uniform convergence result in (i) and the rate condition Assumption 3(i).

For sufficiently large (N, T ), we have

Pr

(
min

1≤i≤N
min
l∈Ii

∣∣∣δ̂il∣∣∣ > 0

)
≥Pr

(
min
i

min
l∈Ii

[∣∣δ0il∣∣− ∣∣∣δ̂il − δ0il

∣∣∣] > 0

)
≥Pr

(
ζNT −max

i
max
l∈Ii

∣∣∣δ̂il − δ0il

∣∣∣ > 0

)
≥Pr

(
ζNT −max

i

∥∥∥δ̂i − δ0
i

∥∥∥ > 0
)
≥ Pr

(
max
i

∥∥∥δ̂i − δ0
i

∥∥∥ < κNT
)

=1− o (1) (A.43)

by triangle inequality, the uniform convergence result in (i) and the rate condition Assump-

tion 3(i).

Proof of Theorem 4. In the proof, we drop the superscript “post” for notational simplicity.

By Corollary 3, we have Ĝk = G(k) and Îk = I(k) w.p.a.1. for k ∈ [K0], so β̂k has the same

asymptotic distribution as the oracle estimator β, assuming the group structure and the set
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of invalid moment conditions are known, defined as

(
θ
′
,α′

k,Ik

)′
= argmin

θ∈Θ,αk,Ik∈Θ
|Ik|
δ

(
1

Nk

∑
i∈Gk

g̃
(k)
i,T (θ,αk,Ik)

)′

Wk,NT

(
1

Nk

∑
i∈Gk

g̃
(k)
i,T (θ,αk,Ik)

)
,

(A.44)

and we let βk =
(
θ
′
,α′

k,Îk

)′
. The proof directly follows from Theorem 3.3 in Cheng and

Liao (2015).
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