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Abstract

We develop a novel nonparametric estimator of integrated variance that utilizes intraday candle-

stick information, comprised of the high, low, open, and close prices within short time intervals.

The range-return-difference volatility (RRDV) estimator is robust to short-lived extreme return

persistence hardly attributable to the diffusion component, such as gradual jumps and flash

crashes. By modelling such sharp but continuous price movements following some recent theoret-

ical advances, we demonstrate that RRDV can provide consistent estimates with variances about

four times smaller than those obtained with the differenced-return volatility (DV) estimator.

Monte Carlo simulations and empirical applications further validate the practical reliability of

our proposed estimator with some finite-sample refinements.
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1 Introduction

The discussion about intraday periods with extreme high-frequency return persistence was brought

back to the fore by the May 2010 “flash crash” in the U.S. stock market (Kirilenko et al., 2017;

Menkveld and Yueshen, 2019). The crash originated in E-mini S&P 500 future contracts, and led

to an extraordinarily rapid decline by 5-6% and a V-shaped recovery of U.S. equity indices in 30

minutes. It swiftly spread to almost 8,000 individual stocks and exchange traded funds (ETFs),

and echoed internationally (CFTC and SEC, 2010). Prices with short-lived locally explosive trends

and returns with highly positive autocorrelations exhibit compelling short-horizon predictability.

“Gradual jumps” identified by Barndorff-Nielsen et al. (2009) also have similar characteristics. These

sharp but “continuous” price movements explain to a large extent the reason for spurious detection

of jumps with sparsely sampled data (Christensen et al., 2014; Bajgrowicz et al., 2016), although

they have attracted limited attention. Empirical evidence shows such extreme events like mini

flash crashes occur more frequently in recent years, which raises widespread concern about market

inefficiency and vulnerability (Golub et al., 2012; Laly and Petitjean, 2020; Flora and Renò, 2022).

These market glitches are also a threat to the standard theoretical framework, as a temporary

violation of the Itô semimartingale assumption and potentially the no-arbitrage principle (Andersen

et al., 2023). Two recent influential studies, Christensen et al. (2022) and Andersen et al. (2021),

attempt to incorporate the mechanism behind these short-term directional and persistent price

movements into the standard Itô semimartingale framework. Christensen et al. (2022) attribute

the short-lived explosive trend to a locally unbounded drift, which prevails over volatility and

dominates log-returns in the vicinity of explosion points.1 Andersen et al. (2021) consider these

unusual patterns as outcomes of the temporary disequilibrium after ambiguous information arrivals,

i.e., the market price over- or under-reacts to information in an inefficient financial market, and

deviates temporarily from the true value.

The existence of such events poses new challenges for the estimation of integrated variance (IV),

which serves as the cornerstone of statistical inference with high-frequency financial data (Äıt-Sahalia

and Jacod, 2014). Since the realized volatility (RV) estimator of Andersen and Bollerslev (1998),

the increased data availability motivates the development of nonparametric estimation techniques to

mitigate the impact of distinctive data characteristics, either in isolation or in combination. A stream

of literature focuses on robust IV estimation when the price process has jumps. There are basically

two methods to overcome this problem: the bipower and multipower estimators (Barndorff-Nielsen

and Shephard, 2004, 2006; Huang and Tauchen, 2005) and truncated estimators (Mancini, 2009),

with some combinations thereof (Vetter, 2010; Corsi et al., 2010). Theoretical innovations on this

issue continue to emerge afterwards, see, e.g., Andersen et al. (2012) and Jacod and Todorov (2014,

2018). All the aforementioned tools spotlight merely extreme price movements characterized by a

discontinuous component, while the distortion of IV measurement by non-trivial periods with sharp

1See also Flora and Renò (2022), Laurent et al. (2022), Bellia et al. (2023), Christensen and Kolokolov (2023),
and Kolokolov (2023), for some recent theoretical and empirical studies on drift burst.
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but continuous price movements has long been ignored. Laurent and Shi (2020) visualize the bias of

(original and modified) RV and realized bipower variation (RBPV) in the presence of a nonzero

drift coefficient. The differenced-return volatility (DV) estimator of Andersen et al. (2021) is the

first IV estimator robust to this type of episodic Itô semimartingale violation.

This paper develops an alternative nonparametric estimator which can exclude excessive return

variation induced by short-lived dominant trends and consistently estimate IV from the diffusion

component. Motivated by the drift-independent variance estimator of Yang and Zhang (2000), we

propose the range-return-difference volatility (RRDV) estimator based on intraday “candlestick”

information, specifically the high, low, open, and close prices (HLOCs) within short time intervals.

The RRDV estimator is constructed from pairwise differences between high-low ranges and absolute

open-close returns. This construction based on range-return differences is designed to remove the

contribution to total variation from a locally persistent component, which dominates both ranges

and returns in the intervals within such non-trivial episodes. Fig. 1 illustrates some simulated

examples of intraday candlestick charts. The candlesticks have long “real bodies” but small or

nearly no “wicks”, i.e., marubozu candlesticks, when the price movements are locally dominated

by either discontinuities or short-lived explosive trends. The pairwise offset between ranges and

returns offers the wick-based RRDV estimator a built-in robustness to such extreme events.

Figure 1: Examples of one-minute intraday candlestick charts for the simulated second-by-second log-prices from different

DGPs: continuous (left), discontinuous with a jump (middle), continuous with a V-shaped flash crash (right).

Different from the DV estimator that is constructed from the first-order differenced returns to

offset the excessive return drift in consecutive intervals, RRDV utilizes the candlestick information

and implements a similar offset independently within each interval. We derive the consistency and

asymptotic normality of the RRDV estimator under infill asymptotics, which reveals its ability to

provide consistent IV estimates with variances approximately four times smaller than those obtained

with DV. Importantly, we demonstrate that the presence of jumps with both finite and infinite

activities, as well as the episodes of extreme return persistence as modelled by Christensen et al.

(2022) and Andersen et al. (2021), has no impact on the consistency and asymptotic distribution.
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Simulation results confirm that our new estimator outperforms selected competitors in scenarios

with various specifications of extreme directional price movements, with an effective correction for

the finite-sample biases. Our empirical application focuses on the prediction of out-of-sample IV

estimates of the SPDR S&P 500 ETF Trust (SPY) with the heterogeneous autoregressive (HAR)

model of Corsi (2009). We find that the HAR model based on RRDV estimates can achieve smaller

forecast errors for both robust and non-robust IV measures than all selected benchmark models,

especially on days with continuous or discontinuous extreme events.

From a technical point of view, our estimator is more closely related to the literature on range-

based volatility estimation. Since the classical works of Parkinson (1980) and Garman and Klass

(1980), a number of studies in this field show the strength of range-based volatility estimators

to improve estimation accuracy by extracting more information from realized price paths than

return-based measures, see, e.g., Beckers (1983), Ball and Torous (1984), Rogers and Satchell (1991),

Kunitomo (1992), Yang and Zhang (2000), Alizadeh et al. (2002), and Brandt and Diebold (2006).

The realized range-based volatility (RRV) estimator introduced by Christensen and Podolskij (2007)

is the first nonparametric IV measure constructed from high-frequency intraday ranges, which

is then extended by Martens and van Dijk (2007), Christensen et al. (2009), and Christensen

and Podolskij (2012). More recently, Li et al. (2022) and Bollerslev et al. (2023) introduce the

optimal candlestick-based spot volatility estimators with the linear and nonlinear functional forms,

respectively, which benefit from both the statistical superiority of range-based estimation and the

broader availability of intraday candlestick charts. As an fundamental tool in technical analysis that

predates the rise of high-frequency data, easy access to intraday candlesticks is now widely available

in most online trading applications. This accessibility facilitates the straightforward implementation

of candlestick-based inference techniques, rendering them a convenient option for general investors.

The remainder of this paper is structured as follows: Section 2 lays out the basic setup and

introduces the new candlestick-based IV estimator. Section 3 discusses its asymptotic behavior under

two different specifications of episodic extreme return persistence. Section 4 contains finite-sample

refinements of our estimator and instructions in practice. Section 5 includes an extensive Monte

Carlo study that verifies its asymptotic unbiasedness and illustrates the finite-sample performance.

After an empirical application of volatility forecasting in Section 6, we conclude in Section 7. All

proofs and additional materials are relegated to the Appendix.

2 Volatility Estimation Based on Range-Return Differences

2.1 Range-Return-Difference Volatility (RRDV) Estimator

For a finite time interval [0, t], e.g., a trading day, we apply an equidistant partition at 0 < ∆n <

2∆n < · · · < n∆n ≤ t to divide it into n = bt/∆nc short time intervals. We denote the i-th interval
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by In,i = [(i− 1)∆n, i∆n]. The HLOC over the i-th interval can be expressed respectively as

Hi = sup
t∈In,i

Xt, Li = inf
t∈In,i

Xt, Oi = X(i−1)∆n
, Ci = Xi∆n . (1)

The high-low range and open-close return are then denoted by

wi = Hi − Li, ri = Ci −Oi. (2)

The range-return-difference volatility (RRDV) estimator based on the differences between ranges

and absolute returns is defined as

V̂t,n =
1

Λ2

n∑
i=1

(wi − |ri|)2 , (3)

with

Λp = E

[(
sup

t,s∈[0,1]
Wt −Ws − |W1|

)p]
, (4)

where W = (Wt)t≥0 is a standard Brownian motion, and Λ2 = 4 ln 2− 2 ≈ 0.7726, specifically.

2.2 Limit Theorems for Continuous Itô Semimartingales

We consider a continuous Itô semimartingale in a filtered probability space (Ω,F , (Ft)t≥0,P):

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs, (5)

where t stands for time, X0 is F0-measurable, µ = (µt)t≥0 is a locally bounded and predictable

process of drift, σ = (σt)t≥0 is an adapted, càdlàg and strictly positive (almost surely) process of

spot volatility, and W = (Wt)t≥0 is a standard Brownian motion.

Theorem 1 (Consistency). Assume that the efficient price X evolves according to Eq. (5) with all

traditional conditions satisfied. Then it holds that as ∆n → 0,

V̂t,n
u.c.p.−−−→

∫ t

0
σ2
sds, (6)

where
u.c.p.−−−→ stands for the uniform convergence in probability, i.e., for any processes Zn, Z we have

Zn
u.c.p.−−−→ Z if and only if sups≤t |Zns − Zs|

P−→ 0 for all t finite.

Theorem 1 indicates that RRDV is a consistent estimator under infill asymptotics when the

efficient prices follow a continuous Itô semimartingale. The result is straightforward to prove with the

law of large numbers (LLN) for path-dependent functionals of Itô semimartingales, as summarized

in Duembgen and Podolskij (2015). To derive an associated central limit theorem (CLT), we need

to impose some regularity conditions on σ:
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Assumption 1. σ does not vanish and follows a continuous Itô semimartingale of the form

σt = σ0 +

∫ t

0
µ̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
ṽsdBs, (7)

where µ̃ = (µ̃t)t≥0, σ̃ = (σ̃t)t≥0, and ṽ = (ṽt)t≥0 are adapted, càdlàg processes, and B = (Bt)t≥0 is

another Brownian motion independent of W .

Remark 1. This assumption rules out possible discontinuities in σ, which is at odds with some

empirical evidence, see, e.g., Eraker et al. (2003), Jacod and Todorov (2010), Todorov and Tauchen

(2011), and Bandi and Renò (2016). It can be harmlessly relaxed without altering the limit in the

next theorem, but needs substantial extra calibration in the proofs. Some relevant discussions can

be found in Christensen et al. (2009) and Christensen and Podolskij (2012).

Theorem 2 (Asymptotic normality). Assume that the efficient price X follows a continuous Itô

semimartingale in Eq. (5) with Assumption 1 satisfied. Then as ∆n → 0, we have

1√
∆n

(
V̂t,n −

∫ t

0
σ2
sds

)
L−s−−→MN

(
0,Θ

∫ t

0
σ4
sds

)
, (8)

with the variance factor Θ = (Λ4 − Λ2
2)/Λ2

2 ≈ 0.7245, and Λ4 = 24 ln 2 − 12 − 3ζ(3) ≈ 1.0294,

where ζ(3) =
∑∞

n=1 n
−3 ≈ 1.2021 is the Riemann’s zeta function. We denote by

L−s−−→ the stable

convergence in law, and byMN a mixed normal distribution, i.e., a normal distribution conditional

on the realization of its F-conditional variance, which is a random variable.

Remark 2. Compared with the DV estimator of Andersen et al. (2021) which features a variance

factor of 3, the asymptotic variance of our candlestick-based RRDV estimator is about four times

smaller under infill asymptotics. This result might seem surprising initially, given that Kolokolov

et al. (2023) demonstrate that DV attains the variance lower bound of drift-robust IV estimator based

on returns from two adjacent blocks. In essence, the improvement of RRDV over DV originates from

the additional information contained in high-frequency intraday ranges, which induces a different

limiting statistical experiment. This additional information also leads to the diminished variance

of the RRV estimator of Christensen and Podolskij (2007) over RV, which is the return-based

minimum-variance unbiased estimator (MVUE). Finally, if the robustness to locally explosive trends

is not pursued, then one can construct a variance optimal candlestick-based IV estimator in the

spirit of Garman and Klass (1980), Li et al. (2022), and Bollerslev et al. (2023). As this is not the

main focus of this paper, we shall leave it for further research.

Remark 3. Similar to the limiting distribution of RRV in Christensen and Podolskij (2007), the

variance factor Θ in Theorem 2 is an infill-asymptotic result based on the presumption that the

true HLOCs in all short episodes are observed. In practice, the efficiency of range-based estimators

depends on the number of observations used to calculate the high-low range within each interval.

See a detailed discussion in Section 4.1 about the RRDV estimator constructed from candlesticks

formed by a finite number of observations.
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For feasible implementation of the asymptotic distribution in Theorem 2, we can estimate the

integrated quarticity (IQ) with the following range-return difference quarticity (RRDQ) estimator

constructed analogously to RRDV:

Q̂t,n =
n

Λ4

n∑
i=1

(wi − |ri|)4 . (9)

With techniques similar to Theorem 1, we can establish the consistency result for RRDQ:

Corollary 1 (Feasible inference). Under the same conditions as in Theorem 1, it holds that

Q̂t,n
u.c.p.−−−→

∫ t

0
σ4
sds. (10)

The stable convergence in Theorem 2 implies that√
n

ΘQ̂t,n

(
V̂t,n −

∫ t

0
σ2
sds

)
L−→ N (0, 1). (11)

Remark 4. Similar to RRDV, the fourth-moment estimator Q̂t,n is robust to both discontinuities

(in Section 2.3) and short-lived locally explosive trends (in Section 3). The proofs are analogous and

thus omitted here.

2.3 Jumps

We examine the behavior of our RRDV estimator constructed on a discontinuous Itô semimartingale

defined on (Ω,F , (Ft)t≥0,P), e.g., with the Grigelionis (1980) representation:

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs +

(
δ1{|δ|≤1}

)
?
(
p− q

)
t
+
(
δ1{|δ|>1}

)
? p

t
, (12)

where p = p(dt, dx) is a Poisson random measure on R+ × R with a compensator q = q(dt, dx) =

dt⊗ λ(dx), λ is a σ-finite measure on R, and the function δ(ω, t, x) on Ω× R+ × R is predictable;

see Aı̈t-Sahalia and Jacod (2014) for details regarding the last two integrals.

Assumption 2. There exists a sequence (τn)n≥1 of stopping times increasing to ∞, and a sequence

of deterministic nonnegative functions fn on R for each n, which satisfies |δ(ω, t, x)| ∧ 1 ≤ fn for all

(ω, t, x) with t ≤ τn(ω), and
∫
R |fn|

rλ(dx) <∞ for some r ∈ [0, 1).

Remark 5. The parameter r sets a bound on the degree of jump activity. With some r ∈ [0, 1), we

consider jumps of both finite and infinite activities, but restrict them to be of finite variation, i.e.,

they are absolutely summable, such that in Eq. (12) we can dispense with the integral with p− q,
see Jacod et al. (2019) for more details.

