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Abstract

In the aftermath of the 1997-98 Asian crises, many emerging markets self-
insured by accumulating international reserves (i.e., non-contingent assets)
in excess of what many models predicted, while relying relatively little on
state-contingent assets. This apparent over-reliance on self-insurance has been
viewed as a puzzle in search of an explanation. A related, and still outstanding,
puzzle is why the benefits of financial liberalization appear to be so small and,
yet, financial globalization has been unprecedented in recent decades. We show
that these two puzzles can be solved by incorporating rare macroeconomic dis-
asters in income risk. To this effect, we first fit a fat-tailed distribution to long
output time series for 156 countries. We then develop a theoretical framework
to quantify (i) the increase in welfare gains of financial integration and (ii) how
the composition of offi cial reserves (non-contingent and contingent) responds
to bigger shocks. Our results show that fat tails lead to a sharp increase in
both the gains of financial integration and self-insurance for standard values
of the coeffi cient of risk aversion.

JEL Classification: E20, E32, E44, F36.
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“True wisdom comes to each of us when we realize how little we understand about
life, ourselves, and the world around us”
– Socrates

1 Introduction

How do emerging markets (EM) protect themselves against risk? The evidence
seems to suggest that they accumulate abundant international reserves and other
risk-free assets as self-insurance, but little state-contingent assets. In fact, the
“over-accumulation”of international reserves in the aftermath of the 1997-98 Asian
crises has been viewed as a puzzle in search of an explanation because it typically ex-
ceeded the predictions/prescriptions of standard models of demand for international
reserves.1 More generally, Caballero and Panageas (2004, 2005) have argued that
EM hold too many non-contingent assets that are costly to maintain and ineffi cient
in providing a cushion against financial crises. They argue that EM would be better
off by holding contingent assets linked to, for instance, the volatility index (VIX) so
as to be able to access more liquidity in bad times.
A related puzzle —but typically studied separately from international reserve ac-

cumulation — is the size of welfare gains from financial integration. In a seminal
contribution, Cole and Obstfeld (1991) show, in the context of a standard two-
country model with output uncertainty, that the gains from financial integration are
surprisingly small (in the order of 0.20 percent of GDP per year). In a growth model,
Gourinchas and Jeanne (2006) conclude that the welfare gains from switching from
financial autarky to perfect capital mobility are about 1 percent of GDP. Small wel-
fare gains are also reported in Obstfeld (1992), Tesar (1995), and Mendoza (1995).2

Martin (2010) revisits Cole and Obstfeld (1991) and shows that the wealth costs of
shutting down trade in financial assets across countries increase by 3 to 20 percent
when allowing for rare disasters in the income process. Martin (2010), however,
needs to assume very large risk aversion coeffi cients (up to 8) to obtain substantive

1See, among others, Aizenman and Marion (2002), Jeanne and Ranciere (2006), Jeanne (2007),
and Bianchi et al. (2018). To explain “over-accumulation,” these papers had to resort to non-
income risk (such as substantial sudden stops and roll-over risk). In other words, income risk by
itself cannot explain the data. As will become clear below, we will focus on fat-tailed income risk
to explain the data.

2Van Wincoop (1998) argues that small welfare gains are mainly due to the assumption of
stationary output processes and, hence, that such results should be viewed as the welfare gains
from eliminating business cycles. This interpretation is consistent with Lucas’(1987) conclusion
that the costs of business cycles are negligible.
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gains from financial integration.
The starting point of our paper is the observation that these two puzzles are the

two sides of the same coin. As illustrated in Figure 1, we view financial integration
as consisting of two stages (or segments): (i) from financial autarky to incomplete
markets (i.e., a risk-free bond) and (ii) from incomplete markets to complete markets
(in the Arrow-Debreu sense). If the welfare gains from the first stage are small, for
example, there is little incentive for authorities to accumulate risk-free assets. If
the gains from the second stage are large, authorities will want to acquire a lot of
state-contingent assets. We show quantitatively that, under a normal distribution,
the welfare gains from the first stage are very small. In fact, to fix ideas, notice that
welfare gains from the first stage would be zero for a quadratic consumer. Hence,
almost all welfare gains follow from the second stage. Under a normal distribution,
we should thus see almost no risk-free assets compared to state-contingent assets.
This is the opposite of what we see in practice, as argued by Caballero and Panageas
(2004, 2005). In other words, we are re-stating the first puzzle as referring to the
composition of welfare gains and hence risk-free versus state-contingent assets. The
second puzzle remains but refers to the level of welfare gains (as opposed to the
composition).
The key to solving both puzzles is the introduction of macroeconomic disasters

governed by a power-law distribution.3 In fact, following Taleb (2007), Vegh et
al. (2018) show that it is hard to find any relevant macroeconomic time series that
follows a normal (or log-normal) distribution, as traditionally assumed. We do
not live in a Gaussian world anymore! Figure 2 illustrates this phenomenon by
showing a histogram of Dow Jones returns. The visual message is clear: a normal
distribution is not a good fit for the data but a q-Gaussian distribution is. The
q-Gaussian distribution is a particular case of a power-law distribution and allows
for fatter tails than the normal distribution.4 To compare the predictive power of
the normal and q-Gaussian distributions, notice that the normal distribution would
predict that an event such as the 1987 stock market crash would take place every
57,408 years compared to 34 years for the q-Gaussian.
Based on a sample of 156 countries (20 industrial and 136 developing) for the

period 1900-2018, we first estimate the parameters of a normal distribution for GDP
growth. Plugging these parameters into a stochastic model of a small open economy,

3The idea that rare macroeconomic disasters can explain a variety of asset return puzzles (par-
ticularly the equity-premium puzzle) goes back to Rietz (1988) and includes Barro (2006, 2009),
Barro and Jin (2011), and Martin (2011). Barro and Jin (2011) resort to a power-law distribution.

4The Jarque-Bera test clearly rejects the null hypothesis that the data follows a normal distri-
bution.

3



we compute the welfare gains from financial autarky to complete markets to be in the
range 0.18-0.44 percent of steady-state consumption for coeffi cients of risk aversion
in the interval 2 to 5. Hence, as in Cole and Obstfeld (1991) and most of the
literature, the level of welfare gains is tiny. Interestingly though, welfare gains from
incomplete markets to complete markets are in the range 0.18-0.43 percent. Hence,
essentially all of the welfare gains occur in the second segment in Figure 1. In other
words, the model cannot explain large holdings of non-contingent assets relative to
state-contingent assets.
We then fit a power-law distribution to rare events. The estimation indicates

that a cumulative drop in GDP of 16 percent is needed to qualify as a disaster (i.e., a
rare event). Further, the probability that such a disaster occurs is 2.7 percent. On
average, then, we should see less than three major output contractions per century.
Under the power-law distribution, welfare gains from financial integration increase
dramatically and reach 4.30 percent of steady-state consumption for a coeffi cient of
risk aversion equal to 3.5 and 20.5 percent for a coeffi cient of risk aversion of 4.5.
Compared to the normal distribution case, the overall level of welfare gains is thus
around six times bigger for a coeffi cient of risk aversion equal to 3.5 and 53 times
bigger for a coeffi cient of risk aversion equal to 4.5. Further, the composition of
welfare gains changes drastically relative to the normal distribution case. Welfare
gains from IM to CM are about half of the total welfare gains compared to essentially
100 percent under a normal distribution. The implication is that the authorities will
now choose to self-insure substantially in light of possible macroeconomic disasters.
In sum, the size of potential output shocks is the key to understanding the com-

position of offi cial assets (non-contingent versus contingent). When shocks are un-
usually large, both types of insurance increase (self-insurance and contingent as-
sets) but non-contingent increases more. Intuitively, under incomplete markets,
prudent authorities grow increasingly concerned about very large negative shocks
and raise self-insurance accordingly. In contrast, under complete markets, full in-
surance renders individual outcomes less risky.
The paper proceeds as follows. Section 2 provides the empirical estimates from

fitting a power-law distribution to our sample. Section 3 uses the simplest 2-period
stochastic model (with a binomial distribution) to introduce the key messages from
our analysis. Section 4 works out a more sophisticated stochastic model for two
types of risk: normal and power-law distributions. Section 5 closes the paper with
some policy implications. Detailed technical derivations have been relegated to
appendices.
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2 Evidence on macroeconomic disasters

This section tries to gain a better understanding of the underlying sample distribution
of output growth. To this end, we combine information from the Maddison Project
Database of Bolt et al. (2018) with recent estimates from the World Economic
Outlook (IMF) to generate long annual series of real GDP per capita for 156 countries
(20 industrial and 136 developing) covering the period 1900 to 2018.5

To identify candidate episodes in the disaster regime, we follow Barro and Jin
(2011) and assume that an episode begins when real GDP per capita falls and ends
when the initial (i.e., pre-episode) level is exceeded. We then compute peak-to-
trough declines as our measure of the size of the GDP contraction. For each episode,
x is calculated as the minimum real GDP per capita relative to the pre-episode level
(i.e., the ratio reflects the maximum cumulative drop). We then use the reciprocal
of the contraction size, z = 1/x, to fit our power-law distribution. This strategy
enables us to capture a broad set of candidate episodes (922 in total) with different
contraction intensities and origins (e.g., economic mismanagement, natural disasters,
and wars). As in Barro (2006), Barro and Urzua (2008), and Barro and Jin (2011),
disaster events are allowed to be correlated across countries (as in world wars, the
Great Depression, and the global financial crisis of 2007-08).6

For continuous random variables like z, fitting a power-law distribution is relat-
ively simple. The maximum likelihood estimator (MLE) of the scaling parameter
(α̂) conditional on a threshold value (zmin), which determines the inclusion of data
points in the estimation sample, is given by

α̂ = 1 + n

[
n∑
i=1

ln

(
zi
zmin

)]−1
, (1)

where n is the number of observations. Equation 1 makes clear that, in principle,
we can estimate α̂ for any value of zmin. Nonetheless, it must be emphasized that
the choice of zmin is critical for the consistency of the estimator. After all, in most
empirical data, power-law behavior is expected to occur only at the extremes of the
distributions —in our case, for values of z greater than or equal to zmin. As stated
by Clauset et al. (2009, p. 9), “[i]f we choose too low a value for ẑmin, we will get

5Appendix A provides starting years for each country.
6Given that the purpose of the peak-to-trough measurements of GDP decline is to provide a

baseline approximation to the model’s jump contractions, and following Barro and Jin (2011), we
are not concerned about the uneven length of disaster events, their correlations across space and
time, and the possibly temporary nature of shocks (since, in practice, a number of disasters might
be offset by high recovery rates).
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a biased estimate of the scaling parameter α̂ since we will be attempting to fit a
power-law model to non-power-law data. On the other hand, if we choose too high
a value for ẑmin, we are effectively throwing away legitimate data points zi < ẑmin,
which increases both the statistical error of the scaling parameter and the bias from
finite size effects.” As a sensible solution to this issue, Clauset et al. (2009) propose
a strategy based on objective criteria to select suitable values of zmin in empirical
settings. This is the procedure we follow in the rest of our calibration exercise.
Specifically, the approach consists in finding the value of zmin that minimizes the

distance between the cumulative density function (CDF) of the data and that of the
fitted model. Using the Kolmogorov-Smirnov statistic as a measure of distance (D),
the optimal zmin minimizes:

