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Abstract

Non-clearing goods markets are an important driver of capacity utilization and total factor

productivity (TFP). The trade-off between goods prices and household search effort is central

to goods market matching and therefore drives TFP over the business cycle. In this paper, I

develop a New-Keynesian DSGE model with capital utilization, worker effort, and expand

it with goods market search-and-matching (SaM) to model non-clearing goods markets. I

conduct a horse-race between the different capacity utilization channels using Bayesian

estimation and capacity utilization survey data. Models that include goods market SaM

improve the data fit, while the capital utilization and worker effort channels are rendered less

important compared to the literature. It follows that TFP fluctuations increase for demand

and goods market mismatch shocks, while they decrease for technology shocks. This pattern

increases as goods market frictions increase and as prices become stickier. The paper shows

the importance of non-clearing goods markets in explaining the difference between technology

and TFP over the business cycle.
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Rios-Rull, and Zhesheng Qiu. Further, I’d like to thank all participants of research seminars at the Dutch
Central Bank, the Swedish Central Bank, VfS Conference 2022, Leipzig University, and IWH Halle for their
helpful comments.



1. Introduction

Total factor productivity (TFP) is at the core of macroeconomics as it measures the

efficiency of input factor allocation and the production process. Solow (1957) defines TFP

growth as output growth that cannot be attributed to input factor growth. While TFP

growth is driven by technological progress in the long-run (see e.g. Basu et al. (2006)), it

is driven by input factor reallocation and capacity utilization in the short-run. The data

shows that capacity utilization is incomplete on average and fluctuates significantly over the

business cycle. It drives TFP alongside technology. This pattern can be seen in figure 1,

which shows quarterly year-on-year growth rates of TFP and utilization-adjusted TFP for

the U.S. between 1985q1 and 2019q4 as calculated by Fernald (2014).

Figure 1: Year-on-Year TFP Growth Rates
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NOTE: The figure shows quarterly data for the U.S. form 1985q1 to 2019q4. It describes year-on-year growth rates for real

GDP, TFP, and ”utilization-adjusted” TFP. The data is retrieved from Fernald (2014).

Understanding the determinants of TFP and its propagation mechanisms across shocks is

essential for fiscal and monetary policy. In order to be able to formulate appropriate policy

responses, it is essential to understand whether fluctuations in TFP are driven by technology

or demand shocks. It is essential whether an increase in TFP increases potential production

or the output gap.

The relationship between capacity utilization and TFP has been analyzed thoroughly in the

literature. The drivers of capacity utilization have had less attention though. Is it short-term

arbitrage of quasi-fixed input factors or is it imperfect allocation on non-clearing goods
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market? This paper contributes to the literature by analyzing in depth the determinants of

capacity utilization - especially goods market search-and-matching (SaM) - and their impact

on TFP. Specifically, I ask the following two research questions:

(i) What are the underlying economic channels that drive short-run capacity utilization

and TFP fluctuations?

(ii) How do the different capacity utilization channels affect the transmission of economic

shocks on short-run TFP?

I set up a medium-sized New-Keynesian DSGE model, based on Christiano et al. (2005);

Smets and Wouters (2007), that incorporates capital utilization, worker effort, and goods

market search-and-matching (SaM). I fit the model to U.S. data of capacity utilization

and macroeconomic aggregates using Bayesian estimation and discriminate between the

explanatory power of the three differennt utilization channels. The estimation setup directly

targets the difference between TFP and utilization-adjusted TFP. I evaluate the log data

density of different model versions using the Bayes factor.

I find that adding goods market SaM improves the data fit of any model version. It adds a

trade-off between prices and household search costs that is central to capacity utilization

and TFP. Even the simple SaM model, that uses goods market SaM as the only capacity

utilization channel, improves the data fit of the model compared to the reference model with

capital utilization and worker effort. The parameter posteriors of the full model show the

same result. Both the worker effort and capital utilization channel become less important in

describing capacity utilization as we add goods market SaM. Therefore, non-clearing goods

markets and the trade-off between prices and household search costs play an integral part in

explaining capacity utilization in the data.

I use the estimated model to analyze the impact of goods market SaM on the transmission

channels of each single shock on TFP fluctuations. The active role of aggregate demand

leads to a larger impact of demand and goods market mismatch shocks on TFP fluctuations,

while the impact of technology shocks decreases. Cumulative TFP multiplicators - TFP

flucutations relative to GDP fluctuations - show the same pattern. Demand shocks show a
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large increase in the cumulative TFP multiplicators. The goods market SaM channel and

the trade-off between prices and household search costs depends heavily on the calibration of

the goods market. The impact of demand shocks on TFP fluctuations increases in frictional

goods markets with sticky prices.

The paper is based on two strands of literature. First, the idea of utilization-adjusted TFP

has been thoroughly analyzed in the literature. Capital utilization (Burnside et al., 1995;

Christiano et al., 2005) and worker effort (Bils and Cho, 1994; Basu and Kimball, 1997) are

common modeling approaches of capacity utilization. On this theoretical basis, many authors

(Basu and Fernald, 2002; Basu et al., 2006; Fernald, 2014; Comin et al., 2023) estimate the

utilization-adjusted TFP for different countries with different estimation methods. They find

that the differences between TFP and utilization-adjusted TFP are large over the business

cycle and that capacity utilization covaries negatively with technology. More recent research

(Lewis et al., 2019) shows that it is worker effort instead of capital utilization that drives

capacity utilization over the business cycle for EU data. Fernald (2014) is the state-of-the-art

approach in estimating utilization-adjusted TFP, using both capital utilization and worker

effort in his modeling approach.

The second strand of literature (Petrosky-Nadeau and Wasmer, 2015; Michaillat and Saez,

2015; Bai et al., 2017; Qiu and Rı́os-Rull, 2022) applies search-and-matching to the goods

market. It takes the non-clearing goods market approach on capacity utilization and gives

household search effort an active role in the market outcome. The literature focuses on

household search as an input factor in goods market matching and hence production -

aggregate demand therefore drives TFP. I combine the two strands of literature and analyze

the explanatory power of goods market SaM for TFP in the data.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

derives the difference between TFP and technology in the model, estimates the model, and

compares the data fit of the different model versions. Section 4 shows the impact of different

utilization channels on the transmission of economic shocks on the TFP wedge and cumulative

TFP multiplicators. Section 5 concludes.
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2. Model Setup

The core of the model follows Christiano et al. (2005) with variable capital utilization as

in Fernald (2014). The labor market setup follows Cacciatore et al. (2020), who differentiate

between employment, hours per worker, and worker effort. The novel feature of the model is

goods market search-and-matching (SaM), as described by Michaillat and Saez (2015); Bai

et al. (2017). The model has three different types of agents - households, monopolistically

competitive firms, and a central bank. Goods and labor markets are subject to search-and-

matching (SaM) frictions. The capital market is Walrasian.

2.1. Labor and Goods Markets

The level of employment on the labor market is determined by costly vacancy posting

and inelastic worker supply. Aggregate employment2 is given by

Nt = (1− δN)Nt−1 +mN,t, (1)

where 0 < δN ≤ 1 is an exogenous employment separation rate. New employment relationships

are determined by a Cobb-Douglas matching function

mN,t = ψN,tu
γN
t

(∫ 1

0

vt(i)di

)1−γN

, (2)

where ut are beginning-of-period unemployed workers, and vt(i) are vacancies posted by

firm i. 0 < γN ≤ 1 is the matching elasticity with respect to ut. ψN,t > 0 is the labor

market matching efficiency. It fluctuates following an exogenous labor mismatch shock.

The job-finding probability of the households is defined as fN,t =
mN,t

ut
. The aggregate

vacancy-filling probability of firm i is defined as qN,t(i) =
mN,t

vt(i)
. Labor market tightness is

defined as demand relative to supply, xN,t =
vt
ut
.

The goods market is segmented along the varieties of the differentiated good. Households

spent search effort Dt(i) for each variety i. Each firm i produces one unique variety and

2I normalize the inelastic worker supply to one. Hence, the employment level and the employment rate

are to each other. The Cobb-Douglas matching function has constant-returns-to-scale.
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supplies its available production capacity St(i) to the goods market. Following Moen (1997),

search is directed towards each variety individually. It follows, that there are as many

individual goods markets as varieties. Customer relationships with firm i form according to

Tt(i) = (1− δT )Tt−1(i) +mT,t(i), (3)

where 0 < δT ≤ 1 is an exogenous customer relationship separation rate. New customer

relationships are determined by a Cobb-Douglas matching function

mT,t(i) = ψT,tDt(i)
γTSt(i)

1−γT , (4)

where 0 ≤ γT < 1 is the matching elasticity with respect to Dt(i). Each customer relationship

trades one unit of the good of the respective variety. ψT,t > 0 is the goods market matching

efficiency. It fluctuates following an exogenous goods market mismatch shock3. The proba-

bility of a household finding good i is determined by fT,t(i) =
mT,t(i)

Dt(i)
. The probability of firm

i selling its good is determined by qT,t(i) =
mT,t(i)

St(i)
. Goods market tightness on the market

for good i is determined by demand relative to supply, xT,t(i) =
Dt(i)
St(i)

.

2.2. Households

There are infinitely many households on the unit interval. Each household has infinitely

many workers, which are inelastically supplied to the labor market. The representative

household maximizes her intertemporal utility

W0 = E0

∞∑
t=0

βtlog (UC,t − UN,t) ,

where 0 ≤ β < 1 and instantaneous utility is the difference between additive separable utility

out of consumption UC,t and disutility out of labor supply UN,t. Utility out of consumption

is defined as

UC,t = KC,t − θKC,t−1 − µD

∫ 1

0

Dt(i)di, (5)

3Goods market mismatch shocks represent any short-run fluctuations in goods market matching efficiency.

It includes dispersion and composition effects of aggregated submarkets. Over the business cycle, economic

activity can reallocate to markets with higher or lower than average efficiency. As the model is aggregate,

the shock term summarizes those effects.
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where KC,t is the stock of durable consumption goods4. Households form consumption habits,

0 ≤ θ < 1, following Christiano et al. (2005). Household search effort creates disutility,

µD > 0. It summarizes a broad measure of search costs as e.g. information costs, shopping

costs, and further costs associated with the procurement of the good (see e.g. Michaillat

and Saez (2015); Petrosky-Nadeau et al. (2016)). There is a trade-off between search effort

disutility and consumption utility for each household. The stock of durable consumption

goods is given by KC,t = (1− δH)KC,t−1 + Ct, where 0 < δH ≤ 1 is its depreciation rate and

Ct is investment in private consumption.

Labor supply has three margins - employment, hours per worker, and worker effort. Each

worker bargains over her hours and her worker effort after the employment match is formed.

Disutility out of labor supply is modeled following Bils and Cho (1994) and given by

UN,t = µN,tXt

∫ 1

0

Nt(i)

(
µH

1 + νH
Ht(i)

1+νH +
µe

1 + νe
Ht(i)eH,t(i)

1+νe

)
di, (6)

where Xt = Uω
C,tX

1−ω
t−1 with 0 ≤ ω ≤ 1 is a flexible parameterization of short-run wealth

effects on labor supply following Jaimovich and Rebelo (2009)5. Ht(i) is hours per worker at

firm i with µH > 0, and eH,t(i) is worker effort at firm i with µe > 0. νH and νe determine the

respective supply elasticities. µN,t > 0 is an exogenous labor supply shock. Workers adjust

hours and effort instantaneously, while the supply of unemployed workers is quasi-fixed, as

given by (1).

Aggregate shopping effort is given by Dt =
∫ 1

0
Dt(i)di. The representative household likes

to consume a large variety of goods following Dixit and Stiglitz (1977). Her aggregate

goods bundle is given by Tt =
(∫ 1

0
Tt(i)

ϵt−1
ϵt di

) ϵt
ϵt−1

, where 1 ≤ ϵt ≤ ∞ is the elasticity of

substitution between two varieties. It fluctuates following an exogenous price cost-push shock

4I model durable consumption goods out of two reasons. First, I can directly estimate consumption data

without adjusting it for durable consumption goods. Second, durable consumption is the counterpart for

firm inventories as Bai et al. (2017) show.
5This modeling approach allows to reconcile the behavior of unemployment and hours per worker together

with macroeconomic aggregates, as Cacciatore et al. (2020) show. For ω = 1, the wealth effects cancel out

along the lines of Greenwood et al. (1988)-preferences. For ω = 0, there are short-run wealth effects along

the lines of King et al. (1988).
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as in Ireland (2004). The household divides her aggregate goods bundle into consumption

goods, Ct, and fixed-capital investment goods, IK,t, according to Tt = Ct + PI,t (1 + cI,t) IK,t,

where cI,t = κI
2

(
IK,t

IK,t−1
− 1
)2

are convex fixed-capital investment adjustment costs and

PI,t > 0 is an investment-specific technology shock. The household capital stock develops

according to

KI,t+1 =
(
1− δK,1 + δK,2e

1+ϕK
K,t

)
KI,t + IK,t, (7)

where I follow Basu and Kimball (1997) and differentiate between ”rust and dust” capital

depreciation, 0 < δK,1 ≤ 1, and ”wear and tear” capital depreciation, 0 ≤ δK,2e
ϕK
K,t ≤ 1, whith

ϕK > 0. Capital depreciation increases in capital utilization, but is not zero for eK,t = 0.

Each household follows her intertemporal budget constraint

Bt = (1 + rB,t−1)Bt−1 +

∫ 1

0

Wt(i)Lt(i)di+ Ptub

(
1−

∫ 1

0

Nt(i)di

)
+ PtrK,tKe,t −

∫ 1

0

Pt(i)Tt(i)di− Taxt +Πt

(8)

where Bt are one-period nominal government bonds, Lt(i) = Nt(i)Ht(i)eH,t(i) is effective

labor supply, and Ke,t = eK,tKI,t is utilized capital supply. Income is given by nominal

wages6, Wt(i), paid for effective labor, Lt(i), unemployment benefits, ub, capital interest,

PtrK,t, bond interest, rB,t−1, and dividends paid by the firms, Divt
7. Expenses are determined

by money spent on consumption and investment goods,
∫ 1

0
Pt(i)Tt(i)di, and by lump-sum

taxes, Taxt, which the government charges to pay for unemployment benefits.

