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Abstract

Contests are widely used in the procurement of innovative products. Our study of hundreds

of real procurement contests reveals that the majority of them offer multiple prizes, particularly

for building projects that require diverse and creative ideas. We also find that contests with

multiple prizes tend to attract more players. We propose an incomplete-information contest

model with the contest organizer valuing both the overall quality of proposals and the diversity

of ideas. The model offers a new explanation for the coexistence of different prize structures:

when the organizer’s preference for diversity is sufficiently strong, offering multiple prizes is

optimal, whereas a winner-take-all structure is optimal otherwise.
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1 Introduction

Since the seminal work by Tullock (1980), contests have been widely used to study competitive

environments in which players exert costly effort to compete for one or multiple prizes. Contests are

a popular mechanism for procuring innovative products, such as architectural designs, inventions,

and solutions to scientific and engineering problems. In a typical innovation contest, the contest

organizer (buyer or procurer, she) establishes a prize scheme that specifies prizes to be rewarded

to players (contestants, he/they) based on the ranking of their performance. Players are invited to

submit proposals demonstrating their ideas, which are then evaluated to determine the ranking of

players.

In the literature, a winner-take-all prize structure is effort-maximizing in most contest envi-

ronments with incomplete information and linear costs and prize valuations. Moldovanu and Sela

(2001) establishes the unique optimality of devoting all resources to the first prize in contests with

incomplete information when the effort cost function is linear or concave. The optimality of the

winner-take-all prize structure continues to hold after introducing the possibility of two-stage con-

tests (Moldovanu and Sela, 2006). Liu and Lu (2014) show that, given (potentially) heterogeneous

prizes with fixed amounts, an all-pay auction maximizes total effort, which, combined with the

result of Moldovanu and Sela (2001), further implies that an all-pay auction with winner-take-all

is effort-maximizing given a fixed budget. Liu and Lu (2019) introduce endogenous entry into the

model of Moldovanu and Sela (2001) and show that winner-take-all is still optimal despite the new

tradeoff between encouraging the entry of potential contestants and eliciting effort from entrants.

In fact, the majority of studies on contests focus on the case of winner-take-all (Fu and Wu, 2019).

However, in practice, many innovation contests offer multiple prizes. For example, in 1993,

Boeing and Lockheed-Martin were each given compensation of USD 2.2 billion to produce a proto-

type in competition for the contract for the Joint Strike Fighter (Kaplan et al., 2002; Matros and

Armanios, 2009). In 2012, the Google Xprize foundation launched a contest for ideas to develop

affordable transportation to the moon. The contest offers a USD 20 million grand prize, a USD 5

million second prize, and several USD 1 million “diversity prizes.”1 In 2007, the Shanghai govern-

ment launched an international proposal contest for the architectural design of the China Pavilion

for EXPO 2010 Shanghai. The contest offered a CNY 120 million prize to the winner and a CNY

0.5 million prize to each of the eight designers who were shortlisted in the final round.2 In addition

to the anecdotal evidence, we obtain a dataset of 327 contests of design proposals from a public

procurement platform in China. We find that approximately 70% of these contests offer multiple

prizes. Moreover, contests for building projects tend to offer more prizes and attract more players

to enter than other types of projects.

Why are multiple prizes popular in innovation contests, and why do some contests use a winner-

1See lunar.xprize.org.
2The contest attracted 344 designers from throughout the world to submit proposals. See en.wikipedia.org/

wiki/China_pavilion_at_Expo_2010.
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take-all prize while others adopt multiple prizes? In this paper, we extend the standard contest

model developed by Moldovanu and Sela (2001) and obtain two main results regarding the choice

between a winner-take-all prize and multiple prizes. First, the optimality of multiple prizes requires

both a positive entry cost and the contest organizer’s preference for idea diversity. Second, the

preference for diverse ideas needs to be sufficiently strong to justify the adoption of multiple prizes.

In other words, the winner-take-all prize is optimal if uncertainty and idea diversity do not play an

important role in the contest.

One important feature of innovation contests is the uncertainty of the ideal approach, so the

contest organizers usually prefer diverse ideas from many players. There is ample evidence on the

importance of diverse ideas and tying various approaches in innovation. Letina and Schmutzler

(2019) note that, in many innovation contests, contest organizers face uncertainty over the ideal

approach to achieve the goal. For example, there are at least 9 different approaches to the develop-

ment of COVID-19 vaccines, and many of these approaches may end up in failure (Le et al., 2020).

In architectural design contests, the organizers may not be able to specify the ideal design before

reviewing the proposals from design firms (Zhu, 2019). For scientific research problems, Lakhani

et al. (2007) provide empirical evidence that attracting solvers with diverse scientific backgrounds

greatly improves the success rate of the designated problems.

In our model, the contest organizer sets up a rank-order prize scheme subject to a fixed budget

and invites players to submit their proposals. Each player is endowed with an idea as his private

information and develops his design proposal based on the idea. The proposals are evaluated by a

committee of experts, whose ratings or votes determine the ranking of players. It is easier to con-

vince the committee of a proposal based on a more conventional idea than a less conventional idea.

To capture this feature of innovation contests, we assume that demonstrating a less conventional

idea in a proposal requires a higher cost. Given the prize scheme and private information, each

player endogenously decides whether to enter the contest at a cost (Liu and Lu, 2019).

To incorporate the preference for diversity, we assume that the contest organizer aims to max-

imize a weighted average of the total quality (effort) and diversity of ideas among participating

players. Following Letina and Schmutzler (2019), we assume that there exists an ideal design that

is unobservable until all proposals are submitted and winners are determined. Hence, a greater di-

versity of ideas makes it more likely to obtain a better design proposal. In some cases, the organizer

can use the ideas from multiple proposals to develop the ideal design in the final plan.

We show that the organizer’s preference for diversity explains her choice between winner-take-

all and multiple prizes. Specifically, there is a unique and strictly positive value of the weight that

she places on idea diversity such that if she cares about diversity more than this value, offering

multiple prizes is optimal; otherwise, winner-take-all is uniquely optimal. We emphasize that the

cutoff weight is substantially greater than zero, which explains why winner-take-all is still used

even in some industries that value diversity. This result provides a rationale for the coexistence

of winner-take-all and multiple prizes used in innovation contests. It is also consistent with our
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findings from the design contest data: multiple prizes are much more common in contests for

building projects that require more creativity and diversity.

The remainder of the paper is organized as follows. In Section 2, we review the related literature.

In Section 3, we present the data and motivating evidence. We propose our model and provide

its analysis and implications in Section 4. Section 5 concludes the paper. Technical proofs are

relegated to the Appendix.

2 Related Literature

Our paper contributes to the literature on optimal prize allocation in contests with entry costs. Liu

and Lu (2019) show that after introducing an entry cost to the contest model in Moldovanu and

Sela (2001), the winner-take-all prize still maximizes total effort. Hammond et al. (2019) study

the contest design problem with endogenous entry but allow the contest organizer to charge an

entry fee, which is used to augment the prize budget. We contribute to this strand of literature by

introducing the contest organizer’s preference for diversity of ideas. We find that the winner-take-

all prize scheme is no longer optimal in the presence of both costly entry and a sufficiently strong

preference for diversity.

In the literature, there are alternative ways to rationalize the adoption of multiple prizes in

contest design. For example, in contests with incomplete information, the shapes of players’ effort

cost function (Moldovanu and Sela, 2001; Zhang, 2021), prize valuation function (Glazer and Hassin,

1988; Polishchuk and Tonis, 2013), or the distribution of an output shock (Ales et al., 2017) can

affect whether the contest organizer should adopt multiple prizes.3 With complete information,

factors such as the relative strength of contestants’ abilities (Szymanski and Valletti, 2005) and the

distribution of noise in performance (Drugov and Ryvkin, 2020) can also lead to different optimal

choices between winner-take-all and multiple prizes. We show that under linear cost function and

incomplete information, the preference for idea diversity can be a driving factor of optimal prize

structure.

Our paper joins the large and growing literature on innovation contests, such as Taylor (1995),

Che and Gale (2003), Ganuza and Hauk (2006), Schöttner (2008), Terwiesch and Xu (2008), Erkal

and Xiao (2021), Letina and Schmutzler (2019), Gao et al. (2022), Stouras et al. (2022), and

Dong et al. (2023).4 We emphasize the value of eliciting diverse ideas, which is aligned with Koh

(2017), Letina and Schmutzler (2019) and Erkal and Xiao (2021). Koh (2017) shows that contest

organizers want to attract more players under higher quality uncertainty. Letina and Schmutzler

(2019) study the optimal innovation contest in which the quality of a player’s innovation depends

on the distance between his approach and an unobservable ideal approach. They show that a simple

3Sarne and Lepioshkin (2017) illustrate that a multiple-prize scheme is often optimal when participation is costly
and the players’ efforts are random variables beyond their control.