Jumps of order of magnitude ∆$
n for some $ ∈ [0, 1/2) prevail over the diffusion component

and induce non-negligible shifts in X(ω) under infill asymptotics. We denote by ∆Xt = Xt −Xt−
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the size of discontinuous shift at time t. The robustness of RRDV in the presence of jumps is shown

in the next proposition.

Proposition 1 (Jump robustness). Assume that the efficient price X follows a discontinuous Itô

semimartingale in Eq. (12) with Assumption 2 satisfied. Then as ∆n → 0,

V̂t,n −
∫ t

0
σ2
sds = OP

(√
∆n

)
, (13)

where the bias induced by jumps is asymptotically negligible and has no impact on the asymptotic

distribution in Theorem 2.

Proposition 1 indicates the robustness of RRDV to both finite-activity and infinite-activity

but finite-variation jumps in the efficient price. In each of the intervals with a nonzero ∆Xt, the

discontinuous component in Eq. (12) has a higher asymptotic order than the continuous component,

and thus dominates both the range and absolute return under infill asymptotics. Consequently,

the jumps are mechanically cancelled in the range-return differences. As a result, the contribution

from intervals that contain jumps in RRDV is asymptotically negligible and does not affect the

consistency and asymptotic normality in Theorems 1 and 2, respectively.

In contrast, the differencing of returns removes the contribution from similar realizations of

a locally persistent term in consecutive intervals, but it retains the unexpected increments from

the distinctly less persistent jump component. Therefore, the DV estimator relies on an additional

truncation method introduced by Mancini (2009) to discard all unexpectedly large differenced

returns that may possibly contain jumps.

As pointed out by Andersen et al. (2021), market participants may imperfectly react to the

shifts in economic fundamentals, and sometimes induce an short-lived deviation between the efficient

and observed prices. This phenomenon, referred to as the “gradual jumps” identified by Barndorff-

Nielsen et al. (2009) and Hoffmann et al. (2018), will be discussed in the next section as a typical

manifestation of short-lived extreme return persistence.

3 Extreme Return Persistence

3.1 Drift Burst Model

As assumed in Section 2.2, the drift µ = (µt)t≥0 is locally bounded, so that we can estimate IV

consistently under infill asymptotics, because the drift becomes invisible since ∆n �
√

∆n in the

limit, i.e., for a fixed time point τ , we have∫ τ+∆n

τ
µsds = OP (∆n) and

∫ τ+∆n

τ
σsdWs = OP

(√
∆n

)
, as ∆n → 0. (14)

Christensen et al. (2022) point us in a new direction to understand some highly directional price

movements over short episodes, in which the unbounded drift prevails over volatility and locally
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dominates log-returns in the limit, which is summarized in the following assumption.

Assumption 3 (Drift burst model). The efficient price X is defined on a filtered probability space

(Ω,F , (Ft)t≥0,P) and assumed to be a continuous semimartingale described by

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs +Ht, (15)

with

Ht =

∫ t

0
µbsds =

∫ t

0

c−s 1{s<τ} + c+
s 1{s>τ}

|s− τ |α
ds, (16)

where τ ≥ 0, and 1/2 < α < 1. The coefficients c−t and c+
t are continuous and twice differentiable

deterministic functions. All usual conditions for µ and σ are satisfied.

It is assumed that the bursting drift term µbt has a singularity at the “burst time” τ , and thus

explode in the vicinity of τ . The order of magnitude of Ht is given by∫ τ

τ−∆n

c−s
(τ − s)α

ds �
∫ τ+∆n

τ

c+
s

(s− τ)α
ds = OP

(
∆1−α
n

)
. (17)

We allow for different drift explosion coefficients c−t and c+
t before and after τ , and use the same

rate of explosion α on both sides for ease of exposition. We restrict α < 1 for the continuity of

sample paths. When α > 1/2, the volatility is completely swamped by the drift in the vicinity of τ ,

which induces a short-lived return persistence, and biases the nonparametric volatility estimators

constructed from high-frequency intraday returns.2

When 1/2 < α < 1 and c−τ c
+
τ < 0, the trajectory shows a “V-shape” (or “Λ-shape”) in the

neighborhood of τ , thanks to a discontinuity in the sign of Ht which locally dominates log-returns

(Flora and Renò, 2022). Different drift explosion coefficients c−t and c+
t can be harmlessly employed

to mimic patterns akin to V-shaped flash crashes (c−τ < 0, c+
τ > 0) or gradual jumps (c+

τ = 0). It

will not affect main intuitions.

Proposition 2. Assume that the efficient price X follows a continuous semimartingale in Eq. (15)

and Assumption 3 holds with 1/2 < α < 1. For the RRDV estimator, it holds that

V̂t,n −
∫ t

0
σ2
sds = OP

(
∆

1
2α
n

∨√
∆n

)
= OP

(√
∆n

)
, ∀α ∈

(
1

2
, 1

)
, (18)

where the bias induced by the drift burst is asymptotically negligible and has no impact on the

asymptotic distribution in Theorem 2.

Under Assumption 3, the drift burst component H = (Ht)t≥0 dominates the price movement in

the vicinity of τ , i.e., the “explosion effect zone”, while its impact diminishes as t moves away from

2We follow Andersen et al. (2021) to consider such episodic Itô semimartingale violations with only an exploding
drift. It does not necessarily allow local arbitrage opportunities in the specification of Christensen et al. (2022), which
accommodates simultaneous drift and volatility bursts with different rates of explosion.
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τ . Both the range and absolute return in an interval within the effect zone near τ are dominated by

a common excessive component, that is, the H increment of a higher asymptotic order than
√

∆n.

The pairwise offset between ranges and returns naturally nullifies the impact of H. As a result,

the presence of drift burst can only induce an estimation bias of order OP(∆
1/2α
n ) for the RRDV

estimator, which is asymptotically negligible and does not affect the CLT result in Theorem 2 for all

possible α ∈ (1/2, 1). Over the region not in the vicinity of τ , the invisible H retains the continuous

Itô semimartingale assumption with a bias of order OP(
√

∆n).

The bias result of RRDV in Proposition 2 has a similar form as that of DV in Andersen et al.

(2021). We find that the asymptotic order of the RRDV bias under Assumption 3 aligns with the

bias order OP(
√

∆n) under the continuous Itô semimartingale assumption, and its upper bound
√

∆n does not exceed that of the DV bias. Furthermore, the bias result of RRDV remains unaffected

by the rate of drift explosion α and does not depend on any parameter choices, while the DV bias is

independent of α only when some conditions for the truncation threshold are satisfied. The result

can be extended to the case with stochastically distributed explosion times over [0, t], as illustrated

next in Section 3.2.

3.2 Persistent Noise Model

Andersen et al. (2021) introduce an alternative specification for the episodic emergence of extreme

directional price movements. They consider these complex price patterns as outcomes of market

uncertainty caused by imperfect information and irrational market participants.

Assumption 4 (Persistent noise model). The observed price X is a combination of the efficient

price, modeled as a possibly discontinuous Itô semimartingale in Eq. (12), and a component H that

accommodates persistent price movements over irregularly spaced episodes:

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs +

∑
0≤s≤t

∆Xs +Ht. (19)

We denote by τi the first occurrence of the i-th “persistent noise” episode, so that τ1, τ2, . . . , τN ∈ [0, t)

form an increasing sequence of stopping times, with N finite almost surely. The persistent noise

component is given by

Ht =
∑
i:τi≤t

H
(i)
t 1{ε(i)t ≥0}, (20)

with H
(i)
t defined as

H
(i)
t = f (i)(∆Xτi , ητi)g

(i)(t), (21)

where ∆Xτi = Xτi −Xτ−i
is the efficient price jump at τi, ητi is an Fτi-measurable random variable,

f (i) is a continuous and bounded function, and g(i) has one of the functional forms as follows:

g
(i)
gj (t) =

[
1−

(
t− τi
τ i − τi

)β]
1{t∈[τi,τ i]}, (22)

10



where 0 < β < 1/2, and τ i > τi is an Fτi-measurable random variable, or

g
(i)
fc (t) = c−t

[
1−

(
τ̆i − t
τ̆i − τi

)β−]
1{t∈[τi,τ̆i]} + c+

t

[
1−

(
t− τ̆i
τ i − τ̆i

)β+
]
1{t∈[τ̆i,τ i]}, (23)

where 0 < β−, β+ < 1/2, the coefficients c−t and c+
t are continuous and twice differentiable

deterministic function, and τi < τ̆i < τ i are all Fτi-measurable random variables. Moreover,

ε
(i)
t =

∑
s∈[τi,t]

∆εs (24)

is a finite-activity pure jump process with negative jumps.

Remark 6. Each of the episodes is activated and terminated by the realizations of τi and τ i, or

randomly ended by ε
(i)
t in the middle. The function f (i) captures the initial market reaction to

events with ambiguous information that trigger persistent noise episodes, the random variable ητi
allows for a random response to such events, and the function g(i) describes the price pattern over a

temporary disequilibrium after ambiguous information arrives. Assumption 4 allows for two basic

forms of H(i) to model market uncertainty in two different scenarios:

I. Market participants underreact (or slowly react) to a shift in fundamentals. In this scenario,

there exists ∆Xτi 6= 0, the function g(i) takes the form g
(i)
gj in Eq. (22), and f (i)(∆Xτi , ητi) =

−ητi∆Xτi with ητi = 1 or ητi ∈ (0, 1), which partially offsets the efficient price jump at τi.

II. Market participants worry about a potential shift in fundamentals. In this scenario, ∆Xτi = 0,

and the function g(i) takes the form g
(i)
fc in Eq. (23). The deviation from efficient price is (fully

or partially) recovered shortly after due to reverse trades by arbitrageurs, which leads to a

V-shaped trajectory with a turning point at a random time τ̆i.

The scenario I and II correspond to two phenomena observed in financial markets, i.e., gradual

jumps and flash crashes, respectively. H(i) in scenario II can be viewed as a stochastic extension of

the drift burst model in Assumption 3, with stochastically distributed explosion times over [0, t].

We next state an analogous result to Proposition 2 when the observed prices persistently deviate

from the fundamental values due to short-lived market inefficiency.

Proposition 3. Assume that the market price X follows a contaminated Itô semimartingale in

Eq. (19) with finite-activity jumps, i.e., r = 0, and there exists a persistent noise episode [τ, τ ] ⊂ [0, t].

The function g(1) in the noise component H
(1)
t takes either of the two forms in Eqs. (22) and (23).

For the RRDV estimator, it holds that

V̂t,n −
∫ t

0
σ2
sds =


OP

(
∆

1
2(1−β)
n

∨√
∆n

)
= OP

(√
∆n

)
, ∀β ∈ (0, 1/2), when g(1) = g

(1)
gj ,

OP

(
∆

1
2(1−β−∧β+)
n

∨√
∆n

)
= OP

(√
∆n

)
, ∀β± ∈ (0, 1/2), when g(1) = g

(1)
fc ,

(25)
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where the bias induced by the persistent noise is asymptotically negligible and has no impact on the

asymptotic distribution in Theorem 2.

In Proposition 3, our discussion is confined to a simplified scenario featuring a single persistent

noise episode within the interval [0, t]. Similar to the result in Proposition 2 with a drift burst, the

estimation bias is of order OP(∆
1

2(1−β)
n ) with a gradual jump and OP(∆

1
2(1−β−∧β+)
n ) with a V-shaped

flash crash, respectively, over the “explosion effect zone” where the role of H is no smaller than

the diffusion component. The results obtained in the simplified scenario can be straightforwardly

extended to more general cases involving a finite number of such episodes with non-overlapping

effect zones. Simulation results in Section 5 shows that the RRDV estimator remains unbiased in

the presence of a gradual jump with an intermittent small flash crash.

Over each short interval in the vicinity of τ̆ , the persistent noise H adds the same amount to

both range and absolute return. The only exception is the so-called “V” interval in a flash crash,

i.e., the interval which accommodates the reversal point τ̆ . The range-return difference in the

“V” interval is an OP(∆β−∧β+

n ) variable, while its impact is negligible when n approaches infinity.

However, a steep “V-shape” could deteriorate the finite-sample performance of RRDV when the

interval length is far away from infinitesimal in practice, which shall be discussed in Section 4.2.

4 Finite-Sample Refinements

4.1 Finite-Sample Bias I: Discretization Errors

Variance estimators constructed from high-low ranges often exhibit a systematic downward bias in

practice. This issue was initially identified by Garman and Klass (1980), Beckers (1983), and Rogers

and Satchell (1991) in the context of daily variance estimation. Range-based IV estimation with

intraday observations faces a similar challenge. The source of this downward bias is the difference

between the discretized range calculated from the discrete observations available in practice and the

true range originating from a continuous-time process, which is referred to as discretization error.

More specifically, since the discretized minimum (maximum) is obtained from a smaller set, it will

be greater (smaller) than the continuous minimum (maximum). Consequently, the discretized range

includes a negative discretization error. In other words, the scaling factor Λ2 derived from a standard

Brownian motion leads to an over-scaling of the sum of squared discretized range-return differences.

Therefore, it is advisable to replace it with a discretized scaling factor based on discretely observed

Brownian motion.

To formalize this idea, we introduce some additional notation: We denote by N the number of

observations in each interval ((i− 1)∆n, i∆n], and assume there are totally Nn+ 1 equidistant price

observations available over [0, t]. We denote the discretized high-low range over the i-th interval by

wi,N = Hi,N − Li,N = sup
j∈{0,1,...,N}

X(i−1)∆n+j∆n/N − inf
j∈{0,1,...,N}

X(i−1)∆n+j∆n/N , (26)
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and then define the discretized RRDV estimator as

V̂t,n,N =
1

Λ2,N

n∑
i=1

(wi,N − |ri|)2 , (27)

where Λp,N is the counterpart to Λp in Eq. (4) when the standard Brownian motion is discretely

observed at t = i/N for i = 0, 1, . . . , N over a unit interval:

Λp,N = E

[(
sup

i,j∈{0,1,...,N}
Wi/N −Wj/N − |W1|

)p]
. (28)

To investigate how the discretization error Λp,N − Λp evolves across different N , we present the

asymptotic expansions for Λ2,N and Λ4,N as follows:

Proposition 4. Assume WN = (Wt,N )t∈[0,1] = (Wi/N )i∈{0,1,...,N} is an embedded random walk

equidistantly spaced at N + 1 points over [0, 1]. The following results hold for Λp,N in Eq. (28):

Λ2,N = Λ2 +
4

π
ζ

(
1

2

)
1√
N

+ o

(
1√
N

)
, (29)

Λ4,N = Λ4 +

(
48

π
− 4π

)
ζ

(
1

2

)
1√
N

+ o

(
1√
N

)
, (30)

as N →∞, where ζ(1/2) ≈ −1.4604.

Remark 7. The asymptotic expansions in Proposition 4 are based on the results in Asmussen et al.

(1995), who derive the asymptotic results for Euler discretization errors of one-dimensional reflected

Brownian motions, with details summarized in Lemma B.4 in Appendix B.7.

Proposition 4 indicates that both Λ2,N and Λ4,N , as well as the variance factor ΘN = (Λ4,N −
Λ2

2,N )/Λ2
2,N , can be approximated when N is sufficiently large. This fact inspires us to provide

practitioners with polynomial approximations for all factors when a finite N is applied in practice.

Fig. 2 compares the approximated and simulated values of Λ2,N and ΘN with 11 ≤ N ≤ 2000, which

confirms the precision of polynomial approximations. Further details on the approximations and

practical guidance can be found in Appendix C.2.

The consistency and asymptotic normality of the discretized RRDV estimator in Eq. (27) are

summarized in the next corollary. Similar to the discretized RRV in Christensen and Podolskij

(2007), the CLT result holds for arbitrary N converging to some integer larger than 1.

Corollary 2. Under the same conditions as in Theorem 1, it holds that as ∆n → 0,

V̂t,n,N
u.c.p.−−−→

∫ t

0
σ2
sds. (31)
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Figure 2: Comparison of approximated and simulated values of Λ2,N and ΘN with 11 ≤ N ≤ 2000.

