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Abstract

Many “combinatorial” problems in economics arise from the static or discrete timing

assumption that condenses a series of simple binary choices scattered randomly over time

into a single instance. Leaning on this insight, we transform combinatorial choices into a

sequence of binary choices in continuous time. The complexity of combinatorial choices turns

into the dimensionality problem of dynamic optimization, which is overcome by applying a

deep learning-based probabilistic approach. Two examples are provided for demonstration:

1) an exporting firm sporadically selects destinations among 100 potential interdependent

markets; 2) a dynamic input-output network formation model involving 37 sectors.
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Introduction

“Combinatorial” problems are widely encountered in economics, particularly within the liter-

ature on international trade, industrial organization, and network formation. For example, an

exporting firm needs to evaluate all possible combinations of destination markets to maximize

its profit; a smartphone company needs to select the optimal combinations of its differentiated

products; and there exists an inordinately large number of potential input-output networks be-

tween multiple sectors. The numerical resolution of these “combinatorial” problems is extremely

challenging to derive, if not outright unattainable, using conventional methods.

In this paper, we aim to emphasize two points: one conceptual and the other methodolog-

ical. Conceptually, we argue that numerous “combinatorial” problems in economic models are

artificial or by-products of the timing assumption. If we construct a static or discrete-time

model, various decisions dispersed over time in reality would be compressed to the onset of a

period. By diffusing a “combinatorial” decision over time, more specifically over a continuous

timeline, an agent faces a series of simple decisions (e.g., binary choices). Nonetheless, solving

the dynamic optimization problem remains non-trivial due to the curse of dimensionality. This

leads us to our second point, which suggests the application of a deep learning-based probabilis-

tic approach to resolve dynamic optimization problems with high-dimensional state variables.

We will expound further on our first point and subsequently illustrate the applications of our

numerical method.

Let’s consider a real-life scenario where an exporting firm decides which foreign markets to

enter. It’s hard to believe that the firm would make up its mind about the best combination of

destination markets at the beginning of a year or its life cycle. The more plausible scenario is,

as the company and its products grow, it considers branching out overseas and begins exploring

a list of foreign markets. Over time, certain opportunities arise, and the firm actually enters

some of these markets. Likewise, when college students start their freshman year, they do not

decide who their friends will be for the rest of their four years. More likely, they meet others in

various circumstances during college and form friendships over time. It’s intuitive to see that

many discrete choices, which are compressed into one instance in economic models, are actually

spread out over time in real life.

Assuming that discrete choices are spread out over (continuous) time is not only closer

to reality but also computationally more straightforward. Within a short time interval, an

economic agent will have, at most, one binary choice to make, which is trivial to compute. This

idea is inspired by Doraszelski and Judd (2012), who explores stochastic games with discrete

states. Their primary point is that in the continuous-time setting, it is sufficient to consider

only one player’s state change within a short time interval. Computationally challenging cases,

where states of multiple players jointly change, occur with negligible probabilities when the time

interval is short enough. Similarly, in our case, it becomes extremely unlikely that an agent

makes multiple discrete decisions simultaneously in the continuous-time setting.

When discrete choices are spread over time, the economic mechanism driving their interde-

pendence remains intact. For instance, when a Chinese company begins selling electric vehicles

to Chile, it understands that shipping costs will be more economical should it later enter other
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South American markets. The interdependence (e.g., complementarity) between discrete choices

spread out over time is captured by the value function of dynamic programming. If the present

discrete choice contributes more significantly to potential future choices, it will increase the

value function by a larger margin.

Solving dynamic optimization with a large state space may not necessarily be much easier

than resolving combinatorial problems. The second contribution of this paper is to apply a deep

learning-based probabilistic approach to the high-dimensional dynamic discrete choice problems

outlined above (Huang, 2023b,a). In fact, the numerical approach we propose is applicable to

both continuous states driven by diffusion shocks and discrete states driven by jump risks.

As an illustration, we consider a simple dynamic discrete choice problem. Suppose an agent’s

utility flow depends on uncontrolled continuous state xt and two binary states y1
t and y2

t , i.e.,

u(xt, y
1
t , y

2
t ). And xt follows

xt+∆ = xt + µ (xt) ∆ + σ (xt)
(
Wt+∆ −Wt

)
, (1)

where ∆ represents the length of time period, and Wt+∆ −Wt follows a normal distribution

with a mean of zero and variance of ∆. If y1
t = 1, it changes to y1

t = 0 exogenously with a

probability of λ∆ within [t, t+ ∆]; if y1
t = 0, the agent is granted an option to switch to y1

t = 1

with a probability of λ∆ within [t, t+ ∆]. The same type of jump risks apply to y2
t . But y1

t and

y2
t are two independent processes. Given the setting, the agent’s value function satisfies

V
(
xt, y

1
t , y

2
t

)
= u

(
xt, y

1
t , y

2
t

)
∆ + max

{
E
[
V
(
xt+∆, y

1
t+∆, y

2
t+∆

)∣∣xt, y1
t , y

2
t

] }
(2)

Since the jump risks driving y1
t and y2

t are independent over [t, t+ ∆], we can disregard the

joint movement of the two as it will occur with a probability of order ∆2, becoming negligible

when ∆ is sufficiently small. Hence, we approximate the conditional expectation in equation

(2) with

2e−λ∆E
[
V
(
xt+∆, y

1
t+∆, y

2
t+∆

)∣∣xt, y1
t+∆ = y1

t , y
2
t+∆ = y2

t

]
(3)

+ (1− e−λ∆)(1− y1
t ) max

{
V
(
xt, y

1
t + 1, y2

t

)
, V
(
xt, y

1
t , y

2
t

) }
+ (1− e−λ∆)(1− y2

t ) max
{
V
(
xt, y

1
t , y

2
t + 1

)
, V
(
xt, y

1
t , y

2
t

) }
+ (1− e−λ∆)y1

t V
(
xt, y

1
t − 1, y2

t

)
+ (1− e−λ∆)y2

t V
(
xt, y

1
t , y

2
t − 1

)
The first line above is the conditional expectation along the paths where no jump risks are

realized, the second and third lines capture the expected long-run impacts of the agent’s simple

binary choices, and the last line represents the expected impacts of exogenous state changes.

It is straightforward to observe that the complex combinatorial problems do not appear in our

continuous-time setting because the probability that these combinatorial choices emerge goes

to zero when the time interval we consider is short enough. Nevertheless, the interdependence

between binary choices is still preserved by the value function, the present value of future utility

flows.

Next, we consider the conditional expectation along the paths where there are no realizations
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of jump risks. The probabilistic formulation of the recursive equation (2) is

V (xt+∆, y
1
t , y

2
t ) = V

(
xt, y

1
t , y

2
t

)
− u

(
xt, y

1
t , y

2
t

)
∆ + z(xt, y

1
t , y

2
t )(Wt+∆ −Wt), (4)

where z(·), is an unknown function of the current state (xt, y
1
t , y

2
t ) that we solve for along with

V (·). In mathematics, equation (4) is referred to as a Backward Stochastic Differential Equations

(BSDE), which effectively transforms an equation (2) at state (xt, y
1
t , y

2
t ) into infinitely many

equations because it holds for any realization of Wt+∆ −Wt and that of jump risks.

If we follow the conventional analytic approach, we use equation (2) in a specific state to

guide our search for the fixed point. This approach requires multiple evaluations of the value

function to calculate the conditional expectation. However, with the probabilistic formulation,

each realization of Wt+∆ −Wt, as well as the corresponding evaluation of the value function,

would independently discipline the search process via equation (4). This efficiency of each

evaluation represents the advantage of the probabilistic approach.