D = max
z≥zmin

|S(x)− P (x)|, (2)

where S(x) is the CDF of the data that satisfies z ≥ zmin, and P (x) is the CDF of
the power-law model fitted through maximum likelihood also in the region z ≥ zmin.
That is, our algorithm calls for (i) sequentially running a set of plausible zmin values
through the MLE procedure, represented in equation (1), to estimate a set of α̂; (ii)
using each α̂ to fit a cumulative distribution function P (x); and (iii) find the minimum
distance between the fitted CDFs and the ones found in the data given each zmin used.
Once optimal values of the threshold and scaling parameter (ẑmin and α̂) are found
for the disaster observations, we turn to the rest of the observations. Specifically, we
put together a panel dataset that combines (i) the annual observations of candidate
disaster episodes not part of the power-law distribution (i.e., with z < ẑmin) and (ii)
the annual observations of the episodes of purely positive growth in real GDP per
capita (so far excluded from the analysis). We use this “tranquil-times”sample to
fit the log-normal distribution with parameters µ (mean) and σ (standard deviation)
of the relative income, y, through maximum likelihood, with y defined as the ratio
of real GDP per capita in each year with respect to its level in the preceding year.
Finally, as in Barro and Jin (2011), we compute the disaster probability, p, as the
ratio of the number of disasters to the number of non-disaster years. Hence, the gross
growth rate of real GDP per capita follows, with probability p, an inverse power-law
distribution and, with probability 1− p, a log-normal distribution
Estimates from the application of this procedure are presented in Table 1. For

the total sample, we estimate ẑmin = 1.1899, meaning that an event must register a
cumulative drop in real GDP per capita of at least 15.96 percent to be considered a
disaster.7 We estimate α̂ = 4.5980 and a disaster probability p = 0.0274 (i.e., mac-

7Note that a drop of 15.96 percent in GDP per capita implies that z = 1/0.8404 = 1.1899.
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roeconomic contractions of 15.96% or more occur around three times per century),
which is consistent with the estimates of Barro and Jin (2011).
Figures 3 and 4 provide a visual assessment of the goodness-of-fit of our power-law

model. Figure 3 compares the empirical density with the estimated density, while
Figure 4 compares the empirical CDF with the estimated CDF. As is well-known
—and as illustrated in Figure 4 —the CDF of a power-law distribution in a doubly
logarithmic plot is linear. A visual inspection of these figures makes clear that the
power-law distribution provides a good fit for the data.
Lastly — and also reported in Table 1 — using the tranquil-times sample, we

obtain estimates for the mean, µ̂ = 0.0262, and standard deviation, σ̂ = 0.0450, of
the corresponding log-normal distribution. We will use this information on tranquil-
times in Section 4 to think about risk characterized by a normal distribution in good
times and a power-law distribution in bad (i.e., rare) times.

3 Basic ideas

This section introduces the basic ideas behind our analysis in the simplest possible
setup: a two-period model with a binomial distribution. The emphasis is on qual-
itative messages. Based on our quantitative analysis in Section 2, Section 4 will
then derive our main results in a two-period model with both normal and power-law
distributions. Finally, Appendix C extends the results to an infinite horizon.

3.1 Prudent consumer

Consider a two-period small open economy.8 There is a single (tradable and non-
storable) good. The endowment in period 1, y1, is exogenous. The endowment in
period 2, y2, is stochastic and follows a binomial distribution:

y2 =

{
yH2 with probability p,
yL2 with probability 1− p,

where yH2 ≥ y1 ≥ yL2 . For simplicity, we will assume that the expected value of y2
(E(y2) = pyH2 + (1− p)yL2 ) is equal to y1 and that p = 1/2.
Lifetime expected utility (welfare) is given by

W = u(C1) + βE{u(C2)},
8For all analytical derivations, the reader is referred to Appendix B.
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where W denotes welfare, 0 < β < 1 is the discount factor, and u(.) is given by a
standard constant-relative-risk-aversion utility function:

u(C) = C1−γ−1
1−γ , γ 6= 1,

u(C) = log(C), γ = 1,
(3)

where γ > 0 is the coeffi cient of risk aversion. Except in the case of the quadratic
consumer below, we assume u′′′(c) > 0 (i.e., prudent consumers). We assume β(1 +
r) = 1, where r is the world risk-free interest rate. Initial net assets are assumed to
be zero.
We solve this model under three different asset market configurations: (i) financial

autarky (FA), (ii) incomplete markets (IM) (i.e., a single risk-free bond), and (iii)
complete markets (CM) in the Arrow-Debreu sense. Figure 1 offers a schematic
representation. We compute lifetime utility (i.e., welfare) in each case and compare
the welfare achieved in each of the three cases.
As shown in Appendix B, welfare in the case of complete markets is given by

WCM =
y1−γ1 − 1

1− γ (1 + β). (4)

Welfare in the financial autarky case is given by

WFA(φ1) =
[y1(1 + φ1)]

1−γ − 1

1− γ +β

[
0.5

[yH2 (1 + φ1)]
1−γ − 1

1− γ + 0.5
[yL2 (1 + φ1)]

1−γ − 1

1− γ

]
,

(5)
where, for further analysis, we have added a potential compensating variation to
consumption equal to the factor 1 + φ1.

9

The welfare gains of having complete markets relative to the case of financial
autarky are the value of φ1 that satisfies

W
FA

(φ1) = WCM .

Using (4) and (5), we can obtain a reduced form for φ1:

φ1 =


1 + β

1 + β (0.5)

[(
yH2
y1

)1−γ
+
(
yL2
y1

)1−γ]


1
1−γ

− 1. (6)

9The compensating variation can be thought of as a flat tax (across time and across states of
nature).
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As a particular case, notice that if yH2 = yL2 = y1, then φ1 = 0. In other words,
since there is no uncertainty and a flat output path allows consumers to smooth
consumption over time, access to financial markets is redundant.
In the same vein, welfare for the incomplete markets case is given by

WIM(φ2) =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
− 1

1− γ (7)

+0.5β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ +

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ

 ,
where b̃1 is the current account as a percentage of GDP and 1+φ2 is a compensating
variation that captures the welfare gains from moving from incomplete to complete
markets (see Figure 1). Formally,

WCM = WIM(φ2).

As shown in Appendix B,

φ2 =


1 + β[(

1− b̃1
)]1−γ

+ 0.5β

[[
(1 + r)̃b1 +

yH2
y1

]1−γ
+
[
(1 + r)̃b1 +

yL2
y1

]1−γ]


1
1−γ

− 1.

(8)
Notice that we cannot obtain a reduced form for φ2 (̃b1 is, of course, endogenous).
Hence, we need to solve for φ2 numerically (see Appendix B).

10

The computation of φ1 and φ2 is central to analyzing the welfare gains from fin-
ancial autarky (FA) to complete markets (CM) and from incomplete markets (IM)
to complete markets (CM), respectively, as suggested in Figure 1. In fact, the com-
parison between φ1 and φ2 also provides a quantification of the welfare gains from
FA to IM, as formally shown in Subsection 3.3.
Table 2 reports the values of saving, φ2 and φ1, for values of γ between 2 and 5.

11

Two points follow from this table. The first, well-known, point is that the gains

10Note, again, that in the case yH2 = yL2 = y1 (which implies b̃1 = 0), then φ2 = 0 because
financial autarky is not binding.
11We assume β = 0.98 (as in Cole and Obstfeld), yH2 = 1.0601, and yL2 = 0.9399. The output
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from financial integration —as measured by φ1 in this case —are quite small. We
know this since Cole and Obstfeld (1991), who estimated this gain to be around 0.20
percent of GDP per year. In our case, for values of γ between 2 and 5, the upper
bound for the welfare gains is 0.45 percent. The second point, much less known,
has to do with the composition of total welfare gains: essentially all the gains from
financial integration occur in the second segment in Figure 1 (from IM to CM) and
almost none in the first segment (FA to IM). Indeed, even for γ = 5, the difference
between φ1 and φ2 is only 0.008 percent.

3.2 Quadratic consumer

It should be intuitively clear from the above discussion that quadratic preferences
will imply that φ1 = φ2 > 0. In other words, the welfare gains of moving from FA
to IM will be zero and all the gains will accrue going from IM to CM. To check this,
consider the following quadratic preferences:

u(C) = −1

2
(C̄ − C)2, C ≤ C̄,

where c̄ is the bliss point.
Proceeding as in the prudent case above, it is straightforward to check (see Ap-

pendix B) that φ1 is given by the same expression; that is, equation (6). The same
is true for φ2: the expression for the quadratic consumer continues to be given by
equation (8). But, in the quadratic case and assuming that E(y2) = y1, we can
further simplify expression (8) by taking into account that b̃1 = 0 (i.e., the trade
balance is zero). In fact, when we impose b̃1 = 0, we conclude that φ2 = φ1, as
expected. This means that there are no welfare gains from moving from FA to IM.
All welfare gains will accrue when moving from IM to CM.
Intuitively, under quadratic utility, certainty equivalence holds. This implies

that when E(y2) = y1, the consumer chooses C1 = C2 = y1 and the trade balance
is zero (i.e., there are no precautionary savings). In other words, the lack of access
to international capital markets is not binding, and having a risk-free bond is thus
redundant. Incomplete markets do not increase welfare relative to financial autarky.
In contrast, complete markets allow consumers to equate consumption across states
of nature (i.e., CH

2 = CL
2 ), which is not feasible under IM.

values are based on the estimate for our sample of the standard deviation of growth (see Table 4).
We assume γ = 3, a standard value. Again, we solve for φ2 numerically, as detailed in Appendix
B.
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3.3 Relationship between welfare gains

Let φ̃1 denote the welfare gains from FA to IM (see Figure 1). Before proceeding
further, it will be helpful to derive a basic relationship between φ̃1, φ1, and φ2.
By definition,

WFA(φ̃1) = WIM .

Substituting into this last equation expression (5), evaluated at φ̃1, and expression
(7), evaluated at φ2 = 0, and taking into account (6) and (8), we can derive the
following relationship (see Appendix B):

log (1 + φ1)︸ ︷︷ ︸
total gains

= log(1 + φ̃1)︸ ︷︷ ︸
gains FA-IM

+ log (1 + φ2)︸ ︷︷ ︸
gains IM-CM

. (9)

There is thus a log-linear relationship between 1 +φ1, 1 + φ̃1, and 1 +φ2. Therefore,
given φ1 and φ2, we can compute φ̃1. Intuitively, as expected from Figure 1, total
welfare gains can be broken down into gains from FA to IM plus gains from IM
to CM. As expected, in the quadratic case, φ1 = φ2, and hence, by equation (9),
φ̃1 = 0.