Moreover, if Assumption 1 holds and N → c ∈ N>1, it holds that

1√
∆n

(
V̂t,n,N −

∫ t

0
σ2
sds

)
L−s−−→MN

(
0,Θc

∫ t

0
σ4
sds

)
, (32)

where Θc = (Λ4,c − Λ2
2,c)/Λ

2
2,c. Finally, the stable convergence implies that√

n

ΘN Q̂t,n,N

(
V̂t,n,N −

∫ t

0
σ2
sds

)
L−→ N (0, 1), (33)

where the discretized RRDQ estimator Q̂t,n,N is given by

Q̂t,n,N =
n

Λ4,N

n∑
i=1

(wi,N − |ri|)4 u.c.p.−−−→
∫ t

0
σ4
sds. (34)

The discretized RRDV is undefined when N → 1 because Λ2,1 = 0, unlike RRV that reduces to

the standard RV when there are only open and close prices available for all intervals. Furthermore,

compared with the DV estimator, the asymptotic variance of the discretized RRDV becomes smaller

even when only five observations (including open and close) are available in each interval. Simulation

results in Section 5.3 demonstrate that the discretized RRDV based on half-a-minute observations

(with 1, 2, 3, 5-minute candlestick intervals) can still produce reliable IV estimates, with only a

mild increase in finite-sample variance.

The effective correction for discretization errors ensures the reliability of RRDV constructed

from discretized candlestick information, i.e., the HLOCs obtained from sparsely or “not-too-finely”

sampled price observations within each candlestick interval. The fact that the market microstructure

noise becomes more pronounced with higher sampling frequencies has inspired the widespread use

of volatility estimators based on sparsely sampled data (Aı̈t-Sahalia et al., 2005). The utilization

of discretized HLOCs provides our estimator with a similar robustness to market microstructure
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noise, without introducing additional complexity for implementation.3 However, a comprehensive

investigation of the asymptotic and finite-sample behavior of range-based estimators constructed

from ultra high-frequency or “finely” sampled data with noise contamination requires a more

explicit assumption for the noise structure, where the literature is still far from reaching a consensus

(Bollerslev et al., 2023). The extension of RRDV in this direction is left for future research.

4.2 Finite-Sample Bias II: V-Shapes

Both models in Section 3 can be employed to mimic flash crashes. As commented after Proposition 3,

the reversal point τ̆i (or the explosion time τ in the drift burst model) has no impact on RRDV in

the limit, but could deteriorate its finite-sample performance when the interval size is not sufficiently

small. An example in Fig. 3 illustrates the candlestick patterns around a V-shaped flash crash. In

this example, the candlestick in the 5-minute “V” interval has a long lower wick, i.e., the so-called

hammer pattern, which potentially introduces a positive bias in the RRDV estimate. This bias

becomes particularly pronounced in cases where the V-shape is steep. To mitigate the V-shape bias

in finite samples, we augment the RRDV estimator with a truncation threshold for the range-return

differences. This augmentation has no impact on the asymptotic results in Sections 2 and 3, but

improves the finite-sample robustness of RRDV to different interval lengths.

Figure 3: 5-minute candlesticks around a simulated V-shaped flash crash.

We employ the classical truncation threshold ϕ = ζ∆$
n with $ ∈ (0, 1/2), initially introduced by

Mancini (2009), and set the threshold parameters by using a data-adaptive method. Andersen et al.

(2021) use the truncation threshold for both absolute returns in the truncated realized volatility

(TRV) and absolute differenced returns in DV, with

ζ = Cζ
√

MedRVt,n, (35)

where MedRVt,n is the median RV estimator of Andersen et al. (2012), i.e.,

MedRVt,n =
π

6− 4
√

3 + π

(
n

n− 2

) n−1∑
i=2

median (|ri−1|, |ri|, |ri+1|)2 , (36)

3Some simulation results are reported in Appendix C.5.
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and CDV
ζ =

√
2CTRV

ζ = 3
√

2, motivated by the ratio
√

2 between standard deviations of (absolute)

differenced and undifferenced i.i.d. Brownian returns. For the RRDV estimator, we truncate the

range-return differences with the threshold of the same form, i.e.,

V̂t,n,N =
1

Λ2,N

n∑
i=1

(wi,N − |ri|)2
1{wi,N−|ri|≤ζRRDV∆$

n }, (37)

where the parameter ζRRDV is given by Eq. (35) with CRRDV
ζ = 2, which is approximately the same

quantile (99.7%) of range-return differences from a standard Brownian motion.

5 Monte Carlo Simulations

This section contains a Monte Carlo study to examine both the asymptotic unbiasedness and the

finite-sample performance of the RRDV estimator, which corresponds to the results developed in

Sections 2 and 3.

5.1 Simulation Design

We simulate a Heston model for the efficient price process X (Heston, 1993):

dXt = µdt+ σtdW1,t + dJt, t ∈ [0, 1],

dσ2
t = κ

(
θ − σ2

t

)
dt+ ησtdW2,t,

(38)

where W1 and W2 are standard Brownian motions with Corr(W1,t,W2,t) = ρ, and J is a compound

Poisson process, i.e.,

Jt =

Nt∑
i=1

Zi, (39)

where N is a Poisson process with rate λ, and Zi follows a normal distribution N (0, ς2). We start

with the initial price X0 = ln 1200, and take the Heston parameters as follows:

µ = 0.05/252, κ = 5/252, θ = 0.0225/252, η = 0.4/252,

ρ = −
√

0.5, λ = 1/5, ς = 0.9%.
(40)

The volatility parameters satisfy the Feller’s condition 2κθ ≥ η2 which ensures the positivity of σ.

The process J simulated with λ = 1/5 corresponds to one jump per week, and generates around

6.5% of the daily quadratic variation on average.

In this section, we firstly examine the unbiasedness of RRDV in “continuous time”: We simulate

half-millisecond (0.0005-second) price observations for 2000 days, and construct RRDV on candlestick

information in 1, 5, 10, 30-second and 1, 2, 3, 5-minute intervals, respectively. Then we evaluate its

finite-sample performance: We simulate one-second and 30-second observations for 10000 days, and

construct the candlesticks on 1, 2, 3, and 5-minute intervals, respectively. All simulated observations
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are equidistantly distributed in [0, 1] which consists of 6.5 hours of trading.

We follow the persistent noise model of Andersen et al. (2021) to simulate three different patterns

of episodic extreme return persistence:4

• Gradual Jump: We insert a shift in fundamentals ∆Xτ = 2.5% at τ = 0.5 for all days. For

the persistent noise component in Eq. (21), we let i ∈ {1}, τ1 = τ , f (1)(∆Xτ , ητ ) = −ητ∆Xτ

with ητ = 1, g(1) take the form g
(1)
gj in Eq. (22), and (τ, τ) = (0.5, 0.59).

• Flash Crash : We let i ∈ {1}, τ1 = τ , f (1)(∆Xτ , ητ ) = −ητ with ητ = 2%, g(1) take the form

g
(1)
fc in Eq. (23), (τ, τ̆ , τ) = (0.41, 0.49, 0.57), and c± = 1.5

• Gradual Jump + Flash Crash : We consider two overlapped persistent noise episodes:

i ∈ {1, 2}. We insert a shift in fundamentals ∆Xτ1 = 2.5% at τ1 = 0.5. We let f (1)(∆Xτ1 , ητ1) =

−ητ1∆Xτ with ητ1 = 1, g(1) take the form g
(1)
gj in Eq. (22), and (τ1, τ1) = (0.5, 0.65). For the

intermittent (small) flash crash, we assume f (2)(∆Xτ2 , ητ2) = −ητ2 with ητ2 = 0.75%, g(2)

takes the form g
(2)
fc in Eq. (23), and c± = 1. We assume that the waiting time between τ1

and τ2 follows an exponential distribution with rate parameter λExp = 15, and (τ̆2, τ2) =

(τ2 + 0.04, τ2 + 0.08).

For each scenario, we consider three different choices of parameter β = β± ∈ {0.45, 0.35, 0.25},
which controls the steepness of short-lived directional price movement. For example, a smaller

β in ggj leads to a steeper gradual jump in observed prices, which is closer to the discontinuous

shift in efficient prices, and corresponds to a less sticky expectation of market participants. Fig. 4

shows examples of simulated price paths eX , efficient (in blue) and observed (in black), for all three

scenarios with β = β± = 0.45.
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Figure 4: Simulated price paths eX , efficient (in blue) and observed (in black), with (i) a gradual jump (left), (ii) a flash crash

(middle), and (iii) a gradual jump with an intermittent small flash crash (right), respectively. The efficient price X is simulated

with the Heston model in Eq. (38). The deviation between efficient and observed prices is simulated with the persistent noise

model in Assumption 4, with all parameters listed above (β = β± = 0.45).

4As shown in Eqs. (56) and (57) in Andersen et al. (2021), there exists an asymptotic correspondence between the
two models of episodic extreme return persistence in Section 3, and they are equivalent with identical asymptotic
analyses when β = 1− α. The simulation results with the drift burst model in Eq. (15) indicate the same qualitative
conclusions.

5For flash crashes simulated with g(i) = g
(i)
fc , we stale the observation on τ̆i to avoid an unnecessary “jump” on

τ̆i. For example, when (τ, τ̆ , τ) = (0.41, 0.49, 0.57) = (9594, 11466, 13338) seconds, we truncate the tick-by-tick H
increments between 11465 and 11467 seconds.
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5.2 Asymptotic Unbiasedness

Table 1 reports the relative biases (%) of RRDV in “continuous time” with the simulated half-

millisecond observations for 2000 days. In Panel A, we find that the biases have fairly small size

when there exists no episodic extreme return persistence. The bias results with H = 0 confirm

the consistency of our estimator (Section 2.2) and its robustness to discontinuities (Section 2.3).

The existence of gradual jumps leads to only small biases of RRDV constructed from candlesticks

with all selected interval lengths, and the biases shrink sufficiently when the number of intervals

(resp. the length of intervals) becomes larger (resp. smaller). The V-shaped flash crashes also lead to

only negligible biases with small intervals. These bias results in “continuous time” show compelling

evidence for the asymptotic unbiasedness of RRDV in the presence of short-lived explosive trends,

as shown in Proposition 2 and Proposition 3.6 Fig. 5 collects the histograms and QQ plots of

estimation errors in some of the Monte Carlo trials, which indicates the close-to-normality of the

estimation errors of RRDV in all scenarios.

Table 1: Monte Carlo bias results (%)

Panel A: No “V” Bias Correction

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -0.01 -0.15 -0.15 -0.16 -0.19 -0.23 -0.26 -0.15 -0.16 -0.20

5 0.01 -0.47 -0.40 -0.38 -0.72 -0.73 -0.62 -0.61 -0.53 -0.37

10 -0.02 -0.75 -0.77 -0.63 -0.61 0.25 1.72 -0.81 -0.69 -0.49

30 -0.04 -1.89 -1.52 -1.24 -1.38 0.27 2.90 -1.36 -1.06 -0.42

60 0.11 -2.75 -2.25 -1.69 -2.76 -0.91 2.18 -2.27 -0.11 1.23

120 0.12 -3.73 -3.06 -2.44 10.74 22.69 36.21 -0.73 1.11 4.11

180 0.14 -4.58 -3.94 -3.17 10.90 23.50 37.34 -0.70 1.54 5.10

300 0.13 -5.62 -4.88 -3.45 14.38 28.38 43.38 2.45 5.22 5.01

Panel B: With “V” Bias Correction

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -0.80 -0.92 -0.87 -0.80 -0.98 -0.93 -0.90 -0.91 -0.90 -0.87

5 -0.92 -1.18 -1.05 -0.94 -1.34 -1.19 -1.03 -1.22 -1.24 -1.07

10 -0.93 -1.44 -1.27 -1.04 -1.70 -1.60 1.44 -1.48 -1.55 -2.18

30 -0.98 -2.12 -1.86 -1.51 -2.86 -2.54 2.10 -2.03 -2.35 -2.22

60 -0.99 -2.95 -2.52 -2.17 -3.19 -3.34 -3.00 -2.52 -2.65 -2.86

120 -1.26 -3.93 -3.10 -2.59 -6.32 -5.49 -4.34 -3.55 -4.27 -3.92

180 -1.35 -4.53 -3.89 -2.95 -7.60 -6.33 -5.19 -2.99 -4.48 -4.87

300 -1.66 -5.61 -5.07 -4.14 -7.41 -7.84 -6.65 -1.96 -2.81 -3.86

Relative bias (%) of RRDV constructed from 1, 5, 10, 30, 60, 120, 180, and 300-second candlesticks for 2000 days. Panel B

reports the relative biases of RRDV with a truncation threshold applied for the range-return differences in all intervals, i.e.,

2
√

∆nMedRVt,n, see details in Section 4.2. The discretization errors are corrected following the steps in Section 4.1. The

DGP is the Heston model in Eq. (38), and we follow the persistent noise model of Andersen et al. (2021) to simulate the

three different patterns of episodic extreme return persistence.

6The bias results of some other IV estimators are presented in Appendix C.3.
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Figure 5: Histograms and QQ plots of studentized estimation errors of one-second RRDV. The estimation errors of RRDV

are studentized by the estimates of asymptotic variance in Theorem 2, which involves the RRQV estimator in Eq. (9). The

discretization errors are corrected following the steps in Section 4.1. The sample size for QQ plots is 300.

We notice that the reversal point of the V-shaped flash crash contributes to a positive bias when

the intervals are relatively large, and the bias has a larger size when the V-shape is steeper, i.e.,

with a smaller β. For instance, the relative bias of 5-minute RRDV is 43.38% in the presence of a

V-shaped flash crash with β = 0.25. Panel B of Table 1 reports the relative biases of RRDV with a

truncation threshold applied for the range-return differences in all intervals, i.e., 2
√

∆nMedRVt,n,

as elaborated in Section 4.2.7 Estimating IV with the range-return differences truncated by some

right-tail extreme quantile slightly worsen the bias results in “continuous time”, but it avoids the

significant V-shape bias in finite samples.

5.3 Finite-Sample Performance

To evaluate the finite-sample performance of RRDV, we limit the number of observations available in

each interval to construct intraday candlesticks: We simulate both second-by-second and half-minute

observations, and collect HLOCs in each of the 1, 2, 3, and 5-minute intervals. The RRDV estimators

based on HLOCs obtained from 1-second and 30-second data are labeled as “RRDV” and “RRDV*”,

respectively, in the table of results, where the later corresponds to sparsely or “not-too-finely”

sampled data. For the comparative analysis, we consider the truncated realized volatility (TRV)

estimator of Mancini (2009):

TRVt,n =

n∑
i=1

r2
i 1{|ri|≤ζTRV∆$

n }, (41)

7Theoretically, the truncation threshold should have a higher order than
√

∆n, i.e., $ < 1/2, while setting $ = 1/2
for a fixed interval length makes no difference in practice.
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and the general family of DV estimators in Andersen et al. (2021):

DV1−m,t,n =
DV

(1)
t,n + DV

(2)
t,n + · · ·+ DV

(m)
t,n

m
, (42)

where

DV
(m)
t,n =

1

2

n∑
i=m+1

(ri − ri−m)2
1{|ri−ri−m|≤ζDV∆$

n }. (43)

The choice of truncation parameters for TRV, DV and RRDV follows the instructions in Section 4.2,

with (CTRV
ζ , CDV

ζ , CRRDV
ζ , $) = (3, 3

√
2, 2, 1/2).8 Their finite-sample performances are assessed and

compared via the root-mean-square error (RMSE), i.e.,

RMSE =

√√√√ 1

M

M∑
i=1

(
V̂1,n −

∫ 1

0
σ2
t dt

)2

, with M = 10000. (44)

In Panel A of Table 2, we present the RMSEs of all selected IV estimators in the absence of

short-lived extreme return persistence. The small RMSEs (< 2× 105) indicate the robustness of

all estimators to discontinuities. Compared with other estimators, RRDV has the smallest RMSE

results with all selected sampling frequencies, which is consistent with the smallest variance in

asymptotic theory. RRDV* based on HLOCs obtained from half-minute data has the largest RMSE

with one-minute intervals, while it starts to achieve smaller RMSEs than DV when the length

of intervals is extended to two minutes, i.e., there are at lease five observations (open and close

included) available in each interval, which is in line with our numerical results in Section 4.1. Panel

B, C and D in Table 2 report the RMSE results in the presence of gradual jumps or/and flash

crashes. When there exist local explosive trends, the TRV estimator has larger RMSEs than RRDV

and two DV estimators in all scenarios, and the difference becomes more pronounced for “stickier”

(less steep) deviations between observed prices and efficient prices, i.e., with larger β’s, and for lower

sampling frequencies. For the candlestick-based estimators, RRDV* can achieve smaller RMSEs

than DV in all cases when the interval length is three minutes or longer, and RRDV based on

HLOCs taken from second-by-second observations outperforms all other IV measures across all

relevant scenarios.