To take advantage of modern Machine Learning technique, we approximate the valuation

function V (·) and its volatility term z(·) with a feed-forward neural network, denoted as Ṽ (·; Θ)

and z̃(·; Θ), respectively. Equation (2) and (4) suggest that the parameters Θ should solve the

following optimization problem

min
Θ

:
1

NM

N∑
i=1

M∑
j=1

(
Ṽ (x̂i,j , y1,i, y2,i; Θ)− V̂ (xi, y1,i, y2,i; Θ)

)2
(5)

+
1

N

N∑
i=1

(
max

{
E
[
Ṽ
(
x̂i,j , ŷ1,i, ŷ2,i; Θ

)∣∣∣xi, y1,i, y2,i
]}

+ u(xi)∆− Ṽ (xi; Θ)
)2

s.t. V̂ (xi, y1,i, y2,i; Θ) ≡ u(xi, y1,i, y2,i)∆− Ṽ (xi, y1,i, y2,i; Θ)− z̃(xi, y1,i, y2,i; Θ)wi,j

x̂i,j = xi + µ(xi)∆ + σ(xi)wi,j

wi,j is sampled independently from N(0,∆)

(xi, y1,i, y2,i) are from a given set,

where the conditional expectation operation follows the approximation (3) and ŷ1,i and ŷ2,i are

random variables following state (xi, y1,i, y2,i) and optimal binary choices. Note that this formu-

lation can make use of parallel computing, as the evaluation of each sample path (xi, y1,i, y2,i)

is independent of others. More importantly, the task of coding is straightforward as we only

need to generate sample paths, simulate the dynamics, and calculate the loss specified by the

objective function (5) for a given set of parameter Θ. We fully outsource the search for the

optimal Θ to industrial-level machine learning packages, such as TensorFlow and PyTorch.

As a demonstration, we solve a single firm’s export destination selection problem and an

input-output network formation problem. In Section 2, we construct a continuous-time version

of the discrete-time firm export model by Alfaro-Urena, Castro-Vincenzi, Fanelli and Morales

(2023). In this model, an exporting firm decides among 100 possible foreign markets for entry,

with each destination featuring a state variable driving its demand. Therefore, there are 200

state variables in total. We demonstrate that the value function of the exporting firm preserves

the cross-destination complementarities in its profit function.
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Section 3 constructs a continuous-time network formation model based on the static produc-

tion network setting by Kopytov, Mishra, Nimark and Taschereau-Dumouchel (2021). In this

model, a social planner obtains opportunities stochastically over time to form an input-output

link. There are 37 sectors in the economy, and each sector has a time-varying TFP driven by

aggregate shocks. The dimensionality of the state variable is approximately 37 × 37 for the

social planner’s dynamic optimization problem. Our numerical exercise indicates that the so-

cially optimal input-output linkages might not align with the ideal linkages from an individual

sector’s perspective.

Literature. Our paper contributes to the international trade and industrial organization liter-

ature, which often involves combinatorial discrete choice problems, typically in a static setting.

For example, Jia (2008) study supermarkets’ store location decisions and develop a global so-

lution to the combinatorial problem when objective functions have the property of positive

complementarities. Fan and Yang (2020) investigate the composition of differentiated product

offerings in the U.S. smartphone market. Following Jia (2008), Antras, Fort and Tintelnot

(2017) and Arkolakis, Eckert and Shi (2023) exploit positive and/or negative complementarities

to solve sourcing or production location problems in trade literature. Other examples of com-

binatorial problems in the IO and trade literature include studies by Hendel (1999), Tintelnot

(2017), Houde, Newberry and Seim (2023), and Oberfield, Rossi-Hansberg, Sarte and Trachter

(2024).

Our paper is also related to the rapidly expanding body of literature on production networks

(see reviews like Carvalho (2014); Carvalho and Tahbaz-Salehi (2019)). Our approach signif-

icantly contributes to the specific topic of input-output network formation, including studies

by Oberfield (2018), Acemoglu and Azar (2020), Taschereau-Dumouchel (2020), and Dhyne,

Kikkawa, Kong, Mogstad and Tintelnot (2023). All these network formation models are static.

Our approach enables researchers in the field to explore dynamic network formation under

idiosyncratic and aggregate shocks, and to characterize an input-output network’s transition

paths. The continuous-time setting is, in fact, more tractable for studying production net-

works. For example, Liu and Tsyvinski (2024) apply a continuous-time model to investigate

the transmission of temporary shocks through a fixed input-output network.

Our approach to transforming static combinatorial problems into a sequence of binary

choices aligns with strategic network formation models (Jackson, 2010). Similar to Currarini,

Jackson and Pin (2009, 2010), agents in our setting randomly obtain opportunities over time to

decide whether to form links. In a longer time, we observe the evolution of the overall network.

In the econometric studies of network data, authors also follow this sequential move setting of

network formation (for example, Mele (2017) and Christakis, Fowler, Imbens and Kalyanaraman

(2020)).

The mathematical foundation of our numerical approach lies in nonlinear Backward Stochas-

tic Differential Equations (BSDEs), beginning with the seminal work of Pardoux and Peng

(1990). Following the advancement of Machine Learning in the past decade, applied mathe-

maticians discover the numerical superiority of BSDEs when combined with deep learning, for

solving high-dimensional Partial Differential Equations (Han, Jentzen and E, 2018). Inspired by
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these works, Huang (2023b,a) introduce the deep learning-based probabilistic approach to the

economics literature, recognizing that all forward-looking stochastic processes, like asset prices

and continuation values, can be cast by BSDEs.

The organization of the paper is as follows. Section 1 illustrates the probabilistic formulation

and the deep learning-based numerical method. Section 2 and 3 consider two examples: a single

firm’s dynamic discrete choice and a dynamic network formation model. In Section 4, we make

a few remarks on wider applications of our numerical approach.

1 Deep Learning-Based Probabilistic Approach

In section, we present the detailed probabilistic and analytic formulation of a single agent’s

dynamic discrete choice problem and illustrate the deep learning-based numerical method based

on the two formulations.

1.1 Basic Model

We consider the dynamic optimization of an agent whose flow utility u (xt, yt) depends on

continuous state variable xt ∈ RN driven by Brownian motion

dxt = µ (xt, yt) dt+
M∑
m=1

σm (xt, yt) dWm
t (6)

and discrete state variable yt =
[
y1
t , y

2
t , · · · , yJt

]
. Without loss of generality, we assume that

all yjt are 0 − 1 binary variables. The stochastic process xt is assumed to be uncontrolled for

simplicity. We refer readers who are interested in the probabilistic formulation of controlled

state variables driven by diffusion process to Huang (2023b,a).

The discrete state variable is partially controlled by the agent in the following sense. First,

if yjt = 0 the agent will be granted an opportunity of state switching with a probability λjdt

over [t, t+ dt]. To switch yjt = 0 to yjt = 1 when she has the opportunity, the agent must pay

a fixed utility cost sj . The arrivals of these opportunities across all yjt = 0 are independent.

Second, if yjt = 1 the state could switch to yjt = 0 with a probability λjdt over [t, t+ dt].

In the corresponding static or discrete-time settings, the agent faces a standard combina-

torial problem of selecting a combination of
[
y1
t , y

2
t , · · · , yJt

]
among 2J possibilities by exerting

some efforts. In our continuous-time setting, the chance that the agent can alter two or more

of her states jointly is negligible as that probability is of order (dt)2 or higher. Hence, the

agent does not have a challenging combinatorial problem to solve at any point of the time.