3.4 Composition of welfare gains

We have shown above (Table 2) that for log-normal shocks (which can be thought of
as shocks at the business cycle frequency), almost all of the welfare gains occur from
IM to CM and practically none from FA to IM. But how does the composition of
welfare gains change with the size of the shock?12

To gain insights into this issue, Table 3 computes φ1, φ2, and φ̃1 as a function of
the output distribution (keeping E(y2) = y1).13 The main message that follows from
this table is that the larger the shock, the larger the benefits of non-contingent assets
(the risk-free bond in this case) relative to contingent assets. Specifically, for yH =
1.1 and yL = 0.9, we have the result obtained above that essentially all the welfare
gains occur from IM to CM. In fact, the ratio of φ2/φ1 (which measures the welfare
gains from IM to CM relative to total gains) is 98 percent. At the other extreme
(yH = 1.6 and yL = 0.4), the ratio φ2/φ1 is just 51.7 percent. In other words, about

12Of course, if we take our model literally, our small open economy will hold either no foreign
assets (under financial autarky), contingent bonds (under incomplete markets), or state-contingent
bonds (under complete markets).
13We are not trying to be “realistic”here in terms of the size of the shocks. We will calibrate

output shocks using the normal and power-law distributions in the next section.
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half of the total gains are now due to incomplete markets. Intuitively, as the output
shock becomes larger (and thus the fatter the tails become), consumers’marginal
utility in the bad state of nature rises sharply, thus increasing the demand for non-
contingent assets.14 This effect dominates the increase in demand for contingent
claims in which case consumers are already smoothing consumption across states of
nature.
Finally, an important caveat in terms of how to use our model to think about

the composition of offi cial international reserves. If we take our model literally,
our small open economy will hold either no foreign assets (under financial autarky),
or contingent bonds (under incomplete markets) or state-contingent bonds (under
complete markets). We, therefore, want to think of a world with a large number
of small open economies characterized by some idiosyncratic financial friction (for
example, accessing complete markets involves a fixed cost while accessing bond mar-
kets is costless).15 Further, the size of the fixed cost varies across countries. In
this world, economies with high fixed costs will hold only non-contingent assets and
economies with small fixed costs will hold only contingent assets. The “average”
economy will thus hold some of its reserves in non-contingent assets and some in con-
tingent assets. Further, in response to common endowment shocks, the response will
vary across economies and thus the “average”economy will change the proportion
of non-contingent to contingent assets.16

4 A small open economy model under normal and
power-law distributions

To show our theoretical results in a much richer stochastic structure, we will stick to
our two-period model. We first compute welfare results under a normal distribution.
We then analyze how these outcomes vary with the addition of rare disasters to the
income process. We show that the presence of a power-law distribution for the size
of macroeconomic disasters substantially affects welfare gains.

14Notice that, since the probabilities do not change as the mean-preserving spread increases,
tails are becoming fatter. Hence, we can say that the fatter the tails, the smaller φ2/φ1. This
way of thinking will remain valid in Section 4 when risk is modeled using normal and power-law
distributions.
15There is a large literature on segmented asset markets. See, for example, Alvarez et al. (2002).
16Naturally, a formal development of this model would require a different paper. For the purposes

of this paper, however, all we need is to interpret our discussion of the composition of offi cial reserves
as applying to the “average”economy.
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Consider a small open economy with a single (and non-storable) good. Output
is deterministic in period 1, given by Y1 = Y, and stochastic in period 2, given by

Y2(x) = Y x, (10)

where x is a continuous random variable with a probability density function given
by fX(x). We assume that E[x] = exp(gx). Thus, E[Y2(x)] = Y exp(gx).
As in section 3, preferences of the representative household are given by

(C1)
1−γ − 1

1− γ + βE

[
(C2(x))1−γ − 1

1− γ

]
. (11)

The rest of the world consists of a continuum of identical economies with the same
discount factor β. We will assume that there is full risk sharing among the economies
in the rest of the world. Consumption for the rest of the world is thus given by

C∗1 = Y ∗ = Y,
C2(x

∗) = E[Y ∗2 (x∗)] = E[Y2(x)] = Y exp(gx).

Full risk sharing in the rest of the world implies that our analysis will focus on the
degree of risk sharing of income fluctuations around its average value. Hence, the
gains from risk sharing provided by the international financial markets will corres-
pond to the welfare benefits in terms of smoothing consumption around its average
path. In the two-period model developed here, this distinction is not essential but it
is important for the generalization of our results in Appendix C in an infinite horizon
set-up. We now present the resulting allocations for the small open economy under
the three market arrangements already considered in the previous section: complete
markets, financial autarky, and incomplete markets.

4.1 Complete markets

Suppose that there is a full set of state-contingent bonds. A contingent bond that
pays out one unit of consumption in period 2 in state x has a price p(x) in period 1.
The budget constraint can thus be written as

C1 +

∫
p(x)C2(x)dx = Y +

∫
p(x)Y2(x)dx. (12)

The optimality conditions for the consumption stream are

(C1)
−γ = λ, (13)
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βfX(x)(C2(x))−γ = λp(x), (14)

where λ is the marginal utility of income (i.e., the Lagrange multiplier corresponding
to budget constraint (12)). The assumption of full risk sharing in the rest of the
world implies

p(x) = βfX(x)

(
Y

Y exp(gx)

)γ
= βfX(x)exp(−γgx), (15)

where fX(·) is the probability density function of x. Combined with (15), condition
(14) yields

βfX(x)(C2(x))−γ = λβfX(x)exp(−γgx) = (C1)
−γβfX(x)exp(−γgx). (16)

This last condition implies C1 = C2(x)exp(−gx) = C̄ ∀x. Combining this with (12),
we get:

C̄(1+βexp((1−γ)gx)) = Y +βY exp(−γgx)E [Y2(x)] = Y (1+β exp((1−γ)gx)), (17)

which implies C̄ = Y . Hence, welfare under complete markets is given by:

WCM =
(Y )1−γ − 1

1− γ + β
(Y )1−γexp((1− γ)gx)− 1

1− γ . (18)

4.2 Financial autarky

Under financial autarky, this small open economy is not integrated at all with the
rest of the world. Hence, it cannot diversify any income risk in period 2. Therefore,
C2(x) = Y x ∀x. Welfare under financial autarky, adding a potential compensation
to consumption of a factor of 1 + φ1, is thus given by

WFA(φ1) =
(Y (1 + φ1))

1−γ − 1

1− γ + βE
[

(Y x(1 + φ1))
1−γ − 1

1− γ

]
. (19)

The welfare gain of having complete markets relative to the case of financial autarky
is the value of φ1 that satisfies WFA(φ1) = WCM . Using (18) and (19), it follows
that

(1 + φ1)
1−γ + (1 + φ1)

1−γβE
[
(x)1−γ

]
= (1 + βexp((1− γ)gx)).

The last expression implies

φ1 =

(
1 + βexp((1− γ)gx)

1 + βE [(x)1−γ]

) 1
1−γ

− 1. (20)
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The value φ1 captures the benefits in terms of consumption of having a full set
of contingent bonds relative to the financial autarky case. Assuming a specific
distribution for x will make it possible to obtain an analytical expression for E [(x)1−γ]
and thus a closed-form solution for φ1.

4.3 Incomplete markets

Under incomplete markets, there is a non-state-contingent bond that pays a gross
risk-free rate of R = 1 + r in period 2. Let b1 denote the stock of this risk-free bond
held by the representative household. The budget constraints in periods 1 and 2 are
thus given by, respectively,

C1 = Y − b1,
C2 = Y x+Rb1. (21)

The optimal choice for b1 satisfies:

(Y − b1)−γ = βRE
[
(Y x+Rb1)

−γ] .
Defining b̃1 ≡ b1/Y , then the optimal saving decision can be written as(

1− b̃1
)−γ

= βRE
[(
x+Rb̃1

)−γ]
. (22)

Since this non-contingent bond is priced by the rest of the world, R satisfies 1/R =
βexp(−γgx). Hence, equation (22) becomes:(

1− b̃1
)−γ

= exp(γgx)E
[
(x+Rb̃1)

−γ
]
. (23)

Welfare under incomplete markets, compensating the household by a factor of 1+φ2,
is thus given by

WIM(φ2) =
(Y (1 + φ2)(1− b̃1))1−γ − 1

1− γ +βE

[
(Y (1 + φ2)(x+Rb̃1))

1−γ − 1

1− γ

]
. (24)

Hence, the welfare gains from moving from incomplete to complete markets are
the compensating variation for incomplete markets, φ2, such that WIM(φ2) = WCM .
Using (18) and (24), it follows that

(1 + φ2)
1−γ(1− b̃1)1−γ + (1 + φ2)

1−γβE
[
(x+Rb̃1)

1−γ
]

= (1 + βexp((1− γ)gx)).
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Solving for φ2,

φ2 =

 1 + βexp((1− γ)gx)

(1− b̃1)1−γ + βE
[
(x+Rb̃1)1−γ

]
 1

1−γ

− 1. (25)

The value φ2 captures the benefits in terms of consumption of having a full set of
state-contingent bonds relative to the case with only a non-state-contingent bond.
Unfortunately, equation (22) does not have an analytical solution for b̃1 for a general
probability density function fX(x). Therefore, numerical integration is needed to
obtain the expression on the right-hand side of (22) for a given value for b̃1. The
optimal value for b̃1 is obtained by numerical computation. Once we have the
optimal value for b̃1, we can get φ2 with numerical integration of E

[
(x+Rb̃1)

1−γ
]
.

4.4 Types of risk and welfare gains

This subsection computes the welfare gains of financial integration, φ1 and φ2, under
two types of risk for income in period 2. The first case assumes a log-normal
distribution for income in period 2. The second case considers a distribution with
fat tails, combining a log-normal distribution with a power-law distribution, as in
Barro and Jin (2011). We will obtain expressions for the gains of complete financial
integration (i.e., complete markets) relative to the financial autarky case, φ1, for
both types of risks. Likewise, we will also compute the saving rate b̃1 and, thus, the
welfare gains of complete markets relative to the case of incomplete markets, given
by φ2, for the two types of risk.

4.4.1 Income risk type I: Normal distribution

Suppose that the distribution of income in period 2 is given by a log-normal distri-
bution for x:

log(x) ∼ N(µx, σ
2
x).

With this specification, E[Y2(x)] = exp(µx + 1
2
σ2x), implying that gx = µx + 1

2
σ2x.

Moreover, in this case, we obtain

E[x1−γ] = exp((1− γ)µx +
1

2
(1− γ)2σ2x) = exp

(
(1− γ)gx +

1

2
γ(γ − 1)σ2x

)
,
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and, therefore,

φ1 =

(
1 + βexp((1− γ)gx)

1 + β exp
(
(1− γ)gx + 1

2
γ(γ − 1)σ2x

)) 1
1−γ

− 1.

Table 4 shows the estimation of the parameters for type I risk for our sample of
156 countries since 1900. Using all the observations in our sample, we estimate an
average growth of 1.65 percent with a standard deviation of 6.01 percentage points.17

Table 5 shows the gains of financial integration measured by φ1. We use β = 0.98
and a range for the coeffi cient of risk aversion, γ, from 2 to 5. Table 5 indicates
that, with type I risk, the gains of financial integration are very small (i.e., below
one percent of average consumption). The small magnitude of the welfare gains is
consistent with Cole and Obstfeld (1991) and Martin (2010), among others, when
income risk is normally distributed.
In the case of incomplete markets, we need to solve first for the optimal value of

b̃1 that satisfies (22) and then numerically integrate E[(x + Rb̃1)
1−γ]. Consider the

case where γ > 1. Since log(x) is normally distributed, E[(x+Rb̃1)
1−γ] <∞ if b̃1 is

finite. The computation of the welfare gains from moving from the non-contingent
bond equilibrium to the case of complete markets requires a numerical approximation
to obtain the bond holdings, b̃1.
Table 6 shows bond holdings (̃b1) in the case of type I risk for different values

of the coeffi cient of risk aversion, γ. We conclude that, under normally-distributed
income risk, saving for self-insurance is very low and below one percent of income
for a range of the risk aversion coeffi cient between 2 and 5. Given how low savings
are, we can already guess that the welfare gains of moving from financial autarky to
incomplete markets will be rather low. Put differently, foregoing the possibility of
such a small amount of precautionary saving cannot be too costly.
Table 7 reports the welfare gains, φ2, under type I risk and for different values of

γ. Further, comparing φ1 in Table 5 with φ2 in Table 7, we can see that the difference
(φ1 − φ2) is negligible. In fact, even for γ = 5, welfare gains from incomplete to
complete markets (φ2) are 0.43 percent, while the welfare gains from financial autarky
to complete markets (φ1) are 0.44 percent. In other words, just 0.01 percentage
points of the total welfare gains come from self-insurance.