4See Ales et al. (2019) and Segev (2020) for comprehensive surveys of the management science and operation
research literature on innovation contests.
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“bonus” tournament with a high prize and a low prize is optimal, which induces the socially optimal

variety of approaches.5 Differing from Letina and Schmutzler (2019) in which each player chooses

an approach, in our paper, each player is endowed with a private approach/idea, which determines

the marginal cost of preparing his proposal. Moreover, we note that the organizer can approximate

the best idea from many proposals, so the quality of all the submitted proposals and the diversity

of ideas both matter in our setting. Erkal and Xiao (2021) also assume that each player is endowed

with a private idea and characterize the optimal prize in winner-take-all innovation contests. They

propose a new stochastic order to rank idea quality distributions and uncover the relationship

between the scarcity of high-quality ideas and the optimal prize. Our study emphasizes that, in

some innovation contests, the best idea or approach may not belong to any player but is developed

from several players’ submitted proposals.

The empirical results in our paper also contribute to the small literature on the empirical

study of contests. Implementing theoretical insights in practice requires knowledge of the contest

environment based on empirical studies. Jia (2008) uses NBA data to estimate the contest success

function (CSF) and uses the Bayesian model selection method to compare three popular forms of

CSFs. Hwang (2012) and Jia and Skaperdas (2012) use battle data to estimate the CSF and study

military conflict technology. Sunde (2003) and Malueg and Yates (2010) use sports data to test

some implications of contest theory. Kang (2016) studies lobbying activities in the U.S. energy

sector and shows how spending affects voting outcomes. Lemus and Marshall (2021) use data

from Kaggle prediction contests to estimate a dynamic model and show that public information

disclosure improves average performance. Huang and He (2021) develop a structural estimation

procedure for a Tullock contest and adopt it to study how campaign spending affects U.S. House

election outcomes. Using data from software contests, Boudreau et al. (2011) find that having a

greater number of competitors reduces the incentive to exert effort but makes it more likely that

one competitor obtains an extreme-value solution. The latter effect dominates the former for more

uncertain problems. We find a similar result: To acquire bold and unconventional designs, the

contest organizer should induce more entry by offering compensation for contest losers.

3 Data and Motivating Evidence

We obtain a sample of 327 design proposal contests from the Guangzhou Public Resource Trading

Center (www.gzggzy.cn). The data cover all public procurement contests that involve the submis-

sion of design proposals from 2014 to 2018 in Guangdong, China. These projects belong to five

categories: building and architecture (Obs= 195), urban planning and transportation (Obs= 83),

landscaping (Obs= 28), electricity and mechanics (Obs= 12), and water conservancy (Obs= 9).

Most procurers (contest organizers) of these projects are governments and state-owned enterprises

5 Letina (2016) also emphasizes the importance of the diversity of research projects and how it interacts with
duplication of research effort among firms in the market.
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that are legally required to conduct procurement through designated procurement platforms.6 Ta-

ble 1 provides the summary statistics of the data.

Table 1: Summary Statistics

All projects Other projects Building projects
Obs=327 Obs=195 Obs=132 t test

Variable Mean SD Mean SD Mean SD p-value

p.design 1193 1225 918 928 1379 1361 0.000
p.construct 42461 89816 34396 33267 47921 112845 0.116
proposal.day 42.584 21.575 42.765 20.798 42.462 22.137 0.900
design.day 122.786 98.504 117.682 58.918 126.241 118.031 0.387
D.model 0.278 0.449 0.008 0.087 0.462 0.500 0.000
D.prequalify 0.018 0.134 0.000 0.000 0.031 0.173 0.014
area 74,710 125,217 68,206 44,592 79,136 158,129 0.363
N.prize 4.896 2.919 4.265 3.061 5.323 2.746 0.002
D.multi.prize 0.725 0.447 0.583 0.495 0.821 0.385 0.000
V 19.711 35.029 16.972 33.698 21.564 35.869 0.240
v1 5.599 9.738 5.225 10.161 5.852 9.460 0.574
v.loser 14.402 26.027 12.171 24.207 15.913 27.148 0.193
v.loser.ratio 0.508 0.328 0.414 0.359 0.572 0.290 0.000
n 8.419 4.508 7.205 3.951 9.241 4.683 0.000

Note: All monetary variables (p.design, p.construct, V, v1, and v.loser) are in units of CNY 10,000. D.multi.prize,

D.model, and D.prequalify are dummy variables. The last column displays the p-value of a t test between building

projects and other projects. Numbers in bold indicate that the test is rejected at the 95% significance level.

We explain the data with related industry backgrounds. A contest organizer launches a contest

by posting an announcement on the procurement platform with the help of a professional pro-

curement agency. Appendix B is a sample contest announcement. The announcement contains

information on the project and invites players to participate in the proposal contest. For each con-

test, we observe the budget for the design component (p.design), the budget for the construction

component (p.construct),7 the total work area in square meters (area), whether players need to

submit a design model (D.model), whether players need to satisfy prequalification (D.prequalify),

the number of days to submit the proposal (proposal.day), the number of days for the winner to

complete the detailed design work (design.day), and the city of the project. The projects are located

across 19 cities in Guangdong Province.

After players complete their design proposals, a committee of experts evaluates them and deter-

mines a ranking.8 The player ranked first is offered the design contract. If the offer is not accepted,

the design contract will be offered to the other players in rank order. For all contests, we observe

6See the Bidding Law of the People’s Republic of China (www.lawinfochina.com/display.aspx?id=27151&lib=
law&EncodingName=big5). We refer to it as “the law” for the rest of the paper.

7Players engaged in the design contest only work on the design component and not the construction component.
The construction component is carried out by other construction companies.

8In practice, this evaluation process may be subject to problems of quality manipulation corruption (Huang, 2019;
Huang and Xia, 2019) and uncertainty (Takahashi, 2018). We do not consider these issues in this paper.
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the prize scheme, v = (v1, v2, ..., v8), that specifies the design compensation awarded to the players

based on the ranking. These prizes are called design compensation because preparing the design

proposal is costly for the players. Note that design compensation is different from p.design. The

former specifies direct payments to the winner and losers of the proposal contest. The latter is the

monetary payment specified in the design contract awarded to the winner to carry out the complete

design work after the contest. We compute the total amount of design compensation (V =
∑8

i=1 vi),

the value of prizes for contest losers (v.loser=
∑8

i=2 vi), and the proportion of loser compensation

in the total amount (v.loser.ratio=v.loser/V = (V − v1)/V ).

Based on opinions obtained from industry experts, in building and architecture design projects,

procurers typically want the design proposals to be more creative and diverse than in other projects

(urban planning, transportation, landscaping, electricity, mechanics, and water conservancy). From

Table 1, approximately 46% of building projects require the submission of a design model (D.model=

1), whereas less than 1% of other projects do. Moreover, p.design is also significantly larger for

building projects than other projects. This indicates that design work in other projects is relatively

standard and does not require a demonstration of innovative ideas. Regarding prize structures,

building projects tend to allocate a larger proportion of the compensation budget to losers than

other projects. On average, 57.2% of the budget is allocated to the losers in building projects, while

in other projects, the figure is 41.4%.

Figure 1: Illustration of Prize Structure

Figure 1-(A) is the histogram of N.prize, which is the number of positive prizes offered. In

the data, the maximum number of positive prizes is 8. In Table 1, we find that 237 (72.5%) of

the 327 contests offer multiple prizes (D.multi.prize> 1). This proportion is significantly higher

among building projects (82.1%) than other projects (58.3%). On average, a contest offers 4.896
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prizes. The average number of prizes of building projects (5.323) is significantly greater than that

of other projects (4.265). Hence, the contest organizers of building projects are more inclined

to adopt multiple prizes. Figure 1-(B) shows the box plots of prizes by player ranking among all

contests offering multiple prizes (Obs= 237). Clearly, the amount of prizes decreases in the ranking.

The first runner-up obtains an average compensation of CNY 36,992, while the seventh runner-up

obtains an average compensation of CNY 10,434. In fact, all observed prize schemes are weakly

decreasing without any exception.