Nevertheless, when she has a binary choice to make, the agent still fully takes into account the

long-run impact of her current decision, which in turn is captured by the value function. Now

the difficulty of solving the dynamic optimization problem is to handle high-dimensional state

variables (xt, yt). With the deep learning-based probabilistic approach, dimensionality is no

longer a bottleneck. To give a sense of how powerful the approach is, the second example that

we will show has 37× 37 dimensions.
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The value function of the agent is

V (xt, yt) = max
yt

∫ +∞

0
e−ρs (u (xs, ys)− sj1 {ys,j − ys−,j > 0}) ds,

where ρ is the discount rate and ys− is the left limit of the process {yt}. ys,j − ys−,j > 0 implies

that the agent is granted a chance to switch state j at time s and she decides to do so by

exerting cost sj . Note that xt is a continuous state variable driven by diffusion processes, and

yt is a discrete state variable driven by jump processes. Next, we will combine the advantages

of both probabilistic and analytic approaches to fully exploit the features of diffusion processes

and jump processes.

1.2 Probabilistic Formulation

The probabilistic formulation defines the value function along all realized paths of exogenous

shocks. For the current problem, given the agent’s optimal decision the stochastic process of her

continuation value Vt = V (xt, yt) follows a backward stochastic differential equation (BSDE)

dVt = − (u (xt, yt)− ρVt) dt+
M∑
m=1

σV,mt dWm
t

+
J∑
j=1

(
1− yjt

)
max

{
V
(
xt, yt + 1j

)
− V (xt, yt)− sj , 0

}
dΛ0,j

t

+

J∑
j=1

yjt
(
V
(
xt, yt − 1j

)
− V (xt, yt)

)
dΛ1,j

t

Vs+t = V (xs+t, ys+t) for any t and any initial date s, (7)

where σV,mt ,m = 1, · · · ,M, are endogenous volatility terms of Vt, and dΛ0,j
t and dΛ1,j

t , j =

1, · · · ,J, capture the realizations of jump risks that affect the state transitions. Condition (7)

states that the forward-looking stochastic process Vt and the backward-looking processes xt

and yt must always satisfy the mapping V (·, ·). Regarding the deterministic terms, the agent’s

continuation value declines by the utility flow being realized u (xt, yt) dt, and increases by the

discounting effect ρVtdt that no longer applies from the perspective at time t + dt. Note that

the condition holds trivially along paths driven by jump risks due to the construction of the

BSDE. Within this subsection, we will not consider paths with realizations of jump risks, i.e.,

we will only consider BSDE

dVt = − (u (xt, yt)− ρVt) dt+

M∑
m=1

σV,mt dWm
t (8)

Vs+t = V (xs+t, ys+t) for any path ys+t = ys, any t and any initial date s, (9)

The core of the probabilistic formulation is that endogenous volatility terms of Vt must be

such that Condition (7) or (9) always holds. The design of the probabilistic numerical scheme

is based on this insight of BSDEs, which not only defines the fixed point V (·, ·) but also its
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volatility terms. Given any initial date t and state (xt, yt), the fixed-point mapping V (·, ·) first

yields Vt = V (xt, yt). The volatility terms σV,mt ,m = 1, · · · ,M , are endogenous because they

are such that for any realizations of
(
Wm
t+∆ −Wm

t , i = 1, · · · ,M
)

and sufficiently small positive

constant ∆, the updated Vt+∆

Vt+∆ = Vt − (u (xt, yt)− ρVt) ∆ +
M∑
m=1

σV,mt
(
Wm
t+∆ −Wm

t

)
and updated xt+∆

xt+∆ = xt + µ (xt, yt) ∆ +

M∑
m=1

σm (xt, yt)
(
Wm
t+∆ −Wm

t

)
satisfy the fixed-point mapping

Vt+∆ = V (xt+∆, yt) .

From the numerical perspective, the advantage of the probabilistic approach is that Con-

dition (7) or (9) must hold along any simulated path. Therefore, we can take advantage of

any single path and use Condition (7) or (9) to uncover the fixed-point mapping. However, for

jump risks this advantage is no evident because we need to simulate a large number of paths to

cover a significant proportion of paths with realized jump risks. Due to this concern, we revert

back to the analytic formulation to efficiently captures the impacts of jump risks on the value

function.

1.3 Analytic Formulation

The analytic formulation defines the value function as

V (xt, yt) = u (xt, yt) ∆ + e−ρ∆E [V (xt+∆, yt+∆)|xt, yt] (10)

= u (xt, yt) ∆− ρ∆V (xt, yt) + E [V (xt+∆, yt+∆)|xt, yt] .

The computation of the conditional expectation is composed of two components: diffusion and

jump risks. For the diffusion risk,

E [V (xt+∆, yt+∆)|xt, yt+∆ = yt] =

∫
w1

· · ·
∫
wM

V (xt+∆, yt)
M∏
m=1

f (wm) dwM · · · dw1, where

xt+∆ = xt + µ (xt, yt) ∆ +
M∑
m=1

σm (xt, yt)w
m,

f (x) =
1√

2π∆
exp

(
− x

2

2∆

)
.

To evaluate the integration numerical, we will apply Gauss-Hermite quadrature. Note that while

deriving the numerical integration, each node that we choose to evaluate V (·, yt) is essentially

a realization of Brownian shocks. Hence, we can make use of these evaluations twice to enhance

the computation efficiency: one for the analytic approach and the other for the probabilistic
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approach.

For the jump risk, we evalute V
(
xt, yt + 1j

)
if yjt = 0 and V

(
xt, yt − 1j

)
if yjt = 1. Then,

equation (10) is approximated by

(1 + ρ∆)V (xt, yt) = u (xt, yt) ∆ +
1

Pt
E [V (xt+∆, yt+∆)|xt, yt+∆ = yt]

+
1

Pt

J∑
j=1

(
1− e−λj∆

)
yjtV

(
xt, yt − 1j

)
+

1

Pt

J∑
j=1

(
1− e−λj∆

)(
1− yjt

)
max

{
V
(
xt, yt + 1j

)
− sj , V (xt, yt)

}
, where

Pt ≡ 1 +
J∑
j=1

(
1− e−λj∆

)
yjt +

J∑
j=1

(
1− e−λj∆

)(
1− yjt

)
.

The feature of the analytic approach is to evaluate the value function V (xt, yt) along multiple

paths and incorporate their weighted sum into a single equation of conditional expectation. It

has a comparative advantage over the probabilistic approach for jump risks, which requires a

large number of simulated paths so as to capture the impacts of jump risks.

1.4 Deep Learning-Based Numerical Method

The first feature of our numerical method is to approximate the value function with deep neural

network, which is denoted as V (x, y; Θ) and Θ stands for the set of parameters of the neural

network. Audience who has no knowledge of neural network approximation can think of it as an

alternative to Chebyshev polynomials. Chapter 6 of Goodfellow, Bengio and Courville (2016)

is the standard reference for the basic neural network architecture, and we also recommend

Chapter 5 of Zhang, Lipton, Li and Smola (2023).

Secondly, our scheme is simulation-based. Given a set of conjectured parameters Θ and the

initial state (xt, yt) of an agent, we can find the initial continuation value Vt = V (xt, yt; Θ) and

the volatility terms σV,mt = σV,m(xt, yt; Θ),m = 1, · · · ,M . Following the probabilistic approach,

we simulate the backward-looking process xt according to equation (6) and the forward-looking

process Vt according to BSDE (8). To assess the accuracy of guessed parameter Θ, the terminal

condition of BSDEs yields a loss

LossP = ‖Vt+∆ − V (xt+∆, yt; Θ)‖2.