17Comparing these estimates with those for tranquil times in Table 1 indicates that, as expected,
growth in tranquil times is greater than for the whole sample (0.0262 compared to 0.0165) while
volatility is lower (0.0450 compared to 0.0601).
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4.4.2 Income risk type II: Combination of normal and power-law distri-
butions

Suppose now that the income distribution is a combination of two random variables:
(i) a normal distribution conditional on a non-disaster state and (ii) a fat-tailed
distribution conditional on a disaster event. Formally, we follow Barro and Jin
(2011) and assume that x has the following distribution:

with probability 1− p : log(x) = log(x̃) ∼ N(µ̃x, σ̃
2
x),

with probability p : x = 1/z,
(26)

where z, the reciprocal of the contraction size, follows a power-law distribution with
probability density function given by

fZ(z) = (α− 1)(zmin)α−1z−α,

where α > 1. Thus, conditional on a disaster event, income follows an inverse
power-law distribution.
A moment’s reflection should make clear that, for the purposes of estimating the

combined distribution (26), we can simply rely on the estimates shown in Table 1.
These estimates are based on the iterative procedure detailed in Section 2, which
assigns every growth point in our total sample of 156 countries to either a disaster
year or tranquil times. The probability of each assignment reflects the parameter p,
computed as the ratio of disaster years to non-disaster years. The estimate of zmin
is the value such that all observations above it (i.e., z ≥ zmin) are disaster events.
The remaining observations belong to tranquil times. Conditional on zmin, the
estimate of α provides us with the critical power-law parameter. For convenience,
then, Table 8 reports the point estimates of zmin, α, p, µ̃x, and σ̃x and the confidence
interval for α, all obtained from Table 1.18 The estimates µ̃x, and σ̃x parameterize
the log-normal distribution followed by all observations in tranquil times. All these
estimates now become parameters that we use to calibrate the combined distribution
(26) and thus compute welfare gains for type II risk.
In order to compute welfare under financial autarky, we need to obtain (recall

equation (20))
E[(x)1−γ] = pE[(z)γ−1] + (1− p)E[(x̃)1−γ].

Hence, we need to compute the expectation of income growth conditional on the
disaster event and conditional on the non-disaster state. The second term on the
18This range allows us to check how the main results change as tails become fatter (as captured

by α).
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right-hand side can be computed as previously done since x̃ is log-normally distrib-
uted. Thus, we can show that

E[(x̃)1−γ] = exp((1− γ)µ̃x +
1

2
(1− γ)2σ̃2x).

For the power-law distribution component of the expectation above, we can obtain:

E[(z)γ−1] = (α− 1)(zmin)α−1
∫ ∞
zmin

zγ−1−αdz = (α− 1)(zmin)α−1
∫ ∞
zmin

d

dz
(
zγ−α

γ − α)dz

= (α− 1)(zmin)α−1
∫ ∞
zmin

d

(
zγ−α

γ − α

)
This integral is well defined if α > γ, implying in that case that

E[(z)γ−1] =
α− 1

α− γ (zmin)γ−1. (27)

Therefore, when α > γ, it follows that

φ1 =

(
1 + βexp((1− γ)gx)

1 + β(1− p) exp((1− γ)µ̃x + 1
2
(1− γ)2σ̃2x) + βpα−1

α−γ (zmin)γ−1

) 1
1−γ

− 1.

It should be noted that if α ≤ γ, then E[(z)γ−1] → ∞. Moreover, if γ > 1 we
get φ1 → ∞ as well. Hence, when α ≤ γ, welfare gains (φ1) are unbounded.
Table 9 shows the gains of financial integration for different values of γ based on
the parameter values for type II risk presented in Table 8. As in Table 2, we use
β = 0.98. The table indicates that for α = 3.9846, welfare gains are unbounded for
γ ≥ 4. Intuitively, recall that the lower is α, the fatter the tails, and the bigger will
be rare events.
In the case of incomplete markets, we proceed as follows. First, we can prove

that E[(x+Rb̃1)
1−γ] <∞ if b̃1 is finite, using the fact that conditional on the disaster

event, 1/x has a power-law distribution. Hence, we know that E[(x + Rb̃1)
1−γ] <

E[(Rb̃1)
1−γ] = (Rb̃1)

1−γ. Second, as with type I risk, we perform a numerical
integration for each possible value of b̃1 ∈ [0, 1] to solve the fixed point value that
satisfies (22).
Table 10 shows the bond holdings (̃b1) in the case of type II risk for different

values of γ and α. We can see that self-insurance can account for several percentage
points of income. Specifically, for γ between 3 and 5 and α in the lower range of
the estimated values (3.9-4.5), precautionary savings are in the range 2.2-9.5 percent
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of income, substantially higher than in the case of only normally-distributed income
risk (where welfare gains were below one percent, as indicated by Table 5).
Welfare gains (φ2) from the non-contingent bond equilibrium to complete markets

with type II risk are shown in Table 11 for different values of γ and α. Depending
on the size of the tail distribution of disasters, the welfare gains from incomplete
markets to complete markets lie in the range 0.39 to 1.48 percent for risk aversion
coeffi cients around 2-3. For a risk aversion coeffi cient between 4 and 5, the welfare
gains turn out to be as high as 5.59 percent for the lower bound of the estimated α
(3.98-4.59).
To capture how much welfare gains change when we allow for rare disasters risk,

we compute the factor increase in φ1 and φ2 in the case of type II risk (reported in
Tables 9 and 11, respectively), relative to type I risk (reported in Tables 5 and 7,
respectively). A factor increase of, say, 3 means that welfare gains triple. The factor
increase for different risk aversion coeffi cients is presented in Table 12. We can see
that even for low values of γ, such as γ = 2, welfare gains may double for both φ1
and φ2. For higher values of γ, such as γ = 4, welfare gains may increase by a factor
of 8 for φ2 and become unbounded for φ1 . Welfare gains thus increase dramatically
when we allow for tail or rare events captured by the power-law distribution, even if
the occurrence of the tail or rare event has a small probability.
Appendix C shows that our main results on the welfare gains from financial

integration with macroeconomic disasters remain valid in an infinite-horizon model.
Adding the risk of the size distribution of macroeconomic disasters as it is observed
in long-span data increases the welfare gains of financial integration by factors of 3
to 7 for values of γ ≤ 2.5 (relative to standard computations based only on normally-
distributed income fluctuations). Welfare gains may become unbounded for higher
values of γ.

4.5 The role of the distribution of the size of disasters

Our framework above focuses on incorporating disaster risk into the analysis. We
characterize empirically rare disasters as events with a low probability of occurrence
and where the fall in income is distributed with fat tails conditional on the occurrence
of rare disasters. While the distribution of falls in income conditional on rare
disasters is well described in long-span data with a power-law distribution, other
types of distributions can be used to capture rare disasters.
In particular, Barro (2006) models rare disasters with a deterministic fall in in-

come in order to quantitatively explain the size of the equity premium. In the same
vein, Martin (2013) shows that incorporating rare disasters into the analysis makes it
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easier to match observed asset pricing behavior without requiring implausibly large
risk aversion coeffi cients. Martin (2013) assumes that the fall in dividends follows a
normal distribution conditional on the occurrence of a rare disaster. He also stresses
that the gains from financial integration are much larger when adding rare disasters
in the Cole-Obstfeld two-country model. In this case, Martin (2010) also assumes a
normal distribution for the fall in income conditional on the rare disaster event.
In this context, this subsection assesses how important is the size distribution of

income in the disaster event. We will compute the welfare gains with rare disasters
in the income process, but without imposing a power-law distribution for the fall in
income conditional on the rare event. Specifically, we will analyze two cases for the
size distribution of income under rare disasters. First, we assume that, in the case
of a rare event, the fall in income is deterministic. Second, we assume a normal
distribution for the size of income in the rare event.
Formally, the first case will assume the following process for income growth in

period 2, given by x:

with probability 1− p log(x) = log(x̃) ∼ N(µ̃x, σ̃
2
x),

with probability p x = b,

where b is a deterministic value. To keep the same expected value for x, we set
b such that b = E[1/z], where z follows the same power-law distribution described
above. The second case assumes that x follows the distribution given by:

with probability 1− p log(x) = log(x̃) ∼ N(µ̃x, σ̃
2
x),

with probability p log(x) = log(z̃) ∼ N(µ̃z, σ̃
2
z).

In this case, rare events also follow a normal distribution. We choose the value
of parameters µ̃z and σ̃z in order to match the first and second moments of 1/z
in the power-law distribution case; that is, E[1/z] = exp(µ̃z + 1

2
σ̃2z) and E[1/z2] =

exp(2µ̃z + 2σ̃2z).
Hence, in the first case, the expected value for E[x1−γ] is given by

E[x1−γ] = (1− p) exp((1− γ)µ̃x +
(1− γ)2

2
σ̃2x) + pb1−γ. (28)

In the second case, we obtain:

E[x1−γ] = (1−p) exp((1−γ)µ̃x +
(1− γ)2

2
σ̃2x) +p exp((1−γ)µ̃z +

(1− γ)2

2
σ̃2z). (29)

We substitute equations (28) and (29) into equation (20) to compute the welfare
gains measured by φ1. Table 13 shows the gains under these two cases. Since
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different values for α imply different moments for 1/z, we have a range for the
implied values for b, µ̃z and σ̃z.
Two observations follow from Table 13. First, welfare gains (φ1) are higher in

the normal distribution case relative to the deterministic case by about a factor of
around 2 for high values of γ and values of b, µ̃z and σ̃z consistent with α = 3.98
(compare, for instance, 3.50 percent to 1.60 percent). Second —and very important
for the message of our paper on the critical role of fat-tailed distributions — the
welfare gains for the two cases captured in Table 13 are much smaller than under
the power-law distribution illustrated in Table 9. To see this, Table 14 shows the
factors by which welfare gains increase in the deterministic and normal distribution
cases relative to our benchmark case captured by Table 13. Comparing this with
the equivalent table for the case of the power-law distribution (Table 12) makes this
point abundantly clear.
We thus conclude that the way of modeling disaster risk is critical in generating

large welfare gains due to financial integration. Specifically, assuming a power-
law distribution for disaster risk compared to either a deterministic distribution or
normal distribution implies much larger welfare gains. Hence, incorporating disaster
risk is necessary, but not suffi cient, to generate large welfare gains. In addition, we
need to assume a power-law distribution for disaster risk.

4.6 Composition of welfare gains

Based on a binomial distribution and back-of-the-envelope calculations, Section 3
showed that overall gains from financial integration (i.e., from financial autarky to
complete markets) are very small (less than one percent), as suggested by Cole and
Obstfeld (1991). In terms of the composition of welfare gains, we showed that
most of the welfare gains accrue when moving from incomplete markets to complete
markets. Welfare gains from financial autarky to incomplete markets are close to
zero (and literally zero in the quadratic case). We also showed that, as the shock
becomes larger, welfare gains from financial autarky to incomplete markets become
much more important.
How do these results hold in the much more refined stochastic model of this sec-

tion? Before answering this question, we can use equation (9) to compute φ̃1 (welfare
gains from financial autarky to incomplete markets) in the normal distribution case,
for given φ1 and φ2. To this effect, we use the results summarized in Tables 5 and 7
to compute φ̃1. We then compute φ̃1 for the power-law case using Tables 9 and 11.
Figure 5 presents the results of these calculations. Each bar represents the welfare

gains from financial integration, with the blue segment capturing welfare gains from
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financial autarky to incomplete markets and the orange one from incomplete to
complete markets. Several important observations follow. First, as in Section 3,
the welfare gains under a normal distribution (first bar) are around 0.5 percent and
essentially all accruing from incomplete to complete markets. Second, for the power-
law distribution (the remaining three bars), the fatter the tail (i.e., the lower the α),
the larger the welfare gains. For the last bar (α = 4), welfare gains are about 4
percent (i.e., eight times larger than under the normal distribution). Third, the ratio
φ2/φ1 varies from close to one (first bar) to around 50 percent (last bar). In other
words, for big shocks, the government holds the same amount of non-contingent and
contingent assets.19 In this light, the large holdings of non-contingent assets held by
governments in emerging markets (in the form of international reserves and risk-free
assets such as U.S. treasury bills) would be justified.