2.3. Firms

There are infinitely many firms on the unit interval. Each firm produces one unique variety

i of the differentiated good by employing labor and capital in a Cobb-Douglas production

6Aggregate labor of the representative household is the sum over labor supplied to all firms Nt =
∫ 1

0
Nt(i)di.

As each household has infinitely many workers and matching on the labor market is random, the employment

history of each household is the same. There is perfect unemployment insurance within each household.
7I assume that each household owns the same share of a mutual fund owning all firms. Hence, dividends

Πt paid by firms to households are equal across households.
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capacity function8

Yt(i) = At

[
Nt(i)Ht(i)eH,t(i)

(
1− κH

2

(
Ht(i)− H̄(i)

H̄(i)

)2
)]1−α

[eK,tKI,t(i)]
α , (9)

where At > 0 is a Hicks-neutral technology shock, and 0 ≤ α ≤ 1 is the capital elasticity of

production capacity. κH ≥ 0 defines hours per worker adjustment costs following Cacciatore

et al. (2020), which capture various frictions as e.g. technological constraints due to set up

costs and coordination issues, overtime pay, or decreasing returns in hours per worker. Each

firm maximizes its intertemporal profits

Πt = E0

∞∑
t=0

β0,tPt(i)

[
Tt(i) +Gt(i)−

Wt(i)

Pt(i)
Lt(i)− rK,tKe,t(i)

]
,

where 0 ≤ β0,t < 1 is the stochastic period discount rate9. The firm revenue is determined

by sales on the private market, Tt(i), and by exogenous spending, Gt(i). Each firm i pays

wages, Wt(i), for effective labor, Lt(i), and capital interest, rK,t, for the rented capital stock,

Ke,t. The available private market beginning-of-period production capacity is given by

(1 + cP,t(i))St(i) = (1− cN,t(i))Yt(i)−Gt(i)− (1− δT )Tt−1(i)

+ IS,t(i)− cW,twt(i)Lt(i),
(10)

where cP,t(i) =
κP
2

(
Pt(i)
Pt−1(i)

(1 + π)ιP−1 (1 + πt−1)
−ιP − 1

)2
are convex price adjustment costs

with κP ≥ 0, and cW,t(i) =
κW
2

(
Wt(i)
Wt−1(i)

(1 + π)ιW−1 (1 + πt−1)
−ιW − 1

)2
are convex nomi-

nal wage adjustment costs with κW ≥ 0. Inflation indexation is given by ιP , ιW ≥ 0. Firm

inventories are given by IS,t(i) = (1− δI) (1− qT,t−1(i))St−1(i), where 0 < δI ≤ 1 are inven-

tory depreciation costs. cN,t(i) =
κN
2

(
vt(i)
Lt(i)

)2
are convex labor matching costs following Merz

and Yashiv (2007), where κN ≥ 0. Each firm searches for additional workers by posting open

vacancies, vt(i). The employment level of firm i is given by (1).

8Burnside et al. (1995); Basu and Kimball (1997) show that any evidence on non-constant-returns-to-scale

vanishes as we include variable capacity utilization in the model.
9It is equal to the household discount rate as all firms are owned by a mutual fund owned by the

representative household.
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Each firm supplies its production capacity St(i) to the goods market where customer rela-

tionships form according to (3). It maximizes its profits by setting the optimal price level in

a trade-off with its goods selling probability according to the directed search setup of Moen

(1997) and sticky price setup of Rotemberg (1982a). Each firm is a monopolist along the

lines of Dixit and Stiglitz (1977). It takes the household search behavior into account when

it sets its prices.

2.4. General Equilibrium

To close the model, I define the real gross domestic product of the economy by

GDPt = Ct +Gt + Invt, (11)

where Ct is the numéraire good, and Invt = (1 + cI,t) IK,t+ IS,t− IS,t−1 is private investment.

The government budget is always in equilibrium, Taxt = Ptub
(
1−

∫ 1

0
Nt(i)di

)
. The central

bank follows a Taylor (1993)-type rule to determine the nominal interest rate

1 + rB,t
1 + rB

=

(
1 + rB,t−1

1 + rB

)ir ((πt
π

)iπ
˜GDP

igap
t

)1−ir
·Mt, (12)

where rB and π are steady-state targets set by the central bank, ir, igap ≥ 0 and iπ > 1 are

poliicy coefficients, and Mt is a monetary policy shock. Following Smets and Wouters (2007),

the output gap, ˜GDP t, is the deviation of GDP from its level prevailing under flexible prices

and wages and absent price and wage cost-push shocks. All shock processes follow an AR(1)

process given by

ξt = ξ1−ρξξ
ρξ
t−1ε

ξ
t , εξt ∼ N (0, σ2

ξ ), (13)

where 0 ≤ ρξ < 1 is an autocorrelation parameter, and ξ describes the steady-state of the

random shock process. There are nine shocks in the model - a Hicks-neutral technology shock

At, an investment-specific technology shock PI,t, a labor supply shock µN,t, a labor market

mismatch shock ψN,t, a price cost-push shock ϵt, a wage cost-push shock ηt, a goods market

mismatch shock ψT,t, an exogenous spending shock Gt, and a monetary policy shock Mt.
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2.5. Dynamic System of the Model Economy

The behavior of households and firms is governed by their first-order conditions. I assume

that all firms use the same technology. Hence, I drop the firm index i and summarize all

firms by a representative firm.

Consumption Allocation. The representative household allocates intertemporal consumption

according to

mucN,t = βEt
1 + rB,t
1 + πt+1

mucN,t+1, (14)

mucN,t = mucG,t − c′D,tWC,t + β (1− δT )Etc′D,t+1WC,t+1, (15)

mucG,t = WC,t − βθEtWC,t+1 + β (1− δH)EtmucG,t+1, (16)

WC,t =
1

UC,t − UN,t

− ω
χt
UC,t

, (17)

χt =
UN,t

UC,t − UN,t

+ β (1− ω)Etχt+1, (18)

where mucG,t and mucN,t are gross and net marginal utility out of consumption. WC,t is

contemporaneous marginal utility out of consumption, which depends on the labor wealth

effect, χt. The difference between gross and net marginal utility out of consumption is

determined by marginal household search costs, c′D,t =
µD
fT,t

, which is the level of disutility

necessary to find one consumption good. It depends on the current state of goods market

tightness.

Capital Allocation. The representative household allocates intertemporal fixed-capital invest-

ment according to

QK,t = Et
1 + πt+1

1 + rB,t

(
eK,t+1rK,t+1 +

(
1− δK,1 − δK,2e

1+ϕK
K,t+1

)
QK,t+1

)
, (19)

QK,t =
mucG,t
mucN,t

PI,t
(
1 + cI,t + c′I,t

)
− Et

1 + πt+1

1 + rB,t

mucG,t+1

mucN,t+1

PI,t+1c
′
I,t+1

IK,t+1

IK,t
, (20)

eK,t =

(
rK,t

(1 + ϕK) δK,2QK,t

) 1
ϕK

, (21)

where QK,t defines the shadow price of installed capital according to Tobin (1969). Both

investment adjustment costs and goods market frictions lead to higher investment costs. The
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fraction
mucG,t

mucN,t
determines the impact of household search costs on its investment decision.

The representative firm employs capital according to

rK,t = α
Yt

eK,tKt

(1− cN,t)mct, (22)

where goods market frictions drive marginal costs, mct, and thus capital allocation. Both

capital supply and capital demand are determined by goods market frictions. Therefore,

capital utilization and goods market SaM are directly connected and impact each other.

Labor Allocation. The representative firm follows the setup in Merz (1995); Andolfatto (1996)

and employs labor according to

QF,t = [(1− α) + (1 + α) cN,t]
Yt
Nt

mct − (1 +mctcW,t)wtHteH,t

+ Et
1 + πt+1

1 + rB,t
(1− δN)QF,t+1,

(23)

QF,t =
c′N,t
qN,t

Yt
NtHteH,t

mct, (24)

where the value of marginal employment of the firm, QF,t, depends on the difference between

marginal labor productivity, net of idle production capacity and labor matching costs, and

real wage costs. The value function is forward-looking as employment relationships are

long-term. Firms post vacancies as long as the marginal labor matching costs,
c′N,t

qN,t
, are lower

or equal to the value of marginal employment, QF,t. Hence, there is free-entry on the labor

market.

Each worker-firm match bargains over the conditions of work following a Nash (1950)-protocol.

Each match maximizes the joint surplus by bargaining over the real wage, hours per worker,

and worker effort jointly. The first-order conditions are given by

wtHteH,t = ub+

∂UN,t

∂Nt

mucN,t (UC,t − UN,t)

+
ηt

1− ηt

QF,t

τW,t
− Et

ηt+1

1− ηt+1

1 + πt+1

1 + rB,t
(1− δN) (1− fN,t+1)

QF,t+1

τW,t+1

,

(25)

wteH,tΓW,t = τW,t

∂2UN,t

∂Nt∂Ht

mucN,t (UC,t − UN,t)
− α

(
c′H,t; cN,t

)
mct

Yt
HtNt

, (26)

wtHtΓW,t = τW,t

∂2UN,t

∂Nt∂eH,t

mucN,t (UC,t − UN,t)
− α (cN,t)mct

Yt
eH,tNt

, (27)
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where 0 ≤ ηt ≤ 1 is the household bargaining power. It fluctuates following an exogenous

wage cost-push shock. τW,t and ΓW,t are functions of sticky wage adjustment with τW = 1

and ΓW = 0. They increase monotonically in wage inflation. α
(
c′H,t; cN,t

)
and α (cN,t)

determine the marginal productivity of labor. They decrease monotonically in hours per

worker adjustment costs and labor matching costs. A full description can be found in

Appendix A. All three margins - real wages, hours per worker, and worker effort - are

determined by opportunity costs equalizing their marginal productivity. The goods selling

probability, qT,t, has a direct impact through marginal costs, mct, on all three marginal

productivities. An increase in the goods selling probability leads to higher marginal labor

productivity and has a positive impact on worker effort. The two utilization margins - worker

effort and the goods selling probability - are therefore positively correlated on the firm side

of the economy.

Price Setting. The representative firm sets prices on the goods market with a markup over

marginal costs, mct, given by the process

mct =
qT,tprt + Et 1+πt+1

1+rB,t
(1− δI) (1− qT,t)mct+1

1 + cP,t
, (28)

prt =
1 + Et 1+πt+1

1+rB,t
[(1− δT ) (prt+1 −mct+1) + (1− δI) Ωtmct+1]

1 + Ωt

, (29)

Ωt =
1

ϵ

γT
1− γT

qT,tSt
Tt

mucG,t
c′D,tWC,t

, (30)

where markups combine the profit channel, prt, with its monopolistic competition channel,

Ωt, and the costs of idle capacity determined by qT,t.The New-Keynesian Phillips curve is

given by

c′P,t =
Tt +Gt

Stmct
− γT

1− γT

mucN,t
c′D,tWC,t

[
1 + cP,t − Et

1 + πt+1

1 + rB,t
(1− δI)

mct+1

mct

]
+ cW,twt

Lt
St

+ Et
1 + πt+1

1 + rB,t

mct+1St+1

mctSt
c′P,t+1,

(31)

where c′P,t =
∂cP,t

∂Pt
. Inflation is forward-looking and determined by firm marginal costs and

household marginal search costs. The two determinants describe the trade-off between sticky

prices and household search effort. Inflation increases as the price elasticity of demand
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decreases in marginal household search costs c′D,t. Households trade higher prices for lower

search costs and firms use the decrease in price elasticity to increase their markups. The

impact on the price elasticity increases in γT . Prices adjust only gradually due to price

adjustment costs. This leads to a suboptimal household search effort, which drives capacity

utilization. The trade-off between sticky prices and household search effort is central to the

paper. An in-depth analysis of the impact goods market SaM on the Phillips curve can be

found in Gantert (2021).

3. Variable Capacity Utilization as a Driver of Total Factor Productivity

In this section, I decompose total factor productivity (TFP) in the model into its

technology and capacity utilization channels. I show how capacity utilization identifies

the wedge between TFP and technology and use Bayesian estimation10 to assess changes

in the overall data fit and parameter posteriors when adding goods market SaM to the

model. Henceforth, all variables are denoted as percentage deviations from the deterministic

steady-state indicated by a hat. Details on the estimation are given in Appendix D.

3.1. Deriving Technology and Total Factor Productivity in the Model

Total factor productivity (TFP) is measured as output deviations that cannot be explained

by input factor deviations (Solow, 1957), given an appropriate production function11. In the

model, it is given by

ˆTFP t = ˆGDP t − (1− α)
(
N̂t + Ĥt

)
− αK̂I,t. (32)

To derive the share of TFP that is driven by technology, I solve for the technology parameters

in the model - Hicks-neutral technology, Ât, and investment-specific technology, P̂I,t. I

10I use the Dynare toolbox (Adjemian et al. (2022)) in order to linearize, solve, and estimate the model.
11In the literature, an appropriate production function implies a Cobb-Douglas function, as its properties

reflect the (mainly) constant shares of labor and capital income in the data. See e.g. Basu et al. (2006);

Fernald (2014).
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summarize technology fluctuations as utilization-adjusted TFP fluctuations12, ˆTFP util,t, and

calculate the difference to ˆTFP t. The difference is defined as the TFP wedge

Φ̂t = Φ̂SAM,t + Φ̂Labor,t + Φ̂Capital,t, (33)

which decomposes into a goods market channel, Φ̂SAM,t, a labor market channel, Φ̂Labor,t, and

a capital market channel, Φ̂Capital,t. All three channels increase the TFP wedge as capacity

utilization increases. It follows that all three channels drive TFP without fluctuations in

technology. Therefore, neglecting capacity utilization leads to an overestimation of technology

fluctuations in the data.

We can further decompose the three channels of the TFP wedge. First, the goods market

channel, Φ̂SAM,t, is driven by non-clearing goods markets,
∂Φ̂SAM,t

∂q̂T,t
> 0, long-term customer

relationships,
∂Φ̂SAM,t

∂T̂t−1
> 0, and firm inventories,

∂Φ̂SAM,t

∂ÎS,t
> 0. Second, the labor market

channel, Φ̂Labor,t, is driven by worker effort,
∂Φ̂Labor,t

∂êH,t
> 0, and labor matching costs,

∂Φ̂Labor,t

∂ĉN,t
<

0. And third, the capital market channel, Φ̂Capital,t, is driven by capital utilization,
∂Φ̂Capital,t

∂êK,t
>

0. The derivations of the TFP decomposition are given in detail in Appendix B.

An increase of capacity utilization leads to an increase in the TFP wedge for all three channels.

For the measurement of TFP and the TFP wedge, it does not matter whether utilization

originates on the goods, labor, or capital market. The model framework is flexible and

nests the approach of Fernald (2014), where capital utilization and variable worker effort

are the determinants of capacity utilization. In this setup, the challenge of identifying the

determinants of the TFP wedge is that we do not observe any of the capacity utilization

channels directly. Instead, we observe survey data on overall capacity utilization. Therefore,

I reformulate the model using the definition of capacity utilization in the data.

I follow Morin and Stevens (2004); Michaillat and Saez (2015); Comin et al. (2023) and

define capacity utilization13 with the following assumptions: 1) The capital stock is measured

12In this paper, I concentrate on the capacity utilization channels of TFPt. Another channel analyzed in

the literature is input factor reallocation between industries. Basu et al. (2006) show that its impact on TFP

is similar to the impact of capacity utilization. In a boom, input factors are reallocated to more productive

industries. Hence, TFP increases.
13The definition of capacity utilization used in the FED survey questionnaire can be found in Appendix C.
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at the current available capital of a firm. This includes non-utilized capital eK,t. 2) The level

of employment and vacancy costs are measured at their current level. 3) Hours per worker

and worker effort are measured at the steady-state, as any deviation is not sustainable over

the long-run. The capacity utilization rate is defined as real GDP relative to production

capacity and given by

ĉut = ˆGDP t +ΘcnĉN,t − (1− α) N̂t − αK̂I,t − Ât −ΘAIÂI,t, (34)

where Θcn =
cN

1−cN
> 0 and ΘAI =

1
1−cN

T
N1−αKα

I
> 0. Using (34) to substitute for real GDP

in (32) leads to

Φ̂t = ΘĉN,t + (1− α) Ĥt − ĉut, (35)

where the TFP wedge is determined by capacity utilization corrected for hours per worker

and labor matching costs. Therefore, capacity utilization summarizes the impact of the

goods, labor, and capital market channels of the TFP wedge. The model setup supports the

results of Comin et al. (2023), regardless of whether goods market SaM is a determinant of

capacity utilization in the data. The estimated ”utilization-adjusted TFP” of both Fernald

(2014) and Comin et al. (2023) are directly connected to the model, but its determinants

might differ. I use the identified TFP wedge (35) and discriminate between the capacity

utilization channels by evaluating their explanatory power of the other eight macroeconomic

time series used in the estimation.