To take into account the effects of jump risks, we resort to the analytic formulation and compute

the loss

LossA = ‖(1 + ρ∆)V (xt, yt; Θ)− u(xt, yt)∆− E [V (xt+∆, yt+∆; Θ)|xt, yt] ‖2.

The calculation of E [V (xt+∆, yt+∆; Θ)|xt, yt] has been laid out in Section 1.3. For each sample

path starting from (xt, yt), we compute two types of losses, and we can simulate as many paths

as our computing hardware allows. It is important to note that the computation of a single
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path is independent of other paths’ computation. Hence, the construction of the losses can be

fully paralleled.

Given the mapping from parameters Θ to the loss, i.e., LossP + LossA, the remaining task

is to optimize Θ to minimize the loss, which can be completely outsourced to Machine Learning

packages like TensorFlow or PyTorch in Python. The coding work of our numerical method is

limited to the construction of two losses: LossP and LossA. The following two sections contain

more detailed steps of constructing losses functions for specific models.

2 Exporting Dynamics

In this section, we transform a single firm’s exporting dynamics problem in Alfaro-Urena,

Castro-Vincenzi, Fanelli and Morales (2023) into the continuous-time setting. Because of the in-

terdependence between different destinations, an exporting firm solves a combinatorial choice in

each period while taking into account its dynamic effects in the discrete-time setting considered

by Alfaro-Urena et al. (2023).

In our continuous-time setting, the chance that a firm decides whether to export to multi-

ple destinations simultaneously is negligible. Nevertheless, the market interdependence or the

complementarity is still kept as the long-run impacts of binary choices at any time are fully

captured or encoded by the continuation value of the firm. Hence, we transform the combinato-

rial problem in Alfaro-Urena et al. (2023) into a sequential binary choice problem, whose static

step is trivial to solve.

2.1 Basic Setting

Consider a firm could export to potential J destinations, whose exporting status is captured by

a vector

yt ≡ [yt,1, yt,2, · · · , yt,J]T ,

where yt,j is a dummy variable indicating whether the firm exports to destination j at time t.

If the firm exports to country j, its profit flow is

π (yt, νjt; j) = ζj − νt,j +
∑
m6=j

yt,mcjm

where ζj is time-invariant export revenue, νt,j is the export cost following

dνt,j = −θ (νt,j − ν̄j) dt+ σν,0j dW 0
t + σν,1j dW 1

t ,

where cjm captures the complementarities between export destinations.
{
W 0
t ,W

1
t

}
are two

independent standard Brownian motions, which are common shocks that drive export costs

across different destinations. The algorithm could easily accommodate settings with time-

varying stochastic export revenues, destination-specific shocks, and multiple macro shocks.

If a firm does not have an exporting channel to destination j by time t, over a time interval

[t, t+ dt], it is granted a chance with probability λ0dt of establishing such a channel by paying
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a one-time fixed cost sj . Once such a channel exists, it will last until a Poisson shock arrives

and the intensity of the shock is λ1. It is assumed that the chance of establishing an exporting

channel or the vanishing of a channel is independent across different destinations. Therefore, we

can overlook the scenario that the firm decides multiple exporting destinations simultanenously

within a short time interval [t, t+ dt] because its probability is the order of (dt)N , N ≥ 2. The

combinatory choice is the main challenge faced by Alfaro-Urena et al. (2023).

The dynamic optimization problem of a firm is to decide whether to establish an exporting

channel whenever it has a chance to maximize

V (y0, ν0) = max
yt

∫ +∞

0
e−ρt

( J∑
j=1

yt,jπ (yt, νt,j ; j)− sj1 {yt,j − yt−,j > 0}
)

dt,

where the state variables of the firm are yt and νt ≡ [νt,1, νt,2, · · · , νt,J]. Note that given the value

function V (yt, νt), the firm’s policy function is straightforward. It will establish an exporting

channel to destination j if the firm is granted the chance and

V
(
yt− + 1j , νt

)
≥ V (yt−, νt) + sj ,

where 1j is a J-dimensional vector whose j’th element is one and other elements are zeroes.

Although the continuous-time setting avoids the complicated combinatorial decisions faced by

discrete-time settings, the model still preserves the interdependence between destinations as we

will show later that the increase in the value function will be higher if forming an exporting

channel to a new destination contributes more to other destinations’ profits.

The current setting can accommodate active searching by assuming a certain cost function

of the search effort that increases λ0, the chance of establishing an exporting channel. The

marginal benefit of searching is

max
{
V
(
yt− + 1j , νt

)
− V (yt−, νt)− sj , 0

}
.

Note that allowing for active searching does not increase the dimensionality of the firm’s dynamic

optimization problem.

2.2 Probabilistic and Analytic Formulations

As the above discussion indicates, the value function plays a critical role for characterizing

a firm’s optimal dynamic choices. In this section, we will present probabilistic and analytic

formulations that define the value function, and both play a critical role in numerical schemes

that solve for V (yt, νt).

11



The BSDE that gives rise to V (y, ν) is

dVt = −

 J∑
j=1

yt,jπ (yt, νt,j ; j)− ρVt

dt+ σV,0t dW 0
t + σV,1t dW 1

t

+

J∑
j=1

(1− yt−,j) max
{
V
(
yt− + 1j , νt

)
− V (yt−, νt)− sj , 0

}
dΛ0,j

t

+
J∑
j=1

yt−,j
(
V
(
yt− − 1j , νt

)
− V (yt−, νt)

)
dΛ1,j

t

where dΛ0,j
t indicates the shock that a firm is granted the opportunity to start exporting to

destination j and dΛ1,j
t is the shock that the firm’s exporting channel to destination j van-

ishes. Over time [t, t+ dt], the continuation declines by utility flow that has been realized∑J
j=1 yjtπ (yt, νjt; j) dt and increases by the discounting effect ρVtdt that only applies to Vt

rather than Vt+dt. σ
V,0
t and σV,1t capture the impacts of the two Brownian shocks on the con-

tinuation value. The coefficient of dΛ0,j
t is the increase in the firm’s continuation value if it has

the opportunity to initialize an exporting channel to destination j; The coefficient of dΛ0,j
t is

the change to the continuation value if the existing channel to destination j disappears.

The analytic formulation is well-known in the economics profession. Given ∆ is a small

positive number,

V (yt, νt) '
J∑
j=1

yt,jπt (yt, νjt; j) ∆ + e−ρ∆Et [V (yt+∆, νt+∆)]

'
J∑
j=1

yt,jπt (yt, νjt; j) ∆ + e−ρ∆Et [V (yt+∆, νt+∆)]− Et [V (yt+∆, νt+∆)] + Et [V (yt+∆, νt+∆)]

'
J∑
j=1

yt,jπt (yt, νjt; j) ∆− ρV (yt, νt) ∆ + Et [V (yt+∆, νt+∆) .]