5 Policy conclusions

As a benchmark case, we have shown that, in a Gaussian world, overall welfare gains
of financial integration are quite small (i.e., less than 1 percent of GDP), which is
consistent with most of the existing literature. In terms of the composition of wel-
fare gains (a novel dimension), almost all gains accrue from incomplete to complete
markets and essentially none from financial autarky to incomplete markets. The
policy implication in this Gaussian world would thus be to hold few non-contingent
assets given that the pay-off is almost nil. This, however, clearly contradicts the
empirical evidence that points to relatively large holdings of non-contingent assets
(i.e., international reserves).
What are we, as a profession, missing? The key, to paraphrase Dorothy in

The Wizard of Oz, is that we are not in a Gaussian world anymore! Truth be
told, we never were, but macroeconomic theory assumed that we did! However,
it is almost impossible to find a relevant macroeconomic time series (output, stock
markets, etc.) that follows our convenient, but false, assumption of normality. As
we showed for output growth for a sample of 156 countries for the period 1900-2018,
all such macro-series are very well described by a fat-tailed distribution.
In the presence of a power-law distribution, welfare gains from financial integra-

tion increase by, at least, a factor of 6. Further, in terms of the composition, our
preferred parameterization suggests that welfare gains are about the same in the first

19Note that, in both the normal and power-law cases, as we move to the left of the distribution,
the probability of disaster falls. But it falls much faster in the normal than in the power-law case.
So, the same intuition discussed in Section 3 holds,: the fatter the tails, the smaller φ2/φ1 is.
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segment (financial autarky to incomplete markets) as in the second (incomplete to
complete markets), at about 2 percent of GDP each, for a total of 4 percent of GDP.
Intuitively, when countries are, on average, facing the probability of falls in GDP of
16 percent around 3 times in a century —and completing the markets is not feasible
and/or too expensive —precautionary savings are bound to become quite large even
for low levels of prudence. This scenario fits much better what we see in the real
world. Our policy conclusion is thus that, in a world of fat tails, there is a clear
theoretical case for self-insurance.
Eventually, of course, the first-best equilibrium is for emerging and developing

economies to have access to full state-contingent assets such as “catastrophe bonds.”
In the meantime, however, it makes sense for emerging and developing economies
to invest in non-contingent assets (including sovereign wealth funds and safe assets)
when facing large uncertain risks.
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6 Appendices

6.1 Appendix A: Start years of the sample of countries

This appendix provides the year in which the GDP sample starts for each of our 156
countries (20 developed and 136 developing); see Table A.1.

6.2 Appendix B (online): Two-period model with binomial
distribution

This appendix shows the formal derivation of expressions used in Section 3.
Consider a small open economy perfectly integrated into world good markets.

There is a single, non-storable tradable good. We will consider three different
scenarios in terms of financial integration with the rest of the world: (i) complete
markets (i.e., the economy can fully insure against risk in the second period); (ii)
financial autarky (i.e., no borrowing/lending from/to the rest of the world); and (iii)
incomplete markets (i.e., there is a single, risk-free bond in the world).
The endowment in the first period is known with certainty (and equal to y1).

Period 2-endowment is given by

y2 =

{
yH2 with probability p,
yL2 with probability 1− p,

where yH2 ≥ y1 ≥ yL2 . For simplicity, we will assume that E(y2) = pyH2 + (1 − p)yL2
is equal to y1 and that p = 1/2.
Lifetime expected utility (welfare) is given by

W = u(C1) + βE{u(C2)}, (30)

where W denotes welfare, 0 < β < 1 is the discount factor, and u(.) is given by a
standard constant-relative-risk-aversion (CRRA) utility function:

u(c) = c1−γ−1
1−γ , γ 6= 1,

u(c) = log(c), γ = 1.
(31)

where γ > 0 is the coeffi cient of risk aversion. We assume β(1 + r) = 1, where r is
the world risk-free interest rate. Initial net assets are assumed to be zero.
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6.2.1 Complete markets

Under complete markets, consumers can buy contingent claims that promise to de-
liver one unit of output in the good (bad) state of nature at a second-period price of
qH (qL). The intertemporal budget constraint thus takes the form:

y1 +
qHyH2 + qLyL2

1 + r
= C1 +

qHCH
2 + qLCL

2

1 + r
. (32)

It is easy to show that, if prices are actuarially fair (i.e., qH/qL = p/(1−p)), then
C1 = CH

2 = CL
2 . Consumers smooth consumption across states of nature and across

time (recall that β(1 + r) = 1). Since qH = p = 0.5 and qL = 1− p = 0.5 (and, by
assumption, E(y2) = y1), we can use (32) to solve for C1:

y1 +
qHyH2 + qLyL2

1 + r
= C1 +

qHC1 + qLC1
1 + r

,

y1 +
E(y2)

1 + r
= C1

(
1 +

qH + qL

1 + r

)
,

y1

(
1 +

1

1 + r

)
= C1

(
1 +

qH + qL

1 + r

)
,

y1 = C1.

Hence,
C1 = CH

2 = CL
2 = y1.

Welfare under complete markets is thus given by

WCM =
y1−γ1 − 1

1− γ + β

[
0.5

y1−γ1 − 1

1− γ + 0.5
y1−γ1 − 1

1− γ

]
,

WCM =
y1−γ1 − 1

1− γ (1 + β). (33)

6.2.2 Financial autarky

Under financial autarky, the following equilibrium conditions must hold:

C1 = y1,

CH
2 = yH2 ,

CL
2 = yL2 .
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Welfare under financial autarky (FA) is thus given by

WFA(φ1) =
[y1(1 + φ1)]

1−γ − 1

1− γ +β

[
0.5

[yH2 (1 + φ1)]
1−γ − 1

1− γ + 0.5
[yL2 (1 + φ1)]

1−γ − 1

1− γ

]
,

(34)
where, for further reference, we have added a potential compensating variation to
consumption of a factor 1 + φ1.
The welfare gains of having complete markets relative to the case of financial

autarky is the value of φ1 that satisfies

W
FA

(φ1) = WCM .

Using (33) and (34), we can solve for φ1:

φ1 =


1 + β

1 + β (0.5)

[(
yH2
y1

)1−γ
+
(
yL2
y1

)1−γ]


1
1−γ

− 1. (35)

As a particular case, notice that if y1 = yH2 = yL2 , then φ1 = 0 because consumption
is already fully smoothed (across states and time) in the financial autarky case.

6.2.3 Incomplete markets

The flow budget constraints are given by:

b1 = y1 − C1, (36)

0 = (1 + r)b1 + yH2 − CH
2 , (37)

0 = (1 + r)b1 + yL2 − CL
2 , (38)

where CH
2

(
CL
2

)
is consumption in the high-output (low-output) state of nature and

b1 is the trade balance (i.e., saving) in the first period.
For further reference, rewrite the budget constraints as:

C1 = y1

(
1− b̃1

)
, (39)

CH
2 = y1

[
(1 + r)̃b1 +

yH2
y1

]
, (40)

CL
2 = y1

[
(1 + r)̃b1 +

yL2
y1

]
, (41)
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where b̃1 = b1/y1 is saving as a proportion of output (GDP).
Combining the flow constraints, we obtain the intertemporal constraint for each

state of nature in period 2:

y1 +
1

1 + r
yH2 = C1 +

1

1 + r
CH
2 , (42)

y1 +
1

1 + r
yL2 = C1 +

1

1 + r
CL
2 . (43)

The consumer maximizes expected utility, given by (30), subject to (42) and (43).
Combining first-order conditions, we obtain the familiar stochastic Euler equation:

u′(C1) = E{u′(C2)}. (44)

Solution of the model for u′′′(c) > 0 In this case (the more natural case), con-
sumers engage in precautionary saving. Since the CRRA preferences given by (31)
imply that u′′′(C) > 0, u′(C) is a convex function. Hence, E{u′(C2)} > u′(E{C2}).
The Euler equation (44) can be rewritten as

u′(C1) > u′[E{C2}].
It follows that

C1 < E{C2}. (45)

Consumers do not smooth consumption (in an expected value sense). In fact, their
period-1 consumption is less than their period-2 expected consumption because they
wish to save more (relative to the certainty case or the quadratic case) in case the
bad state of nature materializes in period 2.
To see the implication of (45), first multiply (42) by p and (43) by 1−p to obtain

C1 +
E{C2}
1 + r

= y1 +
E{y2}
1 + r

. (46)

Suppose again that y1 = E{y2} and rewrite this last equation as

C1 +
E{C2}
1 + r

=

(
2 + r

1 + r

)
y1. (47)

Since E{C2} > C1, it follows that

C1 +
E{C2}
1 + r

>

(
2 + r

1 + r

)
C1.
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Using this last inequality, it follows from (47) that

(
2 + r

1 + r

)
y1 >

(
2 + r

1 + r

)
C1

y1 > C1.

This means that TB1(= S1) > 0. Consumers thus engage in precautionary saving.
Since they are concerned about the second period’s uncertainty, they save in period 1
so that they can consume a little bit more in case the low state of nature materializes.

Derivation of welfare gains Using our CRRA specification, we can compute the
welfare gains from financial integration (FA to IM). First, rewrite the Euler equation
(44) as

C
−1/γ
1 = p(CH

2 )−1/γ + (1− p)(CL
2 )−1/γ.

Recall that p = 1/2. Then:

2

Cγ
1

=
1

(CH
2 )γ

+
1

(CL
2 )γ

, (48)

0 = (1 + r) (y1 − C1) + yH2 − CH
2 , (49)

0 = (1 + r) (y1 − C1) + yL2 − CL
2 . (50)

This is a system of 3 equations in 3 unknowns (C1, CH
2 , and C

L
2 ) with the log case

(γ = 1) as a particular case.
By definition, welfare is given by

WIM =
C1−γ1 − 1

1− γ + β

[
0.5

(
CH
2

)1−γ − 1

1− γ + 0.5

(
CL
2

)1−γ − 1

1− γ

]
.

Substituting (39), (40), and (41) into the last equation, we obtain:

WIM =

[
y1

(
1− b̃1

)]1−γ
− 1

1− γ + 0.5β


(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ +

(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ


(51)
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Adding a compensating variation, φ2, to capture how much we would need to give to
the consumer under incomplete markets for him/her to attain the complete-markets
welfare:

WIM(φ2) =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
− 1

1− γ

+0.5β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ

+

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ


Using (33) and (51), the welfare gains of moving from incomplete to complete

markets are given by

WCM = WIM(φ2)

y1−γ1 − 1

1− γ (1 + β) =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
− 1

1− γ

+0.5β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ

+

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ


(1 + β)y1−γ1

1− γ − 1 + β

1− γ =
(1 + φ2)

1−γ
[
y1

(
1− b̃1

)]1−γ
1− γ − 1

1− γ

+0.5β


(1 + φ2)

1−γ
(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
1− γ − 1

1− γ

+
(1 + φ2)

1−γ
(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ
1− γ − 1

1− γ


Notice that all the terms that do not have output cancel each other out. Hence,
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(1 + β)y1−γ1

1− γ =
(1 + φ2)

1−γ
[
y1

(
1− b̃1

)]1−γ
1− γ

+0.5β


(1 + φ2)

1−γ
(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
1− γ

+
(1 + φ2)

1−γ
(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ
1− γ



(1 + β)y1−γ1 = (1 + φ2)
1−γ



[
y1

(
1− b̃1

)]1−γ
+0.5β

(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
+0.5β

(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ


Solving for φ2:

φ2 =


(1 + β)y1−γ1[

y1

(
1− b̃1

)]1−γ
+ 0.5β

[(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
+
(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ]


1
1−γ

−1.

