Bilateral Trade with Costly Information Acquisition®

Daniil Larionov' Takuro Yamashitat

February 27, 2024

Abstract. We study a bilateral trade problem with flexible but costly information ac-
quisition. There is a buyer and a seller who can trade a single unit of a good through
an intermediary who designs a mechanism to facilitate their trade. In the beginning, the
buyer, the seller and the intermediary share a common prior over a finite set of states of
the world. The intermediary proposes a mechanism to the players, who can then acquire
information about the true state by privately designing a signal device. Assuming that
the information acquisition cost is proportional to the expected reduction in entropy, we
characterize the set of implementable allocations. Using the implementability conditions,
given by a finite-dimensional system of equations and inequalities, we maximize the inter-
mediary’s revenue over all implementable allocationally efficient mechanisms. Under certain

symmetry conditions, our revenue maximization problem can be solved in closed form.
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1 Introduction

Traders dealing with complex objects often do not have enough relevant infor-
mation to correctly estimate the object’s value at the outset, and therefore may
take potentially costly actions to acquire more information. Consider for example a
landowner (a seller) who owns a plot of land which is known to likely have a com-
mercially viable amount of oil under its surface. Suppose this landowner is not in the
oil business and is thus considering selling the mineral rights to an oil company (a
buyer). At the beginning neither party has a precise estimate of the amount of oil
under the surface, but each party could order exploratory drilling to obtain better
estimates. The outcomes of the two exploratory drilling studies could be more or
less correlated depending on how much coordination between studies the landowner
and the oil company achieve. It is possible that the parties decide to order a single
study together, in which case the outcomes will be perfectly correlated, or two inde-
pendent studies in different locations, in which case the outcomes can conceivably be
independent conditional on the amount of oil under the surface.

We are interested in the problem of a third party who intermediates trade between
the seller and the buyer, and is interested in maximizing her own revenue. The parties
communicate with each other via the intermediary who determines the communication
protocol and the resulting allocation and payments. The possibility of information
acquisition by the parties presents a considerable challenge for the intermediary: in
our example the landowner and the oil company may hide some aspects of their
exploratory studies from the intermediary (and each other), and thus have to be
incentivized to disclose what studies have been performed.

In order to understand the problem of such an intermediary, we build a model with
two players: a buyer and a seller who can trade an indivisible object, and a mechanism
designer who intermediates trade between them. The object’s quality (payoff-relevant
state) determines its value for the players. We assume that, conditional on knowing
the true quality, the players would always like to trade. Our designer is interested in
money and values the object at zero irrespective of the quality.

At the outset, neither the players nor the mechanism designer have any informa-

tion about the object’s quality beyond a commonly known prior. In the beginning,



the mechanism designer commits to a mechanism which consists of messages to be
sent by the players later and the allocation and payment functions defined on the
messages. Once the mechanism designer has selected a mechanism, the players si-
multaneously generate signals to acquire more information about the quality of the
object. To model the information acquisition process, we assume that there is a
probability space of fundamental states of nature and that every random variable in
the model is a measurable mapping form the sample space of fundamental states to
another measurable space (e.g. the object’s quality is a random variable that maps
the fundamental states to the space of possible qualities). Before the game starts,
nature draws a fundamental state but nobody observes it. A player’s signal is a pair
consisting of a finite space of possible signal realizations and a random variable that
maps the fundamental states to the signal realizations. The signals generated by the
players are costly. The cost of a signal is proportional to the expected reduction of
entropy achieved by the player generating the signal (i.e. as in rational inattention,
see Sims (2003) and Matejka and McKay (2015)). Information acquisition is thus
costly but flexible, allowing for arbitrary correlations across signals and the object’s
quality. It is also hidden as neither player observes the signal chosen by the other
player and the intermediary does not observe the signal chosen by either player.
After the players have chosen their signals, they privately observe the signal re-
alization corresponding to the fundamental state chosen by nature. Having observed
their signal realization, they select a message to report to the designer who then an-
nounces the allocations and payments. The quality of the object corresponding to
the fundamental state is then revealed and the players’ payoffs are determined. The
players are interested in maximizing their payoffs net of information acquisition costs.
We consider Nash equilibria in pure strategies' of the resulting mechanisms and,
in the case of multiplicity, select an equilibrium that maximizes the mechanism de-
signer’s revenue. One might wonder whether choosing an equilibrium concept that
takes into account the dynamic nature of our environment (e.g. perfect Bayesian
equilibrium) would change our results, but, fortunately, it is not the case. Intuitively,

since players only observe their own signal realizations, they obtain no information on

"'Whether the restriction to pure strategies is without loss of generality or not is an open problem

that appears to be non-trivial. Appendix D discusses this issue in more detail.



the signal chosen by the other player. Hence, an off-equilibrium information set can
only be achieved following a player’s own deviation, which makes sure that every Nash
equilibrium has an outcome-equivalent perfect Bayesian equilibrium (Proposition 2
proven in Appendix C formalizes this argument).

We establish a revelation principle (Proposition 1), which allows us to restrict
attention to truthful-revelation equilibria of direct mechanisms. Direct mechanisms
ask the players to report one of the signal realizations from the support of their
equilibrium signal. Signals chosen by the players induce a joint distribution over
object’s qualities and signal realizations (an information structure) whose marginal
on the set of qualities is equal to the prior. Moreover, we notice that any such
information structure can be induced by a pair of signals (see Lemmas 1 and 2, which
directly follow form Theorem 1 in Yang (2020)). This equivalence of signals and
information structures allows us to state our implementability conditions in terms of
information structures, which considerably simplifies the problem.

Simplifying the problem further, we show that we can consider a restricted class of
deviations for each player without loss of generality (Lemma 4). Intuitively, if along
the equilibrium path of a truthful-revelation Nash equilibrium a player has n signal
realizations, then he only has n + 1 available reporting deviations: he can choose to
report a different signal realization or abstain from participation altogether. With
only n + 1 available actions the player would never want to deviate to an alternative
signal with more than n + 1 signal realizations since additional information would be
learned but essentially wasted otherwise. Thus, when we want to check if a particular
information structure with a given number of signal realizations can be induced in a
truthful-revelation Nash equilibrium of a direct mechanism, it is enough to consider
information structures which have one additional signal realization for each player.

Considering this restricted class of deviations, we derive implementability condi-
tions. In order to show that a given information structure paired with truthful report-
ing is implementable, we divide the restricted class of deviations into two subclasses.
In the first subclass, we consider deviation-induced information structures that pre-
serve the set of signal realizations for each player. To show that the deviations in
the first subclass are unprofitable, we solve a finite-dimensional payoff-maximization

problem for each player, where the maximum is taken over information structures
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which preserve the set of signal realizations for that player. In the second subclass,
we consider deviation-induced information structures augmented with an additional
signal realization. We explicitly solve for the best deviation in this class (Lemma
6) and derive an unprofitability condition. Combining the unprofitability conditions
from the two subclasses, we obtain our implementability conditions (Proposition 3).