6 Empirical Analysis

In this section, we use the RRDV estimator as the basis for volatility forecasting under the popular

heterogeneous autoregressive (HAR) framework for the SPDR S&P 500 ETF Trust (SPY), which is

the best-recognized and oldest U.S. listed ETF and by far the most widely traded S&P 500 ETF.

8We also consider alternative parameter choices (CTRV
ζ , CDV

ζ ) = (4, 4
√

2) used for comparison in Andersen et al.
(2021). We find that the less aggressive threshold choices will not change the qualitative results and even worsen the
finite-sample performance of both estimators when there exists excessive return drift, see Table C.6 in Appendix C.4,
which is consistent with the Monte Carlo results in Andersen et al. (2021).
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6.1 Data

We obtain all high-frequency transaction records of SPY from the daily Trade and Quote (TAQ)

dataset, with the sample period ranging from January 2, 2014 to December 31, 2021. The tick-by-tick

transactions are timestamped in milliseconds until mid-2015 and in microseconds since then.9 As

is standard in empirical research with TAQ data, we use the filters as in Barndorff-Nielsen et al.

(2009) to eliminate clear data errors, remove all transactions in the original record that are later

corrected, cancelled or otherwise invalidated. In addition, we remove all trading days with an early

market closure, and restrict our sample to transactions between 9:41:00 – 16:00:00 Eastern Time

(ET) for all individual stocks. The final sample comprises of 1998 days.

6.2 Heterogeneous Autoregressive (HAR) Model

The HAR model of Corsi (2009) is designed to parsimoniously capture the dependence structures

of return volatility in different horizons, and therefore aims to approximate its long memory that

has been extensively confirmed by empirical literature. Renowned for its consistent and remarkable

predictive performance, the HAR model serves as the predominant benchmark in volatility forecasting

research. In this section, we denote some selected IV measure at day t by V̂t, and introduce the

following moving averages of daily volatility measures as:

V̂w,t =
1

5

5∑
i=1

V̂t−i+1 and V̂m,t =
1

22

22∑
i=1

V̂t−i+1, (45)

where V̂w,t represents the one-week average and V̂m,t denotes the one-month average of daily IV

estimates, respectively. The standard one-day-ahead HAR model exhibits the following structure:

V̂t = ω + βdV̂t−1 + βwV̂w,t−1 + βmV̂m,t−1 + εt, (46)

which can be easily estimated via ordinary least squares (OLS). As demonstrated by numerous

empirical applications in the literature, the implementation of a more refined volatility measure on

the right-hand side (RHS) can better exploit the information, and has the potential to significantly

improve the predictive accuracy of the HAR model for the left-hand side (LHS) target variable.

In addition to the implementation of better volatility measures in the standard HAR model, a

constructive modification of the HAR model structure can also contribute to improved forecasting

outcomes. In this section, we consider two important extensions of the original HAR-RV model for

the comparative study. One is the HARQ model of Bollerslev et al. (2016). With the motivation that

the persistence of RV is affected by the temporal variation in its measurement errors, the HARQ

model allows for a time-varying coefficient for the previous day’s RV on the RHS, and the coefficient

9We use the SAS code from Holden and Jacobsen (2014) to extract all tick-by-tick transaction records matched
with relevant ask/bid quotes from the daily TAQ dataset of WRDS.
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depends on the heteroskedasticity in the error, which is captured by the realized quarticity (RQ):10

V̂t = ω+
(
βd + βq

√
RQt−1

)
RVt−1 +βwRVw,t−1 +βmRVm,t−1 +εt, where RQt =

n

3

n∑
i=1

r4
i,t. (47)

Inspired by the realized semivariance (RS) introduced by Barndorff-Nielsen et al. (2010), the

semivariance HAR (SHAR) model of Patton and Sheppard (2015) stands out as another important

HAR-RV modification:

V̂t = ω + β−d RS−t−1 + β+
d RS+

t−1 + βwRVw,t−1 + βmRVm,t−1 + εt, (48)

where the RS measures are given by

RS−t =

n∑
i=1

r2
i,t1{ri,t<0} and RS+

t =

n∑
i=1

r2
i,t1{ri,t>0}. (49)

The intuition that “good” and “bad” volatilities are not created equal motivates the decomposition

of the original RV into separate up and downside RS measures. The empirical results in Patton and

Sheppard (2015) demonstrate that this decomposition leads to more accurate volatility forecasts,

with the “bad” volatility predominantly driving the short-run changes in the future.

6.3 Empirical Results

In this section, we estimate the standard HAR model in Eq. (46) with various IV measures on the

RHS, namely RV, RBPV, TRV, DV, and our RRDV estimator, with an initial in-sample period of

the first 1000 days, and forecast one-day-ahead out-of-sample RV, DV, and RRDV. Moreover, we

estimate both the HARQ model in Eq. (47) and the SHAR model in Eq. (48) for the comparison of

forecasts. We repeat this procedure of in-sample estimation and out-of-sample forecasting in both a

rolling-window (RW) and an expanding-window (EW) fashion, respectively.

All return-based IV measures are constructed from log-returns over 5-minute intervals. For

the construction of RRDV based on 5-minute candlesticks, we obtain the corresponding HLOCs

from the transaction data, either at the tick level or under previous-tick equidistant sampling. In

particular, for the discretized RRDV based on HLOCs from equistantly sampled data, we correct

the discretization errors following the steps in Section 4.1.

We evaluate the out-of-sample forecasting performance via two widely used loss functions, i.e.,

the mean squared error (MSE) and the quasi-likelihood (QLIKE) function:

MSE(θ, h) = (θ − h)2 and QLIKE(θ, h) =
θ

h
− ln

(
θ

h

)
− 1, (50)

10Following Bollerslev et al. (2016), the “insanity filter” of Swanson and White (1997) is applied: For each rolling or
expanding window, the minimum, maximum, and average of in-sample estimates are re-calculated. All one-step-ahead
out-of-sample forecasts that are greater (smaller) than the maximum (minimum) in-sample value will be replaced by
the in-sample mean.
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where θ and h represent the actual value and the forecast of the target variable, respectively.

Table 3: Daily out-of-sample 5-minute HAR volatility forecasts

RV DV RRDV: tick data

MSE QLIKE MSE QLIKE MSE QLIKE

Panel A: HAR RW Forecasts

HAR-RV 2.39 0.41 1.57 0.47 1.19 0.30

HARQ 2.35 0.36 1.46 0.40 1.48 0.37

SHAR 2.29 0.39 1.51 0.45 1.04 0.30

HAR-RBPV 2.36 0.41 1.57 0.45 1.20 0.30

HAR-TRV 2.30 0.39 1.51 0.44 1.15 0.28

HAR-DV 2.55 0.40 1.68 0.45 1.32 0.29

HAR-DV1−3 2.45 0.39 1.62 0.44 1.24 0.28

HAR-RRDV: tick data 2.17 0.37 1.42 0.42 1.05 0.27

HAR-RRDV: 1-second data 2.16 0.37 1.41 0.42 1.06 0.27

HAR-RRDV: 30-second data 2.09 0.37 1.36 0.42 0.96 0.27

HAR-RRDV: 1-minute data 2.03 0.36 1.31 0.41 0.89 0.27

Panel B: HAR EW Forecasts

HAR-RV 2.29 0.37 1.51 0.42 1.15 0.29

HARQ 2.27 0.33 1.43 0.38 1.12 0.32

SHAR 2.18 0.35 1.45 0.42 1.02 0.30

HAR-RBPV 2.27 0.36 1.51 0.42 1.16 0.28

HAR-TRV 2.22 0.34 1.45 0.39 1.11 0.26

HAR-DV 2.45 0.35 1.62 0.39 1.27 0.26

HAR-DV1−3 2.35 0.34 1.55 0.39 1.19 0.26

HAR-RRDV: tick data 2.10 0.33 1.38 0.38 1.03 0.26

HAR-RRDV: 1-second data 2.09 0.33 1.37 0.37 1.03 0.25

HAR-RRDV: 30-second data 2.03 0.33 1.31 0.37 0.94 0.25

HAR-RRDV: 1-minute data 1.96 0.32 1.26 0.36 0.88 0.25

MSE (×108) and QLIKE of daily out-of-sample volatility forecasts for the SPDR S&P 500 ETF Trust (SPY). The HAR model

is re-estimated via OLS in rolling windows and expanding windows, respectively. The fixed (resp. initial) in-sample period

for RW (resp. EW) estimation is the first 1000 days. All return-based IV measures are constructed from 5-minute intervals.

RRDVs are also constructed from 5-minute candlesticks, in which the HLOCs are obtained from the transaction data either at

the tick level or under previous-tick equidistant sampling. The choice of truncation parameters for TRV, DV and RRDV follows

the instructions in Section 4.2, with (CTRV
ζ , CDV

ζ , CRRDV
ζ , $) = (3, 3

√
2, 2, 1/2). For RRDVs based on equidistantly sampled

observations, the discretization errors are corrected following the steps in Section 4.1.

Table 3 reports the MSE and QLIKE results for one-day-ahead out-of-sample forecasts of three

different target volatility measures. Among the standard and modified HAR-RV models, both the

HARQ and SHAR models can achieve smaller MSE and QLIKE results than the original HAR-RV

model, which demonstrates that the consideration of either the measurement errors in RV or the

volatility asymmetry helps to exploit concealed information due to aggregation, and results in more

accurate forecasts. Compared with the HAR models augmented with other volatility estimators,

the HAR-RRDV model tends to obtain substantially diminished values of both loss functions, and

the number of observations available in each candlestick interval seems relatively irrelevant to its

predictive capability. Furthermore, the symmetric MSE function penalizes outliers heavily, and is

therefore sensitive to excessively misinformative forecasts. The MSE results in Table 3 suggest that

the HAR-RRDV model can effectively reduce the occurrence of extremely inaccurate forecasts in

both left and right tails.
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To further explore the reason for the reduced forecast errors of HAR-RRDV, we partition the

entire out-of-sample period into complimentary subsets of days based on two criteria, respectively:

(i) days with and without jumps, as well as (ii) days exhibiting episodes of extreme return persistence

or not. The presence of discontinuities and persistent noise is identified using the nonparametric

tests of Aı̈t-Sahalia et al. (2012) and Andersen et al. (2021), respectively.11

Table 4: MSEs on days with/without discontinuities and episodic extreme return persistence

RV DV RRDV: tick data

Jumps Per. Noise Jumps Per. Noise Jumps Per. Noise

Yes No Yes No Yes No Yes No Yes No Yes No

Panel A: HAR RW Forecasts

HAR-RV 7.24 0.24 11.01 1.52 4.61 0.23 6.51 1.08 3.24 0.28 2.93 1.01

HARQ 7.05 0.27 10.73 1.51 4.16 0.26 6.34 0.97 4.13 0.31 2.86 1.34

SHAR 6.90 0.25 10.12 1.50 4.40 0.23 5.73 1.09 3.06 0.16 2.50 0.90

HAR-RBPV 7.17 0.23 10.92 1.50 4.61 0.22 6.45 1.07 3.36 0.24 2.89 1.03

HAR-TRV 6.93 0.25 10.81 1.45 4.39 0.24 6.38 1.02 3.10 0.28 2.84 0.98

HAR-DV 7.76 0.24 10.80 1.72 4.96 0.23 6.37 1.21 3.70 0.26 2.82 1.17

HAR-DV1−3 7.42 0.25 10.76 1.61 4.75 0.24 6.34 1.14 3.45 0.26 2.84 1.08

HAR-RRDV: tick data 6.46 0.27 9.93 1.39 4.07 0.25 5.81 0.98 2.73 0.31 2.49 0.91

HAR-RRDV: 1-second data 6.45 0.26 9.77 1.39 4.06 0.24 5.70 0.98 2.68 0.33 2.43 0.92

HAR-RRDV: 30-second data 6.21 0.28 9.63 1.33 3.86 0.25 5.60 0.93 2.42 0.32 2.37 0.82

HAR-RRDV: 1-minute data 6.07 0.23 9.72 1.25 3.75 0.23 5.65 0.87 2.25 0.29 2.40 0.74

Panel B: HAR EW Forecasts

HAR-RV 6.98 0.22 11.35 1.38 4.45 0.20 6.73 0.98 3.12 0.27 3.03 0.96

HARQ 6.83 0.25 10.99 1.39 4.15 0.23 6.49 0.93 2.99 0.29 2.91 0.94

SHAR 6.08 0.23 10.39 1.36 4.25 0.21 5.95 1.00 2.96 0.16 2.60 0.86

HAR-RBPV 6.94 0.21 11.22 1.38 4.47 0.20 6.65 0.99 3.24 0.24 2.97 0.97

HAR-TRV 6.72 0.23 11.12 1.32 4.27 0.21 6.58 0.94 3.00 0.27 2.93 0.93

HAR-DV 7.50 0.23 11.11 1.59 4.81 0.21 6.58 1.12 3.56 0.26 2.91 1.11

HAR-DV1−3 7.16 0.25 11.12 1.47 4.59 0.21 6.57 1.05 3.31 0.26 2.94 1.02

HAR-RRDV: tick data 6.28 0.25 10.16 1.29 3.97 0.23 5.96 0.92 2.65 0.31 2.55 0.87

HAR-RRDV: 1-second data 6.25 0.25 10.00 1.30 3.94 0.23 5.86 0.91 2.60 0.33 2.49 0.88

HAR-RRDV: 30-second data 6.03 0.26 9.83 1.24 3.76 0.23 5.75 0.87 2.35 0.31 2.43 0.79

HAR-RRDV: 1-minute data 5.90 0.22 10.08 1.15 3.65 0.21 5.90 0.80 2.21 0.29 2.50 0.71

MSE (×108) of daily out-of-sample volatility forecasts for the SPDR S&P 500 ETF Trust (SPY) on the days with or without

jumps and persistent noise. Jumps and persistent noise are identified with the nonparametric tests of Aı̈t-Sahalia et al. (2012)

and Andersen et al. (2021), respectively. The HAR model is re-estimated via OLS in rolling windows and expanding windows,

respectively. The fixed (resp. initial) in-sample period for RW (resp. EW) estimation is the first 1000 days. All return-based

IV measures are constructed from 5-minute intervals. RRDVs are also constructed from 5-minute candlesticks, in which the

HLOCs are obtained from the transaction data either at the tick level or under previous-tick equidistant sampling. The choice

of truncation parameters for TRV, DV and RRDV follows the instructions in Section 4.2, with (CTRV
ζ , CDV

ζ , CRRDV
ζ , $) =

(3, 3
√

2, 2, 1/2). For RRDVs based on equidistantly sampled observations, the discretization errors are corrected following the

steps in Section 4.1.

In Table 4, the MSE results for all selected HAR models are presented within these classifications.

There is a notable reduction in MSEs across all selected models on days without discontinuities or

excessive return drift. This observation indicates that the presence of extreme events potentially

11For the test statistic of Äıt-Sahalia et al. (2012), we select the pre-averaging window kn = b
√
nc and the truncation

level C = 5. To identify the presence of persistent noise, we construct the test statistic Tnt (2) of Andersen et al. (2021)
from one-minute pre-averaged and winsorized returns. The selected critical values for those two tests are -1.645 and
1.645, respectively.
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distorts the estimation of dependence structures in volatility and consequently leads to uniformly

worsened forecasts. Among the three target IV measures on the LHS, we find that the one-day-ahead

forecasts of RRDV exhibit superior accuracy when there exist either “discontinuous” or “continuous”

extreme events, with all chosen RHS variables. Meanwhile, the RV predictions are more vulnerable

to both discontinuities and short-lived explosive trends, resulting in substantially larger forecast

errors. For each of the target variables on the LHS, the HAR-RRDV model demonstrates the least

vulnerability to extreme events and generates the most accurate one-day-ahead forecasts. These

collective observations suggest that the robustness of our RRDV estimator in the presence of extreme

price movements contributes to the predictive capability when it is integrated within some standard

framework of volatility forecasting.