3.2. Data Description and Estimation Setup

I estimate the model to replicate U.S. business cycle data from 1985q1 to 2019q4 using

full information Bayesian estimation. Time is in quarters. The estimation contains nine time

series - real GDP growth, real private investment growth, real private consumption growth,

the capacity utilization rate, total hours worked, the unemployment rate, price inflation

(GDP deflator), wage inflation (nominal labor compensation), and the FED funds rate - and

the nine model shocks.

The economy wide capacity utilization rate is constructed by combining industry and service
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sector data. The industry sector capacity utilization rate is based on physical data where

available and on the U.S. Census Bureau’s Quarterly Survey of Plant Capacity Utilization.

Due to lack of data, the service sector capacity utilization rate is approximated by using the

variance of EU survey data and the high correlation between industry and service sector

capacity utilization rates. The economy wide capacity utilization rate is based on industry

data adjusted for the service sector variance. I adjust the FED funds rate for the zero

lower bound period by using the shadow rate of Wu and Xia (2016). This accounts for the

non-linearity in the data that is not present in a linear New-Keynesian model, as Wu and

Zhang (2019) show. All the data is detrended using a one-sided HP filter following Stock

and Watson (1999) to demean the data and account for structural breaks. An overview of

the data sources and construction can be found in Appendix C.

Table 1 shows the calibration and prior setup of the model parameters. A complete

overview of the calibration and estimation strategy can be found in Appendix D. I set ϵ = 11

and α = 0.3 directly, instead of targeting steady-state price markups as e.g. in Comin et al.

(2023). Targeting steady-state price markups leads to significantly different values for ϵ and

α between model versions, as adding goods market SaM adds a second price markup channel.

Different values for ϵ and α imply different levels of market concentration and production

setup. Here, I focus to keep both constant across model versions.

I set the prior mean of νe to 2 with a standard deviation of 1, as the literature shows a wide

range of parameters between 0.35 and 3 (see e.g. Bils and Cho (1994); Lewis et al. (2019)). I

set the prior mean of δK,2 to 60% of δK (see e.g. Basu and Kimball (1997)) with a standard

deviation of 15%. Both priors have large standard deviations to account for the possible

trade-off with goods market SaM. This approach lets the data decide on the importance of

each capacity utilization channel.

The novel feature in this paper - goods market SaM - is described by three parameters. I

set the prior mean of γT to 0.17 with a standard deviation of 0.1. The setup follows Bai

et al. (2017) who estimate γT between 0.11 and 0.23 using the American Time-Use Survey. I

set the prior mean of δI to 0.74 with a standard deviation of 0.05. It is a combination of

δM,I = 0.15 for the manufacturing sector, as calculated by Khan and Thomas (2007), and
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Table 1: Steady-State Targets and Parameterization

Calibration Estimation

Variable Value Variable Distribution Prior Mean Prior Std.Dev.

Labor markets Labor markets

repl (N = 0.94) νe Gamma 2 1

µH (H = 1) κH Gamma 4 1.5

µe (eH = 1) κW Gamma 10 3

γN 0.6 ιW Beta 0.5 0.15

δN 0.12 Goods markets

ψN (qN = 0.7) θ Beta 0.5 0.15

η 0.5 δH Beta 0.5 0.15

κN (cN cu = 0.015) δI Beta 0.5 0.15

νH 1 γT Beta 0.17 0.1

ω 0.01 κP Gamma 60 20

Goods markets ιP Beta 0.5 0.15

ψT (cu = 0.86) Capital markets

µD (fT = qT ) iπ Gamma 1.7 0.1

ϵ 11 igap Gamma 0.2 0.1

G (gS = 0.2) ir Beta 0.5 0.15

Capital markets κI Gamma 4 1.5

β (r = 0.01)
δK,2

δK
Beta 0.6 0.15

α 0.3

ϕK (eK = 1)

δK 0.025

δK,1 (δK − δK,2)

NOTE: Default calibration of the model. Values in parentheses are steady-state targets.

δS,I = 1 for the service sector, weighted by the respective value-added. Data on δT is scarce,

hence I set its prior to 0.5 with a standard deviation of 0.15.

I conduct a horse-race between capital utilization, worker effort, and goods market

SaM in explaining the capacity utilization data, while also being in line with eight other

macroeconomic aggregates. The different model versions can be framed into three setups.

First, the reference model, as is common in the literature (see e.g. Fernald (2014)), that

describes an economy with capital utilization and worker effort, δK,2 > 0, νe < ∞, γT =

0, δT , δI = 1. Second, the SaM model that describes an economy with non-clearing goods

markets, but fully utilized input factors, δK,2 = 0, νe = ∞, γT > 0, δT , δI < 1. And
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third, the full model that describes the combination of the reference and SaM models,

δK,2 > 0, νe <∞, γT > 0, δT , δI < 1.

The analysis determines the combination of capacity utilization channels that has the highest

probability in explaining the TFP wedge, as the TFP wedge is completely identified by (35)

and the data used. I use the modified harmonic mean following Geweke (1999) and compare

the likelihood of the different model versions in explaining the data. The model comparison is

based on the Bayes factor as described by Kass and Raftery (1995). Convergence diagnostics

can be found in Appendix D.3.

3.3. Decomposing Total Factor Productivity in the Data

The TFP wedge across model versions is completely described by (35) and the data used

in the estimation. Before analyzing the likelihood of the different model versions, we can

therefore derive the TFP wedge implied by the model for US data and compare it to the

TFP wedge in the literature, as given by Fernald (2014). There are two distinct differences

taken by assumption compared to the approach of Fernald (2014). First, I use investment

data instead of capital stock data. Second, I use direct evidence on capacity utilization data.

The TFP time series for the US and its decomposition implied by the model are strongly

connected to the results of Fernald (2014), but also show some distinct differences that

depend on the definition of capacity utilization. The time series for TFP growth are highly

correlated with the data, Corr(TFPModel, TFPFernald) = 0.75. The model results are based

on the full model, but can be interchangeably based on the reference model. Figures for TFP

growth and its decomposition are given in Appendix D.4.

Figure 2 shows the TFP wedge and capacity utilization percentage deviations14 from its

deterministic steady-state (long-run value) for the model and the data. The corrseponding

second moments are given in Appendix D.4. The estimated model TFP wedge shows a

correlation of Corr(ΦModel,ΦFernald) = 0.54 with the data TFP wedge. We observe a split in

14I use percentage deviations from the deterministic steady-state instead of growth rates for better visibility.

The results are nevertheless close to each other.
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Figure 2: The TFP Wedge in the Data and the Model
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NOTE: The figure shows percentage deviations from the deterministic steady-state (long-term trend) for the model TFP wedge,

the data TFP wedge, and capacity utilization. It shows US data from 1985q1 to 2019q4.

the sample in 199515. We observe that before 1995 Corr(ΦModel,Pre1995,ΦFernald,Pre1995) = 0.00

and after 1995 Corr(ΦModel,Post1995,ΦFernald,Post1995) = 0.66. Therefore, the model and the

data are closer connected since the methodological adjustment of the capacity utilization

data in 1995.

The average share of TFP fluctuations explained by TFP wedge fluctuations in the model is

close to the data throughout the sample, though. I calculate the share of TFP fluctuations

explained by TFP wedge flucutations by ΦShare,t =
Abs(Φ̂t)

Abs(Φ̂t)+Abs( ˆTFPUtil,t)
. The results are

ΦShare,Model,t = 47% and ΦShare,Data,t = 50%. Using growth rates instead leads to the same

conclusion, as dΦShare,Model,t = 49% and dΦShare,Data,t = 44%.

There is an obvious difference in the approaches of calculating the TFP wedge between

Fernald (2014) and this paper. As can be seen in figure 2, we can recover a large part of the

difference to the data by using capacity utilization fluctuations directly as a proxy of the TFP

wedge. The correlation for the full sample is Corr(cuModel,ΦFernald) = 0.79. The correlations

of the pre- and post-1995 sub-samples are Corr(cuModel,Pre1995,ΦFernald,Pre1995) = 0.37, and

Corr(cuModel,Post1995,ΦFernald,Post1995) = 0.89, respectively.

15Following Morin and Stevens (2004), there has been a methodological adjustment in the capacity

utilization survey data in 1995.
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The difference between capacity utilization and the TFP wedge in the model depends on

whether capacity utilization is defined at long-run or short-run hours per worker. The default

option taken in this paper is the long-run definition. The option closer to Fernald (2014)

is the short-run definition. The correlations between the model TFP wedge and capacity

utilization are Corr(ΦModel, cuModel) = 0.73, Corr(ΦModel,Pre1995, cuModel,Pre1995) = 0.56, and

Corr(ΦModel,Post1995, cuModel,Post1995) = 0.77, respectively. In order to use capacity utilization

data to estimate the TFP wedge correctly, it is therefore essential to use the correct definition.

We find both in the literature. See also section 3.1. Nevertheless, all three time series shown

here are closer aligned to each other since 1995.

3.4. Analyzing the Explanatory Power of Non-Clearing Goods Markets

Adding goods market SaM improves the explanatory power of the model for different

estimation setups. In fact, it is the single most important capacity utilization channel of the

model, rendering capital utilization and worker effort less important. Table 2 shows the log

data densities for the main model versions. I can replicate the results of Lewis et al. (2019)

who show that worker effort is more important than capital utilization in explaining variable

capacity utilization. In contrast to their results, I find that the worker effort model also

explains the data better than the reference model, which combines both channels.

The simple SaM model, which excludes long-term customer relationships and firm inventories,

shows decisive improvement in the data fit compared to the reference model with an increase

of 56 points in the Bayes factor following Kass and Raftery (1995). This is in line with the

results of Qiu and Ŕıos-Rull (2022). Goods market SaM is the single most important channel

in explaining capacity utilization data and TFP in this setup. The results support the

non-clearing goods market approach in general, and in an otherwise textbook New-Keynesian

model in specific, as shown in the companion paper Gantert (2021). In the companion

paper, I derive a three-equation New-Keynesian model with variable capacity utilization and

demand-driven TFP. It allows for a parsimonious modeling approach of capacity utilization

while only showing minor deviations from the textbook New-Keynesian model as e.g. in Gali

(2015).
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Table 2: Model fit comparison (One-sided HP filter)

Log data density 2ln Bayes factor

Capital Utilization Model 4801 −20

Worker Effort Model 4814 6

Simple SaM Model 4839 56

Reference Model (VWE & VCU) 4811 0

SaM Model 4845 68

SaM & Capital Utilization Model 4835 48

SaM & Worker Effort Model 4839 56

Full Model (VWE, VCU & SaM) 4829 36

NOTE: Log data densities are calculated by the modified harmonic mean following Geweke

(1999). For model comparison, I use 2ln Bayer factor as described by Kass and Raftery

(1995). Model Abbreviations: 1) Variable Worker Effort (VWE), 2) Variable Capital

Utilization (VCU), and 3) Goods Market Search-and-Matching (SaM). The simple SaM

Model excludes long-term customer relationships and firm inventories.

Adding long-term customer relationships and firm inventories in the SaM model further

improves the data fit decisively by 12 points in the Bayes factor statistic. Both channels

lead to an intertemporal disconnect between production and consumption (see (33)), and

therefore have to be taken into account when calculating utilization-adjusted TFP. Adding

either capital utilization or worker effort to the SaM model leads to a decisively worse data

fit. Hence, in contrast to Qiu and Ŕıos-Rull (2022) I find that the SaM model shows a better

data fit than the SaM & capital utilization model.

The full model - the combination of the reference and SaM model - shows a decisive

improvement in the data fit as well. It shows an increase by 36 points compared to the

reference model in the Bayes factor following Kass and Raftery (1995). This increase is about

32 points smaller than the increase in the data fit of the SaM model. Therefore, also the

combination of capital utilization and worker effort is rendered obsolete by the likelihood of

the data once we add goods market SaM.

In the following analysis, I take the full model as the preferred model nevertheless. Even
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though the SaM model is better in explaining the data from a technical point of view, it

takes dogmatic priors for capital utilization and worker effort into account. The dogmatic

priors are in contrast to the beliefs of myself and much of the literature.

The results presented in this section are in line with a variety of robustness checks: 1) using

demeaned instead of HP filtered data, 2) using ϵ = 6, α = 0.2 as in Comin et al. (2023), 3)

using different approaches of setting the price adjustment costs parameter κP
16, 4) using an

alternative definition17 of capacity utilization as discussed in section 3.3, and 5) dropping

capacity utilization data and goods market mismatch shocks from the estimation. Reducing

the sample size to 1985q1-2008q4 to exclude the zero lower bound period and thus the Wu

and Xia (2016) shadow rate leads to almost the same results with the exception that the

full model is only preferred to the reference model when we exclude long-term customer

relationships and firm inventories. The sensitivity results of the estimation can be found in

Appendix D. The analysis of the second moments of the different models is delegated to

the appendix. The correlograms show that the full model compared to the reference model

especially improves the correlations between inflation, capacity utilization, and TFP. The

results are given in Appendix D.6.

3.5. The Impact of Non-Clearing Goods Markets on Parameter Posteriors

Adding goods market SaM renders capital utilization and worker effort less important in

the full model, while the demand elasticity of goods market matching is well identified and

significant. The long-term margins of goods market SaM are of secondary importance.

The data is informative on the parameters of interest. The posterior estimates of the

parameters are all well within their prior intervals. There are some differences in the

16As Ireland (2004) shows, the price adjustment costs parameter can become very large in a maximum-

likelihood estimation, which is not in line with the data. In the appendix, I therefore show the results of

setting two alternative dogmatic priors and estimating the model. Setting κP to replicate empirical Phillips

curve slopes and setting κP to replicate empirical price adjustment costs leads to the same results as presented

in this section.
17If we define capacity utilization at short-run instead of long-run hours per worker, the resulting TFP

wedge time series for the U.S. is closer to the data calculated by Fernald (2014).
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posteriors, but most of the parameters are close to each other across the reference, SaM, and

full model. The price adjustment cost parameter decreases as we add goods market SaM. It

is 198 in the reference model, 139 in the full model, and goes as low as 104 for the SaM model.

Although the parameter size is generally higher than the calculations of Gantert (2021), the

difference between the models matches the calculations well18. The result is also in line with

the robustness analysis of the price adjustment cost parameter given in Appendix D.5. It

follows that the price cost-push shock has a larger standard deviation for the reference model.

Figure 3: Prior-Posteriors of the Utilization Parameters
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NOTE: The figure shows the prior and posterior distribution for the reference and full model. The estimation follows the

description in Appendix D. νe follows a prior Gamma-distribution. δK,2 − share and γT follow a prior Beta-distribution.

Figure 3 shows the priors and posteriors of the parameters defining the capacity utilization

channels for the reference and full model. The parameters of the reference model show

a higher νe = 3.73 compared to its prior, and a lower δK,2 = 0.27 compared to its prior.

The posterior standard deviations for both δK,2 and νe decrease, indicating well identified

parameters. The data indicates that the reference model leads to large variations in both

capital utilization and worker effort.