Simplifying, we get our final expression for φ2:

φ2 =


1 + β[(

1− b̃1
)]1−γ

+ 0.5β

[[
(1 + r)̃b1 +

yH2
y1

]1−γ
+
[
(1 + r)̃b1 +

yL2
y1

]1−γ]


1
1−γ

− 1.

(52)
A check that we can do here is that, under no uncertainty (i.e., yH2 = yL2 ), φ2
should be 0. To show this, notice that, in this equilibrium, it must be the case
that yH2 = yL2 = y1 (to make cases comparable) because under complete markets we
assume that E(y2) = y1. Hence, b̃1 = 0. Substituting this into (52) yields

34



φ2|̃b1=0 =


1 + β[(

1− b̃1
)]1−γ

+ β

[[
(1 + r)̃b1 + 1

]1−γ]


1
1−γ

− 1,

=

{
1 + β

1 + β

} 1
1−γ

− 1 = 0.

For the purposes of Tables 2 and 3, we computed φ2 by solving the system (48)-
(50) numerically in Mathematica with the FindRoot command, then using c1 to
obtain b̃1, and finally substituting b̃1 into (52).

6.2.4 Quadratic consumer

Quadratic preferences are given by u(C) = −1
2
(C̄ − C)2 for C ≤ C̄ and where C̄ is

the “bliss”level of consumption. In this case, u′(C) = C̄ −C ≥ 0, u′′(C) = −1 < 0,
and u′′′(C) = 0.
Notice that if u′′′(C) = 0, then u′(C) is linear and thus:

pu′(CH
2 ) + (1− p)u′(CL

2 ) = u′[pCH
2 + (1− p)CL

2 ].

We can thus rewrite the Euler equation (44) as

u′(C1) = u′[pCH
2 + (1− p)CL

2 ],

u′(C1) = u′[E{C2}],

which implies that

C1 = E{C2}. (53)

Substitute this last equation into (46) to obtain:

C1 =
1 + r

2 + r

[
y1 +

E{y2}
1 + r

]
.

The trade balance will be given by:

TB1 = y1 − C1, (54)

TB1 =
1

2 + r
[y1 − E{y2}] . (55)
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The reduced forms for CH
2 and CL

2 are given by:

CH
2 = yH2 +

1 + r

2 + r
[y1 − E{y2}] ,

CL
2 = yL2 +

1 + r

2 + r
[y1 − E{y2}] .

We can rewrite C1 as (note that TB1 = b1):

b1
y1

= 1− C1
y1
,

C1
y1

= 1− b̃1,

C1 = y1

(
1− b̃1

)
.

We rewrite CH
2 and CL

2 as

CH
2 = yH2 +

1 + r

2 + r
[y1 − E{y2}] ,

CH
2 = yH2 + (1 + r) b1,

CH
2

y1
=

yH2
y1

+ (1 + r) b̃1,

CH
2 = y1

(
yH2
y1

+ (1 + r) b̃1

)
,

CL
2 = y1

(
yL2
y1

+ (1 + r) b̃1

)
.

6.2.5 Computation of welfare

Recall that welfare for the IM case is given by
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WIM =
C1−γ1 − 1

1− γ + β

[
0.5

(
CH
2

)1−γ − 1

1− γ + 0.5

(
CL
2

)1−γ − 1

1− γ

]

=

[
y1

(
1− b̃1

)]1−γ
− 1

1− γ + (0.5) β


(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ

+

(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ

 .

Adding the compensating variation φ2:

WIM =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
− 1

1− γ + (0.5) β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ

+

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ


WIM =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
1− γ − 1

1− γ

+ (0.5) β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
1− γ − 1

1− γ

+

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
1− γ − 1

1− γ


The welfare gains from moving from IM to CM are given by
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WCM = WIM(φ2)

y1−γ1 − 1

1− γ (1 + β) =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
− 1

1− γ

+ (0.5) β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ

+

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ


(1 + β)y1−γ1

1− γ − 1 + β

1− γ =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
1− γ − 1

1− γ

+ (0.5) β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
1− γ − 1

1− γ

+

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
1− γ − 1

1− γ


(1 + β)y1−γ1

1− γ =

[
y1(1 + φ2)

(
1− b̃1

)]1−γ
1− γ

+ (0.5) β


(
y1(1 + φ2)

[
(1 + r)̃b1 +

yH2
y1

])1−γ
1− γ

+

(
y1(1 + φ2)

[
(1 + r)̃b1 +

yL2
y1

])1−γ
1− γ



(1 + β) = (1 + φ2)
1−γ



[(
1− b̃1

)]1−γ
+ (0.5) β

[
(1 + r)̃b1 +

yH2
y1

]1−γ
+ (0.5) β

[
(1 + r)̃b1 +

yL2
y1

]1−γ


(1 + φ2)

1−γ =
1 + β[(

1− b̃1
)]1−γ

+ (0.5) β

[[
(1 + r)̃b1 +

yH2
y1

]1−γ
+
[
(1 + r)̃b1 +

yL2
y1

]1−γ]
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φ2 =


1 + β[(

1− b̃1
)]1−γ

+ (0.5) β

[[
(1 + r)̃b1 +

yH2
y1

]1−γ
+
[
(1 + r)̃b1 +

yL2
y1

]1−γ]


1
1−γ

−1,

which is the same expression that we had obtained for incomplete markets (see
equation (51)).
Note that the expression for φ1 will be the same as for the CRRA computation

above (see equation (35)), replicated here for convenience:

φ1 =


1 + β

1 + β (0.5)

[(
yH2
y1

)1−γ
+
(
yL2
y1

)1−γ]


1
1−γ

− 1.

If b̃1 = 0, these two expressions are the same (i.e., φ1 = φ2). And that will be the
case under quadratic preferences and y1 = E(y2). Intuitively, the quadratic consumer
does not need to run a trade imbalance, so the lack of a risk-free bond is not binding.
If y1 is not equal to E(y2), then the lack of a risk-free bond is binding and φ1 > φ2.
In contrast, there is no substitute for CM in the sense that only CM can equate

consumption across markets So CM will always be binding. The risk-free bond may
or may not be binding. It depends on preferences and shocks.

6.2.6 Welfare gains from FA to IM (φ̃1)

To compute the welfare gains from moving from FA to IM, denoted by φ̃1,consider

WFA(φ̃1) = WIM .



(
y1(1 + φ̃1

)
)1−γ − 1

1− γ

+β


0.5

(
yH2 (1 + φ̃1

)
)1−γ − 1

1− γ

+0.5

(
yL2 (1 + φ̃1

)
)1−γ − 1

1− γ




=



[
y1

(
1− b̃1

)]1−γ
− 1

1− γ

+0.5β


(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
− 1

1− γ

+

(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ
− 1

1− γ




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

(
y1(1 + φ̃1

)
)1−γ

1− γ − 1

1− γ

+β


0.5

(
yH2 (1 + φ̃1

)
)1−γ − 1

1− γ

+0.5

(
yL2 (1 + φ̃1

)
)1−γ − 1

1− γ




=



[
y1

(
1− b̃1

)]1−γ
1− γ − 1

1− γ

+0.5β


(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
1− γ − 1

1− γ

+

(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ
1− γ − 1

1− γ





[
(1 + φ̃1)

1−γ
]


(y1)
1−γ

1− γ

+β

 0.5
(yH2 )1−γ

1− γ
+0.5

(yL2 )1−γ

1− γ



 =



[
y1

(
1− b̃1

)]1−γ
1− γ

+0.5β


(
y1

[
(1 + r)̃b1 +

yH2
y1

])1−γ
1− γ

+

(
y1

[
(1 + r)̃b1 +

yL2
y1

])1−γ
1− γ





(1+φ̃1)
1−γ =

[(
1− b̃1

)]1−γ
+ 0.5β

[([
(1 + r)̃b1 +

yH2
y1

])1−γ
+
([

(1 + r)̃b1 +
yL2
y1

])1−γ]
1 + β (0.5)

[
(
yH2
y1

)1−γ + (
yL2
y1

)1−γ
] 1 + β

1 + β

(1 + φ̃1)
1−γ =

(1 + φ1)
1−γ

(1 + φ2)
1−γ

It follows that

(1 + φ̃1)
1−γ =

(1 + φ1)
1−γ

(1 + φ2)
1−γ ,

log (1 + φ1)︸ ︷︷ ︸
total gains

= log(1 + φ̃1)︸ ︷︷ ︸
gains FA-IM

+ log (1 + φ2)︸ ︷︷ ︸
gains IM-CM

.

Given φ1 and φ2, we can compute φ̃1.

6.3 Appendix C (online): Welfare gains in an infinite hori-
zon model

This appendix extends our two-period model in Section 4 to an infinite horizon. We
will conclude that the key results from our two-period model remain valid in an
infinite horizon context.
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Let time be denoted by t = 0, 1, 2, 3, . . .. The rate of growth of income from
period t−1 to t is given by xt; that is, Yt = xtYt−1. Income in period 0 is exogenously
given and equal to Y0. The uncertainty of income growth in period t is given by the
realization st ∈ S: xt = x(st). We define the state of the world in period t as the
history of events from 1 to t, ht = (s1, s2, . . . , st). Thus, Yt(ht) is the income in period
t as a function of (s1, s2, . . . , st). Note that Yt(ht) = Yt((ht−1, st)) = Yt−1(ht−1)x(st).
From the perspective of period 0, πt(ht) is the probability of the sequence of events
(s1, s2, . . . , st).
Households’consumption is described by the sequence {Ct(ht)}∞t=0, where Ct(ht)

is consumption in period t as a function of (s1, s2, . . . , st). Households’expected
utility is given by

∞∑
t=0

∑
ht

βtu(Ct(ht))πt(ht), (56)

where

u(C) =
C1−γ − 1

1− γ .

We will analyze this model under two different asset market configurations: (i)
complete markets, and (ii) financial autarky. We will derive the consumption path
and welfare under these two market arrangements and compute the welfare gains of
complete markets relative to financial autarky.

6.3.1 Complete markets

When markets are complete, there is a full set of contingent bonds for all states of
nature and for each period. We assume that these contingent bonds are traded in
period 0. Let qt(ht) denote the price at period 0 of a security that gives one unit of
consumption in period t in the sequence of events ht. With a complete set of these
securities, the household’s intertemporal budget constraint is given by

∞∑
t=0

∑
ht

qt(ht)Ct(ht) ≤
∞∑
t=0

∑
ht

qt(ht)Yt(ht). (57)

Maximizing (56) subject to (57) yields the following condition:

βt(Ct(ht))
−γπt(ht) = µqt(ht), ∀t, ht, (58)

where µ is the Lagrange multiplier associated with budget constraint (57). As in
our two-period model, we assume that the rest of the world consists of a continuum
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of identical economies with the same income process. These economies can diversify
all income fluctuations along the average path. Hence, the contingent-security prices
satisfy:

βtπt(ht)

(
E[Yt]

Y0

)−γ
= qt(ht), ∀t, ht. (59)

Combining (58) and (59), we obtain:

(Ct(ht))
−γ = µ

(
E[Yt]

Y0

)−γ
, ∀t, ht. (60)

This last expression implies Ct(ht) = (E[Yt]/Y0)C0. Using the household’s budget
constraint, we can write:

C0
Y0

∞∑
t=0

βt
(
E[Yt]

Y0

)−γ
E[Yt] =

∞∑
t=0

βt
(
E[Yt]

Y0

)−γ
E[Yt].