We observe the number of players (n) who submit a complete design proposal before the call-

for-proposals deadline. On average, a contest attracts 8.4 players. Figure 2 shows the distribution

of n.9 In general, there are more players participating in building projects than in others.

Figure 2: Histogram of Number of Players

Figure 3 depicts the relationship between the prize structure and the number of players entering

the contest. There is a clear positive correlation between v.loser.ratio and n, which suggests that

allocating a larger proportion of the budget to compensate losers attracts more players to submit

proposals. This empirical data pattern is consistent with the experimental evidence in Cason et al.

(2010), which shows that dividing a fixed prize in proportion to participant contributions induces

more entries and greater total effort.

9The law requires that at least three players submit bids (proposals) to maintain the competitiveness of the contest.
Otherwise, the procurement fails, and the procurer needs to launch another contest.
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Figure 3: Prize Structure and Player Entry

Table 2: Prize Structure and Player Entry

Dependent variable: n
(1) (2) (3) (4)

V 0.047∗∗∗ 0.032∗∗∗ 0.043∗∗∗ 0.026∗∗∗

(0.007) (0.007) (0.007) (0.007)
v.loser.ratio 4.226∗∗∗ 4.361∗∗∗

(0.768) (0.809)
D.building 1.941∗∗∗ 1.114∗

(0.571) (0.567)
p.design 0.0001 0.0004∗

(0.0002) (0.0002)
p.construct −0.00000 −0.00000∗

(0.00000) (0.00000)
proposal.day 0.001 0.0001

(0.011) (0.011)
design.day 0.004 0.006∗∗

(0.003) (0.003)
D.model 0.289 0.222

(0.608) (0.581)
D.prequalify −0.816 −1.370

(1.769) (1.694)
area 0.004∗ 0.004

(0.002) (0.002)
city FE X X X X
Observations 327 327 326 326
R2 0.160 0.235 0.236 0.304

Note: For all regressions in this paper, * indicates significance at 10%; **

indicates significance at 5%; and *** indicates significance at 1%.
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Table 2 further demonstrates the endogenous entry pattern of design contests. Having a large

total prize amount (V ) attracts players. Regressions (2) and (4) demonstrate that allocating a larger

proportion of resources to contest losers significantly increases the number of players. Regressions

(1) and (3) do not include v.loser.ratio, which is a measure of the prize structure. As a result, their

R2s are lower than those in regressions (2) and (4), respectively.

In Table 3, we use v1 and v.loser as measures of the prize structure. In regressions (2) and (4),

we find that the winner’s prize does not have a significant impact on n. However, designating more

resources for losers significantly increases the number of players.

In summary, many real-world contest organizers choose to offer multiple prizes, and offering

multiple prizes can effectively attract more players to enter the contest. Moreover, for projects

requiring more innovative and diverse ideas (building and architectural design), contest organizers

tend to offer more prizes. These data patterns serve as motivating evidence for our model in which

the contest organizer exhibits a preference for the diversity of ideas.

Table 3: Price Structure and Player Entry (Continued)

Dependent variable: n
(1) (2) (3) (4)

v1 0.151∗∗∗ 0.020 0.137∗∗∗ 0.021
(0.025) (0.050) (0.025) (0.049)

v.loser 0.056∗∗∗ 0.051∗∗∗

(0.019) (0.019)
D.building 1.991∗∗∗ 1.924∗∗∗

(0.578) (0.573)
p.design 0.0002 0.0001

(0.0002) (0.0002)
p.construct −0.00000 −0.00000

(0.00000) (0.00000)
proposal.day −0.001 0.002

(0.011) (0.011)
design.day 0.004 0.004

(0.003) (0.003)
D.model 0.324 0.291

(0.615) (0.609)
D.prequalify −0.296 −0.904

(1.787) (1.782)
area 0.004∗ 0.004∗

(0.002) (0.002)
city FE X X X X
Observations 327 327 326 326
R2 0.136 0.160 0.217 0.236

4 The Model

Motivated by the evidence of endogenous entry and the coexistence of different prize structures,

we propose a contest model with an opportunity cost of entry and a contest organizer with a
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preference for diversity. We show that the preference for diversity explains the organizer’s optimal

choice between winner-take-all and multiple prizes.

4.1 Model Setup

Consider a contest environment with a contest organizer and N (≥ 2) potential players. The contest

organizer and all players are risk-neutral. The contest organizer has a fixed budget V (> 0) for the

procurement of an innovative project (product). Retaining the budget does not increase her payoff.

Players participate in the contest by submitting proposals that demonstrate their ideas.

For a particular project, players have different ideas due to their backgrounds, expertise, and

experiences. A generic player i is endowed with an idea ti, which is his privately informed type.

Assume that ti’s are independently drawn from the distribution function F (·). F (·) has a compact

support [a, b] with a > 0 and a strictly positive probability density function f(·) on [a, b].

In the innovation contest, there exists an ideal design or the best idea located somewhere in the

interval [a, b]. Neither the organizer nor the players observe the ideal design until the proposals are

submitted and winners are determined. The organizer then utilizes the proposals to approximate

the ideal design.10 Hence, the contest organizer does not necessarily prefer a “lower” or a “higher”

idea. In practice, it is common for the final design to incorporate ideas from several proposals

collected from the contest. For example, in the EXPO 2010 China pavilion design contest, the final

construction plan used the main idea from the winner in conjunction with elements from three other

proposals.11 According to the law, offering design compensation to losers allows the procurer to

claim the intellectual property of the losing proposals. In most contest announcements, we observe

the following clause: “Except for authorship, the other intellectual property rights belong to the

procurer. The procurer has the right to refer to and use them in the project implementation process

without paying additional fees.” We assume that the organizer can combine the ideas in submitted

proposals to approximate the ideal design once it is realized. To successfully combine the ideas,

it is important that the ideal design falls into the idea coverage, which is the range between the

“highest”and the“lowest”possible ideas of entrants. If the ideal design lies outside of the coverage of

proposed ideas, the organizer would not be able to combine the ideas in the desired way. Therefore,

idea coverage is an important objective in innovation contests.

A player’s idea can be conventional or unrestrained. Proposals are usually evaluated by a com-

mittee of experts, whose ratings or votes determine the ranking of players. It is easier to convince

the committee of a proposal based on a more conventional idea than a less conventional idea. To

capture this feature of innovation contests, we assume that demonstrating a less conventional idea

in a proposal requires a higher cost. We refer to idea b as the most conventional idea and assume

that it is less costly to prepare a proposal for a conventional idea with a given quality. For a more

10Letina and Schmutzler (2019) assume that the ideal approach is unknown to all parties. Zhu (2019) assumes that
the ideal design is unknown to the players but known to the contest organizer.

11See en.wikipedia.org/wiki/China_pavilion_at_Expo_2010.
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unconventional idea located closer to a, the player needs to incur a higher marginal cost to produce

a high-quality proposal to demonstrate it. Specifically, to prepare a proposal of quality ei > 0,

player i incurs a cost of ei/ti. A player’s payoff is the prize he receives minus the cost of preparing

the proposal.

Moreover, each player incurs a commonly known opportunity cost c ∈ (0, V/N ] to participate

in the contest, which means that a player’s payoff is c if he does not enter the contest (Liu and

Lu, 2019).12 Opportunity costs are ubiquitous in innovative contests. For a particular contest,

players need to spend time and resources acquiring project-related information before entering the

contest and forgo the opportunity to participate in other contests due to limited capacity. With

the presence of entry costs, players will selectively enter the contest based on the prize scheme and

their private information.

The contest organizer offers an N -vector prize scheme, v = (v1, v2, . . . , vN ), with v1 ≥ v2 ≥
· · · ≥ vN ≥ 0 and

∑N
i=1 vi ≤ V . vi is the prize for the player with the ith highest quality. Given v,

each player decides whether to participate in the contest. When there are n entrants, these entrants

win the respective first n prizes, (v1, v2, . . . , vn), from v according to the ranking of the quality of

their proposals. The winner receives v1; the first runner-up receives v2; ...; the player ranked at the

bottom receives vn; and all nonparticipating players obtain 0 prizes. For convenience, we call the

scenario with n entrants scenario n.

The timing of the game is as follows.

• Period 0: Each of N players independently draws his idea t from the distribution F .

• Period 1: The contest organizer chooses v and commits to it.

• Period 2: All potential players simultaneously decide whether to participate in the contest by

bearing the opportunity cost c.

• Period 3: Each entrant chooses his quality level after learning the number of entrants n.

• Period 4: The prize allocation is implemented according to v.