After a few steps of derivation, the calculation of V (yt, νt) boils down to the term Et [V (yt+∆, νt+∆)],

which can be approximated by

Et [V (yt+∆, νt+∆)] ' 1

Pt
Et [V (yt+∆, νt+∆) | yt+∆ = yt] +

1− e−λ1∆

Pt

J∑
j=1

yt,jV
(
yt − 1j , νt

)
+

1− e−λ0∆

Pt

J∑
j=1

(1− yt,j) max
{
V
(
yt + 1j , νt

)
− sj , V (yt, νt)

}
(11)

where

Pt ≡ 1 +
(

1− e−λ1∆
) J∑
j=1

yt,j +
(

1− e−λ0∆
) J∑
j=1

(1− yt,j)

In this approximation, we drop terms of order higher than ∆. The term Et [V (yt+∆, νt+∆) | yt+∆ = yt]
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is further approximated by

1

4
V
(
yt, νt − ρ (νt − ν̄) ∆ + σν,0

√
∆ + σν,1

√
∆
)

+
1

4
V
(
yt, νt − ρ (νt − ν̄) ∆ + σν,0

√
∆− σν,1

√
∆
)

+
1

4
V
(
yt, νt − ρ (νt − ν̄) ∆− σν,0

√
∆ + σν,1

√
∆
)

+
1

4
V
(
yt, νt − ρ (νt − ν̄) ∆− σν,0

√
∆− σν,1

√
∆
)
,

which takes four pairs of
(
dW 0

t ,dW
1
t

)
’s realizations.1 Note that we will make use of the four

realizations and construct the loss of probabilistic formulation along each realization.

2.3 Numerical Schemes

We approximate the value function V (y, ν) and its volatility terms σV,0 (y, ν) and σV,1 (y, ν)

with feedforward neural network, which consists of three shared layers followed by one subnet

for V (·) and one for σV,0(·) and σV,0(·). Each subnet contains two independent layers. Each

layer has 256 nodes.2

Our numerical scheme is simulation-based. The majority of coding is to construct the

loss function based on simulated sample paths. The deep learning package like TensorFlow or

PyTorch in Python will assume the job of optimizing the parameters of the neural network and

minimizing the loss function.

We choose an arbitrary terminal date T and discretized the interval [0, T ] into multiple

subinterval of length ∆. At initial date t = 0, we randomly generate N firms with initial states

(yn0 , ν
n
0 , n = 1, · · · , N), where the sample index n will be dropped hereafter as the numerical

operations are identical across different firms except that different sample paths experience

different realization of shocks. For each sample path, two independent Brownian processes{
W 0
t ,W

1
t

}
are generated, i.e.,

W i
t+∆ −W i

t ∼ N (0,∆) , i = 0, 1.

There is no realization of Poisson shocks along each path since the analytic formulation has

incorporated their impacts on the continuation value function. Hence, we can drop the time

subscript of yt.

The numerical operation is the same for each interval [t, t+ ∆]. Taking the state [y, νt]

entering the interval and the continuation value Vt, the construction of the loss function is as

follow

1The choice of the four realizations is guided by Gauss-Hermite quadrature.
2We refer readers to Chapter 6 of Goodfellow et al. (2016) and Chapter 5 of Zhang et al. (2023) for terminologies

of deep learning.
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1. Calculate the firm’s profit πt

πt = yT (ζ − νt) + yTCy, where

C =



0 c0,1 · · · c0,J−2 c0,J−1

c1,0 0 · · · c1,J−2 c1,J−1

c2,0 c2,1 · · · c2,J−2 c2,J−1

...
...

...
...

...

cJ−1,0 cJ−1,1 · · · cJ−1,J−2 0


2. Calculate Et [V (yt+∆, νt+∆)]. To calculate Et [V (y, νt+∆) | yt+∆ = y], first update νt,j , j =

1, · · · , J

νuut+∆,j = νt − θ (νt − ν̄j) ∆ + σν,0j
√

∆ + σν,1j
√

∆

νudt+∆,j = νt − θ (νt − ν̄j) ∆ + σν,0j
√

∆− σν,1j
√

∆

νdut+∆,j = νt − θ (νt − ν̄j) ∆− σν,0j
√

∆ + σν,1j
√

∆

νddt+∆,j = νt − θ (νt − ν̄j) ∆− σν,0j
√

∆− σν,1j
√

∆.

Then, to plug in the value function approximated by the neural network V (·, ·), we have

Et [V (y, νt+∆) | yt+∆ = y] =
V
(
y, νuut+∆,j

)
+ V

(
y, νudt+∆,j

)
+ V

(
y, νdut+∆,j

)
+ V

(
y, νddt+∆,j

)
4

Evaluate V
(
y + 1j , νt

)
if yj = 0; evaluate V

(
y − 1j , νt

)
if yj = 1. Then, we calculate

Et [V (yt+∆, νt+∆)] according to (11) and the loss of the analytic formulation is

LossA ⇐ LossA +
∆

T
((1 + ρ∆)Vt − πt∆− Et [V (yt+∆, νt+∆)])2

3. Given the realized Brownian shocks W i
t+∆ −W i

t , i = 0, 1, update forward SDE of νt and

BSDE of Vt

νt+∆,j = νt,j − θ (νt,j − ν̄j) ∆ + σν,0j
(
W 0
t+∆ −W 0

t

)
+ σν,1j

(
W 1
t+∆ −W 1

t

)
, j = 1, · · · , J

Vt+∆ = Vt − (πt − ρVt) ∆ + σV,0t

(
W 0
t+∆ −W 0

t

)
+ σV,1t

(
W 1
t+∆ −W 1

t

)
,

where σV,0t,j , σ
V,1
t,j are given by the network with the state input (y, νt). To take advantage

of four realizations used for calculating LossA, compute

V uu
t+∆ = Vt − (πt − ρVt) ∆ + σV,0t

√
∆ + σV,1t

√
∆

V ud
t+∆ = Vt − (πt − ρVt) ∆ + σV,0t

√
∆− σV,1t

√
∆

V du
t+∆ = Vt − (πt − ρVt) ∆− σV,0t

√
∆ + σV,1t

√
∆

V dd
t+∆ = Vt − (πt − ρVt) ∆− σV,0t

√
∆− σV,1t

√
∆.
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Table 1: Loss of Untrained Sample

analytic loss probabilistic loss

average 1.89× 10−7 1.06× 10−7

st.d. 3.37× 10−7 2.07× 10−7

85th percentile 3.28× 10−7 1.83× 10−7

90th percentile 4.46× 10−7 2.56× 10−7

95th percentile 7.06× 10−7 4.08× 10−7

The loss of the probabilistic formulation is

LossP ⇐ LossP +
∆

T
(Vt+∆ − V (y, vt+∆))2

+
∆

T

(
V uu
t+∆ − V

(
y, vuut+∆

))2
+

∆

T

(
V ud
t+∆ − V

(
y, vudt+∆

))2

+
∆

T

(
V du
t+∆ − V

(
y, vdut+∆

))2
+

∆

T

(
V dd
t+∆ − V

(
y, vddt+∆

))2

The calculation of the next sub-interval will take (y, νt+∆) as the entering state along with the

continuation value Vt+∆. The computation repeats until the terminal date T . The deep learning

package will be used to minimize the total loss

LossA + LossP .

2.4 Numerical Exercises

For numerical exercises, we try to recover parameter values used or estimated in Alfaro-Urena

et al. (2023). If not, we use the closest alternative parameter values. The difficulty of combi-

natorial problems is the enormous number of possible combinations to consider. Our numerical

example contains 100 destinations, which leads to 2100 combinations, a number larger than what

a standard 64-bit system can represent.

Accuracy. The critical aspect of our numerical scheme is whether we can derive the value

function up to a certain degree of accuracy with only a limited number of sample paths that

we simulate, which is 400, 000 for current exercise. To assess the performance of our numerical

scheme, we generate a separate set of 20, 000 sample paths that are not used for training or

solving for the value function, and plug in these untrained samples to the loss function above.

Table 1 presents the losses normalized by the value function, i.e.,

1

V 2

(
LossA + LossP

)
.