Adding goods market SaM - given by the full model - leads to a significant increase in

νe = 5.93, and a significant decrease in δK,2 = 0.16 compared to the priors and to the

reference model posteriors. δK,2 shows a 41% decrease and νe a 59% increase relative to

the reference model. Goods market SaM partially substitutes for the capital utilization and

18The goods market SaM channel reduces price adjustment cost significantly and puts them closer to a

more realistic range of adjustment cost of 1.2% of GDP on average, as e.g. calculated by Zbaracki et al.

(2004).
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worker effort channels.

The posterior mean of γT decreases compared to its prior, but is well within the estimated

interval of Bai et al. (2017) with γT = 0.10. Its posterior standard deviation is less than half

of the prior standard deviation, hence γT is well identified by the data. Firm inventories and

long-term customer relationships show rather a minor role in the model as their parameters

are estimated at δI = 0.84 and δT = 0.81, respectively. Overall, the parameter posteriors of

the full model show the importance of goods market SaM in explaining capacity utilization

data as well. A complete overview of the prior setup, posterior estimates, and their 90%

HPD intervals for all parameters can be found in Appendix D.

4. Drivers of TFP over the Business Cycle

In this section, I show the shock decomposition for US macroeconomic aggregates and TFP

as we introduce goods market SaM to the model. Demand shocks become more important

relative to supply shocks. The change in the shock decomposition pattern occurs although

TFP and the TFP wedge are set by the data across models. Therefore, any change follows

from the changes in the propagation mechanisms of the models. I show the impact of goods

market SaM on the impulse responses of the TFP wedge and decompose its determinants.

Further, I show cumulative TFP multiplicators that put TFP fluctuations in perspective to

GDP fluctuations of the model economy.

4.1. Shock Decomposition: The Determinants of the TFP Wedge

As we add goods market SaM to the model, the propagation mechanism of the model

changes, which in turn changes the underlying shocks that drive the economy and replicate

the macroeconomic time series. The dominant driving forces in both the reference and

full model are technology and goods market mismatch shocks. Technology shocks explain

42− 55%, and goods market mismatch shocks 24− 45% of variation in real GDP. In contrast,

labor, cost-push, and monetary policy shocks explain about 4− 10% of variation in real GDP

each. A complete (historical) variance decomposition is given in Appendix D.7. Figure 4

shows the change in the historical variance decomposition as we move from the reference to
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Figure 4: Shock Decomposition Difference between the Reference and Full Model
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NOTE: The figure shows the percentage point change of the variance decomposition for the model shocks and across models.

An increase indicates a larger variance share for the respective shock in the full model compared to the reference model.

the full model. A positive deviation shows a percentage point increase in the variance share

of a shock for the full model. The comparison for the SaM model is given in Appendix D.7.

There is a general pattern in the change of real GDP, capacity utilization, inflation, and

TFP variance decomposition as we move from the reference to the full model. The share of

variation explained by neutral technology and cost-push shocks decreases, while the share of

variation explained by investment-specific technology and goods market mismatch shocks

increases, although investment-specific technology shocks show lower variation in capacity

utilization. This pattern indicates a shift to aggregate demand and market heterogeneity as

drivers of the economy: Investment-specific technology shocks affect household income besides

technology and therefore drives the household search effort upwards. Goods market mismatch

shocks affect household search disutility, but also summarize goods market composition and

dispersion effects. They capture unmodeled market heterogeneity. Similar effects have been

shown for input factor reallocation to more productive firms over the business cycle by e.g.

Basu et al. (2006); Baqaee et al. (2021). In contrast, neutral technology and cost-push shocks

are drivers of the supply side of the economy.

For capacity utilization, the increase in the variance share of goods market mismatch shocks

is with over 15%−points especially large. At the same time, the variance share of technology

and cost-push shocks show a quantitatively similar decrease. Therefore, adding goods market
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SaM leads to a much larger role of aggregate demand, and goods market composition and

dispersion effects for the fluctuations of capacity utilization. In contrast, technology and

cost-push shocks that drive firm marginal costs have a larger impact on capital utilization

and worker effort in the reference model. Exogenous changes in marginal costs have a smaller

impact on the full model economy, as there is a trade-off between prices and search effort.

For inflation, the general pattern of change applies with two differences. First, the variance

share of price cost-push shocks decreases significantly, and second the variance share of

monetary policy shocks increases, as we move from the reference to the full model. This

pattern further underlines the importance of the trade-off between prices and search effort.

Adding goods market SaM leads to a stronger incomplete pass-through of marginal costs

to prices. Their allocative role decreases (see also e.g. Abbritti and Trani (2020); Abbritti

et al. (2021)). Exogenous shifts in costs alone do not suffice to move aggregate demand if

household search effort is rigid.

The general pattern also applies for TFP. Non-technology shocks increase their variance

share as the decrease in neutral technology is larger than the increase in investment-specific

technology. Goods market mismatch shocks explain a larger variance share of TFP19 as we

move from the reference to the full model. Hence, aggregate demand, and goods market

composition and dispersion effects play a larger role as a driver of TFP (see again e.g. Basu

et al. (2006); Baqaee et al. (2021)). Further, monetary policy shocks - although small in the

overall picture of variance decomposition - show a sizeable increase in the variance share of

TFP. This pattern is additional evidence on the increased importance of aggregate demand

for TFP in the full model. Whether the change in the variance decomposition of TFP just

follows the change in real GDP variance decomposition or a change in the propagation

mechanism, is the topic of the next sections.

19Generally, goods market mismatch shocks also contain market technology shocks. Here, the shock is

essentially a black-box containing different goods market shocks. As market technology is more of a medium

to long-term development though, I do not interpret the goods market mismatch shock as a technology shock.

To differentiate between market technology and market dispersion and composition effects is a task for future

research.

26



4.2. The Impact of the TFP Wedge on Measuring Technology

How large is the TFP wedge between TFP and utilization-adjusted TFP for the different

shocks over the business cycle? A positive TFP wedge indicates that TFP overestimates the

underlying utilization-adjusted TFP, vice-versa. I analyze the differences of the TFP wedge

impulse response functions (IRFs), as we move from the reference model to the full model.

Technology shocks. The defining feature of neutral and investment-specific technology shocks

is that they have some inherent technology component. Figure 5 shows TFP wedge IRFs

to expansionary technology shocks for the reference, SaM, and full model. The TFP wedge

IRF to the neutral technology shock shows a significant initial decrease. Hence, technology

innovations are underestimated by TFP deviations. The initial decrease in capacity utilization

leads to a smaller increase in TFP than in technology. Because prices are sticky, aggregate

demand only adjusts gradually. Firms decrease their capital utilization, workers decrease

their effort, and TFP increases by 15% less than technology. As prices adjust, the TFP

wedge turns positive over the medium-run. Aggregate demand increases as prices drop and

income is high. We observe an overshooting of TFP as capacity utilization increases above

its steady-state. By comparing the results to the SaM model, we see that the overshooting

process is driven by capital utilziation and worker effort, as it is not present in the SaM

model. In the long-run, the TFP wedge turns slightly negative again, as capital utilization

decreases to increase the life-span of the increased capital stock and increase the persistence

of the impact of the neutral technology shock.

Adding goods market SaM (full model) amplifies the initial negative IRF of the TFP wedge.

Its initial decrease of 22% in the full model is therefore 50% larger than in the reference

model. The trade-off between sticky prices and household search effort leads to a stronger

decrease in capacity utilization, as the additional production capcacity of firms is only picked

up as prices decrease. The medium to long-run pattern is identical to the reference model,

but shows a lower variation in the TFP wedge. Therefore, goods market SaM amplifies the

initial impact of capacity utilization on TFP compared to the reference model, as can also

be seen by comparing it to the SaM model IRFs.
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Figure 5: The Cyclical TFP Wedge for the Technology Shocks
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NOTE: The figure shows impulse response functions of the TFP wedge to technology shocks according to (33). The deviations

are measured in percentage deviations from the deterministic steady-state. The different curves represent the reference (black

curves), full (red dashed curves), and SaM (blue curves) model.

The TFP wedge IRF to the investment-specific technology shock shows positive deviations

over the short and medium-run. Small initial deviations due to the pre-determined capital

stock increase significantly and show TFP wedge deviations of up to 23% for the reference

model. Hence, technology innovations are overestimated by TFP deviations. The investment-

specific technology shock shows larger fluctuations in TFP than in technology. The shock

has two components. First, an increase in production capacity as the capital stock increases

exogenously. Second, an increase in household income as they hold a larger capital stock. As

sticky prices only adjust gradually, the income (aggregate demand) channel is larger than

the production capacity (aggregate supply) channel. Hence, capacity utilization and the

TFP wedge increase. As prices increase, the TFP wedge decreases and converges back to its

steady-state. In the long-run, the TFP wedge turns negative as capital utilization decreases

to increase the life-span of the additional capital stock.

Adding goods market SaM amplifies the production capacity channel over the income channel

in the short-run, as additional aggregate demand requires additional household search effort.

Hence, the positive TFP wedge deviations are smaller compared to the reference model. The

peak of TFP wedge deviations for the full model is 21%, hence 2%− points smaller than in

the reference model. The peak of the TFP wedge deviations for the SaM model is 15%, in

line with the previous results. The IRFs of the full model quickly converge to the IRFs of

the reference model as prices adjust.
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Figure 6: Decomposing TFP into Wedge and Shock for the Technology Shocks
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NOTE: The figure shows the decomposition of the impulse response functions of the TFP wedge to technology shocks for the

full model. The deviations are measured in percentage deviations from the deterministic steady-state. TFP IRFs (grey areas)

are decomposed into the TFP wedge (black dotted curves) and the exogenous shock (red dashed curves).

The decomposition of the TFP IRFs into a technology and TFP wedge component can be

seen in figure 6 for the full model. TFP underestimates technology for the neutral technology

shock, and overestimates technology for the investment-specific technology shock. I find that

the shock component shows larger and more persistent deviations for both technology shocks.

The shock component dominates TFP deviations for the Hicks-neutral technology shock. In

contrast, the shock component shows about the same deviations as the TFP wedge for the

investment-specific technology shock. Its initial deviation is somewhat higher, but lower over

the medium-run. The investment-specific technology shock shows a consistent disconnect

between the technology shock and TFP deviations. Therefore, we have to be especially careful

about decomposing technology and capacity utilization deviations for investment-specific

technology shocks. The figures for the reference and SaM models are qualitatively identical,

but quantitatively different, as described by the difference in the TFP wedges shown in

figure 5.

Non-technology shocks. Most of the economic shocks in the model are not driven by technology.

They drive TFP, in contrast to the technology shocks, only by fluctuations in capacity

utilization. Figure 7 shows TFP wedge IRFs to expansionary price and wage cost-push,

goods and labor market mismatch, labor supply, and monetary policy shocks. We observe

positive TFP wedge deviations over the short and medium-run for the reference model for

all shocks except the labor mismatch and supply shocks. The two shocks show an initial
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Figure 7: The Cyclical TFP Wedge for Price Cost-Push, Goods Market Mismatch, and Monetary

Policy Shocks
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NOTE: The figure shows impulse response functions of the TFP wedge to non-technology shocks according to (33). The

deviations are measured in percentage deviations from the deterministic steady-state. The different curves represent the

reference (black curves), full (red dashed curves), and SaM (blue curves) model.

decline in the TFP wedge as additional labor increases the production capacity, which

only matches gradually due to sticky prices. As prices decline, both shocks show positive

TFP wedge deviations as well. The slight negative deviations of the TFP wedge in the

long-run follow again from the underutilization of capital to increase its life-span. Therefore,

expansionary non-technology shocks generally imply an increase in capacity utilization and

hence technology deviations being overestimated by TFP deviations.

Adding goods market SaM (full model) decreases the TFP wedge deviations for all six shocks

except the monetary policy shock (although it also decreases slightly for the SaM model).

The cost-push shocks decrease marginal costs of the firm, the labor shocks increase labor

allocation to the firm, and the goods market mismatch shock decreases idle capacity of the

firm. In order to pass the lower marginal costs or larger production capacity through to the

market, aggregate demand has to increase as well. As goods market SaM adds the trade-off

between sticky prices and household search effort, the pass-through becomes more difficult.

The shocks affect the supply side of the economy, but do not stimulate the demand side
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enough to pick up the additional production capacity. Capacity utilization and therefore

TFP do not increase as much in the full model compared to the reference model, as can

be seen by the negative IRFs of the difference between the full and reference model. The

effect is even more pronounced in the SaM model. The maximum TFP wedge deviations

decrease from 9.5% to 6.4% for the price cost-psuh shock, from 5.4% to 2.2% for the wage

cost-push shock, and from 65.7% to 43.1% for the goods market mismatch shock. For the

labor mismatch and supply shocks, the initial TFP wedge deviations decrease from −2.3% to

−2.6%, and from −5.8% to −11.8%, respectively. The differences generally become larger if

we look at the SaM model, excluding capital utilization and worker effort from the analysis.

In contrast, the monetary policy shock directly affects aggregate demand and household

search effort through the consumption Euler equation. Lower interest rates stimulate

contemporaneous aggregate demand. As prices adjust slowly, the trade-off between sticky

prices and search costs lead to higher household search effort, which in turn increases capacity

utilization and TFP. The maximum TFP wedge deviation increases from 13.2% for the

reference model to 14.9% for the full model. Across all shocks to the economy, it is the

trade-off between sticky prices and household search effort that is central to the changes in

the propgation mechanisms as we add goods market SaM. Active aggregate demand becomes

an important driver of capacity utilization.

Capacity Utilization Channel Decomposition. The fluctuations in the TFP wedge are driven

by capacity utlization fluctuations on the labor, capital, and goods market, as shown in (33).

Adding goods market SaM shifts the TFP wedge drivers from labor and capital markets to

goods markets, as also shown in section 3.5. In this section, I analyze the impact of adding

goods market SaM on the TFP wedge decomposition for each single shock. The TFP wedge

variance share of each channel is given by the share of absolute fluctuations in labor, capital,

and goods market capacity utilization. The results are shown in table 3.

In line with the prior-posterior analysis of the parameters, I find that in the reference model

the labor channel (50−70%) is significantly more important than capital utilization (20−40%)

in driving the TFP wedge fluctuations across shocks. The result is in line with Lewis et al.
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Table 3: Decomposition of the TFP Wedge Fluctuations

eA eI eP eW eT eN eH eM

Reference Model 53% 49% 57% 68% 16% 54% 58% 63%

Labor Channel SaM Model 22% 15% 33% 22% 5% 50% 12% 10%

Full Model 28% 32% 39% 42% 10% 48% 37% 25%

Reference Model 26% 38% 33% 23% 8% 22% 31% 28%

Capital Channel SaM Model 0% 0% 0% 0% 0% 0% 0% 0%

Full Model 12% 22% 19% 4% 5% 14% 10% 9%

Reference Model 21% 14% 11% 9% 76% 24% 12% 9%

SaM Channel SaM Model 78% 85% 67% 78% 95% 50% 88% 91%

Full Model 59% 46% 42% 54% 85% 38% 53% 66%

NOTE: The TFP wedge variance share of each channel is given by the share of absolute fluctuations in

labor, capital, and goods market capacity utilization. Shock abbreviations: eA: Neutral technology shock,

eH: Labor supply shock, eI: Investment-specific technology shock, eM : Monetay policy shock, eN : Labor

mismatch shock, eP : Price cost-push shock, eT : Goods market mismatch shock, eW : Wage cost-push shock.