If
∑∞

t=0 β
t
(
E[Yt]
Y0

)−γ
E[Yt] <∞, we obtain C0 = Y0, implying that

Ct(ht) = E[Yt], ∀t, ht.

Therefore, welfare under complete markets is given by

Ŵ0 =
∞∑
t=0

βt
(

(E[Yt])
1−γ − 1

1− γ

)
.

6.3.2 Financial autarky

When the economy cannot trade assets with the rest of the world, the consumption
path is equal to the income path: Ct(ht) = Yt(ht). Welfare under financial autarky
is thus given by

Ŵ1 =

∞∑
t=1

∑
ht

βtπt(ht)
(Yt(ht))

1−γ − 1

1− γ =
∞∑
t=1

βt
(E[(Yt)

1−γ]− 1)

1− γ . (61)

6.3.3 Welfare gains from financial autarky to complete markets

Welfare gains from financial autarky to complete markets can be obtained as the
consumption compensation factor, φ̂1, such that

∞∑
t=0

βt

(
(1 + φ̂1)

1−γE[(Yt)
1−γ]− 1

)
1− γ = Ŵ0. (62)
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Solving for φ̂1, we obtain

φ̂1 =

(∑∞
t=0 β

t (E[Yt])
1−γ∑∞

t=0 β
tE[(Yt)1−γ]

) 1
1−γ

− 1. (63)

In this multi-period setting, we will consider the same income process used in
Section 4 for the second period of our two-period model. Before computing this
welfare gain, however, we will need to specify whether the income path has a de-
terministic or stochastic trend. Welfare costs will be sensitive to this assumption
since a deterministic trend implies no increase over time in the risk of income fluctu-
ations because the welfare costs will be of a similar magnitude as the one considered
in the text when the income risk is normally distributed. In contrast, when income
has a stochastic trend, the income risk rises over time increasing the value of insur-
ance against income fluctuations. For this reason, for each type of risk analyzed
in the text for the two-period model, we will analyze two cases here (one with a
deterministic trend and the other with a stochastic trend).

Type I risk and deterministic trend Assume that the income path fluctuates
around a deterministic trend. The fluctuations around this trend are normally
distributed:

log(Yt) ∼ N(log(Y0) + tµx, σ
2
x), ∀t ≥ 1.

This specification implies that

E[Yt] = Y0 exp

(
tµx +

1

2
σ2x

)
,

E[(Yt)
1−γ] = (Y0)

1−γ exp

(
(1− γ)tµx +

(1− γ)2

2
σ2x

)
.

Substituting the last two expressions in (63), we obtain

φ̂1 =

(∑∞
t=0 β

t(Y0)
1−γ exp((1− γ)(tµx + 1

2
σ2x))∑∞

t=0 β
t(Y0)1−γ exp(()tµx + (1−γ)2

2
σ2x)

) 1
1−γ

− 1,

=

(
(Y0)

1−γ exp( (1−γ)
2
σ2x)

1− β exp((1− γ)µx)

1− β exp((1− γ)µx)

(Y0)1−γ exp( (1−γ)
2

2
σ2x)

) 1
1−γ

− 1,

=

(
exp((1− γ)(γ)

1

2
σ2x)

) 1
1−γ

− 1,

= exp(
γ

2
σ2x)− 1.
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Type I risk and stochastic trend In this case, income growth follows an inde-
pendent and identically distributed (i.i.d.) log-normal distribution:

log(Yt/Yt−1) = x ∼ iidN(µx, σ
2
x), (64)

which implies that conditional on Y0, Yt also has a log-normal distribution, but with
a variance that grows over time:

log(Yt) ∼ N(log(Y0) + tµx, tσ
2
x). (65)

It follows that

E[Yt] = Y0 exp(tµx +
1

2
σ2xt) = Y0

[
exp(µx +

1

2
σ2x)

]t
,

E[(Yt)
1−γ] = (Y0)

1−γ exp(t(1− γ)µx +
1

2
(1− γ)2σ2xt) = Y0

[
exp((1− γ)µx +

(1− γ)2

2
σ2x)

]t
.

Using the last two expressions and imposing that

β exp(µx +
1

2
σ2x) < 1 and β exp((1− γ)µx +

(1− γ)2

2
σ2x) < 1, (66)

we obtain:
∞∑
t=0

βt (E[Yt])
1−γ =

Y0

1− β exp
(
(1− γ)(µx + 1

2
σ2x)
) , (67)

∞∑
t=0

βtE[(Yt)
1−γ] =

(Y0)
1−γ

1− β exp
(

(1− γ)µx + (1−γ)2
2

σ2x

) , (68)

which, using equation (63), implies

φ̂1 =

1− β exp
(

(1− γ)µx + (1−γ)2
2

σ2x

)
1− β exp

(
(1− γ)(µx + 1

2
σ2x)
)


1
1−γ

− 1. (69)

Table 15 shows the welfare gains measured by φ̂1 under type I risk. We use
the same value of the parameters considered in the two period model of Section 4
with type I risk. The first row of Table 15 corresponds to the deterministic trend,
whereas the second row is the computation with a stochastic trend. As we did in
the text, the welfare gains are computed for a range of 2 to 5 of the risk aversion
coeffi cient. Welfare gains with the deterministic trend are quite small (in a range
of 0.36 to 0.91 percent), although about twice as much as in the two-period model
(recall Table 5). When the income process has a stochastic trend, welfare gains are
much larger and in the range of 10-12 percent.
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Type II risk and deterministic trend As in the case of the normal distribution,
we will assume a deterministic path for the average income over time, keeping the
variance constant and independent of time. In contrast to the normal distribution,
however, we will assume that fluctuations around this deterministic path are a com-
bination of a normal and power-law distributions. Hence, for t ≥ 1, the process for
income in period t is given by

log(Yt) = log(Y0) + (t− 1)µx + x,

where x is independent and identically distributed as follows:

x =

{
x̃ ∼ N(µ̃x, σ̃

2
x), with probability 1− p,

1/z ∼ inverse power-law distribution, with probability p. (70)

As indicated in the text, the probability density function for z is:

fZ(z) = (α− 1)(zmin)α−1(z)−α, α > 1, z ≥ zmin.

We can compute (∀t ≥ 1):

E[Yt] = Y0 exp((t− 1)µx)

[
(1− p) exp(µ̃x +

1

2
σ̃2x) + pE[1/z]

]
,

E[(Yt)
1−γ] = (Y0)

1−γ exp((1− γ)(t− 1)µx)

[
(1− p) exp((1− γ)µ̃x +

(1− γ)2

2
σ̃2x) + pE[1/(z1−γ)]

]
.

Substituting these two last expressions into (63), and rearranging terms as before:

φ̂1

=

 Y
1−γ
0 +

∑∞
t=1 β

t(Y0)
1−γ exp((t− 1)(1− γ)µx)

[
(1− p) exp(µ̃x +

1
2
σ̃2x) + pE[1/z]

]1−γ
Y
1−γ
0 +

∑∞
t=1 β

t(Y0)1−γ exp((t− 1)(1− γ)µx)

[
(1− p) exp((1− γ)µ̃x +

(1−γ)2
2

σ̃2x) + pE[1/(z1−γ)]
]


1
1−γ

− 1

=


[
(1− p) exp(µ̃x +

1
2
σ̃2x) + pE[1/z]

]1−γ[
(1− p) exp((1− γ)µ̃x +

(1−γ)2
2

σ̃2x) + pE[1/(z1−γ)]
]


1
1−γ

− 1

(71)

Type II risk and stochastic trend In this case, the log income growth in each
period also follows an i.i.d. process:

log(Yt/Yt−1) = x =

{
log(x̃) ∼ N(µ̃, σ̃2x), with probability 1− p,
1/z ∼ inverse power-law distribution, with probability p,

(72)
where again the density probability function for z is given by:

fZ(z) = (α− 1)(zmin)α−1(z)−α, α > 1, z ≥ zmin.
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Hence,

E[Yt] = Y0

(
(1− p) exp(µ̃x +

σ̃2x
2

) + p
α− 1

α
(zmin)−1

)t
.

If α > γ, we have

E[(Yt)
1−γ] = (Y0)

1−γ
(

(1− p) exp((1− γ)µ̃x +
(1− γ)2σ̃2x

2
) + p

α− 1

α− γ (zmin)γ−1
)t
.

If α ≤ γ, E[(Yt)
1−γ] is unbounded and not well-defined. Therefore, as long as

α > γ and β
(

(1− p) exp((1− γ)µ̃x + (1−γ)2σ̃2x
2

) + pα−1
α−γ (zmin)γ−1

)
< 1, we obtain:

φ̂1 =

1− β
(

(1− p) exp((1− γ)µ̃x + (1−γ)2σ̃2x
2

) + pα−1
α−γ (zmin)γ−1

)
1− β

(
(1− p) exp(µ̃x + σ̃2x

2
) + pα−1

α
(zmin)−1

)1−γ


1
1−γ

− 1. (73)

If α > γ, but β
(

(1− p) exp((1− γ)µ̃x + (1−γ)2σ̃2x
2

) + pα−1
α−γ (zmin)γ−1

)
≥ 1, then

φ̂1 →∞. When α ≤ γ, we also get φ̂1 →∞.
Again, we consider the same parameter values used for type II risk in the two-

period model. The welfare computation is presented in Table 16. The top panel
shows the welfare gains with a deterministic trend and the bottom panel with a
stochastic trend. In contrast to type I risk, welfare gains of financial integration
increase substantially and are very sensitive to a rise in the coeffi cient of risk aversion.
To quantify the effect of adding rare disasters, Table 17 shows the factor increase
in the welfare computation of φ̂1 between values in Table 16 and Table 15. This
factor increase in φ̂1 can be compared to the one reported in the first row of Table
12 in the text for the case of φ1. This comparison highlights that adding the risk of
macroeconomic disasters increases the welfare gains of financial integration by factors
of 2 to 14 for values of γ ≤ 2.5 (relative to standard computations based only on
normally-distributed income fluctuations). Welfare gains may become unbounded
for higher values of γ. We conclude that the main results of a substantial increase
in the welfare gains of financial integration when adding rare disasters in income risk
and with reasonable values for the risk aversion coeffi cient (i.e., between 2 an 5) still
hold in an infinite horizon model.
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Figure 1: Welfare gains from financial integration

FA: Financial Autarky
IM: Incomplete Markets
CM: Complete Markets

FA IM CM

𝟏

𝟐𝟏

Notes: ϕ1 is welfare gains from FA to CM; ϕ2 is welfare gains from IM to CM; and
ϕ̃1 is welfare gains from FA to IM.
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Figure 2: Distribution of the Dow Jones Returns

Note: The value of q is 1.67.
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Figure 3: Density comparison between the data and the fitted model

Transformed Disaster Sizes: z = 1=x 2 [ẑmin; 5]
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Empirical Density of Transformed Disaster Sizes (Bin Width = 0.035)

Estimated Density (Power Law with ẑmin = 1:1899 and ,̂ = 4:5980)

Notes: Following Barro and Jin (2011), a visual assessment on the goodness-of-fit
of the model can be made by comparing a histogram of the empirical density of
transformed disaster sizes, z, with realizations of the probability density function
(pdf) of the estimated power-law distribution (ẑmin = 1.1899 and α̂ = 4.5980).
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Figure 4: Cumulative distribution function comparison between data and fitted
model

Log of Transformed Disaster Sizes: log(z) 2 [log(ẑmin), log(5)]
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Notes: Following Clause et al. (2009), the optimal power-law model is characterized
by the threshold value, ẑmin, that allows the estimated model’s CDF to be as close
as possible to the data CDF in the region z ≥ ẑmin. In the plot, the straight line
corresponds to the optimal ẑmin = 1.1899 and α̂ = 4.5980.
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Figure 5: Decomposition of Welfare Gains from Financial Integration
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Notes: In this computation, we use a coefficient of risk aversion of 3.5 (γ), and
values of 4.0 (power law high), 4.6 (power law medium), and 5.6 (power law low) for
the exponent of the power law distribution (α).
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Table 1: Estimated parameters of the income distribution

Disaster regime Tranquil times
(Power-law dist.) (Log-normal dist.)