Considering that the size of our neural network is relatively small, the “out of sample” perfor-

mance of our numerical scheme is reasonably good.

Complementarity. The key feature of the model by Alfaro-Urena et al. (2023) is the com-

plementarity between exporting destinations. We next examine the contribution of adding a

particular destination to the continuation value that cannot be explained by the destination’s
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Figure 1: Complementarity

revenue itself. For a given state (yt, νt), we can calculate the increase in continuation value by

adding destination j, i.e.,

∆V (y−it , νt) = V (1, y−it , νt)− V (0, y−it , νt),

where y−it denotes a vector comprised of all elements of yt except the i’th one. We simulate

50, 000 sample paths for 1000 years and obtain the “long-run” distribution of (yt, νt), with which

we calculate the average of ∆V (y−it , νt) denoted as ∆V i. The left panel of Figure 1 is the scatter

plot (∆V i, ζi) of all destinations that have positive ∆V i, which indicates that the revenue of a

destination cannot explain much of its contribution to the overall value function of the firm. In

light of this observation, we run a linear regression of ∆V i against ζi and obtain the residual

term denoted as V i
residual. To capture the complementary effect of adding a destination, we

calculate the contribution of destination i to other destinations’ profits as

cisum =
J∑

j=1,j 6=i
cji.

The right panel of Figure 1 clearly shows that when a destination contributes more to other

markets’ profits adding this destination would increase the firm’s continuation value by a larger

margin.

3 Dynamic Network Formation

We extend the static production network formation model of Kopytov, Mishra, Nimark and

Taschereau-Dumouchel (2021) into a continuous-time model. The key distinction of our continuous-

time setting is that we can ignore the scenario that multiple input-output links are formed

simultaneously within a sufficiently short time interval. Therefore, the massive combinatorial

problem is transformed into a sequence of binary choice sub-problems. Nevertheless, the state
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space is beyond the capability of conventional numerical methods. The dimension of the state

variable is 37× 37 given 37 sectors in Kopytov et al. (2021) and each sector’s productivity.

3.1 Basic Setting

The economy consists of N sectors, each producing a differentiated product, and a representative

consumer, who has the utility function over N types of products

1

1− γ
exp

(
(1− γ) log

(
N∏
i=1

(
Ci
βi

)βi))
.

The consumer supplies a unit of labor inelastically and the labor wage serves as the numeraire.

Let β denote [β1, β2, · · · , βN ].

Each sector has a representative firm, which hires labor and takes outputs of other sectors as

intermediate inputs. Firms in all sectors behave competitively with zero profits in each period.

Firm i or sector i is endowed with a full-pledged production function

F
(
εit, α

i1, · · · , αiN , Xi1, · · · , XiN
)

= eε
i
t
(
Li
)1−∑N

j=1 α
ij

N∏
j=1

(
Xij
)αij

,

if it is fully connected with all other sectors, where εit is the TFP,
[
αi1, αi2, · · · , αiN

]
denoted

as αi is the vector of intermediate input shares, and
[
Xi1, Xi2, · · · , XiN

]
denoted as Xi is the

vector of inputs. εit follows

dεit = −φ
(
εit − ε̄i

)
dt+

M∑
m=1

σimdBm
t ,

where
(
B1
t , · · · , BM

t

)
are independent Brownian motions.

Over time, an existing link between sectors may vanish, and new links could be formed. Let

Y i
t =

[
Y i1
t , Y

i2
t , · · · , Y iN

t

]
, a vector of dummy variables, captures the linkage status for sector i.

Given Y i
t , the production function is

F
(
εit, α

i, Xi, Y i
t

)
= eε

i
t−ai(Y i

t ) (Li)1−∑N
j=1 α

ijY ij
t

N∏
j=1

(
Xij
)αijY ij

t , where (12)

ai
(
Y i
t

)
= min

{
1,
(
αi � Y i

t − αi
)T
H
(
αi � Y i

t − αi
)}
,

H = W TKW,

� denotes the element-by-element product, W is a (N + 1)×N matrix, and K is a (N + 1)×
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(N + 1) positive definite diagonal matrix

W =



1 1 1 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


,K =



κi0 0 0 · · · 0

0 κi1 0 · · · 0

0 0 κi2 · · · 0
...

...
...

. . .
...

0 0 0 · · · κiN


.

The function ai
(
Y i
t

)
captures the negative impact of the technology’s deviation from the full-

pledged benchmark. Given an input-output network Yt =
[
Y ij
t

]
, the productivity vector

εt =
[
ε1
t , · · · , εNt

]N
, productivity deviation a (Yt) =

[
a1
(
Y 1
t

)
, · · · , aN

(
Y N
t

)]
, the competitive

equilibrium yields the utility for the consumer

u (Yt, εt) =
exp ((1− γ) ft)

1− γ
, where

ft = βL (Yt) (εt − a (Yt))

L (Yt) = (I −A� Yt)−1 .

L (Yt) is the Leontief inverse, and ft can be interpreted as the log of GDP at time t.

3.2 Social Planner

We assume that a social planner makes the network formation decisions. To simplify the

computation, assume that an N -state Markov chain zt governs which sector’s technology is

subject to change over [t, t+ dt]. When zt = i, each existing link that sector j supplies its input

to sector i (i.e., Y ij
t− = 1) may vanish with a probability λdt independently. Also when zt = i,

the social planner gains the opportunity to establish a new link that sector j supplies to sector i

with a probability λdt. This opportunity appears independently across all sector with Y ij
t− = 0.

The only choice that the social planner makes is whether to establish a sector’s input link

when she has the opportunity to do so. The objective function for the social planner is

V (Yt, zt, εt) = max
Yt

∫ +∞

t
e−ρsu (Ys, εs) ds

with state variables Yt, zt, and εt. The key to characterize the network formation of the economy,

i.e., the social planner’s policy function, is to solve for the value function. Next, we will illustrate

The BSDE that the continuation value Vt follows is

dVt = − (u (Yt, εt)− ρVt) dt+
M∑
m=1

σV,mt dBm
t

along the path where no jump risks are realized, where σV,mt ,m = 1, · · · ,M reflect the impacts
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of exogenous shocks to productivity. The analytic formulation is

V (Yt, zt, εt) = u (Yt, εt) ∆ + e−ρ∆Et [V (Yt+∆, zt+∆, εt+∆)]

' u (Yt, εt) ∆− ρV (Yt, zt, εt) ∆ + Et [V (Yt+∆, zt+∆, εt+∆)] .

The key of the analytic formulation is to approximate the term Et [V (Yt+∆, zt+∆, εt+∆)]. When

∆ is small enough, suppose zt = j we have

Et [V (Yt+∆, zt+∆, εt+∆)] =
1

Pt
Et [V (Yt, zt+∆, εt+∆)|Yt+∆ = Yt, zt+∆ = j] (13)

+
1− eλ∆

Pt

N∑
i=1,i 6=j

V (Yt, i, εt) +
1− eλ∆

Pt

N∑
i=1,i 6=j

Y ji
t V

(
Yt − 1ji, j, εt

)
+

1− eλ∆

Pt

N∑
i=1,i 6=j

(
1− Y ji

t

)
max

{
V
(
Yt + 1ji, j, εt

)
, V (Yt, j, εt)

}
,

where

Pt = 1 +
(

1− eλ∆
)

2 (N − 1)

The evaluation of Et [V (Yt, zt+∆, εt+∆)|Yt+∆ = Yt, zt+∆ = j] follows Gauss-Hermite quadrature

as in the previous dynamic firm exporting example.