7 Conclusions

Motivated by both the statistical superiority of range-based estimation and the broader availability

of intraday candlesticks for general investors, we introduce a novel nonparametric candlestick-

based estimator for integrated variance (IV), namely the range-return-difference volatility (RRDV)

estimator. The RRDV estimator is designed to mitigate the impact of short-lived explosive trends

that locally dominate price movements, such as gradual jumps and flash crashes. By modeling

these “continuous” extreme events from two perspectives: (i) a locally unbounded drift component

(Christensen et al., 2022), and (ii) sticky expectations of market participants (Andersen et al., 2021),

we demonstrate that RRDV can consistently estimate IV with variances about four times smaller

than those obtained with the differenced-return volatility (DV) estimator introduced by Andersen

et al. (2021). Our simulation results underscore the reliable finite-sample performance of RRDV

across various relevant scenarios. An empirical illustration of volatility forecasting shows that the

HAR-RRDV model can effectively reduce the occurrence of extremely misleading forecasts and

improve forecasting accuracy according to standard out-of-sample loss functions.
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Appendix A Normalized High, Low and Close

For the standard Brownian motion starting at zero, i.e., W = (Wt)t≥0, in a filtered probability space

(Ω,F , (Ft)t≥0,P), we denote the normalized high, low, and close as, respectively,

u = sup
0≤t≤1

Wt, d = inf
0≤t≤1

Wt, c = W1. (A.1)

For the range of a standard Brownian motion, i.e., ω = u− d, its probability distribution was firstly

proposed by Feller (1951) and its moment generating function was then derived by Parkinson (1980),

i.e., for the r-th moment:

E[ωr] =
4√
π

(
1− 4

2r

)
2
r
2 Γ

(
r + 1

2

)
ζ(r − 1), (A.2)

where Γ(x) and ζ(x) are the Gamma and Riemann’s zeta functions, respectively. In particular, we

have

E[ω] = 2

√
2

π
≈ 1.5958, E[ω2] = 4 ln 2 ≈ 2.7726,

E[ω3] =
2

3

√
2π3 ≈ 5.2499, E[ω4] = 9ζ(3) ≈ 10.8185.

(A.3)

Also, Garman and Klass (1980) reveals the following fourth moments of the normalized high, low,

close via the generating functions E[updqcr]:12

E[u4] = E[d4] = E[c4] = 3, E[u2c2] = E[d2c2] = 2, (A.4)

E[u3c] = E[d3c] = 2.25, E[uc3] = E[dc3] = 1.5, (A.5)

E[u2dc] = E[ud2c] =
9

4
− 2 ln 2− 7

8
ζ(3) ≈ −0.1881, (A.6)

E[u2d2] = 3− 4 ln 2 ≈ 0.2274, (A.7)

E[udc2] = 2− 2 ln 2− 7

8
ζ(3) ≈ −0.4381, (A.8)

E[ud3] = E[u3d] = 3− 3 ln 2− 9

8
ζ(3) ≈ −0.4318, (A.9)

where ζ(3) =
∑∞

n=1 n
−3 ≈ 1.2021. It is straightforward that

E[ω2c2] = E[(u− d)2c2] = E[u2c2] + E[d2c2]− 2E[udc2] = 4 ln 2 +
7

4
ζ(3) ≈ 4.8762. (A.10)

When we substitute the normalized close c in above moments with its absolute value |c|, it is

obvious that the values in Eqs. (A.5) and (A.6) do not follow from Garman and Klass (1980). Different

from the Garman–Klass triple (u, d, c), Meilijson (2011) considers (ũ, d̃, |c|) where (ũ, d̃) = (u, d) if

12See Appendix C in Garman and Klass (1980).
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c ≥ 0 while (ũ, d̃) = −(d, u) if c < 0, and derives the second and fourth moments as follows:

E[ũ2] =
7

4
, E[d̃2] =

1

4
, E[ũ|c|] =

5

4
, E[d̃|c|] = −1

4
, E[ũd̃] = 1− 2 ln 2 ≈ −0.3863, (A.11)

E[ũ4] =
93

16
, E[d̃4] =

3

16
, E[ũ2|c|2] =

31

8
, E[d̃2|c|2] =

1

8
, (A.12)

E[ũ3|c|] =
147

32
, E[d̃3|c|] = − 3

32
, E[ũ|c|3] =

27

8
, E[d̃|c|3] = −3

8
, (A.13)

E[ũ2d̃2] = E[u2d2] = 3− 4 ln 2 ≈ 0.2274, (A.14)

E[ũd̃|c|2] = E[udc2] = 2− 2 ln 2− 7

8
ζ(3) ≈ −0.4381, (A.15)

E[ũ3d̃] + E[ũd̃3] = E[ud(u2 + d2)] = 6− 6 ln 2− 9

4
ζ(3) ≈ −0.8635, (A.16)

E[ũ2d̃|c|] + E[ũd̃2|c|] = E[udc(u+ d)] =
9

2
− 4 ln 2− 7

4
ζ(3) ≈ −0.3762, (A.17)

E[ũd̃2|c|] =
1

16
ζ(3)− 2 ln 2 +

47

32
≈ 0.1576. (A.18)

We can use the above results to obtain the following second and fourth moments of (ω, |c|):

E[ω|c|] = E[(ũ− d̃)|c|] = E[ũ|c|]− E[d̃|c|] =
3

2
, (A.19)

E[ω|c|3] = E[(ũ− d̃)|c|3] = E[ũ|c|3]− E[d̃|c|3] =
15

4
, (A.20)

E[ω3|c|] = E[(ũ− d̃)3|c|]

= E[(ũ3 − d̃3 − 3ũ2d̃+ 3ũd̃2)|c|]

= E[ũ3|c|]− E[d̃3|c|]− 3E[ũ2d̃|c|] + 3E[ũd̃2|c|]

=
147

32
+

3

32
− 3

(
9

2
− 4 ln 2− 7

4
ζ(3)

)
+ 6

(
1

16
ζ(3)− 2 ln 2 +

47

32

)
=

45

8
ζ(3) ≈ 6.7616.

(A.21)

To calculate the third moments of (ω, |c|), we derive the analytical expressions for E[ũ2|c|], E[d̃2|c|],
E[ũ|c|2], E[d̃|c|2], and E[ũd̃|c|], which are not available in the literature. For the first four quantities,

we obtain the results by integrating the joint densities in Meilijson (2011), i.e.,

fũ,|c|(a, x) = 4(2a− x)φ(2a− x), 0 < x < a, (A.22)

fd̃,|c|(b, x) = 4(x− 2b)φ(x− 2b), b < 0 < x, (A.23)

where φ(z) = (2π)−1/2e−z
2/2 is the PDF of N (0, 1):

E[ũ2|c|] =
17

3
√

2π
≈ 2.2607, E[d̃2|c|] =

1

3
√

2π
≈ 0.1330, (A.24)

E[ũ|c|2] =
7

3

√
2

π
≈ 1.8617, E[d̃|c|2] = −1

3

√
2

π
≈ −0.2660. (A.25)
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There is one more moment needed, i.e., E[ũd̃|c|]. We start with the infinitesimal event A = {W1 ∈
(x, x+ dx),Wt ∈ (b, a), ∀t ∈ [0, 1]}, where b < min{x, 0} ≤ 0 ≤ max{x, 0} < a, and its probability

P(A) = Q(a, b, x)dx, where

Q(a, b, x) =

∞∑
j=−∞

{φ(x− 2j(a− b))− φ(x− 2b− 2j(a− b))} . (A.26)

The joint density of (ũ, d̃, |c|) is then given by fũ,d̃,|c|(a, b, x) = −2∂2Q(a, b, x)/∂a∂b, restricted to

b < 0 < x < a, which is also an infinite series.13 The summand with j = 0 takes value 0 because

both two φ functions are independent of at least one of a and b, as similar to the second term in the

summand with j = 1. The required moment can be obtained by solving the triple integral:

E[ũd̃|c|] = −2

∫ ∞
0

∫ a

0

∫ 0

−∞
abx

∂2Q(a, b, x)

∂a∂b
dbdxda

= −2
∑

j∈Z\{0}

∫ ∞
0

ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

[
∂

∂b
φ(x− 2j(a− b))− ∂

∂b
φ(x− 2b− 2j(a− b))1{j 6=1}

]
db

(A.27)

We integrate each summand in three univariate steps. The first step will integrate over b ∈ (−∞, 0)

the product of b and mixed second derivative ∂2φ(x+Ma+Kb)/∂a∂b:∫ 0

−∞

∂

∂a
b
∂

∂b
φ(x+Ma+Kb)db =

∂

∂a

∫ 0

−∞
b
∂

∂b
φ(x+Ma+Kb)db

=
∂

∂a

∫ 0

−∞
bdφ(x+Ma+Kb)

=
∂

∂a
[bφ(x+Ma+Kb)]0−∞ −

∂

∂a

∫ 0

−∞
φ(x+Ma+Kb)db

= −
∫ 0

−∞

∂

∂a
φ(x+Ma+Kb)db

= −M
∫ 0

−∞
φ′(x+Ma+Kb)db

= −M
K

[φ(x+Ma+Kb)]0−∞

= −M
K
φ(x+Ma).

(A.28)

13See more details in the Appendix of Meilijson (2011).
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Then we multiply the above result by x and integrate it over x ∈ (0, a):∫ a

0
xdx

∫ 0

−∞

∂

∂a
b
∂

∂b
φ(x+Ma+Kb)db

= − M

K

∫ a

0
xφ(x+Ma)dx

= − M

K

∫ (M+1)a

Ma
yφ(y)dy +

M2a

K

∫ (M+1)a

Ma
φ(y)dy

=
M

K

∫ (M+1)a

Ma
φ′(y)dy +

M2a

K

∫ (M+1)a

Ma
φ(y)dy because φ′(z) = −zφ(z)

=
M

K
[φ((M + 1)a)− φ(Ma)] +

M2a

K
[Φ((M + 1)a)− Φ(Ma)]

or =
M

K
[φ((M + 1)a)− φ(Ma)]− M2a

K
[Φ∗((M + 1)a)− Φ∗(Ma)] ,

(A.29)

where Φ(z) =
∫ z
−∞ φ(t)dt = 0.5(1 + erf z/

√
2) is the CDF of N (0, 1), and Φ∗(z) = 1 − Φ(z) =

0.5(1− erf z/
√

2) is the survival function. Finally, this expression is multiplied by a and integrated

over a ∈ (0,∞). We use the results∫ ∞
0

aφ(aA)da =

∫ ∞
0

aφ(−aA)da =
1√

2πA2
, (A.30)

∫ ∞
0

a2Φ(−aA)da =

∫ ∞
0

a2Φ∗(aA)da =
1

3A3

√
2

π
, with A > 0, (A.31)

to calculate the triple integral of abx∂2φ(x+Ma+Kb)/∂a∂b. When M ∈ Z+, we have∫ ∞
0

ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b
∂

∂b
φ(x+Ma+Kb)db

=
M

K

∫ ∞
0

aφ((M + 1)a)da− M

K

∫ ∞
0

aφ(Ma)da+
M2

K

∫ ∞
0

a2Φ((M + 1)a)da− M2

K

∫ ∞
0

a2Φ(Ma)da

=
1√
2π

M

K

[
1

(M + 1)2
− 1

M2

]
− 1

3

√
2

π

M2

K

[
1

(M + 1)3
− 1

M3

]
= G(M,K).

(A.32)

When M ∈ Z−\{−1}, we have∫ ∞
0

ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b
∂

∂b
φ(x+Ma+Kb)db

=
M

K

∫ ∞
0

aφ((M + 1)a)da− M

K

∫ ∞
0

aφ(Ma)da− M2

K

∫ ∞
0

a2Φ∗((M + 1)a)da+
M2

K

∫ ∞
0

a2Φ∗(Ma)da

=
1√
2π

M

K

[
1

(M + 1)2
− 1

M2

]
− 1

3

√
2

π

M2

K

[
1

(M + 1)3
− 1

M3

]
= G(M,K).

(A.33)
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We now transfer each summand into a rational function of j, by letting M take −2j, and K take 2j

or 2(j − 1). For summands with j ∈ Z\{0, 1}, we have∫ ∞
0

ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

[
∂

∂b
φ(x− 2j(a− b))− ∂

∂b
φ(x− 2b− 2j(a− b))

]
db

= G(−2j, 2j)− G(−2j, 2(j − 1))

= − 1√
2π

(
1− j

j − 1

)[
1

(1− 2j)2
− 1

(2j)2

]
− 1

3

(
2j − 2j2

j − 1

)√
2

π

[
1

(1− 2j)3
+

1

(2j)3

]
=

1√
2π

1

j − 1

[
1

(1− 2j)2
− 1

(2j)2

]
+

2

3

j

j − 1

√
2

π

[
1

(1− 2j)3
+

1

(2j)3

]
,

(A.34)

and the infinite series

∑
j∈Z\{0,1}

∫ ∞
0

ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b

[
∂

∂b
φ(x− 2j(a− b))− ∂

∂b
φ(x− 2b− 2j(a− b))

]
db =

14π2 − 138

72
√

2π
.

(A.35)

For summand with j = 1, we have∫ ∞
0

ada

∫ a

0
xdx

∫ 0

−∞

∂

∂a
b
∂

∂b
φ(x− 2a+ 2b)db = G(−2, 2) =

5

12
√

2π
. (A.36)

Therefore, the joint moment is calculated by Eq. (A.27):

E[ũd̃|c|] = −2

(
5

12
√

2π
+

14π2 − 138

72
√

2π

)
=

54− 7π2

18
√

2π
≈ −0.3344. (A.37)

Now we can use the results in Eqs. (A.24), (A.25) and (A.37) to calculate the third moments of

(ω, |c|):

E[ω2|c|] = E[ũ2|c|] + E[d̃2|c|]− 2E[ũd̃|c|]

=
17

3
√

2π
+

1

3
√

2π
− 2× 54− 7π2

18
√

2π

=
7

9

√
π3

2
≈ 3.0624,

(A.38)

E[ω|c|2] = E[ũ|c|2]− E[d̃|c|2] =
8

3

√
2

π
≈ 2.1277. (A.39)

Moreover, direct calculation of

E[|c|r] = 2

∫ ∞
0

xr√
2π
e−

x2

2 dx (A.40)
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shows the following moments:

E[|c|] =

√
2

π
≈ 0.7979, E[|c|2] = 1, E[|c|3] = 2

√
2

π
≈ 1.5958, E[|c|4] = 3. (A.41)

For the convenience of further discussion, we denote the moments of (ω, |c|) by

λp,r = E[ωp|c|r]. (A.42)

All λp,r that will be used in Appendix B have been calculated in this section, and are summarized

in Table A.1.

Table A.1: Analytical values of λp,r = E[ωp|c|r]

PPPPPPPPPPp

r
0 1 2 3 4

0 1
√

2
π 1 2

√
2
π 3

1 2
√

2
π

3
2

8
3

√
2
π

15
4 –

2 4 ln 2 7
9

√
π3

2 4 ln 2 + 7
4ζ(3) – –

3 2
3

√
2π3 45

8 ζ(3) – – –

4 9ζ(3) – – – –

This table reports the analytical values of joint moments of (ω, |c|), i.e., λp,r = E[ωp|c|r] with p, r ∈ N and

0 ≤ p + r ≤ 4, where ω (resp. c) is defined as the high-low range (resp. open-close return) of a standard

Brownian motion within an unit interval.
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Appendix B Proofs of Theorems and Propositions

B.1 Proof of Theorem 1

Proof. It is straightforward to prove Theorem 1 with the LLN for path-dependent functionals of

continuous Itô semimartingales, as summarized in Duembgen and Podolskij (2015). Here we start

with some notation. We denote by C([0, 1]) the space of continuous real valued functions on the

interval [0, 1], and by ‖ · ‖∞ the supremum norm on C([0, 1]). A function f : C([0, 1])→ R is said

to have polynomial growth if |f(x)| ≤ C(1 + ‖x‖p∞) for some C, p > 0.