(2019). The goods market SaM channel represents 10−20% of TFP wedge fluctuations in the

reference model. This follows from a constant 86% capacity utilization on the private goods

market and a varying share of GDP traded on the private goods market. I find that the

capital utilization channel is somewhat more important for the investment-specific technology

shock, and that the worker effort channel is somewhat more important for the wage cost-push

shock. Overall, both channels are important across shocks in the reference model, except

the goods market matching shock, which is by definition driven by the goods market SaM

channel.

Adding the variable goods market SaM channel (full model) reduces the variance share of

the TFP wedge explained by capital utilization and worker effort across shocks and increases

the variance share of goods market SaM significantly. For most shocks it increases to over

40−60%. Along the results found in section 3.5, the decrease is especially pronounced for the

capital utilization channel, while the worker effort channel also becomes less important, but

still explains a sizeable share of TFP wedge fluctuations. For the monetary policy shock, the
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shift from the reference model to the full model is the largest across shocks with an increase

of the SaM channel variance share from 9% to 66%. The result emphasizes the significant

impact of goods market SaM on demand shocks.

Goods market SaM puts the trade-off between household search effort and sticky prices to the

center of the TFP wedge analysis. The trade-off has a distinct impact on capacity utilization

and the mismeasurement of technology by TFP. It leads to a larger underestimation of

technology by TFP following technology shocks and to a larger overestimation of technology

by TFP following non-technology shocks. The investment-specific technology shock is the

exception in this setup, as it has both an income and production capacity channel. The

TFP wedge decomposition shows, that goods market SaM is the dominant driver of the TFP

wedge across all shocks in the full model, while worker effort and to a lesser extent capital

utilization are the drivers across shocks in the reference model. Adding goods market SaM

decreases especially the importance of capital utilization in driving the TFP wedge.

The trade-off between household search effort and sticky prices increases in the price adjust-

ment costs, κP , and the demand elasticity of goods market matching, γT , leading to stronger

variation in capacity utilization, while it decreases in long-term customer relationships,

(1 − δT ), and firm inventories, (1 − δI). Therefore, the mismeasurement of technology by

TFP increases in κP , γT , δT , and δI . In this framework, ”demand shocks look like supply

shocks” (Bai et al., 2017) if prices are sticky and goods markets are demand-driven. The

robustness results can be found in Appendix E.

4.3. Cumulative TFP Multiplicators

As we add goods market SaM, the business cycle fluctuations of TFP relative to GDP

increase significantly for demand and policy shocks, but not for technology shocks. So far, we

have derived the impact of goods market SaM on TFP fluctuations. But, in a dynamic general

equilibrium model, it also has an impact on the entire economy. I derive the cumulative

TFP multiplicator as an indicator of the impact of the capacity utilization channels on TFP
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Figure 8: Cumulative TFP Multiplicators

eA eH eI eM eN eP eT eW

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Reference Model SaM Model Full Model

NOTE: The figure shows cumulative TFP and TFP wedge multiplicators for the reference, SAM, and full model according to

(36). Shock abbreviations: eA: Neutral technology shock, eH: Labor supply shock, eI: Investment-specific technology shock,

eM : Monetay policy shock, eN : Labor mismatch shock, eP : Price cost-push shock, eT : Goods market mismatch shock, eW :

Wage cost-push shock.

fluctuations relative to GDP fluctuations. It is given by

ΛTFP,cum =

∑20
t=1

ˆTFP t∑20
t=1

ˆGDP t

, (36)

where I use the first 20 quarters of each IRF which represents about the average period of

a business cycle. A large cumulative TFP multiplicator indicates large increases in TFP

relative to increases in GDP, vice-versa. A negative cumulative TFP multiplicator indicates

negative correlations between TFP and GDP deviations. Figure 8 shows the cumulative

TFP multiplicators for all shocks except the exogenous spending shock20.

We observe cumulative TFP multiplicators that are clearly dominated by technology shocks

for the reference model. The neutral technology and goods market matching21 shocks show

20The exogenous spending shock is dropped for visibility reasons, as its cumulative TFP multiplicator for

the reference model becomes very large with a value of −11. This pattern follows from GDP IRFs that show

cumulative values of close to zero. The cumulative TFP multiplicator decreases for the SAM model (−0.56)

and the full model (−0.90).
21In the reference model, the goods market matching shock is indistinguishable from the neutral technology

shock as there is no active aggregate demand.
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cumulative TFP multiplicators of about 0.55, and the investment-specific technology shock

of about 0.3522. The monetary policy and price cost-push shocks show cumulative TFP

multiplicators of about 0.25, while the wage cost-push shock shows a cumulative TFP

multiplicator of 0.2. Both the labor supply and mismatch shocks show cumulative TFP

multiplicators close to zero. Supplying more labor in the model therefore does not affect

productivity significantly.

Compared to the refrence model, the SaM and full model cumulative TFP multiplicators

for the neutral technology and goods market mismatch shocks do not show any significant

change. Although adding goods market SaM leads to smaller fluctuations in the TFP wedge,

the impact on GDP fluctuations is similar for the two shocks. Nevertheless, both shocks

show the largest fluctuations in TFP relative to GDP in the full model.

Compared to the reference model, the SaM and full model cumulative TFP multiplicators

for the labor supply and cost-push shocks decrease significantly and even turn negative. The

full model shows a more muted response compared to the SaM model. All three shocks

decrease marginal costs and therefore supply additional production capacity. Prices do not

fall fast enough, and it takes time to match the additional production capacity. This pattern

is especially strong with the trade-off between goods prices and household search effort.

Nevertheless, GDP increases, which in turn leads to negative cumulative TFP multiplicators.

The labor mismatch shock shows no significant cumulative TFP multiplicators across models.

Compared to the reference model, the SaM and full model cumulative TFP multiplicators

increase for the monetary policy and investment-specific technology shocks. Especially the

cumulative TFP multiplicator of monetary policy shocks shows a strong increase with values

of up to 0.4 and thus close to the cumulative TFP multiplicator of neutral technology shocks.

Therefore, active aggregate demand leads to a strong response of productivity relative to GDP

as household search effort becomes an input factor into production. Adding the trade-off

between sticky prices and household search costs leads to demand shocks that increasingly

look like technology shocks - also in relation to GDP.

22Given that the investment-specific technology shock only affects about 20% of the economy, its impact

on overall productivity is significant.
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Compared to the analysis of the TFP wedge IRFs before, we see that the impact of the

goods market SaM channel on the economy is less pronounced when we set it relative to

GDP. It shows a similar impact on both TFP and GDP for the neutral technology and

goods market mismatch shocks, hence the TFP multiplicators are similar across models. The

cumulative TFP multiplicator for the investment-specific technology shock increases in the

full model even though the TFP wedge IRFs decrease. Hence, the impact of goods market

SaM on GDP is larger than on TFP. The cumulative TFP multiplicators of the cost-push and

monetary policy shocks are along the results found for their TFP wedge IRFs. We find that

adding goods market SaM leads to smaller TFP fluctuations relative to GDP fluctuations

for both cost-push shocks, and to larger TFP fluctuations relative to GDP fluctuations for

the monetary policy shock. Therefore, the two shocks that contain some sort of demand

component - investment-specific technology and monetary policy - show larger fluctuations

in TFP relative to GDP as we add goods market SaM.

The impact of the price adjustment cost parameter κP on the cumulative TFP multiplicators is

rather limited, except for the cost-push shocks. Price stickiness shows an almost proportional

impact on fluctuations of both TFP and GDP. In contrast, an increase in γT leads to larger

cumulative TFP multiplicators for demand shocks and lower TFP multiplicators for supply

shocks. It has a distinct impact on the variation of capacity utilization and TFP as markets

become more demand-driven, while the impact on GDP is muted. The robustness results for

δT and δI follow γT . The robustness results are shown in Appendix E.

5. Discussion and Concluding Remarks

Total factor productivity (TFP) is at the core of macroeconomics as it describes the

efficiency of an economy. This paper shows that goods market search-and-matching (SaM) is

an important channel in explaining the differences between TFP and utilization-adjusted

TFP in a New-Keynesian model.

What are the underlying economic channels that drive short-run capacity utilization and

TFP fluctuations? In a Bayesian estimation exercise, I find that goods market SaM is the

single most important capacity utilization channel in explaining short-run TFP fluctuations.
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Worker effort and especially capital utilization are largely substituted by the introduction of

goods market SaM. The trade-off between active aggregate demand (household search effort)

and sticky prices is at the center of short-run TFP fluctuations and thus challenges the view

that it is mostly supply driven.

How do the different capacity utilization channels affect the transmission of economic shocks

on short-run TFP? Adding goods market SaM leads to an increase in TFP fluctuations

following demand shocks, while it leads to a decrease following supply and cost-push shocks.

This pattern especially applies if markets are demand-driven and show sticky prices.

The paper shows the importance of variable capacity utilization for TFP fluctuations. In

its approach, it is in line with the literature, but emphasizes the trade-off between active

aggregate demand and sticky prices. The paper shows that variations in TFP are much

more driven by imperfect markets than by utilization decisions of households and firms.

Efficient markets are therefore a driver of TFP and welfare. Furthermore, modeling goods

market SaM allows to analyze the impact of goods market features, as e.g. household search

heterogeneity and idiosyncratic market features. Neglecting non-clearing goods markets can

lead to biased estimates of the drivers of TFP over the business cycle.
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Appendix A. Model Derivations

Appendix A.1. Household Optimization Problem

The household utility maximization (MAX: KC,t, Ct, Dt(i), Xt, Bt, Tt(i), eK,t, KI,t+1, IK,t,

Nt(i)) given the necessary constraints is given by

L = E0

∞∑
t=0

βt
{
log

[
KC,t − θKC,t−1 − µD

∫ 1

0
Dt(i)di

− µN,tXt

∫ 1

0
Nt(i)

(
µH

1 + νH
Ht(i)

1+νH +Ht(i)
µe

1 + νe
eH,t(i)

1+νe

)
di

]
λ1,t

[
Bt − (1 + rB,t−1)Bt−1 −

∫ 1

0
Wt(i)eH,t(i)Ht(i)Nt(i)di− Ptub

(
1−

∫ 1

0
Nt(i)di

)
+

∫ 1

0
Pt(i)Tt(i)di− PtrK,teK,tKI,t + Taxt −Πt

]
− λ2,t

[
Xt −

(
KC,t − θKC,t−1 − µD,t

∫ 1

0
Dt(i)di

)ω
X1−ω
t−1

]
− λ3,t

[∫ 1

0
Tt(i)di− (1− δT )

∫ 1

0
Tt−1(i)di−

∫ 1

0
fT,t(i)Dt(i)di

]
− λ4,t

[∫ 1

0
Nt(i)di− (1− δN )

∫ 1

0
Nt−1(i)di− fN,t

(
1− (1− δN )

∫ 1

0
Nt(i)di

)]
− λ5,t

[
KI,t+1 −

(
1− δK,1 − δK,2e

1+ϕK
K,t

)
KI,t − IK,t

]
− λ6,t

[(∫ 1

0
Tt(i)

ϵ−1
ϵ di

) ϵ
ϵ−1

− Ct − PI,t

(
1 +

κI
2

(
IK,t
IK,t−1

− 1

)2
)
IK,t

]
− λ7,t [KC,t − (1− δH)KC,t−1 − Ct]} ,

where it is assumed that the no-Ponzi scheme condition lim
T→∞

BT ≥ 0 holds.
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First-order conditions.

LKC,t
: λ7,t =

(
1

UC,t − UN,t
+
ωXtλ2,t
UC,t

)
− βθEt

(
1

UC,t+1 − UN,t+1
+
ωXt+1λ2,t+1

UC,t+1

)
+ β (1− δH)λ7,t+1

(A.1)

LC,t : (−1)λ6,t = λ7,t (A.2)

LDt(i) : λ3,t =
µD

fT,t(i)

[
1

UC,t − UN,t
+
ωXtλ2,t
UC,t

]
(A.3)

LXt : λ2,tXt =
(−1)UN,t
UC,t − UN,t

+ β (1− ω)EtXt+1λ2,t+1 (A.4)

LBt : λ1,t = β (1 + rB,t)Etλ1,t+1 (A.5)

LTt(i) : λ1,tPt(i) = (−1)λ6,t

(
Tt
Tt(i)

) 1
ϵ

− λ3,t + β (1− δT )Etλ3,t+1 (A.6)

LeK,t : λ5,t =
λ1,tPtrK,t

(1 + ϕK) δK,2e
ϕK
K,t

(A.7)

LKI,t+1
: λ5,t = βEt

(
λ1,t+1Pt+1eK,t+1rK,t+1 +

(
1− δK,1 − δK,2e

1+ϕK
K,t+1

)
λ5,t+1

)
(A.8)

LIK,t
: λ5,t = (−1)λ6,tPI,t

(
1 + cI,t + c′I,t

)
− βEt(−1)λ6,t+1PI,t+1

IK,t+1

IK,t
c′I,t+1 (A.9)

LNt(i) : λ4,t = λ1,t (Wt(i)eH,t(i)Ht(i)− Ptub)−
∂UN,t(i)
∂Nt(i)

UC,t − UN,t

+ β (1− δN )Et (1− fN,t+1)λ4,t+1

, (A.10)

where

UC,t = KC,t − θKC,t−1 − µD

∫ 1

0
Dt(i)di,

UN,t = µN,tXt

∫ 1

0
Nt(i)

(
µH

1 + νH
Ht(i)

1+νH +Ht(i)
µe

1 + νe
eH,t(i)

1+νe

)
di,

cI,t =
κI
2

(
IK,t
IK,t−1

− 1

)2

,

c′I,t = κI

(
IK,t
IK,t−1

− 1

)
.

Define mucN,t = λ1,tPt, mucG,t = λ7,t, and χt = (−1)λ2,tXt. Further, summarize contemporaneous

utility by WC,t = 1
UC,t−UN,t

− ω χt

UN,t
. The wealth effects equation (A.4), the gross marginal
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consumption utility of the household (A.1), and the Euler equation (A.5) are then given by

χt =
UN,t

UC,t − UN,t
+ β (1− ω)Etχt+1, (A.11)

mucG,t = WC,t − βθEtWC,t+1 + β (1− δH)EtmucG,t+1, (A.12)

mucN,t = βEt
1 + rB,t
1 + πt+1

mucN,t+1, (A.13)

where (1 + πt+1) =
Pt+1

Pt
. We can derive the net marginal consumption utility of the household by

substituting (A.2) and (A.3) in (A.6)

mucN,t =
Pt
Pt(i)

[
mucG,t

(
Tt
Tt(i)

) 1
ϵ

− µD
fT,t(i)

WC,t + β (1− δT )Et
µD

fT,t+1(i)
WC,t+1

]
. (A.14)

Define QK,t =
λ5,t

mucN,t
and substitute (A.2) in (A.9) to solve for the capital market equations

(A.7)-(A.9) denominated in the numéraire good

QK,t =
rK,t

(1 + ϕK) δK,2e
ϕK
K,t

, (A.15)

QK,t = Et
1 + πt+1

1 + rt

(
eK,t+1rK,t+1 +

(
1− δK,1 − δK,2e

1+ϕK
K,t+1

)
QK,t+1

)
, (A.16)

QK,t =
mucG,t
mucN,t

PI,t
(
1 + cI,t + c′I,t

)
− Et

1 + πt+1

1 + rB,t

mucG,t+1

mucN,t+1
PI,t+1

IK,t+1

IK,t
c′I,t+1, (A.17)

where Etβ
mucN,t+1

mucN,t
= Et 1+πt+1

1+rB,t
follows from the Euler equation (A.13). Define QNH,t =

λ4,t
mucN,t

and plug it into (A.10) to derive the value function of marginal employment of the household

denominated in the numéraire good

QH,t(i) =

(
Wt(i)

Pt
eH,t(i)Ht(i)− ub

)
−

∂UN,t(i)
∂Nt(i)

mucN,t (UC,t − UN,t)

+ Et
1 + πt+1

1 + rB,t
(1− δN ) (1− fN,t+1)QH,t+1(i),

(A.18)

where Etβ
mucN,t+1

mucN,t
= Et 1+πt+1

1+rB,t
follows from the Euler equation (A.13), and

∂UN,t(i)
∂Nt(i)

= µN,tXt

(
µH

1 + νH
Ht(i)

1+νH +Ht(i)
µe

1 + νe
eH,t(i)

1+νe

)
is the marginal disutility of working for one specific firm i.
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Household Consumption Demand Equation. For any two varieties (i, j) of the differentiated

consumption good, we can use (A.14) to derive the household consumption

Pt(i)

Pt(j)
=

(
Tt
Tt(i)

) 1
ϵ
mucG,t − c′D,t(i)WC,t + β (1− δT ) c

′
D,t+1(i)WC,t+1(

Tt
Tt(j)

) 1
ϵ
mucG,t − c′D,t(j)WC,t + β (1− δT ) c′D,t+1(j)WC,t+1

,

where c′D,t(i) =
µD

fT,t(i)
.