We then turn to our application and consider the problem of an intermediary
who seeks to implement allocationally efficient trade while simulataneously maximiz-
ing her own revenue (or, equivalently, minimizing the subsidy required to implement
allocationally efficient trade). To simplify our analysis, we assume that the set of
qualities is binary. One might think that, to maximize revenue, the intermediary
must incentivize the players to learn uncorrelated information, as it would require
a smaller subsidy for a larger amount of acquired information. The intermediary
is however restricted by the players’ incentive compatibilty constraints as the play-
ers might prefer to strategically acquire more correlated information. Surprisingly,
Lemma 7 shows that incentive compatibility forces the intermediary to pay for infor-
mation acquisition twice: allocationally efficient trade is implementable only if the
players acquire perfectly correlated information. To maximize revenue among mecha-
nisms with perfectly correlated information acquisition, we adapt the concavification
approach commonly used to solve Bayesian persuasion problems (see Kamenica and
Gentzkow (2011)) to our setting. Proposition 4 uses a concavification argument to
derive optimality conditions for the distribution of posteriors that is induced by the
revenue-maximizing mechanism. As we show in Subsection 4.3, this distribution of
posteriors (and thus a full characterization of the revenue-maximizing mechanism)

can be obtained in closed form under certain symmetry conditions.

1.1 Related literature

The literature on information acquisition in mechanism design goes back to Berge-
mann and Valiméaki (2002) who study efficient implementation in transferable envi-
ronments with exogenously restricted information acquisition. They show that the
VCG mechanism achieves both ez ante and ex post efficiency if agents have private val-

ues, but not necessarily when they have common values. Bikhchandani (2010) points



out that the full surplus extraction mechanism of Crémer and McLean (1988) may
not be robust to information acquisition because agents presented with a Crémer-
McLean lottery may have incentives to acquire additional information about their
competitors’ valuations. Bikhchandani and Obara (2017) study a mechanism design
problem, in which (similarly to our paper) agents can acquire costly signals about
a payoff-relevant state of nature. The space of signals available to each agent is,
however, exogenously restricted. Bikhchandani and Obara (2017) provide conditions
under which full surplus extraction is possible in their setting.

More recently, some consideration has been given to flexible information acquisi-
tion. In a paper closely related to ours, Mensch (2022) solves for a revenue-maximizing
auction among buyers who, like the players in our paper, can acquire costly and hid-
den information about the value of an object sold in an auction. The cost of infor-
mation acquisition belongs to the posterior-separable class, which contains, among
others, the entropy cost we use in our paper. Unlike in our paper, however, the
agents in Mensch (2022) have private values and are exogenously restricted to ac-
quire information about their own values. Terstiege and Wasser (2022) solve for a
revenue-maximizing auction with private values and flexible information acquisition
but assume that information acquistion is costless and public. In their environment,
the bidders’ choice of signals is publicly revealed before the bidders privately observe
a signal realization. Having observed the signals chosen by the bidders, the seller
proposes a mechanism to maximize her revenue. Gleyze and Pernoud (2023) study a
mechanism design problem with costly flexible information acquisition, transferable
utility, and private values but allow the agents to acquire information both on their
own preferences and the preferences of the other agents. Gleyze and Pernoud (2023)
are interested in informationally simple mechanisms, i.e. those in which the agents
have no incentive to acquire information about anyone’s preferences but their own.

In our paper, the players choose an information structure to maximize their own
payoffs, hence their choice may not necessarily be desirable from the designer’s per-
spective. This feature of our model makes our paper somewhat close to the literature
on “adverse” choice of information structures. Yamashita (2018) studies a private-
value auction, in which for any mechanism proposed by the seller, nature chooses an

information structure that minimizes the seller’s revenue. Bergemann et al. (2017)
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and Brooks and Du (2021) study analogous models of common-value auctions. Roesler
and Szentes (2017) study a bilateral trade model, in which the buyer can acquire
costless information about the good’s value and the seller sets revenue-maximizing
take-it-or-leave-it price in response. Ravid et al. (2022) consider the same setting as
Roesler and Szentes (2017) but make the buyer’s information acquisition costly.

We model information acquisition by giving the players access to a large space of
signals which partition an underlying set of fundamental states. This way of modeling
signals is introduced by Green and Stokey (1978) and is also used by Gentzkow and

Kamenica (2017) in the context of Bayesian persuasion with multiple senders.

2 Model

2.1 Setup

An indivisible good, whose quality v is drawn from a finite set of payoff-relevant
states of the world V', can be traded between two players: a seller and a buyer. The
buyer’s valuation for the good of quality v € V' is given by u’(v), the seller’s valuation
for the good of quality v € V' is given by u*(v). We assume that gains from trade
always exist, i.e. u’(v) > w'(v) for any v. To model information acquisition, we
assume that there is a set of fundamental states of the world z € X = [0, 1] with
an associated Borel g-algebra F and the uniform measure P, and a random variable
V : X — V. At the beginning of the game, this structure is commonly known. V
induces a common prior p, on the set of qualities such that the probability of quality
being equal to v is p,(v) = fol 1v(y=oydx. We assume that p, has full support on V.

The players can acquire costly information about the good’s quality by generating
signals. We assume that each player p has access to a countably infinite set of possible
signal realizations. Since the labels of signal realizations do not have any particular
meaning in our setup, we assume that the set of signal realizations is the set of all
natural numbers N = {1,2,3,...}. We use & (N) to denote the collection of all finite
non-empty subsets of N. A signal is a pair o” = (S’P, S”), where S5? € L@(N) and
S? is a random variable that maps fundamental states to signal realizations in S*,
ie. S? : X — S?. If the fundamental state is x, then player p observes the signal

realization s» = S?(x). We use X* to denote the set of all signals for player p. Signals



are costly, the cost of a signal 7, denoted by C(¢?), is proportional to the reduction
in entropy achieved by that signal. We introduce the cost function formally below.
The players maximize their utilities net of information acquisition costs.

There is a mechanism designer who intermediates trade between the seller and
the buyer. The designer commits to a mechanism at the ex ante stage. A mechanism
is a tuple (M, q, t), where M = M" x M* with M” being a finite set of messages sent
by player p to the mechanism designer. ¢ is a tuple of allocation functions (q”, qs),
where ¢* : M — [0, 1] determines the allocation for player p. t is a tuple of payment
functions (tb, ts), where t* : M — R is a payment made by the buyer to the mechanism
designer, and t* : M — R is a payment made by the mechanism designer to the seller.
The mechanism designer is interested in maximizing her revenue.

To summarize, the timing of the interaction is as follows:

1. Nature draws x € X uniformly, but nobody observes it.

2. The mechanism designer commits to a mechanism (M ,q, t).

3. Each player p privately chooses 0% = (S” , S”).

4. Each player p privately observes s* = S?(z).

5. Each player privately sends m? € M* to the mechanism designer.

6. Allocations and transfers are determined according to (g, t).

The buyer gets ¢°(m)u’(v) — t*(m) — C(c®), the seller gets t*(m) — ¢*(m)u*(v) —
C(0°), and the designer gets t*(m) — t*(m), where v = V(z) and m = (m’, m*).