Definition B.1 (Local uniform continuity). The function f : C([0, 1]) → R is locally uniformly

continuous if for all x ∈ C([0, 1]), there exists a closed ball of radius K > 0 centred at 0, i.e.,

B≤K(0)={x ∈ C([0, 1]); ‖x‖∞ ≤ K},14 such that for every ε > 0, there exists δ > 0, for x, y ∈
B≤K(0), ‖x− y‖∞ ≤ δ, we have |f(x)− f(y)| ≤ ε. This locally uniform continuity assumption is

satisfied whenever |f(x)− f(y)| ≤ C‖x− y‖p∞ for all x, y ∈ C([0, 1]) and some C, p > 0.

Lemma B.1 (Theorem 2.1, Duembgen and Podolskij, 2015). Assume that the efficient price X

follows a continuous Itô semimartingale in Eq. (5) with all traditional conditions satisfied. Given a

function g : C([0, 1])→ R and a vanishing sequence ∆n, for the sequence of processes

V̂t,n(g) = ∆n

n∑
i=1

g

(
dni (X)√

∆n

)
, (B.1)

with dni (X) =
{
X(i−1+s)∆n

−X(i−1)∆n
; s ∈ [0, 1]

}
, if g is locally uniformly continuous and has

polynomial growth, it holds that

V̂t,n(g)
u.c.p.−−−→ Vt(g) =

∫ t

0
ρστ (g)dτ, (B.2)

as n→∞, where ρz(g) = E [g({zWs; s ∈ [0, 1]})] whenever it is finite.

It is obvious that the new HLOC estimator V̂t,n in Eq. (3) can be written in the form of Eq. (B.1)

with a specific path-dependent function g : C([0, 1])→ R of the scaled incremental process:

g

(
dni (X)√

∆n

)
=

1

4 ln 2− 2

{
sup

0≤s≤1

dni (X)√
∆n
− inf

0≤s≤1

dni (X)√
∆n
−
∣∣Xi∆n −X(i−1)∆n

∣∣
√

∆n

}2

=
1

4 ln 2− 2

{
f1

(
dni (X)√

∆n

)
− f2

(
dni (X)√

∆n

)}2

,

(B.3)

where

f1(x) = sup
0≤s≤1

x(s)− inf
0≤s≤1

x(s) and f2(x) = |x(1)− x(0)| . (B.4)

14The notion of locally uniform continuity is slightly different from the usual one that requires uniform continuity
on neighbourhoods or compact sets, see more details in Remark 2.1 in Duembgen and Podolskij (2015).
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The function g(x) is therefore a linear combination of polynomials of the range f1(x) and a finite

power variation f2(x), as well as the cross term f1(x)f2(x). This path-dependent function has

polynomial growth, and is thus locally uniformly continuous. Then the LLN in Lemma B.1 readily

applies with∫ t

0
ρστ (g)dτ =

∫ t

0
E [g({στWs; s ∈ [0, 1]})] dτ

=
1

4 ln 2− 2

∫ t

0
E
[
(f1({στWs; s ∈ [0, 1]})− f2({στWs; s ∈ [0, 1]}))2

]
dτ

=
1

4 ln 2− 2

∫ t

0
E

[(
sup

0≤s≤1
στWs − inf

0≤s≤1
στWs − στ |W1 −W0|

)2
]
dτ

=
1

4 ln 2− 2

∫ t

0
E

[(
sup

0≤s≤1
στWs − inf

0≤s≤1
στWs

)2

+ σ2
τW

2
1

− 2

(
sup

0≤s≤1
στWs − inf

0≤s≤1
στWs

)
στ |W1|

]
dτ

=
1

4 ln 2− 2

∫ t

0
σ2
τ E
[
ω2 + c2 − 2ω|c|

]
dτ

=
1

4 ln 2− 2

∫ t

0
σ2
τ (λ2,0 + λ0,2 − 2λ1,1) dτ

=
1

4 ln 2− 2

∫ t

0
σ2
τ

(
4 ln 2 + 1− 2× 3

2

)
dτ

=

∫ t

0
σ2
τdτ,

(B.5)

where ω, c, and λp,r = E[ωp|c|r] are defined in Appendix A. This completes the proof.

B.2 Proof of Theorem 2

Proof. We denote by f ′y(x) the Gâteaux derivative of f at point x in the direction of y, i.e.,

f ′y(x) = lim
h→0

f(x+ hy)− f(x)

h
. (B.6)

Lemma B.2 (Theorem 2.2, Duembgen and Podolskij, 2015). Assume that the conditions of

Lemma B.1 hold and Assumption 1 is satisfied. If g′y(x) for some ‖y‖∞ ≤ 1 is (i) locally uniformly

continuous, and (ii) has polynomial growth, it follows that as n→∞,

1√
∆n

(
V̂t,n(g)− Vt(g)

)
L−s−−→ Ut(g), (B.7)
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where Ut(g) =
∫ t

0 u
(1)
τ dτ +

∫ t
0 u

(2)
τ dWτ +

∫ t
0 u

(3)
τ dW ′τ with

u(1)
τ = µτρ

(2)
στ (g′) +

1

2
σ̃τρ

(3)
στ (g′)− 1

2
σ̃τρ

(2)
στ (g′),

u(2)
τ = ρ(1)

στ (g),

u(3)
τ =

√
ρστ (g2)− ρ2

στ (g)− (ρ
(1)
στ (g))2,

(B.8)

and, for z ∈ R and G(x, y) = g′y(x),

ρ(1)
z (g) = E [g({zWs; s ∈ [0, 1]})W1] ,

ρ(2)
z (g′) = E [G({zWs; s ∈ [0, 1]}, {s; s ∈ [0, 1]})] ,

ρ(3)
z (g′) = E

[
G({zWs; s ∈ [0, 1]}, {W 2

s ; s ∈ [0, 1]})
]
.

(B.9)

The process W ′ = (W ′t )t≥0 is a Brownian motion defined on an extension of (Ω,F , (Ft)t≥0,P), which

is independent of F . This is especially the case when g is an even function, i.e., g(x) = g(−x) for

all x ∈ C([0, 1]), where it holds that

ρ(1)
z (g) = ρ(2)

z (g′) = ρ(3)
z (g′) = 0, (B.10)

for all z ∈ R, since W
L
= −W and expectations of odd functionals of W are 0, and hence we have

Ut(g) =

∫ t

0

√
ρστ (g2)− ρ2

στ (g) dW ′τ . (B.11)

which is an F-conditional Gaussian martingale with mean 0.

As mentioned in Appendix B.1, the path-dependent function g : C([0, 1])→ R in Eq. (B.3) is a

linear combination of f2
1 , f2

2 , and f1f2. Even though the stable CLT for f2
2 (dni (X)/

√
∆n) is easily

deduced from Lemma B.2 (cf. Example 1 in Section 3, Duembgen and Podolskij, 2015), the result of

g cannot be obtained straightforwardly because the range is not Gâteaux differentiable in general.

However, we may replace the Gâteaux derivative by an alternative form for functions which are

not Gâteaux differentiable. We consider a range-based functional ξ(x) = f(f1(x)) as an example,

where f : R→ R is a continuously differentiable function, such that both f and f ′ have polynomial

growth (cf. Example 3 in Section 3, Duembgen and Podolskij, 2015), by applying the following

lemma from Christensen and Podolskij (2007):

Lemma B.3. Given two continuous functions x, y ∈ C([0, 1]), assume t∗ is the only point in [0, 1]

where the maximum of x is achieved, i.e., t∗ = argmax0≤s≤1 x(s). Then it holds that

lim
h→0

sup0≤s≤1(x(s) + hy(s))− sup0≤s≤1 x(s)

h
= y(t∗). (B.12)

In the proofs x(t) plays the role of the Brownian motion, which attains its maximum (resp. minimum)

at a unique point almost surely. Let t = argmax0≤s≤1Ws and t = argmin0≤s≤1Ws. Then Lemma B.2
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remains valid when σ is everywhere invertible (Christensen and Podolskij, 2012) with

ρ(1)
z (ξ) = E

[
f

(
z

(
sup

0≤s≤1
Ws − inf

0≤s≤1
Ws

))
W1

]
,

ρ(2)
z (ξ′) = E

[
f ′
(
z

(
sup

0≤s≤1
Ws − inf

0≤s≤1
Ws

))(
t− t

)]
,

ρ(3)
z (ξ′) = E

[
f ′
(
z

(
sup

0≤s≤1
Ws − inf

0≤s≤1
Ws

))(
W 2
t −W

2
t

)]
,

(B.13)

which extends the asymptotic theory in Lemma B.2 to general functions of the range.

Moreover, the derivative of the cross term f1f2 is a linear combination of two separate components

which include f ′1 and f ′2 respectively. It means that for the path-dependent function g : C([0, 1])→ R
in Eq. (B.3) we can obtain the closed-form ρ

(1)
z (g), ρ

(2)
z (g′), and ρ

(3)
z (g′) for all z ∈ R, and Eq. (B.10)

holds when g is an even function. Therefore, the stable CLT in Lemma B.2 holds with the limiting

process Ut(g) in Eq. (B.11), where the squared integrand is given by

ρστ (g2)− ρ2
στ (g) = E

[
g2({στWs; s ∈ [0, 1]})

]
− (E [g({στWs; s ∈ [0, 1]})])2

=
1

(4 ln 2− 2)2

{
E
[
(f1({στWs; s ∈ [0, 1]})− f2({στWs; s ∈ [0, 1]}))4

]
−
(
E
[
(f1({στWs; s ∈ [0, 1]})− f2({στWs; s ∈ [0, 1]}))2

])2
}

=
1

(4 ln 2− 2)2

{
E

[(
sup

0≤s≤1
στWs − inf

0≤s≤1
στWs − στ |W1|

)4
]

−

(
E

[(
sup

0≤s≤1
στWs − inf

0≤s≤1
στWs − στ |W1|

)2
])2}

=
σ4
τ

(4 ln 2− 2)2

{
E
[
(ω − |c|)4

]
−
(
E
[
(ω − |c|)2

])2
}

=
σ4
τ

(4 ln 2− 2)2

{
E
[
ω4 − 4ω3|c|+ 2ω2c2 − 4ω|c|3 + c4

]
−
(
E
[
ω2 + c2 − 2ω|c|

])2}
=

σ4
τ

(4 ln 2− 2)2

{
λ4,0 − 4λ3,1 + 6λ2,2 − 4λ1,3 + λ0,4 − (λ2,0 + λ0,2 − 2λ1,1)2

}
=

40 ln 2− 16(ln 2)2 − 3ζ(3)− 16

(4 ln 2− 2)2
σ4
τ ≈ 0.7245σ4

τ .

(B.14)

This completes the proof.

B.3 Proof of Corollary 1

The proof is analogous to that of Theorem 1. The RRDQ estimator Q̂t,n in Eq. (9) can be written

in the form of Eq. (B.1) with a locally uniformly continuous function g2 : C([0, 1])→ R of the scaled
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incremental process:

g2

(
dni (X)√

∆n

)
=

1

Λ4

{
f1

(
dni (X)√

∆n

)
− f2

(
dni (X)√

∆n

)}4

. (B.15)

Then the LLN in Lemma B.1 readily applies with∫ t

0
ρστ (g2)dτ =

∫ t

0
E
[
g2({στWs; s ∈ [0, 1]})

]
dτ

=
1

Λ4

∫ t

0
E
[
(f1({στWs; s ∈ [0, 1]})− f2({στWs; s ∈ [0, 1]}))4

]
dτ

=
1

Λ4

∫ t

0
E

[(
sup

0≤s≤1
στWs − inf

0≤s≤1
στWs − στ |W1|

)4
]
dτ

=
1

Λ4

∫ t

0
σ4
τ E
[
ω4 − 4ω3|c|+ 2ω2c2 − 4ω|c|3 + c4

]
dτ

=
1

Λ4

∫ t

0
σ4
τ (λ4,0 − 4λ3,1 + 6λ2,2 − 4λ1,3 + λ0,4) dτ

=
1

Λ4

∫ t

0
σ4
τ

{
9ζ(3)− 4× 45

8
ζ(3) + 6

(
4 ln 2 +

7

4
ζ(3)

)
− 4× 15

4
+ 3

}
dτ

=
1

Λ4

∫ t

0
σ4
τ (24 ln 2− 12− 3ζ(3)) dτ

=

∫ t

0
σ4
τdτ.

(B.16)

This completes the proof.

B.4 Proof of Proposition 1

Proof. We define the set

Γn = {1 ≤ i ≤ n : X is discontinuous in In,i}, with kn = |Γn|, (B.17)

where |A| stands for the cardinality of set A. The absolute summability of ∆Xs = Xs −Xs− for all

s ∈ [0, t] implies that the number of “visible” realizations of the discontinuous component, i.e., ∆Xs

of a larger order of magnitude than
√

∆n, is an OP(∆γ
n) random variable, where

γ = − sup
0≤s≤t

{
0 ≤ $ <

1

2
: ∆Xs � ∆$

n

}
, (B.18)

which corresponds to the smallest order of non-negligible jumps on [0, t]. It is obvious that kn is

bounded by the number of non-negligible jumps over [0, t], such that we have kn = OP(∆γ
n).
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We decompose the RRDV over [0, t] into two complementary parts:

V̂t,n =
1

Λ2

∑
i∈Γn

(wi − |ri|)2 +
1

Λ2

∑
i∈Γ′n

(wi − |ri|)2 = V̂
(1)
t,kn

+ V̂
(2)
t,n−kn . (B.19)

For V̂
(1)
t,kn

, we have

wi = sup
τ,τ ′∈In,i

∣∣∣∣∣∣
∫ τ ′

τ
σsdWs +

∑
s∈In,i

∆Xs

∣∣∣∣∣∣ ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+

∣∣∣∣∣∣
∑
s∈In,i

∆Xs

∣∣∣∣∣∣ , (B.20)

|ri| =

∣∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs +
∑
s∈In,i

∆Xs

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∑
s∈In,i

∆Xs

∣∣∣∣∣∣−
∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣ , (B.21)

and thus

wi − |ri| ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣
= σ(i−1)∆n

√
∆n

(
sup

τ,τ ′∈[0,1]
|Wτ −Wτ ′ |+ |W1|

)
+ oP

(√
∆n

)
(Euler discretization)

= OP

(√
∆n

)
.