The contest organizer’s payoff consists of two parts: the total quality from all participating

players and the diversity of ideas. The organizer wants all players to spend time and effort devel-

oping and demonstrating their ideas in high-quality proposals, so she cares about the total quality

instead of the quality of the winning proposal only. This follows from the same reason that the

contest organizer maximizes total effort in the literature (e.g., Moldovanu and Sela 2001; Liu and

Lu 2019). In addition, the diversity of ideas matters, which is measured by idea coverage - the

maximum difference among ideas of all participating players. This is because a larger such range is

more likely to include the ideal design ex ante, which in turn leads to a higher ex ante probability

that the organizer is able to combine ideas from submitted proposals to approximate the ideal

design.

The contest organizer’s goal is to choose a prize allocation rule, v, to maximize the weighted

sum of total quality and diversity using her budget V . The weight, λ ∈ [0, 1], measures the contest

12c ≤ V/N ensures that the contest organizer can induce full entry if she wishes.
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organizer’s preference for diversity and the extent to which she wishes to, ex ante, be able to

approximate the ideal design. The exact expression for her objective function is given below in

expression (O-λ).

4.2 Equilibrium Analysis

As a first step, we characterize the equilibrium for any given prize structure v. It forms the basis

for the search for the optimal prize allocation rule. Since the contest rule is anonymous and players

are symmetric, it is natural to focus on symmetric equilibria. Throughout the paper, we restrict

our attention to monotone equilibria in which quality increases in t. In equilibrium, proposals of

conventional ideas have higher quality and are more likely to win. Unconventional ideas are less

likely to win, as it is more costly to write high-quality and convincing proposals for these ideas.

In period 2, we focus on a symmetric Bayesian Nash equilibrium of the entry decision charac-

terized by a threshold type (or idea) tc. Given F and v, a player will enter the contest if and only

if his type t ≥ tc; otherwise, he will not participate.13 The participation constraint requires that

the expected payoff is greater than the opportunity cost c. Under monotone equilibria, a player

with the threshold type tc has the most unconventional idea among all entrants, and thus he will

be allocated the lowest prize vn in scenario n, for any n. Moreover, the player with tc must choose

e = 0 in equilibrium and has an expected payoff of c from the contest.14 Therefore, the threshold

type tc is determined by

(1)

N∑
n=1

pn(tc)vn = c,

where pn(tc) =
(
N−1
n−1

)
(1 − F (tc))n−1FN−n(tc) is the probability that there are exactly n − 1 rival

players entering the contest.

In period 3, given the entry threshold tc ∈ [a, b) determined by (1), let n be the realized number

of entrants. An entrant knows that each of his rivals has a type independently drawn from the

truncated distribution function G(t, tc) = F (t)−F (tc)
1−F (tc) with density function g(t, tc) = f(t)

1−F (tc) and

support t ∈ [tc, b]. The equilibrium bidding function and total quality of n entrants are as follows.

Proposition 1. Suppose that the induced entry threshold is tc. In scenario n ≥ 1 with prizes

Wn ≡ (v1, v2, . . . , vn), we have the following:

(i) The unique symmetric monotone bidding function e(n)(t,Wn, t
c) for type t ∈ [tc, b] is

e(n)(t,Wn, t
c) = tV (n)(t)−

ˆ t

tc
V (n)(s)ds− tcvn,

13The proof is standard based on Samuelson (1985) and McAfee and McMillan (1987).
14A player with the threshold type may enjoy a payoff strictly larger than c if the prize structure induces full entry.

However, this is clearly not optimal, unless the organizer does not value total quality (i.e., λ = 1 in (O-λ) below).
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where

V (n)(t) =
n∑

j=1

vn+1−j

(
n− 1

j − 1

)
Gj−1(t, tc)(1−G(t, tc))n−j

is the expected prize that an entrant of type t obtains.

(ii) The corresponding scenario-n total quality is

TE(n)(v, tc) = n

ˆ b

tc
J(t)V (n)(t)g(t, tc)dt− ntcvn,

where J(t) = t− 1−F (t)
f(t) .

In period 1, before n is realized, the expected total quality is the weighted average of scenario-n

expected total quality across all scenarios. Specifically,

(2) TE(v, tc) =
N∑

n=1

(
N

n

)
(1− F (tc))nFN−n(tc)TE(n)(v, tc),

where TE(n)(v, tc) is given in Proposition 1. Note that whether the player knows the number of

rivals does not affect the expected total quality or the results of contest design. If players do not

know the number of rival(s), a player of type t ≥ tc will choose to bid
∑N

n=1 pn(tc)e(n)(t,Wn, t
c),

which is the weighted average of the bidding functions in different scenarios. As a result, the

expected total quality is the same as that in (2).

Let G(i,n)(t, t
c) denote the CDF of the ith order statistics of n independent random vari-

ables, with each following CDF G(t, tc). The CDF of the ith order statistics is G(i,n)(t, t
c) =∑n

j=i

(
n
j

)
Gj(t, tc)(1−G(t, tc))n−j , with density function

g(i,n)(t, t
c) = n

(
n− 1

i− 1

)
Gi−1(t, tc)(1−G(t, tc))n−ig(t, tc).

The following result shows that the expected total quality can be expressed as a linear function

in all N prizes, with coefficients related to all these order statistics across different scenarios and

different orders.

Lemma 1. The expected total quality (2) can be rewritten as

TE(v, tc) = N(1− F (tc))

 N∑
n=1

pn(tc)

n

n∑
j=1

vn+1−j

(ˆ b

tc
J(t)g(j,n)(t, t

c)dt

)
− ctc

 .
Lemma 1 implies that we can rewrite the expected total quality as

(3) TE(v, tc) =
N∑
k=1

βk(tc)vk −Nc(1− F (tc))tc,

13



where βk(tc) is the coefficient associated with vk and so

(4) βk(tc) = N(1− F (tc))

N∑
n=k

pn(tc)

n

(ˆ b

tc
J(t)g(n+1−k,n)(t, t

c)dt

)
, k = 1, 2, . . . , N.

Although the expected total quality is essentially a linear function, it is not easy to characterize

its optimum for each fixed tc under the participation constraint. As a linear function, it is important

to investigate the properties of its coefficients to find its optimum. However, these coefficients are

quite complicated because they involve binomials and weighted averages of various order statistics.

We will discuss how to resolve this challenge in Section 4.3.

Figure 4 illustrates the equilibrium entry threshold and total quality with a numerical example.

In the example, we consider uniformly distributed types and the prize scheme with two positive

prizes, v = (v1, V − v1, 0, . . . , 0). Panel (A) indicates that allocating a larger proportion of the

budget to the second prize lowers the entry threshold and thereby encourages entry. However,

Panel (B) shows that the total quality decreases in the prize offered to the runner-up. This is

consistent with the result in Liu and Lu (2019) that the winner-take-all prize structure maximizes

total effort.

Note: N = 5, t ∼Uniform[1, 2], V = 0.01, c = 0.002, and v = (v1, V − v1, 0, 0, 0). The horizontal axis, V−v1
V

, is the

proportion of the budget used for compensating the runner-up.

Figure 4: Entry Threshold and Total Quality

4.3 Preference for Diversity and Contest Design

We are now ready to present the main result: The presence of both winner-take-all and multiple

prizes in the data can be explained by the contest organizer’s preference for diversity.

14



The Organizer’s Problem

We propose the contest organizer’s problem as follows:15

max
tc∈[a,b), v

P (v, tc;λ) = (1− λ)TE(v, tc) + λ(b− tc)(O-λ)

subject to

N∑
n=1

vn ≤ V and

N∑
n=1

pn(tc)vn = c,

where TE(v, tc) is given in (2) and λ ∈ [0, 1] is a fixed number. The two constraints in the

optimization problem are the contest organizer’s budget constraint and the participation constraint

for the threshold type tc. The contest organizer’s goal is to find a prize scheme v (and hence tc) to

maximize her payoff P (v, tc;λ).

The objective function P (v, tc;λ) is a convex combination of the total quality and the diversity

of ideas. As noted above, diversity is measured by the maximum difference between ideas among

participating players, which is b − tc by Proposition 1.16 The parameter λ captures the degree of

preference for diversity. Across different kinds of contests, contest organizers may value diversity

differently. We will show that it is precisely such a difference in the degree of preference for diversity

that drives the optimality of winner-take-all or multiple prizes observed in the data.