Appendix A.2. Firm Optimization Problem

The firm profit maximization (MAX: Tt(i), St(i), xT,t(i), Pt(i), Nt(i), vt(i), Ke,t(i)) given the

necessary constraints is given by

L = E0

∞∑
t=0

β0,t {[Pt(i)Tt(i) + Pt(i)Gt(i)−Wt(i)eH,t(i)Ht(i)Nt(i)− Pt(i)rK,tKe,t(i)]

− ϕ1,t [(1 + cP,t(i))St(i) + (1− δT )Tt−1(i) +Gt(i)

− (1− δI) (1− ψT,t−1xT,t−1(i)
γT )St−1(i)

− (1− cN,t(i))Yt(i) + cW,t(i)
Wt(i)

Pt(i)
eH,t(i)Ht(i)Nt(i)

]
− ϕ2,t [Tt(i)− (1− δT )Tt−1(i)− ψT,txT,t(i)

γTSt(i)]

− ϕ3,t [Nt(i)− (1− δN )Nt−1(i)− qN,tvt(i)]

− ϕ4,t

[
mucN,t

Pt(i)

Pt
−
(

Tt
Tt(i)

) 1
ϵ

mucG,t +
µD
ψT,t

xT,t(i)
1−γTWC,t

−β (1− δT )
µD

ψT,t+1
xT,t+1(i)

1−γTWc,t+1

]}
where

Ke,t(i) = eK,tKI,t(i),

Yt(i) = At

[(
1− κH

2

(
Ht(i)− H̄(i)

H̄(i)

)2
)
eH,t(i)Ht(i)Nt(i)

]1−α
Ke,t(i)

α,

cP,t(i) =
κP
2

(
Pt(i)

Pt−1(i)
(1 + π)ιP−1 (1 + πt−1)

−ιP − 1

)2

,

cW,t(i) =
κW
2

(
Wt(i)

Wt−1(i)
(1 + π)ιW−1 (1 + πt−1)

−ιW − 1

)2

,

cN,t(i) =
κN
2

(
vt(i)

eH,t(i)Ht(i)Nt(i)

)2

.
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First-order conditions.

LTt(i) : ϕ2,t = Pt(i)− ϕ4,t
1

ϵ

(
Tt
Tt(i)

) 1
ϵ mucG,t
Tt(i)

+ Etβt,t+1 (1− δT ) (ϕ2,t+1 − ϕ1,t+1) (A.19)

LSt(i) : ϕ1,t (1 + cP,t(i)) = ϕ2,t (1− γT ) qT,t(i) + ϕ4,t (1− γT )
c′D,t(i)WC,t

St(i)

+ Etβt,t+1 (1− δI)ϕ1,t+1 (1− (1− γT ) qT,t(i))

(A.20)

LxT,t(i) : ϕ4,t =
γT

1− γT

fT,t(i)Dt(i)

c′D,t(i)WC,t
(ϕ2,t + Etβt,t+1 (1− δI)ϕ1,t+1) (A.21)

LPt(i) : c′P,t(i)St(i)
ϕ1,t
Pt(i)

= Tt(i) +Gt(i)− ϕ4,tmucN,t
1

Pt

+
ϕ1,t
Pt(i)

cW,t(i)
Wt(i)

Pt(i)
eH,t(i)Ht(i)Nt(i)

+ Etβt,t+1
Pt+1(i)

Pt(i)
St+1(i)

ϕ1,t+1

Pt+1(i)
c′P,t+1(i)

(A.22)

LNt(i) : ϕ3,t = ϕ1,t [(1− α) (1− cN,t(i)) + 2cN,t(i)]
Yt(i)

Nt(i)

−Wt(i)eH,t(i)Ht(i)

(
1− cW,t(i)

ϕ1,t
Pt(i)

)
+ Etβt,t+1 (1− δN )ϕ3,t+1

(A.23)

Lvt(i) : ϕ3,t = ϕ1,t2cN,t(i)
Yt(i)

qN,tvt(i)
(A.24)

LKe,t(i) : Pt(i)rK,t = ϕ1,t (1− cN,t(i))α
Yt(i)

Ke,t(i)
(A.25)

Define marginal costs as mct(i) =
ϕ1,t
Pt(i)

, and the inverse of marginal profits as prt(i) =
ϕ2,t
Pt(i)

.

Substitute (A.21) in (A.19), and (A.20) for the marginal costs equations

prt(i) =
1 + Et 1+πt+1(i)

1+rB,t
(1− δT ) (prt+1(i)−mct+1(i))

1 + 1
ϵ

γT
1−γT

qT,t(i)St(i)
Tt(i)

mucG,t

c′D,t(i)WC,t

+
Et 1+πt+1(i)

1+rB,t
(1− δI)

1
ϵ

γT
1−γT

qT,t(i)St(i)
Tt(i)

mucG,t

c′D,t(i)WC,t
mct+1(i)

1 + 1
ϵ

γT
1−γT

qT,t(i)St(i)
Tt(i)

mucG,t

c′D,t(i)WC,t

(A.26)

mct(i) =
qT,t(i)prt(i) + Et 1+πt+1(i)

1+rB,t
(1− δI) (1− qT,t(i))mct+1(i)

1 + cP,t(i)
(A.27)
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Substitute (A.21) in (A.22) for the New-Keynesian Phillips Curve

c′P,t(i) =
Tt(i) +Gt(i)

St(i)mct(i)
+ cW,t(i)

Wt(i)

Pt(i)

eH,t(i)Ht(i)Nt(i)

St(i)

− γT
1− γT

mucN,t
c′D,t(i)WC,t

[
qT,t(i)

prt(i)

mct(i)
− Et

1 + πt+1(i)

1 + rB,t
(1− δI) qT,t(i)

mct+1(i)

mct(i)

]
+ Et

1 + πt+1(i)

1 + rB,t

mct+1(i)St+1(i)

mct(i)St(i)
c′P,t+1(i),

(A.28)

where I use (A.27) to substitute for qT,t(i)
prt(i)
mct(i)

to get

c′P,t(i) =
Tt(i) +Gt(i)

St(i)mct(i)
+ cW,t(i)

Wt(i)

Pt(i)

eH,t(i)Ht(i)Nt(i)

St(i)

− γT
1− γT

mucN,t
c′D,t(i)WC,t

[
1 + cP,t(i)− Et

1 + πt+1(i)

1 + rB,t
(1− δI)

mct+1(i)

mct(i)

]
+ Et

1 + πt+1(i)

1 + rB,t

mct+1(i)St+1(i)

mct(i)St(i)
c′P,t+1(i).

(A.29)

Define the value of marginal employment for the firm as QNF,t(i) =
ϕ3,t
Pt(i)

and rewrite the input

factor demand equations (A.23)-(A.25) by

QF,t(i) = [(1− α) (1− cNt(i)) + 2cN,t(i)]mct(i)
Yt(i)

Nt(i)

− wt(i)eH,t(i)Ht(i) (1− cW,t(i)mct(i))

+ Et
1 + πt+1(i)

1 + rB,t
(1− δN )QF,t+1(i),

(A.30)

QF,t(i) = 2cN,t(i)mct(i)
Yt(i)

qN,tvt(i)
, (A.31)

rK,t = (1− cN,t(i))mct(i)α
Yt(i)

Ke,t(i)
. (A.32)

Appendix A.3. Nash Bargaining: Real Wages, Hours per Worker, and Worker Effort

Each worker-firm match maximizes its joint surplus by solving a Nash bargaining problem

max
Wt(i);Ht(i);eH,t(i)

(QH,t(i))
ηt (QF,t(i))

1−ηt ,

where 0 ≤ ηt ≤ 1.
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The first-order conditions for the real wage, hours per worker, and worker effort are given by

ηt
1− ηt

QF,t(i)

QH,t(i)
= (−1)

∂QF,t(i)
∂Wt(i)

∂QH,t(i)
∂Wt(i)

(A.33)

ηt
1− ηt

QF,t(i)

QH,t(i)
= (−1)

∂QF,t(i)
∂Ht(i)

∂QH,t(i)
∂Ht(i)

(A.34)

ηt
1− ηt

QF,t(i)

QH,t(i)
= (−1)

∂QF,t(i)
∂eH,t(i)

∂QH,t(i)
∂eH,t(i)

(A.35)

Deriving the first-order conditions of (A.18) and (A.30) with respect to Wt(i) and plugging them

into (A.33) gives the sticky wage horizon equation that determines the impact of sticky wages on

the wage setting process

τW,t(i) =
ηt

1− ηt

QF,t(i)

QH,t(i)
= (−1)

∂QF,t(i)
∂Wt(i)

∂QH,t(i)
∂Wt(i)

=
(
1 +mct(i)

(
cW,t(i) + c′W,t(i)

))
− Et

1 + πW,t+1(i)

1 + rt
(1− δN )mct+1(i)

Ht+1(i)eH,t+1(i)

Ht(i)eH,t(i)
c′W,t+1(i).

Plugging (A.33) into (A.18) gives the real wage bargaining equation from the point of view of the

household for each match

wt(i)eH,t(i)Ht(i)− ub− 1

mucN,t

∂UN,t(i)
∂Nt(i)

UC,t − UN,t

=
ηt

1− ηt

QF,t(i)

τW,t(i)
− Et

ηt+1

1− ηt+1

1 + πt+1

1 + rt
(1− δN ) (1− fN,t+1)

QF,t+1(i)

τW,t+1(i)
.

Deriving the first-order conditions of (A.18) and (A.30) with respect to Ht(i) and plugging them

into (A.34) gives the optimality condition of hours per worker for each match

(1 +mct(i)cW,t(i))wt(i)eH,t(i)− τW,t(i)

wt(i)eH,t(i)− 1

mucN,t

∂2UN,t(i)
∂Nt(i)∂Ht(i)

UC,t − UN,t


=

[
(1− α)2

(
1−

c′H,t(i)

1− cH,t(i)

)
+ (1 + α) cN,t(i)

(
(1− α)

(
1−

c′H,t(i)

1− cH,t(i)

)
− 2

)]
mct(i)

Yt(i)

Ht(i)Nt(i)
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Deriving the first-order conditions of (A.18) and (A.30) with respect to eH,t(i) and plugging them

into (A.35) gives the optimality condition of worker effort for each match

(1 +mct(i)cW,t(i))wt(i)Ht(i)− τW,t(i)

wt(i)Ht(i)−
1

mucN,t

∂2UN,t(i)
∂Nt(i)∂eH,t(i)

UC,t − UN,t


=
[
(1− α)2 + (1 + α) cN,t(i) ((1− α)− 2)

]
mct(i)

Yt(i)

eH,t(i)Nt(i)
.

Appendix B. Utilization-adjusted TFP and TFP wedge

Definition of the aggregate investment-specific technology shock.

Ct + IK,t
Tt

=
Tt − PI,t (1 + cI,t) IK,t + IK,t

Tt

= 1 + (1− PI,t (1 + cI,t))
IK,t
Tt

= AI,t.

(B.1)

where I use the household resource constraint Ct = Tt − PI,t (1 + cI,tIK,t) to substitute for Ct.

The aggregate investment-specific technology shock AI,t depends on fluctuations in PI,t and is

weighted by the share of fixed-capital investment relative to private market consumption Tt. In the

steady-state AI = 1 as PI = 1 by normalization and cI = 0.

Calculating the utilization-adjusted TFP. Total factor productivity is defined as the gross domestic

product divided by the input factors in an appropriate production function. It is given by

TFPt =
GDPt

(NtHt)
1−αKα

I,t

=
Ct + IK,t + IS,t − IS,t−1 +Gt

(NtHt)
1−αKI,t

, (B.2)

=
AI,tTt + IS,t − IS,t−1 +Gt

(NtHt)
1−αKI,t

, (B.3)

where I use (B.1) to substitute for private consumption Ct and fixed-capital investment IK,t. Further,

using the customer relationship law of motion Tt = (1− δT )Tt−1 + qT,tSt and substitute for Tt, we

get

TFPt =
AI,t [(1− δT )Tt−1 + qT,tSt] + IS,t − IS,t−1 +Gt

(NtHt)
1−αKI,t

,

and substitute for St with the firm resource constraint (10), we get

TFPt =
AI,t

qT,t

1+cP,t
((1− cN,t)Yt + IS,t−1 − (1− δT )Tt−1 −Gt − cW,tLt)

(NtHt)
1−αKI,t

,

+
AI,t (1− δT )Tt−1 + IS,t − IS,t−1 +Gt

(NtHt)
1−αKI,t

.
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Substituting for Yt with the production capacity function (9) and expanding the right side with

GDPt
GDPt

we get

TFPt = AI,t
ψT,tx

γT
T,t

1 + cP,t
(1− cN,t)At (eH,t (1− cH,t))

1−α (eK,t)
α

+ TFPtAI,t

(
1−

ψT,tx
γT
T,t

1 + cP,t

)
(1− δT )

Tt−1

GDPt

+ TFPt

(
1−

(
1−AI,t

ψT,tx
γT
T,t

1 + cP,t

)
IS,t−1

IS,t

)
IS,t
GDPt

+ TFPt

(
1−AI,t

ψT,tx
γT
T,t

1 + cP,t

)
Gt

GDPt
− TFPtAI,t

ψT,tx
γT
T,t

1 + cP,t

ΓW,t
GDPt

(B.4)

Linearization. I linearize (B.4) around its deterministic steady-state and group all variables to their

respective channel. Linearized total factor productivity can be summarized as

ˆTFP t = Φ̂SAM,t + Φ̂Labor,t + Φ̂Capital,t + ˆTFPUtil,t, (B.5)

where Φ̂SAM,t summarizes the goods market search-and-matching impact on TFP, Φ̂Labor,t summa-

rizes the labor market impact on TFP, Φ̂Capital,t summarizes the capital market impact on TFP,

and ˆTFPUtil,t summarizes all technology shocks. The linearized impact of the single channels is

given by

Φ̂SAM,t = q̂T,t +
TFP

1− cN

IS
GDP

[
1

qT

(
ÎS,t − (1− qT ) ÎS,t−1

)
− ˆGDP t + q̂T,t

]
+

TFP

1− cN

1− qT
qT

(1− δT )
T

GDP

[
T̂t−1 − ˆGDP t −

qT
1− qT

q̂T,t

]
+

TFP

1− cN

1− qT
qT

G

GDP

[
Ĝt − ˆGDP t −

qT
1− qT

q̂T,t

]
,

(B.6)

Φ̂Labor,t = (1− α) êH,t −
cN

1− cN
ĉN,t, (B.7)

Φ̂Capital,t = αêK,t, (B.8)

ˆTFPUtil,t = Ât +
TFP

1− cN

T

qTGDP
ÂI,t, (B.9)

where I assume that qT = 1 in B.9. This assumption states that the investment-specific technology

shock only applies to matched goods, not to unmatched goods. It states that investment-specific

technology only applies to actual investment goods. Otherwise, it is applied to all unmatched goods

as a markup, also to goods that could become consumption goods.
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The Utilization-Adjusted TFP and Capacity Utilization. Instead of solving for the private goods

market and its determinants, we can use the definition of capacity utilization

cut =
GDPt

(1− cN,t)At
(
NtH̄ēH

)1−α
Kα
I,t + (AI,t − 1)Tt

, (B.10)

where (AI,t − 1)Tt corrects for the additional production capacity of fixed-capital investment on the

household side of the economy. Substituting (B.10) in (B.3) and linearizing around its deterministic

steady-state results in

ˆTFP t = ĉut −
cN

1− cN
ĉN,t − (1− α) Ĥt + ˆTFPUtil,t, (B.11)

where the TFP wedge is defined by capacity utilization, labor matching costs, and hours per worker.