(B.22)

By adding up the squares of range-return differences in all kn intervals, we have

V̂
(1)
t,kn

= OP (kn∆n) = OP
(
∆γ+1
n

)
. (B.23)

For the sum of IV over all kn intervals, we also have

∑
i∈Γn

∫ i∆n

(i−1)∆n

σ2
sds = OP (kn∆n) = OP

(
∆γ+1
n

)
. (B.24)

With the triangle inequality, the absolute bias satisfies∣∣∣∣∣V̂ (1)
t,kn
−
∑
i∈Γn

∫ i∆n

(i−1)∆n

σ2
sds

∣∣∣∣∣ ≤ V̂ (1)
t,kn

+
∑
i∈Γn

∫ i∆n

(i−1)∆n

σ2
sds = OP

(
∆γ+1
n

)
. (B.25)

For V̂
(2)
t,n−kn , it holds naturally that

V̂
(2)
t,n−kn −

∑
i∈Γ′n

∫ i∆n

(i−1)∆n

σ2
sds = OP

(√
∆n

)
. (B.26)

The results for V̂
(1)
t,kn

and V̂
(2)
t,n−kn in Eqs. (B.25) and (B.26) imply the result in the theorem.
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B.5 Proof of Proposition 2

Proof. We follow Andersen et al. (2021) to assume τ = 0 for simplicity:

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs +Ht, where Ht =

∫ t

0

c+
s

sα
ds,

1

2
< α < 1. (B.27)

The increment of Ht over the i-th interval is given by

Hi∆n −H(i−1)∆n
=

∫ i∆n

(i−1)∆n

c+
s

sα
ds = Ci∆

1−α
n f(i;α), (B.28)

for some constant Ci, where f(x; θ) = x1−θ − (x− 1)1−θ is a monotonically decreasing function over

[1,∞) with f(1; θ) = 1 and limx→∞ f(x; θ) = 0 for all 0 < θ < 1. There exists an unique integer Kn

defined as

Kn = max
i

{
i ∈ Z+, 1 ≤ i ≤ n : f(i;α) � ∆

α− 1
2

n

}
. (B.29)

The mean value theorem indicates

f(Kn;α) = K1−α
n − (Kn − 1)1−α = (1− α)(Kn − ε)−α, (B.30)

for some ε ∈ (0, 1). It is therefore satisfied that

Kn � ∆
1
2α
−1

n . (B.31)

The role of H is no smaller than the diffusion component over the first Kn intervals, while it starts

to be swamped by volatility from the (Kn + 1)-th interval because its contribution vanishes in

the limit. Depending on the asymptotic order of H, we decompose the RRDV over [0, t] into two

complementary parts:

V̂t,n =
1

Λ2

Kn∑
i=1

(wi − |ri|)2 +
1

Λ2

n∑
i=Kn+1

(wi − |ri|)2 = V̂[0,Kn∆n] + V̂[Kn∆n,t]. (B.32)

For all 1 ≤ i ≤ Kn, we have

wi = sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs +Hτ ′ −Hτ

∣∣∣∣∣ ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+
∣∣Hi∆n −H(i−1)∆n

∣∣ , (B.33)

|ri| =

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs +Hi∆n −H(i−1)∆n

∣∣∣∣∣ ≥ ∣∣Hi∆n −H(i−1)∆n

∣∣− ∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣ , (B.34)
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and thus

wi − |ri| ≤ sup
τ,τ ′∈In,i

∣∣∣∣∣
∫ τ ′

τ
σsdWs

∣∣∣∣∣+

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σsdWs

∣∣∣∣∣ = OP

(√
∆n

)
. (B.35)

By adding up all squared range-return differences in the first Kn intervals, we have

V̂[0,Kn∆n] = OP (Kn∆n) = OP

(
∆

1
2α
n

)
. (B.36)

For the IV over the period which accommodates the first Kn intervals, it holds that∫ Kn∆n

0
σ2
sds = OP (Kn∆n) = OP

(
∆

1
2α
n

)
. (B.37)

With the triangle inequality, the absolute bias satisfies∣∣∣∣V̂[0,Kn∆n] −
∫ Kn∆n

0
σ2
sds

∣∣∣∣ ≤ V̂[0,Kn∆n] +

∫ Kn∆n

0
σ2
sds = OP

(
∆

1
2α
n

)
. (B.38)

For V̂[Kn∆n,t], it holds naturally that

V̂[Kn∆n,t] −
∫ t

Kn∆n

σ2
sds = OP

(√
∆n

)
. (B.39)

Since Kn∆n → 0 under infill asymptotics, the RRDV over [0, t] is equivalent to V̂[Kn∆n,t]. The bias

results in Eqs. (B.38) and (B.39) show that the bias of RRDV due to drift burst is asymptotically

negligible and has no impact on the asymtotic distribution in Theorem 2. This completes the proof.

B.6 Proof of Proposition 3

Proof. As an analogous result to Proposition 2, the bias of RRDV in the presence of persistent

noise can be proved following the same steps with similar simplifying assumptions: There exists one

persistent noise episode [0, 1], which is triggered by some ambiguous information arriving at time 0,

and the funtion g(1) takes the form g
(1)
gj in Eq. (22). The process ε

(1)
t in Ht only introduces extra

randomness to the duration of persistent noise episode, which shall be harmlessly ignored.

As shown in Eqs. (56) and (57) in Andersen et al. (2021), there exists an asymptotic correspon-

dence between the two models of episodic extreme return persistence, and they are equivalent with

identical asymptotic analyses if we let β = 1− α. The increment of Ht on the i-th interval is

Hi∆n −H(i−1)∆n
= f (1)(∆X0, η)

[
(i− 1)β − iβ

]
∆β
n = η∆X0

[
iβ − (i− 1)β

]
∆β
n, (B.40)

where f (1)(∆X0, η) = −η∆X0 with η ∈ (0, 1]. With β = 1− α ∈ (0, 1/2), the above persistent noise

increment is equivalent to the drift burst increment in Eq. (B.28). Jumps with r = 0 induce the bias

of order OP(∆γ+1
n ) = OP(∆n) with γ = 0, which has no impact on the bias result of RRDV. The
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proof from here can proceed following the same steps as the proof of Theorem 5. When the function

g(1) = g
(1)
fc , the asymptotic effect of H depends on the smaller of the two parameters β− and β+.

B.7 Proof of Proposition 4

Proof. We obtain the asymptotic expansions of Λ2,N and Λ4,N by specializing the general results

in Asmussen et al. (1995) and Dieker and Lagos (2017). Lemma B.4 demonstrates the asymptotic

distribution of the Euler discretization error of one-dimensional reflected Brownian motion.

Lemma B.4. We denote a reflected Brownian motion by W = ΓW with the reflection mapping

ΓXt = Xt −
(

inf
0≤s≤t

Xs ∧ 0

)
, (B.41)

where W is a standard Brownian motion that starts from 0. Let W t,N be the embedded reflected

Brownian motion observed at N discrete points, i.e., at ti = it/N for i = 1, 2, . . . , N . The Euler

discretization error of W 1, i.e., ε1,N = W 1 −W 1,N , has a weak convergence to a nonzero limit:

√
Nε1,N

L−→ Υ, with Υ = min
k∈Z

RU+k, (B.42)

as N →∞, where R = (Rt)t≥0 is a two-sided Bessel process of order 3, U is a uniformly distributed

random variable on (0, 1) which is independent of R. The scaled discretization error
√
Nε1,N is

asymptotically independent of W , with the R × C([0, 1])-valued random pair (
√
Nε1,N ,W )

L−→
(Υ,W ), where Υ is independent of W .

Lemma B.5. The Euler discretization error of W satisfies

ε1,N = inf
i∈{0,1,...,N}

Wi/N − inf
0≤t≤1

Wt. (B.43)

Given a function g : R→ R whose first derivative g′ exists at inf0≤t≤1Wt and is non-zero valued,

the delta method implies that as N →∞,

√
N

(
g

(
inf

i∈{0,1,...,N}
Wi/N

)
− g

(
inf

0≤t≤1
Wt

))
L−→ g′

(
inf

0≤t≤1
Wt

)
Υ. (B.44)

Therefore, the expected functional values of discretized infimum can be approximated with the

polynomial expansion as follows:

E
[
g

(
inf

i∈{0,1,...,N}
Wi/N

)]
= E

[
g

(
inf

0≤t≤1
Wt

)]
+ E

[
g′
(

inf
0≤t≤1

Wt

)]
E[Υ]

1√
N

+ o

(
1√
N

)
, (B.45)

where

E[Υ] = −ζ(1/2)√
2π
≈ 0.5826. (B.46)
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The results above enable us to derive asymptotic expansions of the moments of (ω, |c|), i.e.,

λp,r = E[ωp|c|r], whose analytical values are summarized in Table A.1, with p, r ∈ N and 0 ≤ p+r ≤ 4.

Corollary B.1. For the moments of (ω, |c|) derived in Appendix A, i.e., λp,r = E[ωp|c|r], we have

the following asymptotic result:

λp,r,N = λp,r +Mp,r
ζ(1/2)√

2π

1√
N

+ o

(
1√
N

)
, with Mp,r = 2pλp−1,r. (B.47)

Proof. It is intuitively clear that the random variable ε1,N in Lemma B.4, for N large, is solely

determined by the behavior of W in a neighborhood of its minimizer t, i.e., the almost surely unique

random time t ∈ [0, 1] at which W attains its minimum value inf0≤t≤1Wt over the unit interval.

The results in Lemma B.5 are also convenient to switch from infima to suprema, with

ε1,N = sup
0≤t≤1

Wt − sup
i∈{0,1,...,N}

Wi/N , (B.48)

which is a direct result from sign reversion.

Because the Brownian motion is space-homogeneous and symmetric, it holds that

ωN − ω =

(
sup

i∈{0,1,...,N}
Wi/N − inf

i∈{0,1,...,N}
Wi/N

)
−
(

sup
0≤t≤1

Wt − inf
0≤t≤1

Wt

)

=

(
sup

i∈{0,1,...,N}
Wi/N − sup

0≤t≤1
Wt

)
−
(

inf
i∈{0,1,...,N}

Wi/N − inf
0≤t≤1

Wt

)
L
= −2ε1,N ,

(B.49)

and therefore √
N
(
ωpN − ω

p
) L−→ −2pωp−1Υ, as N →∞, (B.50)

by the delta method. The equivalence in distribution “
L
=” in Eq. (B.49) holds because sup0≤t≤1Wt−

supi∈{0,1,...,N}Wi/N and infi∈{0,1,...,N}Wi/N − inf0≤t≤1Wt are asymptotically i.i.d..

For the Euler discretization error of the moment λp,r, we have

λp,r,N − λp,r = E[(ωpN − ω
p)|c|r]

= −2pE[ωp−1|c|r]E[Υ]
1√
N

+ o

(
1√
N

)
= 2pλp−1,r

ζ(1/2)√
2π

1√
N

+ o

(
1√
N

)
.

(B.51)

This completes the proof of Corollary B.1.
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Table B.1 lists the values of “bias factor” Mp,r for all 1 ≤ p ≤ 4 and 0 ≤ r ≤ 3.

Table B.1: Bias factor Mp,r for discrete moment λp,r,N

PPPPPPPPPPp

r
0 1 2 3

1 2 2
√

2
π 2 4

√
2
π

2 8
√

2
π 6 32

3

√
2
π –

3 24 ln 2 14
3

√
π3

2 – –

4 16
3

√
2π3 – – –

This table lists the “bias factor” Mp,r used in asymptotic expansions of λp,r,N with 1 ≤
p ≤ 4 and 0 ≤ r ≤ 3. In the polynomial expansion for λp,r,N , the coefficient for N−1/2 is

Mp,rζ(1/2)/
√

2π.

It is now straightforward to obtain the asymptotic expansions of Λ2,N and Λ4,N in Proposition 4:

Λ2,N = λ2,0,N + λ0,2 − 2λ1,1,N

= Λ2 + (M2,0 − 2M1,1)
ζ(1/2)√

2π

1√
N

+ o

(
1√
N

)
= Λ2 + 4

√
2

π

ζ(1/2)√
2π

1√
N

+ o

(
1√
N

)
= Λ2 +

4

π
ζ

(
1

2

)
1√
N

+ o

(
1√
N

)
,

(B.52)

Λ4,N = λ4,0,N − 4λ3,1,N + 6λ2,2,N − 4λ1,3,N + λ0,4

= Λ4 + (M4,0 − 4M3,1 + 6M2,2 − 4M1,3)
ζ(1/2)√

2π

1√
N

+ o

(
1√
N

)
= Λ4 +

(
16

3

√
2π3 − 56

3

√
π3

2
+ 48

√
2

π

)
ζ(1/2)√

2π

1√
N

+ o

(
1√
N

)
= Λ4 +

(
48

π
− 4π

)
ζ

(
1

2

)
1√
N

+ o

(
1√
N

)
.

(B.53)

This completes the proof.

B.8 Proof of Corollary 2

Proof. It follows the same steps as the proofs of Theorem 1, 2, and 3.
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Appendix C Supplementary Materials

C.1 Simulation Scheme

The numerical results for (Λ2,N , Λ4,N ,ΘN )′ with different N are calculated from a large number of

simulated paths of the standard Brownian motion. Each replication generates a sequence of N + 1

equidistant observations at ti = i/N for i = 0, 1, . . . , N . As N is allowed to span any natural number

except 0 and 1, we adopt the following simulation scheme to efficiently utilize our computational

resources:

i. For N ∈ {2, 3, 4, . . . , 10}, we simulate 109 replications of Wi/N for i = 0, 1, . . . , N .

ii. For N ∈ {11, 12, 13, . . . , 200}, we simulate 108 replications of Wi/N for i = 0, 1, . . . , N .

iii. For N ∈
{

201, 202, 203, . . . , 2000, 2005, 2010, . . . , 5000, 5010, 5020, . . . , 104, 105, 106, 107
}

, we

simulate 107 replications of Wi/N for i = 0, 1, . . . , N .

C.2 Discretized Factors

Table C.1 reports the estimation results for the polynomial equation

YN =
k∑
i=0

βiN
−i/2 + εN , (C.1)

where YN = (Λ2,N , Λ4,N ,ΘN )′ collects the simulated values for all three factors with N ranging from

11 to 108. The intercepts β0 = (Λ2, Λ4,Θ)′ and the first two coefficients in the vector β1 are obtained

from the analytical results in Proposition 4. We find that a cubic (resp. quartic) approximation

works very well across all N ≥ 11 for Λ2,N (resp. Λ4,N or ΘN ), as indicated by the root-mean-square

error (RMSE) and R2.

Table C.1: Polynomial regression results for discrete factors

Coefficients Λ2,N Λ4,N ΘN

β0 Λ2 Λ4 Θ

β1 4ζ(1/2)/π (48/π − 4π)ζ(1/2) 1.6618

β2 1.7429 6.8076 1.7371

β3 -0.6999 -6.3635 1.0395

β4 – 2.8711 5.4477

RMSE× 10−4 0.6088 1.6358 1.3555

R2 0.9998 0.9999 1.0000

This table reports the estimated coefficients for the polynomial regression model YN =
∑k
i=0 βiN

−i/2+

εN with weighted least squares. YN = (Λ2,N , Λ4,N ,ΘN )′ collects the simulated values for all three

factors with N ranging from 11 to 108. The intercepts β0 and the first two coefficients in the vector

β1 are from the analytical results in Proposition 4.
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We next provide a practical instruction on the selection for all factors with different N ∈ N>1:

• Use the simulated values in Table C.2 for N ∈ {2, 3, . . . , 10}.
• Use the polynomial approximation with coefficients listed in Table C.1 for all N ≥ 11.

Table C.2 shows the simulated values for (Λ2,N , Λ4,N ,ΘN )′ with N ranging from 2 to 10, which

achieve the highest level of precision within our simulation schemes in Appendix C.1.

Table C.2: Simulated values for discrete factors

N Λ2,N Λ4,N ΘN

2 0.0908 0.0567 5.8696

3 0.1486 0.0945 3.2809

4 0.1926 0.1304 2.5170

5 0.2277 0.1631 2.1457

6 0.2567 0.1926 1.9224

7 0.2812 0.2192 1.7712

8 0.3023 0.2432 1.6616

9 0.3206 0.2650 1.5777

10 0.3368 0.2849 1.5110

Simulated values for Λ2,N , Λ4,N , and ΘN with N ranging from 2 to 10. For

the detailed simulation scheme, see Appendix C.1.

C.3 Monte Carlo Bias Results of Other Estimators

In addition to the Monte Carlo bias results in Section 5.2, Table C.6 reports the relative bias (%) in

“continuous time” of the TRV estimator of Mancini (2009) and the DV estimator of Andersen et al.

(2021). The choices of truncation parameters for TRV and DV are in line with Section 5.3.

C.4 Monte Carlo RMSE Results of Other Estimators

In addition to the comparison of finite-sample performances among RRDV and the main competitors

TRV and DV, we also consider two traditional IV estimators, i.e., RV and RBPV, and also TRV and

DV with less aggressive choices of truncation threshold. The RMSE results are shown in Table C.6.
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Table C.3: Monte Carlo bias results (%): Truncated realized volatility (TRV)

Panel A: CTRV
ζ = 4

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -0.14 0.51 0.56 0.56 0.85 0.89 0.94 0.58 0.72 0.83

5 -0.18 2.12 2.02 1.80 3.46 3.19 2.88 2.55 2.72 2.60

10 -0.16 3.66 3.36 2.83 6.05 5.39 4.74 4.56 4.58 4.23

30 -0.19 8.83 7.63 5.92 15.07 12.58 9.90 9.96 10.08 9.36

60 -0.27 15.09 12.55 9.14 24.87 19.93 15.29 17.21 15.29 15.83

120 -0.35 27.92 22.02 16.02 42.97 35.15 25.04 34.72 29.33 21.38

180 -0.28 32.40 25.29 16.85 61.86 49.50 35.73 30.59 29.20 21.88

300 -0.39 43.35 31.71 19.63 96.99 78.29 56.19 42.98 31.45 28.53

Panel B: CTRV
ζ = 3

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -3.06 -2.45 -2.35 -2.25 -2.19 -2.15 -2.05 -2.44 -2.27 -2.10

5 -3.09 -1.02 -1.05 -1.08 0.05 0.03 0.07 -0.73 -0.55 -0.59

10 -3.08 0.29 0.16 -0.17 2.30 1.69 1.27 0.93 0.95 0.75

30 -3.12 4.43 3.56 2.19 9.24 7.24 5.54 5.56 5.27 4.60

60 -3.20 9.36 7.02 4.32 17.76 14.74 11.22 11.10 9.64 8.89

120 -3.29 17.76 13.51 9.09 29.81 22.18 14.27 21.30 19.47 13.72

180 -3.37 22.29 16.48 10.47 44.94 34.00 23.32 23.20 19.37 16.88

300 -3.68 32.41 23.52 14.47 72.39 54.66 37.25 26.24 23.27 24.39

Relative bias (%) of the truncated realized volatility (TRV) estimator of Mancini (2009) constructed from 1, 5, 10, 30, 60,

120, 180, and 300-second intervals for 2000 days. The truncation threshold for returns in all intervals is CTRV
ζ

√
∆nMedRVt,n,

with CTRV
ζ = 4 or 3. The DGP is the Heston model in Eq. (38), and we follow the persistent noise model of Andersen et al.