Note that when λ = 0 and c = 0, our model reduces to Moldovanu and Sela (2001); when

λ = 0 and c > 0, our model corresponds to the setting of Liu and Lu (2019) except that the prize

allocation rule in Liu and Lu (2019) can be contingent on the number of entrants n. However, we

follow Moldovanu and Sela (2001) and do not allow this contingency, because most prize allocation

rules in reality are not contingent on n. This is also the case for the observed proposal contests in

Section 3. Liu and Lu (2019) demonstrate the complexity of analyzing the optimal contest design

problem under a larger set of prize structures. As explained and analyzed in Liu and Lu (2023),

due to endogenous entry, establishing the optimum in a restricted class of prize schemes can be

much more technically challenging because of the presence of more constraints. Together with the

preference for diversity, the analysis of problem (O-λ) would be even more complicated.

The Challenge

Given Proposition 1, the expression for the contest organizer’s objective function in (O-λ) has

various binomials and truncated distribution functions, which is very cumbersome. We analyze the

problem by first examining the value function of the organizer’s problem for any fixed tc ∈ [a, b]

15When tc = b, it is obvious that P (v, b;λ) = 0, which can never be optimal. Additionally, note that in the contest
organizer’s problem, once v is given, tc is pinned down correspondingly by equation (1). Including tc as a choice
variable in the contest organizer’s problem is purely for notational convenience.

16 For tractability, we use b − tc as the measure of idea diversity. We expect that alternative measures, such as
the number of entrants and the expected difference between the highest and the lowest realized ideas, also lead to
qualitatively similar results, following a similar intuition - the central tradeoff between idea diversity and quality
elicitation.
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and any fixed λ. In this case, the contest organizer’s problem is the same as

max
v

TE(v, tc), subject to

N∑
n=1

vn ≤ V and

N∑
n=1

pn(tc)vn = c.

Denote the value function of the above problem as TE∗(tc) and the set of optimal solution(s) as

S∗(tc). Then, the contest organizer’s problem can be restated as

max
tc∈[a,b]

(1− λ)TE∗(tc) + λ(b− tc).

In the second-step analysis, if we can further pin down the optimal entry threshold tc∗, then S∗(tc∗)

will be the set of optimal prize schemes.

This two-step analysis relies on the characterization of the optimum in the first step. Note

that for any fixed entry threshold tc, the contest organizer’s problem is linear programming in the

sense that all functions in the problem—the objective function, the budget constraint, and the

participation constraint—are linear in the N prizes. Therefore, the properties of these coefficients

are crucial for the first-step analysis.

However, Liu and Lu (2023) note that coefficients in this linear programming problem vary in

a highly intractable and nonlinear way as the induced entry threshold tc changes. The arbitrari-

ness and intractability of coefficients in the linear programming problem cause complications in

characterizing the optimum for a fixed entry threshold, which makes the aforementioned two-step

procedure quite challenging if not infeasible. Liu and Lu (2023) solve their problem in an indirect

way that does not require solving the optimum for any given entry threshold. However, their ap-

proach does not apply to our model, because prizes here have to be nonnegative (more constraints)

and the objective function has an additional term (the preference for diversity). Therefore, our

problem is even more challenging than that in the literature.

In general, the number of positive prizes varies with the entry threshold. This issue is further

complicated by the restriction imposed by the participation constraint: For a fixed tc, only a

certain restrictive subset of prize schemes induces it. For example, winner-take-all induces a unique

entry threshold, so any other entry thresholds cannot be supported by winner-take-all. Fortunately,

although explicitly identifying the optimum is inapplicable, we are able to characterize the essential

feature of the solution indirectly as follows.

The Analysis

For a given λ, denote the set of optimal entry thresholds as tc∗(λ). First, when λ = 1, the organizer

does not value quality at all, so she maximizes b− tc, which can only be achieved by setting tc = a.

Therefore, any prize structure v that supports full entry is optimal. Clearly, winner-take-all cannot

induce full entry because for v = (V, 0, . . . , 0),
∑N

n=1 pn(a)vn = vN = 0 < c. On the other hand,

v = (V/N, V/N, . . . , V/N) supports full entry because
∑N

n=1 pn(a)vn = vN = V
N ≥ c. Therefore,
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when λ = 1, the set of optimal solutions to problem (O-λ) is nonempty and winner-take-all is not

optimal. Multiple positive prizes must arise at the optimum when λ = 1.

Now, consider the case in which λ < 1. Problem (O-λ) can be analyzed in a two-step way. We

first fix the entry threshold tc to characterize the optimum within the class of prize allocation rules

inducing tc. Then, we vary across all entry thresholds tc ∈ [a, b) to pin down the optimum. Note

that when tc = b, the induced total quality TE(v, b) = 0 for any v, and the diversity b− tc is also

zero. Therefore, tc = b can never be optimal.

In the first step, for any fixed tc ∈ [a, b), since λ ∈ [0, 1) and tc is fixed, the contest organizer’s

problem is equivalent to the following problem:17

(O1-λ) max
v

TE(v, tc) subject to

N∑
n=1

vn ≤ V, and

N∑
n=1

pn(tc)vn = c.

Denote the value function of problem (O1-λ) as TE∗(tc) and the set of optimal solution(s) as

(5) S∗(tc) = {v ∈ S(tc) : TE(v, tc) = TE∗(tc)},

where S(tc) is the feasible set of problem (O1-λ), i.e.,

S(tc) = {v ∈ RN : v1 ≥ v2 ≥ · · · ≥ vN ≥ 0,

N∑
n=1

vn ≤ V, and

N∑
n=1

pn(tc)vn = c}.

Because TE(v, tc) is continuous in v and the feasible set is compact, the existence of optimal

solutions and the value function are guaranteed by the extreme value theorem. To ease notation,

define TE∗(b) = 0 = limtc→b− TE
∗(tc).

The following result characterizes the optimal TE∗(tc) and S∗(tc), which implies that when

ignoring the preference for diversity (because we fix the entry threshold in this step), winner-take-

all is the unique optimal prize structure and its corresponding entry threshold is also the unique

optimal entry threshold. This result echoes Liu and Lu (2019).

Lemma 2. TE∗(tc) reaches its unique optimum over tc ∈ [a, b) at t1 = F−1
[(

c
V

) 1
N−1

]
. Further-

more, S∗(t1) = {(V, 0, . . . , 0)}, that is, winner-take-all is the unique optimum.

Now, in the second step, we solve the following problem:

(6) max
tc∈[a,b)

P ∗(tc;λ) = (1− λ)TE∗(tc) + λ(b− tc),

where P ∗(tc;λ) is the value function of problem (O-λ) when fixing the entry threshold at tc. Note

that for any tc > t1, it cannot be the solution to the above problem, because by Lemma 2,

P ∗(tc;λ) = (1− λ)TE∗(tc) + λ(b− tc) < (1− λ)TE∗(t1) + λ(b− t1) = P ∗(t1;λ).

17When two optimization problems have the same set of solutions, we say that they are equivalent.
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Hence, we can restrict our attention to the domain tc ∈ [a, t1]. In other words, in the second step,

we solve the following problem:

(O2-λ) max
tc∈[a,t1]

P ∗(tc;λ).

Recall that for a given λ, tc∗(λ) denotes the set of optimal entry thresholds in problem (O-λ).

Using (5), the optimal prize scheme for problem (O-λ) can be denoted as S∗(tc∗(λ)) = {v : v ∈
S∗(tc), ∀tc ∈ tc∗(λ)}. Note that S∗(tc∗(λ)) may not be a singleton, and any ṽ ∈ S∗(tc∗(λ)) satisfies

(7) P (ṽ, t∗(λ);λ) = P ∗(t∗(λ);λ), ∀t∗(λ) ∈ tc∗(λ), ∀λ ∈ [0, 1].

Lemma 2 implies that tc∗(0) = {t1} and S∗(tc∗(0)) = {(V, 0, . . . , 0)}, i.e., winner-take-all is

the unique optimum when λ = 0. The following observation is helpful, which gives an equivalent

characterization of the optimality of winner-take-all in problem (O-λ) using the induced entry

threshold in problem (O2-λ).

Lemma 3. The winner-take-all prize allocation is a solution to problem (O-λ) if and only if t1 is a

solution to problem (O2-λ). Furthermore, winner-take-all is the unique solution to problem (O-λ)

if and only if t1 is the unique solution to problem (O2-λ).

Lemma 3 further implies the following result.

Lemma 4. (i) If there is some λ0 ∈ [0, 1) such that winner-take-all is the unique solution to problem

(O-λ0), then winner-take-all remains the unique optimum of problem (O-λ) for any λ ∈ [0, λ0].