Extensions. The network formation setting above is quite stylized. Our numerical scheme can

accommodate various modeling choices. For example, we could allow the social planner to exert

costly efforts to maintain existing input-output links or enhance the probability of forming

a new link. Such extension does not increase the dimensionality of the problem. Moreover,

we could extend the model such that each sector has a delegate who makes the input-output

link formation decisions. Although this extension would not increase the dimension of the

model, it requires solving more dynamic optimization problems, because of which solving the

model requires relatively more computing power. When the network formation is decentralized,

we could also consider bargaining that occurs during the network building process given the

characterization of continuation values in hand.

3.3 Numerical Schemes

As in the previous example, we approximate the value function V (Y, z, ε) and its volatility

terms σV,1t and σV,2t with feedforward neural network. However, as the dimensionality of the

current problem is much higher than the previous one: 37×38 versus 200, although the network

has the same number of layers, the number of nodes for each shared layer is 512 instead of 256

in the previous example.

Given an arbitrary terminal date T , interval [0, T ] is divided into small ones of length ∆.

At initial date t = 0, we randomly generate K economies with initial states (Y0, z0, ε0). The

sample index is omitted for brevity. For each economy, two independent Brownian shocks are

generated
{
W 1
t ,W

2
t

}
. As in the previous example, no Poisson shocks are realized for each

economy since the analytic formulation has incorporated their impacts on V (Yt, zt, εt). Hence,
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the time subscripts of Yt and zt are also omitted. As it is not a trivial computational task, we

calculate save the Leontief inverse

L (Y ) = I +
10∑
i=1

(A� Y )i

and also

ai
(
Y i
t

)
= min

{
1,
(
αi � Y i

t − αi
)T
H
(
αi � Y i

t − αi
)}
, i = 1, · · · , N,

for each Y before the simulation starts.

The numerical steps are identical for each period [t, t+ ∆]. Taking the entering state [Y, z, εt]

and the continuation value Vt, the construction of the loss function follows

1. First calculate the utility

u (Y, εt) =
exp ((1− γ) ft)

1− γ
, where

ft = βL (Y ) (εt − a (Y ))

2. Calculate Et [V (Yt+∆, zt+∆, εt+∆)]. The first term involved is

Et [V (Yt+∆, zt+∆, εt+∆)|Yt+∆ = Y, zt+∆ = z] ,

which requres the updates of εt+∆. For each j,

εuu,jt+∆,j = εjt − φ
(
εjt − ε̄j

)
∆ + σj,1

√
∆ + σj,2

√
∆

εudt+∆,j = εt − φ
(
εjt − ε̄j

)
∆ + σj,1

√
∆− σj,2

√
∆

εdut+∆,j = εt − φ
(
εjt − ε̄j

)
∆− σj,1

√
∆ + σj,2

√
∆

εddt+∆,j = εt − φ
(
εjt − ε̄j

)
∆− σj,1

√
∆− σj,2

√
∆.

To plug in the value function approximated by the neural network V (Y, z, ε), we have

Et [V (Yt+∆, zt+∆, εt+∆)|Yt+∆ = Y, zt+∆ = z]

=
V
(
Y, z, εuut+∆,j

)
+ V

(
Y, z, εudt+∆,j

)
+ V

(
Y, z, εdut+∆,j

)
+ V

(
Y, z, εddt+∆,j

)
4

Evaluate V
(
Y + 1zi, z, εt

)
if Y zi = 0; evaluate V

(
Y − 1zi, z, νt

)
if Y zi = 1. Then, we cal-

culate Et [V (Yt+∆, zt+∆, εt+∆)] according to (13) and the loss of the analytic formulation

is

LossA ⇐ LossA +
∆

T

(
(1 + ρ∆)Vt − u (Y, εt) ∆− Et [V (Yt+∆, zt+∆, εt+∆)]

)2
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3. Use Brownian shocks W i
t+∆ −W i

t , i = 1, 2, to update forward SDE of εt and BSDE of Vt

εjt+∆ = εjt − φ
(
εjt − ε̄j

)
∆ + σj,1

(
W 1
t+∆ −W 1

t

)
+ σj,2

(
W 2
t+∆ −W 2

t

)
, j = 1, · · · , J

Vt+∆ = Vt − (u (Y, εt)− ρVt) ∆ + σV,1t

(
W 1
t+∆ −W 1

t

)
+ σV,2t

(
W 2
t+∆ −W 2

t

)
,

where σV,0t,j , σ
V,1
t,j are given by the network with the state input (Y, z, εt). To fully utilize

the four realizations of
(
dW 1

t ,dW
2
t

)
used for calculating LossA, compute

V uu
t+∆ = Vt − (u (Y, εt)− ρVt) ∆ + σV,1t

√
∆ + σV,2t

√
∆

V ud
t+∆ = Vt − (u (Y, εt)− ρVt) ∆ + σV,1t

√
∆− σV,2t

√
∆

V du
t+∆ = Vt − (u (Y, εt)− ρVt) ∆− σV,1t

√
∆ + σV,2t

√
∆

V dd
t+∆ = Vt − (u (Y, εt)− ρVt) ∆− σV,1t

√
∆− σV,2t

√
∆.

The loss of the probabilistic formulation is

LossP ⇐ LossP +
∆

T
(Vt+∆ − V (Y, z, εt+∆))2

+
∆

T

(
V uu
t+∆ − V

(
Y, z, εuut+∆

))2
+

∆

T

(
V ud
t+∆ − V

(
Y, z, εudt+∆

))2

+
∆

T

(
V du
t+∆ − V

(
Y, z, εdut+∆

))2
+

∆

T

(
V dd
t+∆ − V

(
Y, z, εddt+∆

))2
.

The calculation of the following period will take (Y, z, εt+∆) as the entering state along with

the continuation value Vt+∆. The computation repeats until the terminal date T . The deep

learning package will be used to minimize the total loss

LossA + LossP .

3.4 Numerical Exercises

Regarding parameter values of numerical exercises, we try to uncover values used or estimated

in Kopytov et al. (2021). Otherwise, we use our most educated conjectures according to the

literature. The dimensionality of the current problem is around 6 times larger than the previous

problem (37× 38 versus 200). Therefore, we choose a larger neural network, although its depth

is still the same as the previous example (i.e., the same number of layers).

Table 2: Loss of Untrained Sample

analytic loss probabilistic loss

average 7.40× 10−6 9.44× 10−8

st.d. 2.08× 10−6 1.35× 10−7

85th percentile 9.60× 10−6 1.91× 10−7

90th percentile 1.02× 10−5 2.45× 10−7

95th percentile 1.12× 10−5 3.53× 10−7

Accuracy. The size of simulated sample paths used for training the value function is 220, 000,
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Figure 2: Marginal Value of a Input Link, ∆V
The heat map presents the average increase in the social planner’s value function if an input-output is
established. The magnitude is of the percentage increase in the value function. The red color indicates
the increase in the continuation value, and the blue color indicates the decrease.

which is smaller than the previous example. This is because the current example is a general

equilibrium model and the calculation of each sample path occupies much more memory that

that of the previous partial equilibrium model. We use 10, 000 untrained sample paths to test

the accuracy and we normalize the loss with the scale of the value function. Table 2 displays

summary statistics of the losses based on untrained sample. It appears that our numerical

method approximates the value function to a reasonably good degree.