We have direct data on those variables except labor matching costs, which is set by a steady-state

target. Therefore, we can directly estimate the TFP wedge.

51



Appendix C. Connecting the Model with the Data

Appendix C.1. Calibration of the Model Parameters

Table C.4: Steady-State Targets and Parameterization

Variable Value Description Source

(Target)

Labor markets

repl (N = 0.94) Steady-state replacement rate FRED St Louis

µH (H = 1) Hours per worker disutility Normalization

µe (eH = 1) Worker effort disutility Normalization

γN 0.6 Labor matching elasticity Petrongolo and Pissarides (2001)

δN 0.12 Labor separation rate Blanchard and Gali (2010)

ψN (qN = 0.7) Labor matching efficiency Blanchard and Gali (2010)

κN (cN cu = 0.015) Labor matching costs Merz and Yashiv (2007)

νH 1 Frisch labor supply elasticity Keane and Rogerson (2012)

ω 0.01 Wealth effect parameter Cacciatore et al. (2020)

Goods markets

ψT (cu = 0.86) Steady-state capacity utilization rate FRED St Louis

µD (fT = qT ) Household search effort disutility

ϵ 11 Steady-state price markup

G (gS = 0.2) Steady-state government spending FRED St Louis

Capital markets

β (r = 0.01) Period discount rate FRED St Louis

α 0.3 Capital elasticity w.r.t. production capacity Own calculations

ϕK (eK = 1) Capital utilization costs

δK 0.025 Capital depreciation rate Christiano et al. (2005)

The Production Capacity Elasticity. In order to reduce the bias in the estimation of TFP

and technology, the capital elasticity with respect to production capacity α has to be set

correctly23. If α is not set correctly, it biases the impact of labor and capital have on

production and TFP. Comin et al. (2023) show that neglecting e.g. price markups in

U.S. data can lead to a biased α, where the impact of capital on production and TFP is

overestimated. I follow the approach of Solow (1957); Fernald (2014); Comin et al. (2023)

23For a constant-returns-to-scale production function, the labor elasticity with respect to production

capacity is given by (1− α). Burnside et al. (1995); Basu and Kimball (1997) show that any evidence on

increasing-returns-to-scale vanishes as we include utilization margins in the model.
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and solve for the steady-state of the employment demand equation24 (23) and its free-entry

condition (24) given by

α = 1− wNHeH
GDP

1

mc
ΘG −ΘL, (C.1)

= 1− LaborShare ·Markup ·ΘG −ΘL (C.2)

where

ΘG =
1

1 + δT
1−qT
qT

T
GDP

+ IS
GDP

,

ΘL =
2cN

1− cN

(
1− β (1− δN)

δN
− 1

)
,

are a goods and labor market search-and-matching wedge on the production capacity

elastcities, respectively. The labor market wedge ΘL increases in labor market frictions. The

goods market wedge ΘG decreases in goods market frictions. One has to take both frictions

into account when setting α in order to have an unbiased labor and capital impact on TFP.

The Substitution Elasticity of Differentiated Goods. If we choose to target steady-state price

markups, we in turn set ϵ endogenously. In the full model, it is determined by

ϵ =
1

1− G
GDP

1 + (1− β (1− δT ))
(
1 + δT

γT

1−γT

(
1− G

GDP

) (
1− βqT (1−δI)

1−β(1−δI)(1−qT )

))
+ βqT (1−δT )

1−β(1−δI)(1−qT )

Markup− 1 + β (1− δT )− βqT (1−δT )
1−β(1−δI)(1−qT )

 ,
where goods market characteristics as e.g. steady-state capacity utilization, long-term

contracts, and inventory depreciation are its determinants. Setting δT = δI = 1, the equation

simplifies to

ϵ =
1

1− gS

[
1 +

1 + γT
1−γT

(1− gS)

Markup− 1

]
,

24In contrast to the literature, α represents the elasticity of the production capacity function, not the

production function. But, production is always a share of production capacity. Hence, there is a linear

relationship between production and production capacity, independent of capital and labor shares. It follows,

that the production capacity elasticities are applicable to the production elasticities.
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where goods market search-and-matching is still a determinant of ϵ. Further, setting

γT = 0, ψT = 1, the equation simplifies to

ϵ =
1

1− gS

Markup

Markup− 1
,

where the substitutability of differentiated goods is mainly determined by the steady-state

target of price markups. Therefore, we can see that targeting the same price markup can

lead to significantly different values for ϵ in models with and without goods market search-

and-matching. At the same time, ϵ determines the goods market structure by setting the

competitiveness of the market, besides setting the steady-state price markup. One has to

take the trade-off between steady-state price markup and goods market competitiveness

targeting into account when calibrating ϵ.

Table C.5: Calculated Values for α and ϵ

α ϵ

Reference Model 0.21 5.4

Goods Market SAM Model 0.32 19.6

Full Model 0.40 18.1

NOTE: Targeting a steady-state price markup 1
mc

=

1.3 and calculating α and ϵ using the steady-state model

as described above.

Table C.5 shows some results for targeting steady-state price markups and the implications

for α and ϵ. First, the low value of α implied by high price markups (see also e.g. Comin

et al. (2023)) vanishes as we introduce goods market search-and-matching. Second, the

monopolistic competition channel becomes less important in targeting the price markup and

ϵ increases, as we introduce goods market search-and-matching. As we introduce long-term

customer relationships and firm inventories, ϵ decreases again. Therefore, the model in this

paper shows that both parameters are highly dependent on the model setup. As different

values for α and ϵ imply different deep model characteristics, I set α and ϵ directly instead

of targeting steady-state price markups.
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Appendix C.2. Data Sources and Data Construction

Real GDP. Nominal GDP is constructed as the sum of private consumption (BEA Account

Code: DPCERC), private investment (BEA Account Code: A006RC), and government

expenditures (BEA Account Code: W068RC). The current account is excluded as the model

replicates a closed economy. Real GDP growth is

100

[
ln

(
GDPt

Deflt · Popt

)
− ln

(
GDPt−1

Deflt−1 · Popt−1

)]
,

where Deflt is the GDP deflator and Popt is non-institutional population over 16 years (U.S.

Bureau of Labor Statistics, Population Level [CNP16OV]).

Real Consumption. Nominal consumption is calculated as nominal private consumption

(BEA Account Code: DPCERC). Contrary to the literature, I do not subtract nominal

durable private consumption (BEA Account Code: DDURRC), as I estimate a model with

explicit durable consumption goods. Real Consumption growth is

100

[
ln

(
Const

Deflt · Popt

)
− ln

(
Const−1

Deflt−1 · Popt−1

)]
,

where Deflt is the GDP deflator and Popt is non-institutional population over 16 years (U.S.

Bureau of Labor Statistics, Population Level [CNP16OV]).

Real Investment. Nominal investment is calculated as nominal private investment (BEA

Account Code: A006RC). Contrary to the literature, I do not add nominal durable private

consumption (BEA Account Code: DDURRC), as I estimate a model with explicit durable

consumption goods. Real investment is

100

[
ln

(
It

Deflt · Popt

)
− ln

(
It−1

Deflt−1 · Popt−1

)]
,

where Deflt is the GDP deflator and Popt is non-institutional population over 16 years (U.S.

Bureau of Labor Statistics, Population Level [CNP16OV]).
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Total Hours Worked. Total Hours Worked is the total of hours worked of all persons employed

in the non-farm business sector. Data is retrieved from U.S. Bureau of Labor Statistics,

Nonfarm Business Sector: Hours of All Persons [HOANBS]. Total hours worked is

100 · ln
(
THt

Popt

)
,

where Popt is non-institutional population over 16 years (U.S. Bureau of Labor Statistics,

Population Level [CNP16OV]).

Unemployment Rate. The unemployment rate is the U-3 measure of labor underutilization.

Data is retrived from U.S. Bureau of Labor Statistics, Unemployment Rate [UNRATE]. The

unemployment rate is

100 · UEt.

Capacity Utilization Rate Definition. The survey questionnaires of capacity utilization follows

a clear-cut definition. The aim of this definition is that each survey respondent has the same

interpretation of capacity utilization, such that the data is comparable. To connect the data

and the model, I use the definition of production capacity given by the Federal Reserve to

derive a model-based definition of capacity utilization. It defines capacity utilization as the

output index divided by the capacity index25. The Federal Reserve Board defines production

capacity as follows:

”The Federal Reserve Board’s capacity indexes attempt to capture the concept

of sustainable maximum output—the greatest level of output a plant can maintain

within the framework of a realistic work schedule, after factoring in normal

downtime and assuming sufficient availability of inputs to operate the capital in

place.”

25Both time series are regularly calculated by the Federal Reserve Board and published

as the ”Industrial Production and Capacity Utilization - G.17”, which can be found online:

https://www.federalreserve.gov/releases/g17/.
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Capacity Utilization Rate Construction. There is no economy-wide capacity utilization rate

for the US. Survey data is available on US industry capacity utilization. In order to get

an economy-wide capacity utilization rate, we have to construct it. I follow in principle

Wohlrabe and Wollmershäuser (2017), who show the high correlation between industry

and service capacity utilization measures and use business sentiment indicators to estimate

capacity utilization data where necessary. I use the high correlation of industry and service

capacity utilization and the average difference in variation to construct an economy-wide

capacity utilization measure. Neglecting the agriculture, forestry, fishing, and hunting

sector26, economy-wide capacity utilization is given by

cut =
GDPt
Yt

=
GDPind,t +GDPser,t

Yind,t + Yser,t
,

where variables with subscript ”ind” represent industry sector variables and with subscript

”ser” represent service sector variables. As we are interested in the cyclical deviations of

capacity utilization, I take a first-order Taylor approximation around the deterministic

steady-state of the economy-wide capacity utilization rate given by

ĉut =
GDPind
Y

ˆGDP ind,t +
GDPser
Y

ˆGDP ser,t −
GDP

Y 2

(
YindŶind,t + YserŶser,t

)
,

where variables without a time subscript represent the deterministic steady-state. Sector-

specific production capacity Ŷind,t and Ŷser,t can be approximated by sector capacity utilization

rates and sector real GDP given by

ĉuind,t = cuind

(
ˆGDP ind,t − Ŷind,t

)
⇔ Ŷind,t = ˆGDP ind,t −

ĉuind,t
cuind

,

ĉuser,t = cuser

(
ˆGDP ser,t − Ŷser,t

)
⇔ Ŷser,t = ˆGDP ser,t −

ĉuser,t
cuser

,

where capacity utilization is given as percentage point deviation from its deterministic

steady-state. Using those definitions to substitute for sector-specific production capacity, the

26There is no data on the capacity utilization of agriculture, forestry, fishing, and hunting sector. Also, not

for other economies similar to the US. As this sector comprises about 1% of the U.S. economy we neglect it

in the analysis of economy-wide capacity utilization.
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economy-wide capacity utilization is given by

ĉut = cu
GDPind
GDP

(
1− cu

cuind

)
ˆGDP ind,t + cu

GDPser
GDP

(
1− cu

cuser

)
ˆGDP ser,t

+
GDPind
GDP

(
cu

cuind

)2

ĉuind,t +
GDPser
GDP

(
cu

cuser

)2

ĉuser,t,

where we have reduced the number of unknowns to the deterministic steady-states of GDPser,

cu, and cuser and to the cyclical fluctuations of GDPser,t, and ĉuser,t. Service-sector and

industry-sector GDP are calculated using the BEA Value Added GDP-by-industry tables. For

service-sector capacity utilization we only have indirect approximations. For the European

Union there is survey data for service-sector capacity utilization. I use the data to approximate

service-sector capacity utilization using industry-sector capacity utilization as the correlations

between both sector-specific real GDP and sector-specific capacity utilization is very high

for the European Union. I approximate U.S. service-sector capacity utilization by U.S.

industry-sector capacity utilization using the relative standard deviation of EU service-sector

to industry-sector capacity utilization as the slope. Therefore, U.S. service-sector capacity

utilization is approximated by

ĉuserUS,t =
std(ĉuserEU,t)

std(ĉuindEU,t)
ĉuindUS,t = γCU,EU ĉuindUS,t,

where γCU,EU is the slope parameter of the approximation equation. Plugging everything

back into the economy-wide capacity utilization measure, we get

ĉut = cu

[(
1− cu

cuser

)
ˆGDP t +

GDPind
GDP

(
cu

cuser
− cu

cuind

)
ˆGDP ind,t

]
+

[
GDPind
GDP

(
cu

cuind

)2

+

(
1− GDPind

GDP

)(
cu

cuser

)2

γCU,EU

]
ĉuind,t.

The economy-wide capacity utilization growth rate is given by

100 · ĉut.

GDP Deflator. The GDP deflator is the log difference of nominal GDP (BEA Account Code:

A191RC) and real GDP (BEA Account Code: A191RX). Price Inflation is

100

[
ln

(
GDPnom,t
GDPreal,t

)
− ln

(
GDPnom,t−1

GDPreal,t−1

)]
.
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Nominal Labor Compensation. Nominal labor compensation is given by the non-farm business

sector labor compensation per hour. Data is retrived from U.S. Bureau of Labor Statistics,

Nonfarm Business Sector: Compensation Per Hour [COMPNFB]. Nominal wage inflation is

100 [ln (Wt)− ln (Wt−1)] .

FED Funds Rate. The FED funds rate is given by the Federal Reserve Bank of New York,

Effective Federal Funds Rate [EFFR]. For the period of binding zero lower bound, I use the

shadow rate of Wu and Xia (2016) as the model does not incorporate a lower bound on its

nominal interest rate. I follow Wu and Zhang (2019), who show that the shadow rate is a

good representation of the interest rate in a New-Keynesian model. The constructed time

series shows annual interest rates. I therefore calculate the quarterly interest rate by

intquarter,t = (1 + intyear,t)
1
4 − 1.