(ii) If there is some λ1 ∈ (0, 1] such that winner-take-all is not a solution to problem (O-λ1), then

winner-take-all is not a solution to problem (O-λ) for any λ ∈ [λ1, 1].

(iii) If there is some λ2 ∈ (0, 1) such that winner-take-all is a solution, but not the unique solution,

to problem (O-λ2), then such λ2 must be unique.

This result reveals the relationship between the winner-take-all prize and inducing diversity.

Whenever winner-take-all is optimal for some degree of preference for diversity, the contest organizer

should continue using winner-take-all when she values diversity less; on the other hand, whenever

using multiple prizes is optimal for some degree of preference for diversity, she should still offer

multiple prizes when she values diversity more.

Recall Lemma 2 that when the organizer does not value diversity (i.e., λ = 0), winner-take-all

is the unique optimum (equivalently, t1 is the unique optimal entry threshold). On the other hand,

can winner-take-all still be optimal when the organizer values diversity? Surprisingly, the answer

is “Yes.” Denote S1 = {λ ∈ [0, 1] : t1 is the unique solution to problem (O2-λ)}. Lemma 2 implies

that 0 ∈ S1. The following lemma reveals that S1 cannot be a singleton, so winner-take-all can still

be optimal even when the organizer values diversity.

Lemma 5. S1 6= {0}.
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The Optimal Prize Design

Combining all the above observations, we can characterize the essential feature of the optimal

solution indirectly, which brings us the key result as follows.

Proposition 2. There exists a unique λ̃ ∈ (0, 1), such that the followings hold:

(i) when λ ∈ [0, λ̃), the winner-take-all prize structure, that is, v = (V, 0, . . . , 0), is the unique

optimal prize structure;

(ii) when λ = λ̃, the winner-take-all prize structure is optimal but may not be unique; and

(iii) when λ ∈ (λ̃, 1], the winner-take-all prize structure is not optimal, and multiple positive prizes

must arise at the optimum.

Figure 5: Contest Organizer Objective Function

Figure 5 illustrates Proposition 2 using the same numerical example as in Figure 4. In Panel

(A), the preference for diversity is low (λ = 0.1), and the winner-take-all prize scheme maximizes

the objective function in (O-λ). In contrast, Panel (B) shows that when the preference for diversity

becomes large (λ = 0.5), allocating half of the budget as the second prize is optimal.

The Role of Preference for Idea Diversity

Proposition 2 reveals that the degree of preference for idea diversity explains the prize allocation

patterns observed in the data. The winner-take-all prize scheme is the unique optimum if and

only if the contest organizer is not particularly concerned about the diversity of ideas (λ < λ̃).

However, as long as the preference for diversity is sufficiently strong (λ > λ̃), the contest organizer

should offer multiple prizes. These observations are consistent with the empirical observations that

a significantly larger proportion of contests for building projects offer multiple prizes than those for
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other projects, because procurers of building and architectural design typically value more diverse

and creative ideas.

We emphasize that the threshold λ̃ > 0. This means that a low degree of preference for diversity

does not necessarily lead to the multiplicity of prizes. According to the law, the procurer can use the

ideas in the losing proposals by paying design compensation to losers. Then, it seems trivial that as

long as the contest organizer cares at least a little about diversity, she should always offer at least

a sufficiently small prize to all losers to claim their property rights. This is certainly inconsistent

with our data that there are also many contest rules that offer a single prize.

Our model nicely explains this: The contest organizer offers multiple prizes if and only if she

cares sufficiently enough about diversity (λ > λ̃). The fact that λ̃ > 0 implies that she may still

offer a single prize even if she cares about diversity, which further explains why winner-take-all is

still used even in some industries that value idea diversity. This observation is summarized below.

Corollary 1. Even if the organizer values the diversity of ideas, winner-take-all can still be the

unique optimum, which is the case when λ < λ̃.

As a final remark, note that the two factors introduced in the model—opportunity cost (or

equivalently, endogenous entry) and preference for diversity—are both essential in justifying the

empirical observations in innovation contests. A preference for diversity alone cannot justify the

use of multiple prizes. This is obvious: In Moldovanu and Sela (2001), full entry is assumed (i.e., tc

is fixed at a), and the winner-take-all prize scheme maximizes both the total quality and the type

difference (diversity). On the other hand, if there is only endogenous entry (i.e., λ = 0), Liu and

Lu (2019) show that winner-take-all is the unique optimum, and thus, it cannot rationalize why

contest organizers offer multiple prizes.

5 Conclusion

We gather a dataset of hundreds of contests for the procurement of innovative design works. A

majority of these contests adopt prize schemes that compensate not only the winner but also one

or several losers. To explain this phenomenon, we establish a contest model with endogenous entry,

in which the contest organizer values both the total quality and the diversity of ideas. Multiple

prizes can be justified only if an opportunity cost of entry and a sufficiently strong preference for

diversity are both present. Our model also explains why winner-take-all is still used even in some

industries that value diversity.

In innovation contests, the optimal prize structure depends on several important aspects of the

nature of procurement such as the uncertainty of ideal design and the preference for the diversity of

ideas. A winner-take-all prize scheme can be optimal in eliciting players’ effort in presenting their

ideas in high-quality proposals but may discourage players with unconventional ideas. Offering

compensation to contest losers can stimulate players to propose unconventional and bold designs.
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The application of the new objective function proposed in the paper is not limited to contests

for creative designs or innovative ideas. Even for contests where participants are purely vertically

differentiated, the prize scheme may not be winner-take-all. For example, in a sales contest, the

contest organizer may offer multiple prizes to encourage those who are inexperienced and left behind

such that they remain with the job until they become experienced. We expect that our modeling

framework of contests with a wider class of objective functions can be applied to the analysis of

other competitive environments.
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Ales, L., S.-H. Cho, and E. Körpeoğlu (2017). Optimal award scheme in innovation tournaments.

Operations Research 65 (3), 693–702.
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Appendix

A. Proofs

Proof of Proposition 1. See Lemma 1 in Liu and Lu (2019).

Proof of Lemma 1. By Proposition 1,

TE(n)(v, tc) = n

ˆ b

tc
J(t)V (n)(t)g(t, tc)dt− ntcvn

= n

ˆ b

tc
J(t)[

n∑
j=1

vn+1−j

(
n− 1

j − 1

)
Gj−1(t, tc)(1−G(t, tc))n−j ]g(t, tc)dt− ntcvn

=

n∑
j=1

vn+1−j

(ˆ b

tc
J(t)g(j,n)(t, t

c)dt

)
− ntcvn.

Therefore,

TE(v, tc) =
N∑

n=1

(
N

n

)
(1− F (tc))nFN−n(tc)TE(n)(v, tc)

=
N∑

n=1

(
N

n

)
(1− F (tc))nFN−n(tc)

 n∑
j=1

vn+1−j

(ˆ b

tc
J(t)g(j,n)(t, t

c)dt

)
− ntcvn


= (1− F (tc))

N∑
n=1

Npn(tc)

n

 n∑
j=1

vn+1−j

(ˆ b

tc
J(t)g(j,n)(t, t

c)dt

)
− ntcvn


= N(1− F (tc))

N∑
n=1

pn(tc)

[∑n
j=1 vn+1−j

n

(ˆ b

tc
J(t)g(j,n)(t, t

c)dt

)
− tcvn

]

= N(1− F (tc))

 N∑
n=1

pn(tc)

n

n∑
j=1

vn+1−j

(ˆ b

tc
J(t)g(j,n)(t, t

c)dt

)
− ctc

 ,
where the last equality uses (1). �

Proof of Lemma 2. Liu and Lu (2019) analyze a similar contest design problem with entry costs.