We choose Nash equilibrium in pure strategies as our solution concept but this
choice has little effect on our analysis as we show in Proposition 2 that any Nash
equilibrium has an outcome-equivalent perfect Bayesian equilibrium (whether the
restriction to pure strategies leads to loss of generality or not is an open problem;
we elaborate on this issue in Appendix D). If there are multiple Nash equilibria, we
select one that maximizes the mechanism designer’s revenue. Naturally, we assume
that the mechanism designer is restricted to choose mechanisms that satisfy physical
feasibility, i.e. 0 < ¢*(m) < ¢*(m) < 1 for any m € M, and allow for voluntary
participation both ex ante and at the interim stage, i.e. we assume that there exists
a message m, € M» for any player p, such that ¢*(my, m=") = t*(m,,m"*) = 0 for

any message m~* € M7 sent by by the other player.



2.2 Information structures

A signal o” chosen by player p induces a joint distribution on S? x V. We use
a? to denote this joint distribution and write a?(s?;v) for the probability of player
p observing the signal realization s? and the state of the world being v. When we
want to emphasize the dependence of o on o”, we write a?[o”]. A pair of signals
(ab, as) induces a joint distribution on S® x S* x V. We use «a to denote this joint
distribution, and use a(s”, s*;v) to denote the joint probability of the buyer observing
the signal realization s°, the seller observing the signal realization s*, and state of the
world being v. When we want to emphasize the dependence of a on (ob , 0‘“), we write
afo’,0°]. Clearly, we have marg,, ,« = af for any player p. In what follows, we
refer to a as information structure. Following Kamenica and Gentzkow (2011), we

introduce the following definition:
Definition 1 (Bayes-plausibility). « is Bayes-plausible if marg, o = p,.

Any information structure induced by a pair of signals must be Bayes-plausible.

The following lemma shows that the converse is also true:
Lemma 1. For any Bayes-plausible o there exists a profile of signals that induces it.

Now suppose that player p deviates to an alternative signal ¢?. Which alter-
native information structures & can this deviation induce? Clearly, we must have
marg, ,. ., & = marg., ., «, i.e. a deviation by player p cannot change the joint
distribution of player —p’s signal realizations and states of the world. The following

lemma shows that the converse is also true:

Lemma 2. Fiz a signal profile (crp,a*p) and the associated information structure
a. Consider any joint distribution & on S” x S~ x V such that marg,_, , & =

marg, ,. ., «. There exists o7 € X7 such that (6”,0”’) induces .

Lemmas 1 and 2 both follow immediately from Theorem 1 in Yang (2020), hence
their proofs are omitted. Lemmas 1 and 2 will allow us to rewrite the mechanism
designer’s problem in terms of information structures, and thus avoid having to ex-
plicitly model players’ signal choices. We return to this issue below in Subsection 2.4

after we discuss the cost of information acquisition.



2.3 Cost of information acquisition

Consider a signal o” chosen by player p and the distribution a?[o”] induced by
that signal. Having chosen ¢”, player p observes signal realization s” with probability
Tlo"](s”) = Y, alo?](s7;v). If 7[o”](s”) > 0, then the signal realization s” induces
a posterior distribution over states of the world p*[o”](s”). The posterior probability

aP[o?](sP3v)

of state v is p’[o?](s?;v) = === The cost of signal o” is proportional to the

TloP)(sP)

expected reduction in entropy achieved by a?[o”]:
C(0") = c(a’lo”]) = X(H(uo) - > T[U”](S”)H(M”[U”](S”))>7
57| r[o?)(s7) >0

where H () = — >, p(v)log (11(v)) with the standard convention 0log0 = 0.

In what follows, we normalize y to 1. Whenever we consider a pair of signals
(a”, 0*”) inducing a joint distribution «, we find it convenient to work with a cost
function defined directly on information structures as follows: ¢’(a) = ¢(marg,, , , ).
Clearly, we have C(0?) = ¢*(afo”,077]) for each player p. The following lemma, whose

proof is relegated to Appendix A, will be helpful later in our analysis:

Lemma 3. ¢*(«) is convex in « for any player p € {b, s}.

2.4 Strategies, equilibria, and direct mechanisms

Consider a mechanism (M . q, t). A strategy is a tuple (07’, {mp [6]”]} ), where

GPEXP

o? is a signal chosen by player p on path, and {m” [&p]} is a family of reporting

spesp
functions, one for each 67 € ¥*, mapping signal realizations from &7 to the mecha-
nism’s messages, i.e. m?[67] : 5* — M for each 6» € ¥*. As player p chooses o at
the information acquisition stage, his on-path reports are given by m?[o*], i.e. when
player p observes a signal realization s* € S”, then he sends the message m”[o”](s”).
In what follows, we omit the dependence of the on-path reports on ¢” and simply
write m?(s”) for the message sent by player p who has observed s?.

We focus our attention on direct mechanisms. In a direct mechanism, each player
p chooses a signal o? = (S?,S?), and the mechanism designer asks the players to
report their signal realizations or send the abstention message, thus M» = S* U {m,}

for each player p. Let a be the information structure induced by a pair of signals

(ab,as) and let m? be the truthful reporting function for player p, i.e. for any
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s? € S we have m?%(s?) = s*, and consider truthful-revelation Nash equilibria in
direct mechanisms. Using Lemmas 1 and 2, we can write the truthful-revelation
Nash equilibrium conditions in a direct mechanism in terms of & and m?. o and m?,
can arise in a truthful-revelation Nash equilibrium of a direct mechanism if and only

if @ Bayes-plausible (BP) and

e They are ex ante incentive compatible for the buyer?:

(1Ch) (S o, mY) € argmax Z Z Z a(s’, 5% ) (¢"(m°(s?), s*)ul(v) — t*(m°(s%), s*)) — (@),

a,5b,m? sbe Qb s€SsveV
st (1) S'e 2(N), aeA(S* xS x V), m’: 5" = S U{my};

(2) marggs & = marggs Q.

e They are ex ante incentive compatible for the seller?:

(ICX) (8%, @, m7) € argmax Z Z Z a(s®, %) (ts(sb,rhs(ss)) - qs(sb,rhs(ss))ub(v)) — (&),

@5% M gbegh o GsvEV
st (1) S*e 2(N), aeA(S"xS* x V), m*:S° - 5 U{myh

(2) marggs & = marggn Q.
We now show that our focus on direct mechanisms is without loss of generality:

Proposition 1 (Revelation principle). For any Nash equilibrium of an indirect
mechanism there exists an outcome-equivalent truthful-revelation Nash equilibrium of

a direct mechanism.

The proof of the Revelation principle is relegated to Appendix B.
One could argue that we should have chosen perfect Bayesian equilibrium as our
solution concept since our environment has dynamic structure. The following propo-

sition shows that the two equilibrium concepts are outcome-equivalent in our setting.

Proposition 2. Fvery truthful-revelation Nash equilibrium of a direct mechanism has

an outcome-equivalent perfect Bayesian equilibrium in this direct mechanism.