(2021) to simulate the three different patterns of episodic extreme return persistence.
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Table C.4: Monte Carlo bias results (%): Differenced-return volatility (DV)

Panel A: CDV
ζ = 4

√
2

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -0.15 -0.10 -0.09 -0.08 -0.04 -0.09 -0.04 -0.15 -0.11 -0.01

5 -0.22 -0.08 -0.14 -0.01 -0.01 0.09 0.15 0.12 0.16 0.11

10 -0.18 -0.24 -0.23 -0.09 0.53 0.35 0.67 0.46 0.16 0.13

30 -0.24 0.08 -0.23 -0.04 0.37 0.58 1.26 1.65 1.03 0.87

60 -0.39 1.30 -0.41 -0.59 1.59 2.89 4.62 4.60 1.55 1.86

120 -0.50 6.58 6.34 0.76 9.70 9.81 8.61 15.33 12.94 2.99

180 -0.47 8.80 1.21 -1.02 14.43 11.35 9.74 16.16 11.74 2.16

300 -1.02 23.35 8.80 -0.33 30.23 23.24 19.18 40.15 17.62 8.58

Panel B: CDV
ζ = 3

√
2

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -3.05 -2.88 -2.81 -2.65 -2.86 -2.83 -2.67 -2.95 -2.90 -2.64

5 -3.12 -2.63 -2.48 -2.22 -2.37 -2.10 -1.75 -2.62 -2.45 -2.21

10 -3.10 -2.47 -2.28 -2.07 -1.76 -1.77 -1.52 -2.14 -1.97 -2.02

30 -3.14 -1.88 -1.69 -1.59 -0.82 -0.70 -0.27 -1.11 -1.26 -1.33

60 -3.32 -1.17 -1.11 -1.45 0.83 1.58 2.17 -0.08 -0.80 -0.72

120 -3.53 1.68 1.79 -0.24 5.51 5.10 3.92 5.21 4.33 1.07

180 -3.56 0.81 -1.65 -2.28 4.49 2.85 2.19 5.49 3.10 0.41

300 -4.15 6.29 -0.81 -2.87 7.30 5.31 4.77 14.24 8.92 3.81

Relative bias (%) of the differenced-return volatility (DV) estimator of Andersen et al. (2021) constructed from 1, 5, 10,

30, 60, 120, 180, and 300-second intervals for 2000 days. The truncation threshold for all first-order differenced returns is

CDV
ζ

√
∆nMedRVt,n, with CDV

ζ = 4
√

2 or 3
√

2. The DGP is the Heston model in Eq. (38), and we follow the persistent

noise model of Andersen et al. (2021) to simulate the three different patterns of episodic extreme return persistence.
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Table C.5: Monte Carlo bias results (%): Generalized differenced-return volatility (DV1−3)

Panel A: CDV
ζ = 4

√
2

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -0.15 -0.07 -0.08 -0.06 -0.01 -0.03 0.03 -0.07 -0.05 0.02

5 -0.23 -0.02 -0.03 0.09 0.09 0.12 0.25 0.29 0.37 0.32

10 -0.23 0.12 -0.11 0.23 0.54 0.52 0.76 0.65 0.72 0.81

30 -0.39 0.68 0.71 0.90 1.40 1.42 1.93 2.58 2.63 2.81

60 -0.67 2.21 1.34 1.16 4.32 5.35 6.48 6.65 4.03 5.95

120 -1.18 14.01 9.98 5.26 12.02 10.99 9.50 17.83 19.46 8.14

180 -1.44 12.72 4.62 1.89 24.31 21.09 17.93 26.73 16.28 7.08

300 -2.27 31.54 11.95 3.89 57.17 48.30 38.20 52.08 30.39 14.81

Panel B: CDV
ζ = 3

√
2

Gradual Jump with an

Gradual Jump Flash Crash Intermittent Flash Crash

Interval (sec) H = 0 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25 β = 0.45 0.35 0.25

1 -3.06 -2.89 -2.80 -2.64 -2.84 -2.80 -2.66 -2.90 -2.82 -2.64

5 -3.13 -2.60 -2.48 -2.22 -2.33 -2.12 -1.74 -2.48 -2.25 -2.17

10 -3.14 -2.39 -2.15 -1.98 -1.77 -1.79 -1.60 -2.03 -1.88 -1.74

30 -3.31 -1.51 -1.33 -1.30 -0.67 -0.53 -0.21 -0.39 -0.29 -0.31

60 -3.62 -0.46 -0.61 -0.94 1.45 1.75 1.74 1.88 1.32 1.81

120 -4.14 5.46 3.46 1.92 5.53 4.83 3.53 9.79 10.25 4.78

180 -4.45 3.92 1.89 -0.04 9.35 7.50 6.52 12.95 9.92 4.50

300 -5.53 11.92 4.57 0.87 24.49 20.74 17.37 27.81 10.57 10.49

Relative bias (%) of the generalized DV1−3 estimator of Andersen et al. (2021) constructed from 1, 5, 10, 30, 60, 120, 180,

and 300-second intervals for 2000 days. The truncation threshold for all first-, second-, and third-order differenced returns

is CDV
ζ

√
∆nMedRVt,n, with CDV

ζ = 4
√

2 or 3
√

2. The DGP is the Heston model in Eq. (38), and we follow the persistent

noise model of Andersen et al. (2021) to simulate the three different patterns of episodic extreme return persistence.
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C.5 Monte Carlo RMSE Results with Market Microstructure Noise

In order to examine the impact of market microstructure noise on the finite-sample performance of

RRDV, we augment the Heston model in Eq. (38) with an additive heterogeneous Gaussian noise

term, which is in line with the Monte Carlo simulation in Christensen et al. (2022):

Yi = Xi + εi, εi ∼ i.i.d.N (0, σ̃2
i ), where σ̃i = γ

√
σ2
ti

n
. (C.2)

We set the noise-to-volatility ratio γ = 0.5, which corresponds to a medium contamination level

(Christensen et al., 2014).15

Besides the additive noise, we consider the rounding errors on the price level, i.e., let the observed

prices eYi = eXi+εi be further rounded to cents. The observed logarithmic prices are given as

Yi = ln

([
eXi+εi

0.01

]
× 0.01

)
, (C.3)

where the function [x] rounds a number x to the nearest integer.

Table C.7 reports the RMSEs of all selected IV estimators when there exists the heterogeneous

Gaussian noise in Eq. (C.2). For RRDV based on candlestick information obtained from one-second

data, it exhibits noticeably elevated RMSEs compared to the noise-free case when the candlestick

window is small (1 minute), and performs worse than its competitors. This observation confirms that

the range-based estimators are comparatively more susceptible to noise contamination. However,

RRDV regains its superiority as the interval extends slightly to 2 minutes. For the “sparse” RRDV*

based on HLOCs from half-minute data, the RMSE results do not show significant differences

between the noise-free and noisy cases. As discussed in Section 4.1, the implementation of effective

discretization error correction facilitates the construction of RRDV on sparsely sampled observations,

and thus enhance its robustness to market microstructure noise.

15A larger noise-to-volatility ratio, e.g., γ = 1, will not change the qualitative results.

54



T
a
b
le

C
.7
:

M
o
n
te

C
a
rl

o
R

M
S

E
re

su
lt

s
w

it
h

m
a
rk

et
m

ic
ro

st
ru

ct
u

re
n

o
is

e

P
a
n

el
A

:
H

=
0

In
te

rv
a
l

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

1
m

in
1
.2

9
1
.1

8
0
.7

1
0
.8

1
0
.7
3

2
m

in
0
.9
8

1
.0

5
0
.9

9
1
.1

4
1
.0

2

3
m

in
0
.9
2

1
.1

1
1
.2

1
1
.3

8
1
.2

4

5
m

in
0
.9
6

1
.2

4
1
.5

5
1
.7

7
1
.5

8

P
a
n

el
B

:
G

ra
d

u
a
l

J
u

m
p

β
=

0
.4

5
β

=
0
.3

5
β

=
0
.2

5

In
te

rv
a
l

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

1
m

in
1
.0

7
1
.1

2
1
.1

7
0
.8

0
0
.7
0

1
.1

3
1
.1

2
1
.0

2
0
.8

0
0
.7
1

1
.1

5
1
.1

4
0
.8

7
0
.8

0
0
.7
1

2
m

in
0
.8
0

1
.0

5
1
.9

8
1
.1

7
1
.1

8
0
.8
3

1
.0

3
1
.6

6
1
.2

1
1
.0

9
0
.8
8

1
.0

5
1
.3

4
1
.1

1
1
.0

2

3
m

in
0
.7
8

1
.1

4
2
.5

1
1
.4

9
1
.3

8
0
.8
1

1
.1

3
2
.0

5
1
.3

8
1
.2

3
0
.8
4

1
.1

2
1
.6

7
1
.3

6
1
.2

2

5
m

in
0
.9
3

1
.3

3
3
.6

1
2
.1

9
2
.2

6
0
.9
4

1
.3

0
2
.8

7
1
.8

6
1
.7

3
0
.9
4

1
.2

8
2
.2

1
1
.8

0
1
.6

0

P
a
n

el
C

:
F

la
sh

C
ra

sh

β
=

0
.4

5
β

=
0
.3

5
β

=
0
.2

5

In
te

rv
a
l

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

1
m

in
1
.0

5
1
.1

3
1
.8

3
0
.8

2
0
.7
4

1
.0

5
1
.1

2
1
.6

0
0
.8

4
0
.7
5

1
.0

7
1
.1

2
1
.3

0
0
.8

6
0
.7
5

2
m

in
0
.6
6

1
.1

3
2
.9

9
1
.3

2
1
.1

6
0
.7
1

1
.0

9
2
.3

9
1
.2

9
1
.1

2
0
.7
6

1
.0

4
1
.7

9
1
.2

6
1
.1

0

3
m

in
0
.7
4

1
.2

9
4
.3

7
1
.5

5
1
.5

6
0
.7
4

1
.2

0
3
.5

0
1
.4

8
1
.5

0
0
.7
6

1
.1

5
2
.6

2
1
.4

4
1
.4

2

5
m

in
1
.0
4

1
.7

3
7
.0

3
2
.1

3
2
.9

0
0
.9
6

1
.5

7
5
.5

5
2
.0

3
2
.7

0
0
.9
4

1
.3

9
4
.0

6
1
.9

4
2
.4

0

P
a
n

el
D

:
G

ra
d

u
a
l

J
u

m
p

w
it

h
a
n

In
te

rm
it

te
n
t

F
la

sh
C

ra
sh

β
=

0
.4

5
β

=
0
.3

5
β

=
0
.2

5

In
te

rv
a
l

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

R
R

D
V

R
R

D
V

*
T

R
V

D
V

D
V

1
−
3

1
m

in
1
.1

2
1
.1

1
1
.3

3
0
.8

2
0
.7
5

1
.1

2
1
.1

2
1
.2

8
0
.8

0
0
.7
6

1
.0

9
1
.1

5
1
.0

5
0
.8

0
0
.7
3

2
m

in
0
.8
4

1
.0

6
2
.3

5
1
.3

0
1
.5

9
0
.8
3

1
.1

8
1
.9

9
1
.2

5
1
.2

8
0
.9
3

1
.0

5
1
.7

9
1
.2

0
1
.2

6

3
m

in
0
.8
0

1
.1

6
2
.8

5
1
.7

6
1
.9

8
0
.8
1

1
.2

0
2
.3

8
1
.4

5
1
.4

6
0
.8
5

1
.1

1
2
.0

8
1
.4

0
1
.3

8

5
m

in
1
.0
2

1
.2

8
3
.5

9
2
.5

5
2
.4

3
1
.0
2

1
.4

0
3
.2

4
2
.1

0
2
.3

2
0
.9
9

1
.3

2
2
.5

7
1
.8

8
1
.9

3

R
M

S
E

(m
u

lt
ip

li
ed

b
y

1
0
5
)

o
f

d
iff

er
en

t
IV

es
ti

m
a
to

rs
.

R
R

D
V

a
n

d
R

R
D

V
*

a
re

co
n

st
ru

ct
ed

fr
o
m

in
tr

a
d

a
y

ca
n

d
le

st
ic

k
in

fo
rm

a
ti

o
n

,
w

h
ic

h
is

o
b

ta
in

ed
fr

o
m

se
co

n
d

-b
y
-s

ec
o
n

d
a
n

d

h
a
lf

-m
in

u
te

o
b

se
rv

a
ti

o
n

s,
re

sp
ec

ti
v
el

y.
T

h
e

ch
o
ic

e
o
f

tr
u

n
ca

ti
o
n

p
a
ra

m
et

er
s

fo
r

T
R

V
,

D
V

a
n

d
R

R
D

V
fo

ll
o
w

s
th

e
in

st
ru

ct
io

n
s

in
S

ec
ti

o
n

4
.2

,
w

it
h

(C
T
R
V

ζ
,C

D
V

ζ
,C

R
R
D
V

ζ
,$

)
=

(3
,3
√

2
,2
,1
/
2
).

T
h

e
d

is
cr

et
iz

a
ti

o
n

er
ro

rs
o
f

R
R

D
V

a
re

co
rr

ec
te

d
fo

ll
o
w

in
g

th
e

st
ep

s
in

S
ec

ti
o
n

4
.1

.
T

h
e

D
G

P
is

th
e

H
es

to
n

m
o
d

el
in

E
q
.

(3
8
).

W
e

si
m

u
la

te
th

e
a
d

d
it

iv
e

h
et

er
o
g
en

eo
u

s
G

a
u

ss
ia

n
n

o
is

e
in

E
q
.

(C
.2

),
a
n

d
fo

ll
o
w

th
e

p
er

si
st

en
t

n
o
is

e
m

o
d

el
o
f

A
n

d
er

se
n

et
a
l.

(2
0
2
1
)

to
si

m
u

la
te

th
e

th
re

e
d

iff
er

en
t

p
a
tt

er
n

s
o
f

ep
is

o
d

ic
ex

tr
em

e
re

tu
rn

p
er

si
st

en
ce

.
A

ll
si

m
u

la
te

d
p

ri
ce

s
a
re

fu
rt

h
er

ro
u

n
d

ed
to

ce
n
ts

.

55


	Introduction
	Volatility Estimation Based on Range-Return Differences
	Range-Return-Difference Volatility (RRDV) Estimator
	Limit Theorems for Continuous Itô Semimartingales
	Jumps

	Extreme Return Persistence
	Drift Burst Model
	Persistent Noise Model

	Finite-Sample Refinements
	Finite-Sample Bias I: Discretization Errors
	Finite-Sample Bias II: V-Shapes

	Monte Carlo Simulations
	Simulation Design
	Asymptotic Unbiasedness
	Finite-Sample Performance

	Empirical Analysis
	Data
	Heterogeneous Autoregressive (HAR) Model
	Empirical Results

	Conclusions
	Normalized High, Low and Close
	Proofs of Theorems and Propositions
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Corollary 2

	Supplementary Materials
	Simulation Scheme
	Discretized Factors
	Monte Carlo Bias Results of Other Estimators
	Monte Carlo RMSE Results of Other Estimators
	Monte Carlo RMSE Results with Market Microstructure Noise