All time series are detrended using a one-sided HP filter following Stock and Watson (1999).

This approach takes structural breaks into account, as are e.g. present in the capacity

utilization rate, unemployment rate, and nominal interest rate.

Appendix D. Bayesian Estimation and Posterior Results

Appendix D.1. Estimation Procedure

I estimate the model using Bayesian inference methods for the model described in this

paper with the data and calibration given in section Appendix C and the prior distribution

given in table D.6. The posterior distribution is a combination of the prior density for the

parameters and the likelihood function, evaluated using the Kalman filter. I compute the

mode of the posterior distribution using Marco Ratto’s NewRat. The scale parameter of the

jumping distribution’s covariance matrix is set using Dynare’s automatic tuner such that the

overall acceptance ratio is close to the desired level. I draw four chains with 200,000 draws

each from the posterior distribution using the random walk Metropolis-Hastings algorithm.

I drop half of the draws before calculating model statistics. Table D.6 shows the posterior
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estimates of the reference, SaM, and full model. All include nine shocks and nine observables.

The observables are linked to the model following Pfeifer (2018) and given by

GDPt

Const

Invt

πt

πW,t

rB,t

THt

UEt

CUt


=



log
(

GDPt

GDPt−1

)
log
(

Ct

Ct−1

)
log
(

Invt
Invt−1

)
πt − π̄

(πW,t − π̄W )
eH,t

eH,t−1

rB,t −
(

1
β − 1

)
log
(
NtHt

N̄H̄

)
uet −

(
1− N̄

)
cut − c̄u



≈



ˆgdpt − ˆgdpt−1

ĉt − ĉt−1

ˆinvt − ˆinvt−1

π̂t

π̂W,t + êH,t − êH,t−1

r̂B,t

n̂t + ĥt

ûet

ĉut


I estimate different model versions of the capacity utilization channel. They can be summa-

rized as follows:

1. Capital utilization (VCU): This channel is fine-tuned by setting 0 ≤ δK,2 ≤ δK .

There is no capital utilization in the model for δK,2 = 0.

2. Worker effort (VWE): This channel is fine-tuned by setting the worker effort supply

elasticity νE. There is no variable worker effort if νe = ∞.

3. Goods market search-and-matching (SaM): This channel is fine-tuned by setting

0 ≤ γT < 1. If γT = 0, aggregate demand plays no role in goods market matching, which

becomes a linear function of available supply. This channel opens up the possibility to

analyze the impact of long-term customer relationships 0 < δT ≤ 1, and inventories

0 < δI ≤ 1.
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Appendix D.2. Prior-Posteriors Estimates for the Parameters

Table D.6: Prior-Posteriors for the Reference and Full Model

Prior Posterior

Reference Model SaM Model Full Model

Parameter Distribution Mean StdDev Mean 90% HPD Mean 90% HPD Mean 90% HPD

θ Beta 0.5 0.15 0.63 0.56 0.70 0.61 0.54 0.68 0.65 0.59 0.71

δH Beta 0.74 0.05 0.77 0.70 0.84 0.75 0.68 0.83 0.77 0.70 0.84

κP Gamma 60 20 198 147 248 104 78 131 139 105 171

ιP Beta 0.5 0.15 0.20 0.07 0.32 0.14 0.05 0.22 0.14 0.05 0.23

κW Gamma 10 3 17.9 12.5 23.2 14.5 7.9 20.8 17.7 12.1 23.2

ιW Beta 0.5 0.15 0.49 0.25 0.73 0.52 0.28 0.76 0.51 0.26 0.75

κH Gamma 4 1.5 1.47 0.96 1.97 3.99 3.13 4.87 2.07 1.44 2.65

κI Gamma 4 1.5 0.52 0.37 0.66 0.48 0.32 0.63 0.64 0.46 0.81

iπ Gamma 1.7 0.1 1.74 1.58 1.91 1.72 1.56 1.87 1.70 1.55 1.86

igap Gamma 0.2 0.1 0.19 0.17 0.20 0.19 0.17 0.21 0.19 0.17 0.20

ir Beta 0.5 0.15 0.80 0.76 0.83 0.75 0.71 0.80 0.78 0.74 0.82

νE Gamma 2 1 3.74 2.47 4.99 − − − 5.93 3.95 7.85

δK2,S Beta 0.6 0.15 0.27 0.15 0.40 − − − 0.16 0.06 0.25

γT Beta 0.17 0.05 − − − 0.14 0.09 0.19 0.10 0.06 0.14

δI Beta 0.74 0.05 − − − 0.79 0.74 0.83 0.84 0.80 0.88

δT Beta 0.5 0.15 − − − 0.74 0.62 0.87 0.81 0.71 0.92

σA InvGamma 0.01 2 0.0037 0.0042 0.0052 0.0047 0.0042 0.0052 0.0050 0.0044 0.0055

σI InvGamma 0.01 2 0.0148 0.0118 0.0178 0.0141 0.0107 0.0174 0.0166 0.0132 0.0199

σH InvGamma 0.01 2 0.0234 0.0188 0.0278 0.0265 0.0216 0.0315 0.0268 0.0219 0.0315

σN InvGamma 0.01 2 0.0127 0.0114 0.0140 0.0122 0.019 0.0135 0.0121 0.0108 0.0133

σP InvGamma 0.01 2 0.1412 0.1011 0.1816 0.0858 0.0721 0.0991 0.0896 0.0743 0.1041

σW InvGamma 0.01 2 0.1357 0.1011 0.1686 0.1381 0.0966 0.1787 0.1409 0.1036 0.1768

σT InvGamma 0.01 2 0.0064 0.0057 0.0072 0.0119 0.0096 0.0142 0.0112 0.0090 0.0132

σG InvGamma 0.01 2 0.0071 0.0063 0.0078 0.0066 0.0058 0.0072 0.0066 0.0059 0.0073

σM InvGamma 0.001 2 0.0009 0.0008 0.0010 0.0010 0.0009 0.0012 0.0010 0.0008 0.0011

ρA Beta 0.5 0.15 0.85 0.80 0.89 0.85 0.80 0.89 0.84 0.79 0.88

ρI Beta 0.5 0.15 0.67 0.61 0.74 0.68 0.61 0.75 0.72 0.66 0.79

ρH Beta 0.5 0.15 0.48 0.38 0.58 0.48 0.37 0.59 0.43 0.33 0.53

ρN Beta 0.5 0.15 0.82 0.75 0.89 0.74 0.65 0.83 0.82 0.74 0.89

ρP Beta 0.5 0.15 0.68 0.57 0.80 0.77 0.70 0.83 0.77 0.71 0.83

ρW Beta 0.5 0.15 0.19 0.08 0.29 0.44 0.28 0.61 0.24 0.11 0.36

ρT Beta 0.5 0.15 0.79 0.74 0.84 0.81 0.76 0.87 0.79 0.74 0.84

ρG Beta 0.5 0.15 0.89 0.85 0.93 0.88 0.84 0.93 0.89 0.85 0.93

ρM beta 0.5 0.15 0.42 0.32 0.51 0.51 0.41 0.61 0.55 0.45 0.65
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Appendix D.3. Convergence Diagnostics

Figure D.9: Multivariate Convergence Diagnostics of the Bayesian Estimation

Reference Model
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NOTE: Multivariate convergence diagnostics following Brooks and Gelman (1998) for the reference, SaM, and full models

calculated using Dynare.
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Appendix D.4. The TFP and TFP Wedge: Second Moments and Decomposition

Table D.7: Second Moments of the TFP Process

RelStd Correlation

dGDPt dTFPt dΦt dTFPUtil,t

dGDPt 1.00(1.00) 1.00(1.00) 0.71(0.60) 0.31(0.62) 0.23(0.05)

dTFPt 0.77(0.98) − 1.00(1.00) 0.34(0.32) 0.45(0.66)

dΦt 0.89(0.85) − − 1.00(1.00) −0.68(−0.50)

dTFPUtil,t 0.93(1.08) − − − 1.00(1.00)

NOTE: The table shows second moments the model and for the data calculated by Fernald

(2014) (parentheses). The relative standard deviations are with respect to standard deviations

of real GDP.

Figure D.10: TFP (Wedge) in the Data and the Model
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NOTE: The first figure shows TFP growth data from 1985q1-2019q4 for the Fernald (2014)-data, the reference model, and the

full model. The second figure shows the TFP growth decomposition for the full model (identical to the reference model).
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Appendix D.5. Model Fit of the Data

Table D.8: Model fit comparison sensitivity analysis

Log data density 2ln Bayes factor Log data density 2ln Bayes factor

Demeaned data ϵ = 6 & α = 0.2

Reference Model 4385 0 4795 0

Simple SaM Model 4436 102 4782 −26

SaM Model 4436 102 4779 −32

Simple Full Model 4431 92 4799 8

Full Model 4430 90 4784 −22

Targeting price adjustment costs

Reference Model κP = 47 4782 −42

Reference Model κP = 96 4803 0

Full Model κP = 47 4809 12

Full Model κP = 96 4828 50

No SAM shock & no CU data Alt. Capacity Utilization Definition

Reference Model 4293 0 4802 0

Simple SaM Model 4321 56 4810 16

SaM Model 4323 60 4814 24

Simple Full Model 4312 38 4820 36

Full Model 4187 −212 4820 36

Data 1985q1 - 2008q4

Reference Model 2919 0

Simple SaM Model 2947 56

SaM Model 2944 50

Simple Full Model 2930 22

Full Model 2922 6

NOTE: Log data densities are calculated by the modified harmonic mean following Geweke (1999). For

model comparison, I use Bayes factor according to Kass and Raftery (1995). The exercise targeting price

adjustment costs follows Gantert (2021), where I calculate the parameter in a Rotemberg (1982b) setup

for both the reference and SaM models targeting a Phillips curve slope of 0.1. The simple SaM and simple

full models are without long-term customer relationships and firm inventories.
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Appendix D.6. Correlograms

Figure D.11: Correlogram for the Reference and SaM Model
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NOTE: The figure shows correlograms of GDP, the capital stock, capacity utilization, total hours worked, TFP, and inflation

with five lags for the data, the reference model, and the SaM model. The correlograms for the models show the 90% HPD

intervals of their posterior estimates. All data is detrended with a one-sided HP filter before calculating the correlations.

65



Figure D.12: Correlogram for the Reference and Full Model
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NOTE: The figure shows correlograms of GDP, the capital stock, capacity utilization, total hours worked, TFP, and inflation

with five lags for the data, the reference model, and the full model. The correlograms for the models show the 90% HPD

intervals of their posterior estimates. All data is detrended with a one-sided HP filter before calculating the correlations.
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Appendix D.7. Historical Variance Decomposition U.S. Data 1985q1-2019q4

Table D.9: Variance Decomposition

Reference Model eA eI eH eN eP eW eT eG eM

GDP 27.7 26.9 4.4 2.3 7.8 2.1 24.2 0.5 4.2

Capital 32.4 25.9 7.8 2.1 2.5 0.7 25.7 2.4 0.7

Total Hours 12.0 25.8 7.3 8.3 17.0 6.0 13.0 0.5 10.1

Capacity Utilization 8.4 25.2 4.8 0.4 12.1 3.4 37.7 0.7 7.3

Inflation 6.3 17.2 2.9 0.2 37.9 12.3 8.8 0.3 14.3

TFP 37.3 22.1 0.9 0.1 2.7 0.4 34.6 0.4 1.5

SaM Model eA eI eH eN eP eW eT eG eM

GDP 24.7 17.4 1.5 1.6 3.3 2.8 45.1 0.4 3.4

Capital 24.7 21.6 4.0 1.1 1.6 0.6 43.9 2.0 0.6

Total Hours 5.1 8.1 5.7 6.7 20.0 35.3 14.2 0.2 4.9

Capacity Utilization 2.6 12.1 0.9 0.2 3.9 3.2 70.2 0.3 6.7

Inflation 4.8 28.6 2.3 0.2 11.0 9.8 12.7 0.4 30.2

TFP 29.0 15.7 1.8 0.1 1.1 3.4 46.5 0.2 2.3

Full Model eA eI eH eN eP eW eT eG eM

GDP 21.9 27.1 2.3 1.7 4.9 1.8 35.4 0.4 4.6

Capital 23.0 32.1 4.7 1.4 1.9 0.4 34.0 1.6 0.9

Total Hours 7.8 17.7 5.7 7.9 21.5 14.6 16.9 0.2 7.6

Capacity Utilization 4.8 21.3 2.1 0.3 6.7 2.5 53.6 0.4 8.3

Inflation 5.4 22.5 2.3 0.2 23.1 9.3 13.1 0.3 23.9

TFP 27.2 25.8 1.1 0.1 1.0 0.6 40.8 0.3 3.3

NOTE: The variance shares are given in percent. Rounding errors can lead to cumulative

variance not equal to 100%.
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Figure D.13: Shock Decomposition Difference between the Reference and SaM Model
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NOTE: The figure shows the percentage point change of the variance decomposition for the model shocks and across models.

An increase indicates a higher variance share for the respective shock in the SaM model compared to the reference model.

Hence, a positive value indicates a larger share of variance of a variable being explained by the shock in the SaM model

compared to the reference model.
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Figure D.14: Historical Variance Decomposition U.S. Data 1985q1-2019q4 (Time Series)

Reference Model
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NOTE: The upper figure shows the historical variance decomposition for the reference model. The lower figure shows the

historical variance decomposition for the full model.
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Appendix E. TFP Bias and Multiplicators Sensitivity Analysis

Figure E.15: Robustness: TFP Wedge Fluctuations for Technology Shocks
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NOTE: The figure shows impulse response functions of the TFP wedge to technology shocks for the full model. The deviations

are measured in percentage deviations from the deterministic steady-state. It shows a robustness analysis for the parameters of

price stickiness, κP , demand elasticity of goods market matching, γT , long-term customer separation rate δT , and inventory

depreciation rate, δI . The curves show low (black curves), medium (red dashed curves), and high (blue dashed curves) values

for the respective parameters.
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Figure E.16: Robustness: TFP Wedge Fluctuations for Non-Technology Shocks (1/2)
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NOTE: The figure shows impulse response functions of the TFP wedge to non-technology shocks for the full model. The

deviations are measured in percentage deviations from the deterministic steady-state. It shows a robustness analysis for the

parameters of price stickiness, κP , and demand elasticity of goods market matching, γT . The curves show low (black curves),

medium (red dashed curves), and high (blue dashed curves) values for the respective parameters.

71



Figure E.17: Robustness: TFP Wedge Fluctuations for Non-Technology Shocks (2/2)
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NOTE: The figure shows impulse response functions of the TFP wedge to non-technology shocks for the full model. The

deviations are measured in percentage deviations from the deterministic steady-state. It shows a robustness analysis for the

parameters of long-term customer separation rate δT , and inventory depreciation rate, δI . The curves show low (black curves),

medium (red dashed curves), and high (blue dashed curves) values for the respective parameters.
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Figure E.18: Robustness: Cumulative TFP Multiplicators
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NOTE: The figure shows cumulative TFP multiplicators to all shocks for the full model. It shows a robustness analysis for the

parameters of price stickiness, κP , demand elasticity of goods market matching, γT , long-term customer separation rate δT , and

inventory depreciation rate, δI . The bars show low (blue bars), medium (red bars), and high (yellow bars) values for the

respective parameters.
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