20bserve that this formulation of ez ante incentive compatibility takes care of ez ante individual
rationality as well. Consider e.g. a deviation for the buyer (5%, @, m?), where S* = {1}, a(1, s*;v) =
S vese a(s?, s%5v), and m®(1) = my. Observe that margg., & = margg.,a The payoff from
this deviation is Y . cq. >y @(1,5%50)0 — (@) = —c(a). Bayes-plausibility implies a’(1,v) =
S aeege @(1,5%v) = po(v), hence (&) = H(uo) — H(po) = 0. By ex ante incentive compatibility

we have: o Doseegs Doper A% 5% 0) (¢ (s, 5% ub (v) — t¥(s°, s%)) — cP(a) > 0.
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The proof of Proposition 2 (presented in Appendix C) is somewhat tedious but
the intuition is straightforward. Since the players’ signals are chosen simultaneously,
player p has no information about the signal chosen by player —p. Moreover, the
information that player p gets at the signal realization stage does not reveal any
information about the signal chosen by player —p either, hence a player can achieve
an off-equilbrium information set only by deviating to a different signal himself. Then,
if truthful reporting along the equilibrium path is not sequentially rational, it will not
be optimal from the ez ante perspective either. In other words, if a player suddenly
finds it profitable to misreport after observing a signal realization s?, then he must
have contingently planned to misreport following s? from the start, but then of course

truthful revelation could not have been a Nash equilibrium in the first place.

3 Implementability

The above ex ante incentive compatibility constraints are rather complicated.
They prevent players from deviating to a possibly different information structure and
misreporting their signal realizations at the same time. The class of such deviations
is extremely large. In this section, we show that it is without loss of generality to

consider a much smaller class of ex ante deviations.

3.1 Restricted ex ante deviations

We first show that it is without loss of generality to restrict attention to those
ex ante deviations, in which a player augments his information structure with an
additional signal realization sj and chooses a new joint distribution on the augmented
signal realization space. The player abstains from participation after observing s;
and reports truthfully otherwise. This idea is captured by restricted ex ante incentive
compatibility constraints.

e The restricted ex ante incentive compatibility constraint for the buyer is:

(R-ICY) (S% ) € ar%r;ax Z Z Z a(s’, s%0)(¢"(s", s°)u' (v) — t°(s", s°)) — (@),

sbeSb sseSs veVv
st (1) S"=S5"U{s}}, a€A(S" xS xV);

(2) marg,. ,& = marg,, , Q.
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e The restricted ex ante incentive compatibility constraint for the seller is:

(R-IC3) (S°,a) € argr;ax Z Z Z a(s’, s v) (t°(s",5°) — ¢° (s, 5" )u’ (v)) — (@),

sbesSb sseSs veVv
st (1) S*=S5"U{s;}, a€A(S" xS xV);

(2) marge,, @ = marg,, .

The following lemma, whose proof is relegated to Appendix E, establishes that

restricted ex ante incentive compatibility implies ex ante incentive compatibility.
Lemma 4. R-IC, = IC% for both players p € {b, s}.

The argument at the core of Lemma 4’s proof is straightforward. In any direct
mechanism, a player, whose on-path signal has n possible signal realizations, can
choose between n+ 1 possible actions: this player can report one of the signal realiza-
tions (possibly misreporting) or abstain from participation altogether. Suppose this
player has a profitable unrestricted ex ante deviation, i.e. there is a pair consisting
of an information structure and a reporting function that gives this player a strictly
larger expected payoff. If the information structure in this unrestricted deviation has
more than n + 1 signal realizations, than at least two signal realizations will lead to
the same action. If we scramble all signal realizations leading to the same action, we
will obtain an information structure with a one-to-one mapping between signal real-
izations and actions. Since the labels of signal realizations do not have any specific
meaning, we can always relabel them to ensure that those that do not lead to an
abstention are reported truthfully. In that way, we can construct a restricted ex ante
deviation whose information structure is less informative in the Blackwell sense and
is therefore less costly. Since the rest of the payoff is exactly the same, the restricted
ex ante deviation is even more profitable than the unrestricted one.

Suppose now that the mechanism designer hopes that a particular information
structure a € A(Sb X 5% X V) will be induced in the truthful-revelation Nash equi-
librium of her direct mechanism ((S* U {m,}) x (S* U {my}),q,t). If |S’| = I and
|S*| = J, then « is essentially a collection of I x J matrices, one for each state (we
adopt the convention that the buyer is the row player and the seller is the column

player). From now on, let us use «;;(v) to denote the joint probability of the buyer
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observing the signal realization s} and the seller observing the signal realization s¢ in
state v (we will also use ¢?, and #?; to denote the respective allocation and transfer of
player p). We also denote p(v) the posterior probability of state v as evaluated by
the buyer who receives the signal realization s?, and y(v) the posterior probability
of state v as evaluated by the seller who receives the signal realization s:.

Lemma 4 shows that to make sure that her desired o will indeed be induced,
the mechanism designer should only check whether (R-IC;) and (R-IC;) constraints
are satisfied, i.e. should only check deviations that augment o by not more than one
signal realization. To analyze these deviations, we find it useful to split them into two
classes. The first class of deviations consists of possibly different joint distributions
over the same signal realizations while the deviations in the second class augment
the set of the signal realizations by exactly one realization. The usefulness of this
approach will become clear by the end of this section. Let us deal with the first class

of the restricted ez ante deviations first.

3.1.1 Class 1 of restricted ex ante deviations

e Class 1-deviations are unprofitable for the buyer as long as « satisfies:

(R-IC-1) € argmaxz Z Z a; (v) (g (v) —t8) — (@), s.t.

(1) ae A(S" x S x V);

(2) marg,. ,& = marg. .

e Class 1-deviations are unprofitable for the seller as long as « satisfies:

(R-IC-1)  « EargmaxZZZa” ) (&, — g u(v) — (@), s.t.

i=1 j=1 veV
(1) ae A(S" x 8 x V);

(2) margg,,, & = margg,, ., .

Notice that (R-IC-1) and (R-IC;-1) are finite dimensional maximization prob-
lems with concave objectives and affine constraints. Moreover, observe that a Bayes-
plausible information structure that allows a player to put a posterior probability of

zero on any of the states of the world can never be a solution to the maximization
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problems in (R-IC}-1) and (R-IC}-1). This is due to the properties of the entropy
cost function, which makes sure that marginal costs of information acquisition go to
infinity as soon as any of the posteriors approaches zero. The following lemma, whose

proof is relegated to Appendix F, establishes the claim formally:

Lemma 5 (Strictly positive posteriors). Suppose « is Bayes-plausible, and sat-
isfies (R-IC%-1) for both players p € {b,s}, then for any v € V and for any s’ € S

we have pi(v) > 0, likewise for any v € V and for any s: € S°* we have p3(v) > 0.

Lemma 5 makes sure that the objective functions in (R-IC’-1) and (R-IC-1) are
differentiable at any optimum, hence all deviations in the first class are unprofitable

iff o satisfies the Karush-Kuhn-Tucker optimality conditions in both problems.