The only difference between their model and ours is that the prize allocation rule can be contingent

on the number of entrants in their model. Specifically, in their paper, the contest rule is a set of

scenario prize vectors W = {W1,W2, . . . ,WN}, where in vector Wn = (wn,1, wn,2, . . . , wn,n) ∈
Rn

+, wn,1 ≥ wn,2 ≥ . . . ≥ wn,n ≥ 0 and
∑n

j=1wn,j ≤ V .18 Here, wn,j is the jth prize in scenario n,

18Liu and Lu (2019) normalize the prize budget V = 1. It is clear that the contest organizer’s problem is linear in
V , so their result applies to any V > 0, as mentioned in footnote 3 in their paper. Specifically, normalizing every prize
and the entry cost by V - i.e., dividing wn,j by V and dividing c by V - returns to their model. The only difference
is that the total quality elicitable for budget V is then V times the total quality when the budget is 1 dollar, as is
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which is for the jth highest quality. Thus, when fixing the entry threshold at tc ∈ [a, b), the contest

organizer’s problem, as in the first paragraph of Section 3.2 on page 141 of Liu and Lu (2019), can

be equivalently written as

max
W

TE(W, tc) =

N∑
n=1

(
N

n

)
(1− F (tc))nFN−n(tc)TE(n)(Wn, t

c)(O1-λ-contingent)

n∑
j=1

wn,j ≤ 1, wn,1 ≥ wn,2 ≥ . . . ≥ wn,n ≥ 0,∀n, and

N∑
n=1

pn(tc)wn,n = c.

where TE(n)(Wn, t
c) is characterized in Lemma 1 of Liu and Lu (2019) (or equivalently, Proposition

1 in this paper). We call this problem (O1-λ-contingent) because its objective function is the same

as (O1-λ) when restricting the prize allocation rule to be independent of n. In problem (O1-λ-

contingent), we ignore the choice variable V in Liu and Lu (2019). This clearly does not change

anything because once the allocation rule W is fixed, the budget Vn in scenario n is pinned down

correspondingly - just as they mention in footnote 7 in Liu and Lu (2019).

Denote the value function, the feasible set, and the set of solutions of problem (O1-λ-contingent)

as TE∗∗(tc), S̃(tc), and S̃∗(tc), respectively. The feasible set is

S̃(tc) = {{W1,W2, . . . ,WN} :
n∑

j=1

wn,j ≤ 1,∀n; wn,1 ≥ wn,2 ≥ . . . ≥ wn,n ≥ 0, ∀n; and
N∑

n=1

pn(tc)wn,n = c}.

Recall that S(tc) is the feasible set of problem (O1-λ). Because problem (O1-λ-contingent) allows

the allocation rule to be contingent on n, but problem (O1-λ) does not, it is clear that for any

tc ∈ [a, b), S(tc) ⊆ S̃(tc). Moreover, for any tc ∈ [a, b), TE∗(tc) ≤ V · TE∗∗(tc).19 Nevertheless, Liu

and Lu (2019) show that20

(8) TE∗∗(t1) > TE∗∗(tc), ∀tc ∈ [a, b)\{t1}

and S̃∗(t1) is a singleton with

S̃∗(t1) = {{W∗
1,W

∗
2, . . . ,W

∗
N}} = {{(V ), (V, 0), (V, 0, 0), · · · , (V, 0, . . . , 0︸ ︷︷ ︸

N−1 times

)},

i.e., W∗
n = (V, 0, . . . , 0︸ ︷︷ ︸

n−1 times

)}, for all n ≥ 1.

This optimal prize allocation rule does not depend on n, so it is also feasible in the noncontingent

contest design problem in this paper. It is the same as v∗ = (V, 0, . . . , 0), which implies that

clear from the linear nature revealed in Lemma 1 and Proposition 1 in their paper.
19We multiply the value function TE∗∗(tc) by V , as Liu and Lu (2019) normalize the budget to 1.
20Note that t1 is defined as F−1(c

1
N−1 ) in Liu and Lu (2019). As mentioned in footnote 18, the entry cost c in

their paper corresponds to c/V in our paper after normalization.
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TE∗(t1) = V · TE∗∗(t1). As such, given that TE∗(tc) ≤ V · TE∗∗(tc) for any tc ∈ [a, b] and (8),

Lemma 2 follows directly.

Proof of Lemma 3. If winner-take-all is a solution to problem (O-λ), then it must satisfy the

participation constraint, p1(tc)V = c. However, this implies that tc = t1, which, by (7), further

implies that t1 solves problem (O2-λ). Conversely, if t1 solves problem (O2-λ), then it means that

for problem (O1-λ), when the threshold is t1, the set of optimal solutions is S∗(t1). However,

Lemma 2 implies that S∗(t1) is a singleton, that is, S∗(t1) = {(V, 0, . . . , 0)}.
Note that the only possible entry threshold that winner-take-all induces is t1. Therefore, the

above argument for the first statement of Lemma 3 obviously applies to the uniqueness statement

of Lemma 3.

Proof of Lemma 4. We first prove (i). Suppose that there is some λ0 ∈ [0, 1) such that winner-

take-all is the unique solution to problem (O-λ0). Then, by Lemma 3, t1 is the unique solution to

problem (O2-λ0). Therefore, P ∗(t1;λ0) > P ∗(tc;λ0), for any tc ∈ [a, t1), which further implies

(1− λ0) (TE∗(t1)− TE∗(tc)) > λ0(t1 − tc), for any tc ∈ [a, t1).

Then, for any λ ∈ [0, λ0] and any tc ∈ [a, t1), since TE∗(t1)− TE∗(tc) > 0 by Lemma 2,

(1− λ) (TE∗(t1)− TE∗(tc)) ≥ (1− λ0) (TE∗(t1)− TE∗(tc)) > λ0(t1 − tc) ≥ λ(t1 − tc).

Therefore, for any λ ∈ [0, λ0],

P ∗(t1;λ) > P ∗(tc;λ), for any tc ∈ [a, t1),

which means that t1 is the unique solution to problem (O2-λ) for any λ ∈ [0, λ0]. By Lemma 3,

this implies that winner-take-all is the unique solution to problem (O-λ) for any λ ∈ [0, λ0].

Now we turn to (ii). Suppose that there is some λ1 ∈ (0, 1] such that winner-take-all is not

a solution to problem (O-λ1). By Lemma 3, t1 is not a solution to problem (O2-λ1). Therefore,

P ∗(t1;λ1) < P ∗(tc2;λ1), for some tc2 ∈ [a, t1), which further implies

(1− λ1) (TE∗(t1)− TE∗(tc2)) < λ1(t1 − tc2).

Note that TE∗(t1)− TE∗(tc2) > 0 by Lemma 2. Then, for any λ ∈ [λ1, 1]:

(1− λ) (TE∗(t1)− TE∗(tc2)) ≤ (1− λ1) (TE∗(t1)− TE∗(tc)) < λ1(t1 − tc2) ≤ λ(t1 − tc2),

which further implies that

P ∗(t1;λ) < P ∗(tc2;λ).
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This means that t1 is not a solution to problem (O2-λ) for any λ ∈ [λ1, 1]. By Lemma 3, this

implies that winner-take-all is not a solution to problem (O-λ) for any λ ∈ [λ1, 1].

For (iii), suppose that there is some λ2 ∈ (0, 1) such that winner-take-all is a solution, but not

the unique solution, to problem (O-λ2). Then, by Lemma 3, there is some tc3 ∈ [a, t1) such that

both t1 and tc3 are solutions to problem (O2-λ2). Since both t1 and tc3 are solutions to problem

(O2-λ2), P ∗(t1;λ2) = P ∗(tc3;λ2), which is equivalent to

(9) (1− λ2) (TE∗(t1)− TE∗(tc3)) = λ2(t1 − tc3).

We first show that for any λ ∈ (λ2, 1], winner-take-all is not a solution to problem (O-λ). Again,

by Lemma 3, it suffices to show that t1 is not a solution to problem (O2-λ) when λ ∈ (λ2, 1]. In

fact, suppose to the contrary that t1 is a solution to problem (O2-λ) for some λ′ ∈ (λ2, 1]. Then,

P ∗(t1;λ′) ≥ P ∗(tc;λ′), for any tc ∈ [a, t1]. In particular, P ∗(t1;λ′) ≥ P ∗(tc3;λ′), which is equivalent

to

(1− λ′) (TE∗(t1)− TE∗(tc3)) ≥ λ′(t1 − tc3).

However, since λ′ > λ2,

(1− λ′) (TE∗(t1)− TE∗(tc3)) ≥ λ′(t1 − tc3) > λ2(t1 − tc3) = (1− λ2) (TE∗(t1)− TE∗(tc3)) ,

which further leads to 1−λ′ > 1−λ2 because TE∗(t1)−TE∗(tc3) > 0 by Lemma 2; a contradiction.

We next show that for any λ ∈ [0, λ2), winner-take-all is the unique solution to problem (O-λ),

which would then complete the proof of (iii). By Lemma 3, this is equivalent to showing that t1 is

the unique solution to problem (O2-λ) when λ ∈ [0, λ2). We first argue that t1 must be a solution

to problem (O2-λ) when λ ∈ [0, λ2). To this end, one needs to show that P ∗(t1;λ) ≥ P ∗(tc;λ), for

any tc ∈ [a, t1]. This is equivalent to

(10) (1− λ) (TE∗(t1)− TE∗(tc)) ≥ λ(t1 − tc), for all tc ∈ [a, t1] and all λ ∈ [0, λ2).