Network Effects. Does the social planner find it optimal to form an input-output link when

it is optimal for an output producer’s perspective? Our simple model may shed light on this

question. A sector’s production technology, equation (12) implies that any deviation from the

benchmark technology would lower the sector’s TFP. Therefore, it is always optimal from the

sector’s perspective to form a link if the relevant inputs are in its full-pledged technology. Our

numerical results suggest that the social planner may have different thoughts. We define ∆V ij

as

E
[
V (1ij + Y −ijt , zt, ε)− V (Y −ijt , zt, ε)

]
,

where Y −ijt denotes an input-output network matrix with ij’th element being zero, and the

expectation is taken over a simulated sample. The heat map of Figure 2 shows that it is not

socially optimal to form certain input-output links although such links benefit sectors that

expand their intermediate inputs.
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4 Final Remarks

The key insight of our paper is that a large class of “combinatorial” problems in economics are

essentially approximations of sequential moves made by economic agents in real life. Given this

simple idea, we transform typical combinatorial problems into sequential binary choice problems

in the continuous-time setting. Although such transformation leads to rather simple calculation

in static steps, the dimensionality of the state space is enormous for conventional numerical

methods. To overcome the curse of dimensionality, we apply the recent deep learning-based

probabilistic approach.

There are several features of our numerical approach that previous examples do not fully

display. First, the deep learning-based probabilistic approach provides the global solution of

models with aggregate shocks. Hence, scholars using our method can easily explore the tran-

sition dynamics of a network given an idiosyncratic or aggregate shock. Second, the proba-

bilistic framework is general enough to incorporate almost all economic modeling ingredients.

We refer readers to Huang (2023b,a) for applications in international finance, asset pricing,

and heterogeneous-agent macroeconomics. We believe the deep learning-based probabilistic ap-

proach opens a brand new avenue for scholars in international trade, IO, social network, and

input-output linkages to draw tighter connections with international finance, asset pricing, and

macroeconomics.

Although we only show how to solve models with a given set of parameters, our numerical

method also helps quantitative works substantially. Since the dimensionality is no longer a

primary concern, we can treat all parameters, which we are interested in estimating, as time-

invariant state variables and solve the “large” model in both state and parameter space at once.

Then, we can search for the best parameter estimations within the parameter space without

re-solving the model every time trying new parameter estimates.

References

Acemoglu, Daron and Pablo D Azar (2020) “Endogenous production networks,” Econometrica,

Vol. 88, pp. 33–82.

Alfaro-Urena, Alonso, Juanma Castro-Vincenzi, Sebastián Fanelli, and Eduardo Morales (2023)

“Firm export dynamics in interdependent markets,”Technical report, National Bureau of

Economic Research.

Antras, Pol, Teresa C Fort, and Felix Tintelnot (2017) “The margins of global sourcing: Theory

and evidence from us firms,” American Economic Review, Vol. 107, pp. 2514–2564.

Arkolakis, Costas, Fabian Eckert, and Rowan Shi (2023) “Combinatorial Discrete Choice: A

Quantitative Model of Multinational Location Decisions,”Technical report, National Bureau

of Economic Research.

Carvalho, Vasco M (2014) “From micro to macro via production networks,” Journal of Economic

Perspectives, Vol. 28, pp. 23–48.

23



Carvalho, Vasco M and Alireza Tahbaz-Salehi (2019) “Production networks: A primer,” Annual

Review of Economics, Vol. 11, pp. 635–663.

Christakis, Nicholas, James Fowler, Guido W Imbens, and Karthik Kalyanaraman (2020) “An

empirical model for strategic network formation,” in The Econometric Analysis of Network

Data: Elsevier, pp. 123–148.

Currarini, Sergio, Matthew O Jackson, and Paolo Pin (2009) “An economic model of friendship:

Homophily, minorities, and segregation,” Econometrica, Vol. 77, pp. 1003–1045.

(2010) “Identifying the roles of choice and chance in network formation: Racial biases

in high school friendships,” Proceedings of the National Academy of Sciences, Vol. 107, pp.

4857–4861.

Dhyne, Emmanuel, Ayumu Ken Kikkawa, Xianglong Kong, Magne Mogstad, and Felix Tin-

telnot (2023) “Endogenous production networks with fixed costs,” Journal of International

Economics, Vol. 145, p. 103841.

Doraszelski, Ulrich and Kenneth L Judd (2012) “Avoiding the curse of dimensionality in dy-

namic stochastic games,” Quantitative Economics, Vol. 3, pp. 53–93.

Fan, Ying and Chenyu Yang (2020) “Competition, product proliferation, and welfare: A study

of the US smartphone market,” American Economic Journal: Microeconomics, Vol. 12, pp.

99–134.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016) Deep learning: MIT press.

Han, Jiequn, Arnulf Jentzen, and Weinan E (2018) “Solving high-dimensional partial differential

equations using deep learning,” Proceedings of the National Academy of Sciences, Vol. 115,

pp. 8505–8510.

Hendel, Igal (1999) “Estimating multiple-discrete choice models: An application to computeri-

zation returns,” The Review of Economic Studies, Vol. 66, pp. 423–446.

Houde, Jean-François, Peter Newberry, and Katja Seim (2023) “Nexus Tax Laws and Economies

of Density in E-Commerce: A Study of Amazon’s Fulfillment Center Network,” Econometrica,

Vol. 91, pp. 147–190.

Huang, Ji (2023a) “Breaking the Curse of Dimensionality in Heterogeneous-Agent Models: A

Deep Learning-Based Probabilistic Approach,” Available at SSRN 4649043.

(2023b) “A Probabilistic Solution to High-Dimensional Continuous-Time Macro and

Finance Models.”

Jackson, Matthew O (2010) Social and economic networks: Princeton university press Princeton.

Jia, Panle (2008) “What happens when Wal-Mart comes to town: An empirical analysis of the

discount retailing industry,” Econometrica, Vol. 76, pp. 1263–1316.

24



Kopytov, Alexandr, Bineet Mishra, Kristoffer Nimark, and Mathieu Taschereau-Dumouchel

(2021) “Endogenous production networks under supply chain uncertainty,” Available at SSRN

3936969.

Liu, Ernest and Aleh Tsyvinski (2024) “A Dynamic Model of Input-Output Networks,” Review

of Economic Studies, p. rdae012.

Mele, Angelo (2017) “A structural model of dense network formation,” Econometrica, Vol. 85,

pp. 825–850.

Oberfield, Ezra (2018) “A theory of input–output architecture,” Econometrica, Vol. 86, pp.

559–589.

Oberfield, Ezra, Esteban Rossi-Hansberg, Pierre-Daniel Sarte, and Nicholas Trachter (2024)

“Plants in space,” Journal of Political Economy, Vol. 132, pp. 000–000.

Pardoux, Etienne and Shige Peng (1990) “Adapted solution of a backward stochastic differential

equation,” Systems & Control Letters, Vol. 14, pp. 55–61.

Taschereau-Dumouchel, Mathieu (2020) “Cascades and fluctuations in an economy with an

endogenous production network,” Available at SSRN 3115854.

Tintelnot, Felix (2017) “Global production with export platforms,” The Quarterly Journal of

Economics, Vol. 132, pp. 157–209.

Zhang, Aston, Zachary C Lipton, Mu Li, and Alexander J Smola (2023) Dive into deep learning:

Cambridge University Press.

25


	Deep Learning-Based Probabilistic Approach 
	Basic Model
	Probabilistic Formulation
	Analytic Formulation 
	Deep Learning-Based Numerical Method

	Exporting Dynamics 
	Basic Setting
	Probabilistic and Analytic Formulations
	Numerical Schemes
	Numerical Exercises

	Dynamic Network Formation 
	Basic Setting
	Social Planner
	Numerical Schemes
	Numerical Exercises

	Final Remarks 