ẑmin α̂
p µ̂ σ̂

Est. 95% Confidence Interval Est. 95% Confidence Interval

1.1899 (1.1158, 1.3917) 4.5980 (3.9846, 5.6343) 0.0274 0.0262 0.0450

Notes: The power-law and log-normal distributions are fitted through R implementation of Gille-
spie (2015) and Delignette-Muller and Dutang (2015), respectively. 95% confidence intervals of
ẑmin and α̂ from 5,000 bootstrap simulations, following methods developed in Clauset et al. (2009).
The point estimates for µ̂ and σ̂ and the value of p are computed as explained in the text.

Table 2: Welfare gains

γ 2 3 4 5
Savings 0.27% 0.35% 0.44% 0.53%
ϕ1 0.179% 0.269% 0.360% 0.450%
ϕ2 0.179% 0.267% 0.355% 0.442%
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Table 3: Welfare gains as function of the size of the shocks

yH yL ϕ1 (total) ϕ2 (segment 2) ϕ2/ϕ1 ϕ̃1 (segment 1)
1.0 1.0 0 0 n/a 0
1.1 0.9 0.75 0.74 98.0% 0.01%
1.2 0.8 3.13 2.90 92.5% 0.2%
1.3 0.7 7.54 6.36 84.3% 1.11%
1.4 0.6 14.8 11.0 74.4% 3.41%
1.5 0.5 26.7 16.9 63.4% 8.35%
1.6 0.4 46.6 24.1 51.7% 18.2%

Note: Calculations assume γ = 3.

Table 4: Estimates of type I risks

Parameter Value
µx 0.0165
σx 0.0601

Table 5: Type I risks. Welfare gains from financial autarky to complete markets (ϕ1)

γ
2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.177% 0.221% 0.264% 0.307% 0.350% 0.393% 0.435%

Table 6: Non-contingent bond holdings with type I risks (̃b1)

γ
2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.26% 0.31% 0.35% 0.39% 0.43% 0.47% 0.51%
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Table 7: Type I risk. Welfare gains from non-contingent bond to complete markets
(ϕ2)

γ
2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.177% 0.220% 0.263% 0.305% 0.347% 0.387% 0.429%

Table 8: Estimates of type II risks

Parameter Value
zmin 1.1899
p 0.0274
Point estimate for α 4.5980
Range for α [3.9846; 5.6343]
µ̃x 0.0262
σ̃x 0.0450

Table 9: Type II risks. Welfare gains from financial autarky to complete markets
(ϕ1)

γ
α 2.0 2.5 3.0 3.5 4.0 4.5 5.0
3.9846 0.69% 1.11% 1.91% 4.30% ∞ ∞ ∞
4.5980 0.53% 0.80% 1.20% 1.95% 3.80% 20.50% ∞
5.6343 0.40% 0.56% 0.77% 1.07% 1.52% 2.35% 4.34%

Table 10: Non-contingent bond holdings with type II risks (̃b1)

γ
α 2.0 2.5 3.0 3.5 4.0 4.5 5.0
3.9846 1.58% 2.42% 3.46% 4.91% 6.06% 7.81% 9.52%
4.5980 1.10% 1.53% 2.24% 3.12% 4.62% 5.72% 7.59%
5.6343 0.74% 0.99% 1.32% 1.84% 2.39% 3.19% 4.33%
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Table 11: Type II risks. Welfare gains from non-contingent bond to complete markets
(ϕ2)

γ
α 2.0 2.5 3.0 3.5 4.0 4.5 5.0
3.9846 0.66% 1.01% 1.48% 2.16% 2.98% 4.16% 5.59%
4.5980 0.52% 0.74% 1.06% 1.49% 2.19% 2.95% 4.14%
5.6343 0.39% 0.54% 0.73% 1.00% 1.29% 1.74% 2.34%

Table 12: Factor of increase in ϕ1 and ϕ2 from adding disasters with power-law
distribution

γ
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Factor of increase in ϕ1 2 to 4 3 to 5 3 to 7 3 to 14 4 to ∞ 6 to ∞ 10 to ∞
Factor of increase in ϕ2 2 to 4 2 to 5 3 to 6 3 to 7 4 to 9 4 to 11 5 to 13

Table 13: Welfare gains ϕ1 under alternative assumptions for the size distribution of
disasters

γ
Deterministic 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Deterministic income fall under disaster
b consistent with α = 3.9846 0.42% 0.55% 0.71% 0.89% 1.10% 1.33% 1.60%
b consistent with α = 4.5980 0.36% 0.48% 0.60% 0.75% 0.91% 1.09% 1.30%
b consistent with α = 5.6343 0.30% 0.40% 0.50% 0.61% 0.73% 0.87% 1.01%

γ
Normal distribution 2.0 2.5 3.0 3.5 4.0 4.5 5.0
µ̃z, σ̃z consistent with α = 3.9846 0.56% 0.79% 1.08% 1.46% 1.96% 2.62% 3.50%
µ̃z, σ̃z consistent with α = 4.5980 0.46% 0.64% 0.85% 1.12% 1.45% 1.87% 2.40%
µ̃z, σ̃z consistent with α = 5.6343 0.37% 0.49% 0.64% 0.82% 1.02% 1.27% 1.57%
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Table 14: Factor of increase in ϕ1 under under alternative assumptions for the size
distribution of disasters

γ
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Deterministic 2 2 to 3 2 to 3 2 to 3 2 to 3 2 to 3 2 to 4
Normal distribution 2 to 3 2 to 4 2 to 4 3 to 5 3 to 6 3 to 7 4 to 8

Table 15: Type I risk. Welfare gains in the infinite horizon model (ϕ̂1)

γ
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Deterministic trend 0.36% 0.45% 0.54% 0.63% 0.73% 0.82% 0.91%
Stochastic trend 10.15% 10.51% 10.86% 11.23% 11.61% 12.03% 12.49%

Table 16: Type II risks. Welfare gains in the infinite horizon model (ϕ̂1)

γ
α 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Deterministic trend
3.9846 1.41% 2.26% 3.89% 8.5% ∞ ∞ ∞
4.5980 1.09% 1.63% 2.46% 3.96% 7.7% 35.8% ∞
5.6343 0.82% 1.15% 1.58% 2.19% 3.12% 4.76% 8.56%

Stochastic trend
3.9846 60.28% 145.7% ∞ ∞ ∞ ∞ ∞
4.5980 39.90% 62.75% 192.4% ∞ ∞ ∞ ∞
5.6343 26.37% 33.85% 48.50% 97.7% ∞ ∞ ∞
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Table 17: Factor of increase in ϕ̂1 when adding rare disasters in the infinite horizon
model

γ
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Deterministic trend 2 to 4 3 to 5 3 to 7 3 to 13 4 to ∞ 6 to ∞ 9 to ∞
Stochastic trend 3 to 6 3 to 14 4 to ∞ 9 to ∞ ∞ ∞ ∞
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Table A1: Start year of real GDP per capita series, by country

Industrial Countries
Australia 1900 Finland 1900 Japan 1900 Spain 1900
Austria 1900 France 1900 Netherlands 1900 Sweden 1900
Belgium 1900 Germany 1900 New Zealand 1900 Switzerland 1900
Canada 1900 Greece 1900 Norway 1900 United Kingdom 1900
Denmark 1900 Italy 1900 Portugal 1900 United States 1900

Developing Countries
Afghanistan 1950 Croatia 1991 Latvia 1990 Rwanda 1950
Algeria 1970 Cyprus 1950 Lesotho 1950 Samoa 1998
Angola 1975 Czech Republic 1993 Lithuania 1990 Sao Tome and

Principe
1950

Antigua and Barbuda 1980 Djibouti 1950 Luxembourg 1950 Senegal 1950
Argentina 1900 Dominica 1950 Madagascar 1950 Serbia 2006
Armenia 1990 Dominican Republic 1950 Malawi 1950 Seychelles 1950
Azerbaijan 1990 East Timor 2000 Maldives 1980 Sierra Leone 1950
Bahamas 1980 Ecuador 1900 Mali 1950 Slovak Republic 1993
Bahrain 1970 El Salvador 1920 Malta 1950 Slovenia 1991
Bangladesh 1950 Equatorial Guinea 1950 Marshall Islands 1997 Solomon Islands 1980
Barbados 1950 Eritrea 1992 Mauritania 1950 Somalia 2011
Belarus 1990 Estonia 1990 Mauritius 1950 South Sudan 2011
Belize 1980 Eswatini 1950 Mexico 1900 Sri Lanka 1900
Benin 1950 Ethiopia 1950 Micronesia 1995 St. Kitts and Nevis 1980
Bhutan 1980 Fiji 1980 Moldova 1990 St. Lucia 1950
Bolivia 1900 Gabon 1950 Mongolia 1950 St. Vincent &

Grenadines
1980

Bosnia and Herzegov-
ina

1991 Gambia 1950 Montenegro 2006 Sudan 1950

Botswana 1950 Georgia 1990 Mozambique 1950 Suriname 1990
Brazil 1900 Grenada 1980 Namibia 1950 Tajikistan 1990
Brunei 1985 Guatemala 1920 Nauru 2004 Tanzania 1950
Burkina Faso 1950 Guinea 1950 Nicaragua 1920 Togo 1950
Burundi 1950 Guinea-Bissau 1950 Niger 1950 Tonga 1980
Cambodia 1950 Guyana 1980 Nigeria 1950 Trinidad and Tobago 1950
Cameroon 1950 Haiti 1945 North Macedonia 1991 Turkmenistan 1990
Cape Verde 1950 Honduras 1920 Oman 1950 Tuvalu 2002
Central African Re-
public

1950 Iceland 1950 Pakistan 1950 Uganda 1950

Chad 1950 India 1900 Palau 2000 Ukraine 1990
Chile 1900 Israel 1950 Panama 1906 Uruguay 1900
Colombia 1900 Kazakhstan 1990 Papua New Guinea 1980 Uzbekistan 1990
Comoros 1950 Kenya 1950 Paraguay 1939 Vanuatu 1980
Congo, Dem. 1950 Kiribati 1980 Peru 1900 Venezuela 1900
Congo, Rep. 1950 Kuwait 1974 Puerto Rico 1950 Yemen 1950
Costa Rica 1920 Kyrgyz Republic 1990 Qatar 1974 Zambia 1950
Cote d’Ivoire 1950 Laos 1950 Russia 1990 Zimbabwe 1950

Notes: In our exercise, we consider that historical “industrial” nations are those that achieved
OECD membership by 1980—with a population greater than one million—and classify all remaining
countries as “developing.”
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