Since t1 is a solution to problem (O2-λ2),

(11) (1− λ2) (TE∗(t1)− TE∗(tc)) ≥ λ2(t1 − tc), for all tc ∈ [a, t1].

Thus, for any λ ∈ [0, λ2) and any tc ∈ [a, t1], one has

(1− λ) (TE∗(t1)− TE∗(tc)) ≥ (1− λ2) (TE∗(t1)− TE∗(tc)) ≥ λ2(t1 − tc) ≥ λ(t1 − tc).

Therefore, (10) holds.

We next argue that t1 is the unique solution to problem (O2-λ) when λ ∈ [0, λ2). When λ = 0,

this is obvious, following directly from Lemma 2. Now, suppose, to the contrary, that t′3 6= t1

is also a solution to problem (O2-λ) for some λ′ ∈ (0, λ2). However, this is impossible. We just
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showed above that if for some λ̂ ∈ (0, 1) winner-take-all is one, but not the unique, solution to

problem (O2-λ), then winner-take-all is not a solution to problem (O2-λ) for any λ ∈ (λ̂, 1]. This

implies that winner-take-all is not a solution to problem (O2-λ) for any λ ∈ (λ′, 1]. However, this

contradicts the fact that winner-take-all is a solution to problem (O-λ2).

Proof of Lemma 5. Suppose, to the contrary, that S1 = {0}. Note that tc∗(0) = {t1}. Since

tc∗(λ) is upper hemicontinuous in λ and tc∗(0) = {t1}, there exists a sequence {λk}k with λk ∈ (0, 1)

and limk→∞ λk = 0, such that there exists some tc(λk) ∈ tc∗(λk) for each k with limk→∞ t
c(λk) = t1

(note that without loss of generality, one can assume that the sequence {tc(λk)}k is convergent, as

this sequence is in the compact set [a, t1]). Note further that t1 /∈ tc∗(λk) for each k, by part (i) of

Lemma 4 (otherwise, S1 6= {0}). Thus, tc(λk) < t1 for all k.

Since t1 /∈ tc∗(λk) for each k, P ∗(tc(λk);λk) > P ∗(t1;λk), ∀k, which is equivalent to

(1− λk) (TE∗(tc(λk))− TE∗(t1)) > λk(tc(λk)− t1), for any k.

Since tc(λk) < t1, we have

TE∗(tc(λk))− TE∗(t1)

tc(λk)− t1
<

λk
1− λk

for any k,

or equivalently,
TE∗(t1)− TE∗(tc(λk))

t1 − tc(λk)
<

λk
1− λk

for any k.

Recall that in the proof of Lemma 2, we showed that TE∗(tc) ≤ V ·TE∗∗(tc), for any tc ∈ [a, t1],

with equality when tc = t1. Here, TE∗∗(tc) is the value function of the contest organizer’s problem

in Liu and Lu (2019). It then follows that

V [TE∗∗(t1)− TE∗∗(tc(λk))]

t1 − tc(λk)
≤ TE∗(t1)− TE∗(tc(λk))

t1 − tc(λk)
<

λk
1− λk

for any k,

which implies that,

(12)
V [TE∗∗(t1)− TE∗∗(tc(λk))]

t1 − tc(λk)
<

λk
1− λk

for any k.

In their proof of Lemma 2, Liu and Lu (2019) show that TE∗∗(tc) is differentiable in tc ∈ [t2, t1),

where t2 ∈ (a, t1). In fact, from the proof there, it is clear that the left derivative of TE∗∗(tc)

at tc = t1 exists and is strictly positive.21 Recall that, by construction, tc(λk) < t1 for all k,

21To be clear, we use their notations in their proof of Lemma 2. They show on page 152 that when tc ∈ [t2, t1) (by
letting n = 2),

dTE∗∗

dtc
= Nf(tc)[β(tc)(ϕ(2, tc)− ϕ(1, tc)) + (c− p1(tc))ϕ(2, tc)].

(Note that the notation TE∗ in their proof has been changed to TE∗∗ to be consistent with the notation used in this
paper when referring to their paper.) It is clear from their proof that the left derivative of TE∗∗(tc) at tc = t1 exists
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limk→∞ λk = 0, and limk→∞ t
c(λk) = t1. Thus, in (12), ignoring V and letting k →∞,

lim
k→∞

TE∗∗(t1)− TE∗∗(tc(λk))

t1 − tc(λk)
≤ lim

k→∞

λk
1− λk

= 0.

However, note that the left-hand side of the above inequality is precisely the left derivative of

TE∗∗(tc) at tc = t1, which is strictly positive. This is clearly a contradiction.

Proof of Proposition 2. Note that TE∗(tc), the value function of problem (O1-λ), is continuous

in [a, t1] by the maximum theorem because in problem (O1-λ), the objective function TE(v, tc) is

continuous in (v, tc) ∈ RN
+ × [a, t1] and the feasible set S(tc) is continuous in tc and compact-valued.

Therefore, the objective function of problem (O2-λ),

P ∗(tc;λ) = (1− λ)TE∗(tc) + λ(b− tc)

is continuous in (tc, λ) ∈ [a, t1] × [0, 1]. Again, the maximum theorem implies that the optimal

solution set tc∗(λ) of problem (O2-λ) is compact and is upper hemicontinuous in λ ∈ [0, 1].

Denote S1 = {λ ∈ [0, 1] : t1 is the unique solution to problem (O2-λ)}. Lemma 2 implies that

0 ∈ S1. Lemma 5 reveals that S1 cannot be a singleton. Denote S2 = {λ ∈ [0, 1] : t1 is a solution,

but not the unique solution, to problem (O2-λ)} and S3 = {λ ∈ [0, 1] : t1 is not a solution to

problem (O2-λ)}. Obviously, S1 ∪ S2 ∪ S3 = [0, 1]. Furthermore, Lemma 4 implies that if S2 6= ∅,
then S2 must be a singleton. Therefore, by Lemmas 4 and 5, there exists some λ̃ ∈ (0, 1) such that

[0, λ̃) ⊆ S1 and (λ̃, 1] ⊆ S3. Moreover, λ̃ ∈ S1 or λ̃ ∈ S2. By construction, λ̃ is unique. To see why

λ̃ /∈ S3, suppose, to the contrary, that λ̃ ∈ S3. Consider a convergent sequence {λk}k with λk ∈ S1

and limk→∞ λk = λ̃. By definition, tc∗(λk) = {t1} for all k. Thus, limk→∞ t
c∗(λk) = {t1}. However,

t1 /∈ tc∗(λ̃), which violates the upper hemicontinuity of tc∗(λ) at λ = λ̃.

Finally, Proposition 2 then follows by applying Lemma 3.

B. A Sample Contest Announcement

Let us see a contest announcement for a building project from our data. The original announce-

ment is posted on the website of the procurement platform (www.gzggzy.cn/cms/wz/view/index/

layout3/index.jsp?siteId=1&channelId=503&infoId=537554.). In case the website removes

this announcement, we saved a copy of it (www.dropbox.com/s/mugalp5y780np8i/contest.announcement.

ch.pdf?dl=0) and its English translation (www.dropbox.com/s/mh4z7py9uuj01jr/contest.announcement.

en.pdf?dl=0).

and can be obtained by letting tc → t−1 in the above equation. Thus, the left derivative at t1 is equal to

Nf(t1)[β(t1)(ϕ(2, t1)− ϕ(1, t1)) + (c− p1(t1))ϕ(2, t1)].

By the definition of these notations in their paper, one has Nf(t1) > 0, c−p1(t1) = 0, β(t1) = p2(t1) + 2p1(t1)−2c =
p2(t1) > 0, and ϕ(2, t1)− ϕ(1, t1) > 0. Therefore, the left derivative at t1 is strictly positive.
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The procurer is Sun Yat-sen University (www.sysu.edu.cn) in Guangzhou, China. The contest

is intended to procure design proposals for an apartment building for faculty housing. One impor-

tant part of the announcement is the prize scheme shown in Figure 6. For this contest, the prize

scheme is v = (25, 20, 20, 15, 15, 8, 8, 8, 0, 0, ...).

Figure 6: Prize Scheme in the Contest Announcement
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