3.1.2 Class 2 of restricted ex ante deviations

e (Class 2-deviations are unprofitable for the buyer as long as « satisfies:

1
(R-ICh-2 ZZZ% (aju’(v) = t3;) = () 2

Z di]( )(qz] ( ) - tf]) - Cb(&)7
i=1 j=1veV 7 j
for all & such that:

(1) &€ A(SP x §* x V), where S® = S® U {s} }and 3s7 € 8%, v € V s.t. agj(v) > 0;
(2) marggs, & = margg. Q.
e Class 2-deviations are unprofitable for the seller as long as « satisfies:

(R-IC-2) ZZ Z aij(v)(tfj - q‘fjus(v)) —c’(a) > ZZ Z dij(v)(tfj - quus(v)) — (@)

i=1 j=1veEV i=1 j=1veV

for all & such that:
(1) aeA(S®x 5% x V'), where 5% =8*U{s;} and 3s? € S*,v € V s.t. a;p(v) > 0;

(2) margge, & = marggs, Q.

The usefulness of splitting the deviations into these two classes is illustrated by the
next lemma, which shows that if « satisfies (R-IC’-1) and (R-IC’-1), then (R-IC’-2)
and (R-IC}-2) can be considerably simplified.

Lemma 6. Suppose « satisfies R-1C%-1 for both players p € {b, s}, then
o « satisfies R-IC}-2 if and only if 3, exp ( — yb(v)) <1, where

)= min {e) -t~ 1os (0)

(4,9) e (v)>0
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e a satisfies R-1C-2 if and only if Y _, exp ( — ys(v)) <1, where

y*(v) = min {tfj—quus(v)—log (,uj(v))}.

(4,5) i (v)>0

The full proof of Lemma 6 is relegated to Appendix G, but we illustrate the
main ideas of the proof below using a simple example with two states and two signal
realizations for each player. Suppose there are indeed two payoff-relevant states of
the world, i.e. V = {v,7}, and we would like to find out whether the following
information structure (denoted o) satisfies (R-IC’-2) for a given mechanism assuming

that it satisfies (R-IC',-1) for the same mechanism.

State v ‘ s 85 State v ‘ s s5
b b — —
S1 Q11 Qg2 S1 allp o12
b b — —
S3 Qo1 Qoo S9 Qg1 Q22

Let us suppose that it does not actually satisfy the constraint (R-IC’-2), then
we must be able to find a profitable deviation, which induces a different information
structure, which transfers some probability mass from the existing signal realizations
to s;, after which the buyer abstains. For some € > 0 we can write down the infor-

mation structure induced by this deviation as follows:

State v s§ 55 State v s§ 55
s ap —€f), ap—€f, s @ — By i — By
s Qg — €8, apy —€f,, s Qo1 — By A2z — €fay
*lé € Z?:l ﬁ“ € E?:l j)u *5 € Z?:l B e Z?,:l Bi

We denote the gain from this deviation G, (¢f). By assumption, G,(¢f) > 0 for
some € > (0. First of all, we notice that the payoff function of the buyer is concave and
hence for any global profitable deviation there is a local deviation with a marginal
gain MG,(3) = lim._, :G,(ef) that is also strictly positive. Moreover, once we
consider local deviations, we can without loss of generality take all 3;;’s to be weakly
positive because, locally, any direction of improvement of @ can be represented as a
linear combination of a direction that is feasible in (R-IC’,-1) and another direction,
in which all 3,,’s are weakly positive. Since a solves (R-IC’-1) by assumption, any

improvement must come from the second component of this linear combination.
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Calculating the marginal gain MG, (8), we obtain:

Z Z ( q”u tfj - IOg (N?(g))} + Bij [quub(ﬁ) - tfj - IOg (Nf(an})

=1 j=1

B\ _ e
_{Ebg<@+§)+3k%(§+ﬁ>}

where B =" ijl ﬁij and B=Y" ijl B,

Since all ,;’s are weakly positive, we can obtain a better direction of payoff

improvement, whose marginal gain will be equal to:

> 0.

—By'(v) — By'(v) — [ﬁ log ( o

B _ B
— 1
B §>+3%<§+§>

—Py'(v) — (1 = P)y*(v) — Plog (P) — (1 — P)log (1 — P) > 0.

Defining P = %, we can write

Maximizing over P, we can identify an even better direction of improvement:

P

max{ — Py(v) — (1 = P)y(v) — Plog (P) — (1 — P)log (1 — P)‘P € [0, 1]} >0
& exp (—¢'() +exp (—y'(0) > 1,

which establishes the “if” direction of our special case of Lemma 6 by contrapositive.
To see why the “only if” direction also holds, observe that if exp ( —y° (y)) + exp ( —
yb(i)) > 1, then we can construct a profitable local Class 2-deviation by taking away
some probability mass from those (,j) in each state v, for which ¢} u’(v) — ¢! —

log (ub(v)) is minimal, and putting this probability mass on sj.

3.2 Implementability conditions

Combining the Karush-Kuhn-Tucker optimality conditions from the maximization
problems in (R-IC-1) and (R-IC;-1) with the optimality conditions from Lemma 6,

we obtain our main implementability result:

Proposition 3 (Implementability conditions). The tuple (o, S*, S*) satisfies re-
stricted ex ante incentive compatibility R-1C% for both players p € {b, s} if and only
if there are multipliers \(v), \(v) for all i and j respectively, and ¢! (v), ¢;,(v) for
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all pairs (i,7) such that the following conditions are satisfied:

g u'(v) =t —log (k(v)) — Xo(v) + ¢!, (v) =0 Y(i,j), veEV;
(15 (v))

)
)t = qyut(v) = log (5(v) = Ai(v) + ¢7,(v) = 0 V(i j), veV;
(DF)  ¢,(v) =0, ¢,(v) = 0 V(i j), veV;

)y (0)gy(v) =0, @y, (V)¢ (v) =0 Y(i, ), veV;

) )

Z exp (— mjin{)\;(v)} <1, Z exp (— miin{)\j(v)}) <L

vev vev
Proof. (ST’) and (ST*) are stationarity conditions in (R-IC’-1) and (R-1C’-1) respec-
tively. (DF) are dual feasibility conditions, which make sure that the multipliers on
non-negativity constraints on joint probabilities are themselves non-negative. (CS)
are complementary slackness conditions. To obtain (NA"), recall from Lemma 6 that
if (R-IC-1) is satisfied, (R-IC}-2) is equivalent to:

Sew (= min o) - -toe () }) <1

(4,5) iz (v)>0

which, combined with (ST"), is equivalent to Y. _, exp ( — ming ., wso {A}(v) +
¢'(v)}) < 1. (DF’) and (CS") together imply that ¢ (v) = 0 whenever a;(v) > 0,
which means that Y _ exp ((— ming a,,w=0 {A?(v)}) < 1. Lemma 5 says that all
the seller’s posteriors must be strictly positive, which means that in every column j
there is at least one strictly positive a;(v) in every state v. We can therefore simply
minimize over columns instead, hence > _ exp (—min; {\}(v)}) < 1. (NA") can be

obtained using a similar argument. O

4 Application: revenue maximization among efficient mechanisms

We now turn to our application and consider the problem of maximizing revenue
for a mechanism designer who is interested in allocational efficiency. We assume that
the state of the world is binary, i.e. V' = {v,7}. We will refer to v as the low state,
and to U as the high state. To ease notation, we will use underlined letters to denote
the respective state-v variables and parameters, and overlined letters to denote the

respective state-v variables and parameters. We make the following assumption:

Assumption 1 (Parameter values). u” < @ for both p € {b, s}.
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Assumption 1 imposes a common interpretation of the states on the players. The
opposite case could be solved just as easily using our method, but is less natural,
and hence omitted. Since we also assume that there are gains from trade in both
states, the designer must always allocate the good to the buyer to achieve allocational
efficiency. We allow the designer to implement information structures of arbitrary
dimensionality. More precisely, the designer could choose any a on S* x S* x V|
where S* = {1,...,1} and S* = {1,...,J} for any I, J. The implementability

conditions for all pairs (7, ) can then be written as:

(ST;) ' —t, —log () = A7+ ¢} =0, (ST}) t;,—w —log (1) = A/ + ¢ =0,

—ij j —ij

@ — ), —log () = X, + &, = 0; t, = —log (7)) = X, + &, = 0;
b b - . S S s .
(DFij) ?ij 2 O’ ¢ij Z Oa (DF”) ?ij Z 07 ¢ij 2 07
(CSIZJ> gij?fj = aijafj = 0; (Csfj) gijgb%- = aijajj = O;

(NA") exp(—A") +exp(— Kb) <1, (NA®) exp(—A")+exp(—A") <1,
A’ =min{)’}, N = mm{X:} A° =min{)\’}, A" =min{}\}.

The mechanism designer solves:

I J
sup Z Z (o, +005) (88, — ¢5), s.t.

o, I, J;t;¢,A =1 j=1

(a-F)  S"={1,....1}, & ={1,...,J}, a € A(S"x 5 x V), BP, i, € (0,1);
(Imp) ST, ST*,DF’, DF*, CS’, CS*, NA’, NA®.

4.1 Perfect correlation of signal realizations

We start by establishing that it is without loss of generality to focus our attention

on information structures that feature perfect correlation of signal realizations:

Lemma 7 (Perfect correlation of signal realizations). If (a, I, J;t; ¢, \) satisfies
the implementability conditions and « is Bayes-plausible, there is (o', I', J';t'; ¢, \')
where o is Bayes-plausible, I' = J', and o/,; = o';; = 0 for alli # j, which also satis-

fies the implementability conditions and achieves the same revenue as («, I, J;t; ¢, A).

Proof sketch. The complete proof is in Appendix H. Observe that the signal real-
izations can be ordered according to their posteriors without loss of generality, i.e.

> >@ and @ > -+ - > 5. We establish the following claims:
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Claim 1. For all j € S° there exists Z*(j) C S® such that
1. a,; =0 for all i > maxT*(j) = i(9),
2. a,; =0 for alli <minZ*(j) =i"(j).

Moreover, for anyi,i' € T*(j) we get i, = ..

*

1. o, =0 for all j > max J*(i) = j (i),
2. a; =0 for all j <min J*(i) = j*(i).

Claim 2. For all i € S* there exists J*(i) C S* such that
?

Moreover, for any j,j € J*(i) we get =1,
Claims 1 and 2 have analogous proofs, thus we only sketch the proof of Claim 1.
Proof sketch of Claim 1. Fix j € S°. Set i (j) = max{i|a,, > 0}, and define Z*(j) =

{i

that @,; > 0. Note that f; > fi;. ,, since fi; >

i, = Jii-;,} and 37 (j) = minZ*(j). Suppose for a contradiction that 3i < i*(j) such

—b

i Dy the ordering assumption and

i ¢ Z*(j). The combination of (ST},) and (ST}, ) then implies 7zl , > i, which is

the desired contradiction. O

We proceed further in the inductive manner. We introduce the following sets:
L = {ilm =m), 7 = {jlg;, = w3}, and Z, = {(i|7°() = 4}, 7 = (§|T°() = L.}
and show that Z, and 7, are non-empty. We then establish the base case:

Claim 3 (Base case of the induction).
1. Foralli € I, and j ¢ J, we have a,, =a,; =0.
2. For alli ¢ 7, and j € J, we have a,; =a;=0.

Proof sketch of Claim 3. Suppose @ ¢ I, = {i|J*(i) = J;}, then J*(i') # J,. We
must have min 7*(¢/) > max J,. Claim 2 then implies that @,, = 0 for all j € J,.
Recall that 1 € 7, and the posteriors of all signal realizations in J, are the same, hence

7, is equal to the weighted average of the posteriors of signal realizations from J,. It
Yjeq 2ici, %ii
Yied Sier, @igtag)’

now i’ € I,, i.e. J*(i') = J,. Claim 2 implies that a,, =0 forall j¢ T, = T ().

can be shown that this weighted average does not exceed Suppose

By the ordering assumption, 7% is higher than the weighted average of the posteriors

of signal realizations from Z,. This weighted average can then be shown to exceed
Zieil Zjejl Fij
Zz‘eil Zjejl (@ijtai;)’

implying 7; < 7. A similar argument, but for J, and Z,, leads to
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Yied Liet, Fis

< 7, implying 7* < 7%, hence i = i*, which implies Z, = Z,

—b
s Yied Liez, @ijtag;)
and J, = J,. Claim 1 then implies that a,, =0 for all i ¢ 7, and j € J,. Likewise,

Claim 2 then implies that o, = 0 for all ¢ € 7, and J ¢ J,. To establish the claim for
@, let ' ¢ J,. Since J, = J,, we have j' ¢ J, = {j|T°(j) = L.}, i.e. T°(j') # I,. We

then have minZ*(j’) > maxZ, and Claim 1 implies @,;, = 0 for all i € Z,. A similar

argument works for any i’ ¢ 7, and J € . O

Since the posteriors of all signal realizations in 7, and J, are the same, we can
merge all signal realizations in 7, and J, into a single signal realization for the buyer
and a single signal realization for the seller respectively. We then show that the
resulting mechanism is implementable and leads to the same revenue. Having shown

that, we formulate our induction hypothesis:

Induction hypothesis 1. There exists k < min{l,J} such that o, = @;; = 0 if

i#jand i < k—1o0rj<k—1). Moreover, i} > --- > [, > -+ > i, and

> > 2

m =}, J = Uil = /), and
(i) = i’k}, and show that Z, = Z, and J, = J,

We then introduce the following sets: Z, = {i
I, = {il7°() = T}, T = {j

by essentially repeating the argument used in the proof of Claim 3 with appropriate

modifications. jk = fk and j}c = jk combined with Induction hypothesis 1 then
implies a,; = @;; = 0 for all 7 € jk and j ¢ jk, and a,; = a,; = 0 for all ¢ ¢ fk and j €
J. We then merge all signal realizations in 7, and J, into a single signal realization
for the buyer and a single signal realization for the seller respectively, and show that

the resulting mechanism is implementable and leads to the same revenue. O]

4.2 Revenue maximization under perfect correlation of signal realizations

We have shown above that it is without loss of generality to restrict attention
to perfectly correlated information structures. From now on, let us maintain that
St = 8" ={1,...,1}, and let A(S* x S* x V) be the collection of such information
structures. If a € A(S" x §* x V), then a,; = a;; = 0 unless © = j. We therefore drop
the double subscripts and write -, to mean -,; for all variables with double subscripts.

Since @, = @, under perfect correlatation, we drop the player superscripts from the

21



posteriors too. The implementability conditions are then as follows:

(ST?) ub—ti’—log( ) =X (ST;) t; —w —log(p) = X,
o -t —log (1) = )\ t:—w —log (1 )—)\
(NA®) exp(—Ab) +exp(—K) <1, (NA") exp (—AY) —|—exp(—Ks) <1,

A’ = min{)\}, A= mln{Xf} A* =min{)\’}, A" =min{}}.

We take a relaxed program approach, and relax implementabilty as follows:

(Rel-ST}) u® — ¢! —log (u ) > A’ (Rel-ST;) & —w* —log (i ) > A,
ﬂ—tf—log(ﬁi)sz; t:—u —log (1 )>K
(NA") exp(—A") +exp(— Kb) <1 (NA®) exp(—A")+exp(—A) <1

The mechanism designer’s relaxed problem can then be written as:

supZa—iroz — ), st

(aF) S'=8"={1,....,1}, a€ A(S"x S*x V), BP, 1, € (0, 1);
(Imp) Rel-ST®, Rel-ST", NA®, NA".

We solve this problem using a concavification approach, similar to the one used in
the Bayesian persuasion literature. Let 7, = a, + @,, and notice that (Rel-ST?)
is equivalent to t* < min {u’ — log(u ) - A w —log(,) — Kb}, and (Rel-ST?) is
equivalent to —¢; < min { —u* — log(p ) — A, —u’ —log(R,) — A’} It is immediately
clear that, written this way, both (Rel-ST?) and (Rel-ST?) are binding at the optimum

for all 7. Define the following function:
T(g,f) = min {gb—log(g)—Ab, U —log —A }+m1n{ u®—log(z)—A%, —ﬂs—log(f)—xs}.

The mechanism designer’s relaxed revenue maximization problem can then be

written as:
I I
— 57 — 77 - 77 . b s
(RM #STHFA{ZTT WoT) | Y T =g, > T =T, T € (0,1); NAY, NA }
i=1 =1

Note that RM could in principle achieve its supremum at a point, in which one
of the posteriors is extreme, i.e. p = 0 or g, = 0 for some ¢, which would not be

implementable by Lemma 5. We show in Appendix J that, at least in the symmetric
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case (to be formally defined below), most such cases can be ruled out. We have
not yet ruled out one solution candidate with extreme posteriors, but we conjecture,
based on numerical computations, that it can be ruled out too (see Appendix J for
details). However, even if it cannot be ruled out, one can still virtually implement
a solution with extreme posteriors by allowing the appropriate off-path punishments
to grow without bound®. In the remainder of this section, we focus on non-extreme
posteriors and assume that RM achieves a maximum on its feasible set. We establish

the following optimality conditions:

Proposition 4 (Optimality conditions). Suppose RM achieves a mazimum, then
we can set [ = 2 w.l.o.q., and moreover the optimal posteriors satisfy

b

(Opt")  w’ —log(p ) — A" =7" —log(m,) — A,

(Opt*) ' +log(p ) + A* = 7w + log(f,) + A

Proof. Suppose A” and A" are optimally chosen for both p € {b, s} and let us maximize
S TiT(Hi’ﬁz‘) subject to BP. Let (u,%,) and (p,7i,) be as defined in (Opt’) and
(Opt®) respectively. It is easy to see that they are uniquely defined. Define f(z) =
T(x,1—x). If p <T,, then

¢
—S

- —2log(l—x)— A — A ifz<p,

—s

f@)=quw —w —log(x) —log(l —z) —A" = A" ifpu <z<pu,

u’ —u —2log(x) — A" — A° ifa:>ﬁ2.

Likewise, if B, < H,, then

¢
—S

- —2log(l—x)— A — A ifz<p,

b

f(@) =m0 —u —log(x) —log(1 —z) = A — A" ifpu <z<pu,

u’ —u —2log(x) — A" — A° fz>p.

3Recall that the main idea behind the proof of Lemma 5 is that the marginal cost of an extreme
posterior is infinite. A player, therefore, would always want to acquire slighgtly less information and
potentially end up with an off-path report profile since the punishment for submitting such an off-
path profile is assumed to be bounded. However, if we allow the respective off-path punishment to
go to infinity (at an appropriately chosen speed of convergence) as the players’ posterior approaches

zero, then an extreme posterior can be “implemented in the limit”, i.e. virtually implemented.
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Consider coc[f](x), the concave closure of f(z). By the standard argument from
Bayesian persuasion, the desired maximum is equal to coc[f](p ). Observe that
—log(1 — z) is strictly increasing and strictly convex in x, —log(z) — log(1 — )
is strictly convex in x, and — log(x) is strictly decreasing and strictly convex in z. It
implies that in either of the two cases the convex hull of the graph of f(z) can have at
most four extreme points: (O, f(O)), (ﬁl’ f(Hl))7 (&,f(/_%)), and (1, f(l)). Moreover
f(x) < coc[f](z) for any x ¢ {0, pu , 1 , 1}, which implies that other posteriors cannot

be optimal. Since both 0 and 1 are infeasible, we are done. O]
The following corollary is immediate:

Corollary 1. If RM achieves a maximum, then its solution is implementable.

Proof. Set ' = A X =K and A=A, o =A. Set X = — £ — log(p,) > A,
)\ =u —tb—log(u2)>A and A} =15 —u’ —log(p ) > A’ X =t —u —log(f,) > A
Clearly, (ST?) and (ST;) are then satisfied for both i € {1,2} = S* = S°. O

The objective in RM weakly decreases in A* and A" for both p € {b, s}, hence
both (NA”) can be assumed to bind. Coupled with Proposition 4, it gives us the

following optimality conditions:

—b

u’ —log(p,) — A" =a" —log(fr,) — A\, u +log(p ) + A" = +log(7,) + A,
exp(—Ab)—l—eXp(—Kb):l. exp(—As)—i-eXp(—Ks):l.

We solve for (A ) for both p and plug the resulting A’s into the objective. Define

, In this case, I = 1, and the designer’s revenue is:

A
A =7" — u® and A* = U’ — v*. BP implies that there are three possible cases.
Case 0: ;1 =p, =

Rase 0 = —log [pe ™ +Jige ™ ] = log [ye™ + Fige™ ]

= —log [HOeAb + Hp] — log [Ho + ﬁoeN] +a’ —

Case 1: By, < pr, < - In this case, I = 2, and the designer’s revenue is:

— — +b S s — — 7Fo s
RCase 1 = T1 [ub —log(i) — A" —u® —log(p,) — A | +72 [ub —log(py) — A" — v’ — log(p,)

_ As]

= log [ﬁlHJ — 71 log m1ﬁl] — 1y log |£2ﬁ2j| — log mle_yb + ﬁle_ﬂb] — log m2eys + H2eﬁs]

= log [fiy 1, — 71 log [p, 11| — 2 log [p,fis] — log MleAb +7] —log [p, + 1 fipe™] + 7 — u'.
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Case 2: o< p < In this case, I = 2, and the designer’s revenue is:

Rease 2 = 71 [u” —log(p,) — A” —7° — log(11y) — N°] + 7 [u’ — log(p,) — A” — * — log(115) — A°].
= log mlﬁﬂ — 711 log Mlﬂl] — 1y log MQEQ] —log mle_yb + ﬁle_ﬂb] —log MQef + ﬂzeﬂs]

= log mlﬁﬂ — 71 log Mlﬁl] — 7o log MQﬁQ] — log mleAb + ﬁl] — log MQ + ﬁgeAS] + 7 — .
We now show that Case 1 can never be optimal:

Proposition 5. For any (u,, u,) € Case 1, there exists (u,, u,) € Case 2 such that

the revenue from (., p.) exceeds the revenue from (py, i,).

Proof. Suppose (uy, i1,) belongs to Case 1, i.e. o< pg < B, and let Re..., be the
corresponding revenue. Let (u, u,) be such that = p, and @ = p . Obviously,
(u:, pt) belongs to Case 2. Bayes-plausibility then implies 7/ = 7, and 7, = 7,. The

revenue at (i), u,) is then given by:

Rase 2 = log Mgﬁl] — 7 log Mlﬁl] — 1o log m2ﬁ2] — log Mf‘ﬂb + ﬁze_ﬂb] — log mlef + ﬁleﬂs}
pe + me‘“”] + log [Mze“s + ™

e + Tipe B + e

= RCase 1+ log :| > RCase 1.

~
>0aspu, > p, &ub > ub >0asp, >p, &u’ >u

4.3 Symmetric revenue maximization problem

We now turn our attention to the symmetric problem, defined as follows:
Definition 2 (Symmetry). RM is symmetric if B, =T, = 0.5 and A= A=A,

Consider first Case 2. Under Definition 2, the Case 2-revenue can be written as

R case » = log (HIEQ) —7, log (Hlﬁl)_TQ log (H2ﬁ2) —log MleA—l—ﬁl] —log [HQ—FEQ(BA} +u"—u’.

Let us rewrite the Case 2-revenue as a function of <Hl’ﬁ2) only

0.5 — 7, 0.5 p -
— 2] 1= ) — ——E5 Jog (7,(1 — i,
—— 0 (11, (1— 1)) —— og (,(1 - )

1 —1

RCase Q(Eluﬂ’z) = 1Og (HIIEQ) -
—log [1 - w,+ Hle“‘] —log [1 =7, + me®] + 0 —w'.
We show that any interior solution to our symmetric problem must be symmetric:
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Lemma 8. Let (p7, i) € argmax, ..c 0.2 Roase 2 (1) [l), then p = i;.
Proof. Follows from strict supermodularity of Rc,.. 2(El,ﬁQ), see Appendix I. ]

Lemma 8 allows us to write down the revenue of a symmetric problem as a function
of p, only:

» —2log [0.5¢* + 0.5] + @ — w, Case 0 (p, = p, = 0.5)
Sym =

log M — log [,Ul] — 2log [HleA + El)] +u" —u’, Case?2 (Hl <p, = 0.5)
Maximizing Rs,., with respect to p, is a basic calculus problem, whose solution can
be obtained in closed form:

_ i, = 0.5 if0 <A <A,
=
9+ 8-22@B_if A > A

1
4 1—exp (A)

where A* ~ 2.366203279542585, and is obtained numerically. The mechanism de-

signer achieves:

—21og [e® + 1] + 2log 2 if 0 < A <A
ng =
m Ver—1—v/erA-9 A . *

5 Concluding remarks

We have considered a mechanism design problem with information acquisition
in a bilateral trade environment. At the beginning, the buyer, the seller, and the
mechanism designer have no information about the good’s quality beyond a common
prior. The buyer and the seller can generate signals from a large signal space to acquire
more information about the good’s quality. The mechanism designer commits to a
mechanism taking information acquisition by the players into account.

We characterize the set of implementable mechanisms. To check whether a par-
ticular tuple of allocations, transfers, and signals is implementable, one has to check
whether these allocations, transfers, and the information structure induced by the
signals satisfy a finite-dimensional system of equations and inequalities.

Using our characterization of implementability, we address the problem of maxi-

mizing revenue for an intermediary interested in implementing allocationally efficient
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trade. We show that implementability implies that the players will acquire perfectly
correlated signals in any mechanism. We then use concavification to maximize the
intermediary’s revenue over mechanisms with perfectly correlated signals, and show

that symmetric revenue maximization problems can be solved in closed form.

A Proof of Lemma 3

Proof. We prove the statement for the buyer only as the proof for the seller is analo-
gous. Suppose the set of payoff-relevant states of the world is given by V' = {v, ..., 7}
and suppose that the proposed information structure has I signal realizations for the

buyer and J signal realizations for the seller. If |S’| = I and |S°| = J, then the

information structure is a collection of I x J matrices, one for each state (we adopt

the convention that the buyer is a row player and the seller is a column player):

State v 53 55 e 5%
s a11(v) ap(v) ... apg(v)
sg ag1(v)  ag(v) ... ay(v)
sl} an() ap@) ... ap(v)

The cost of this information structure for the buyer is given by:

He) = Ho)+ 33 [(i i) ) o (2 i1 0(0) )]

J N
i=1veV L\ j=1 j=1 > ey @i (D)

Define fi(a) = >, [(ijl a;(v)) log (%)L the expected entropy

component of signal realization s. The cost function can then be written as ¢’(a) =

H(po) + 321 fi(a). We first show the following;

Lemma 9. f,(«) is convex for every i.

Proof. We first find V f,(«). To do that, note that the partial derivative of f;(«) with
respect to any «a;,(v) is the same across all [ and is given by:

Ofile) _ > ai(v) ! ol Y1 Yeev i) 9 i ij(v)
Doy (v) = log (Z}le S oev Oéij('[))>+<z il )> Sy ai(v)  daa(v) <Z‘j]:1 > eV Oéz'j(@)>

J=1

+ Z ( ZJ: aij(ﬁ)) Z}'JEJZ@W (D) aaj(v) ( Z}']:1 i (9) ) |

N J ~
o£v S j=1 j=1 05 (D) > =1 2avev @i (D)
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which can be rewritten as:

352(3:“%(2 7 i) )>+<i %@))aaf@)(Z ST (@) >

J T "
j=1 > sev aij eV ijl > sev @i (0)

= log <Z}]Z13]£UZZ(CZ(U)> + (EJ: A Oéz’j(@)) 80&1’81(’0) 1
T (v
= log (Zigﬁevj Li(@))’

To determine the Hessian of f;(«) we have to take second-order derivatives. Note

>

that for any [ and r and for any state v the following is true:

O2fia) Do Ypew @i (0) 1301y Mpey ai(8) = 1327, iy (v)
daa(v)dair(v) T ay;(v) (S Yy i (@)]?
1 STy S ey i (8) = STy aig(v)
S aij(v) Yoot Toev @i (D)

Defining A,(v) = 327 a,,(v), we can write:

Jj=1

Pfile) 1 Yy Ai(®) — Ai(v)
Oai(v)ag(v)  Ai(v) > oer Ai(D)

For every [ and r and for any pair of states v # v the following is true:

O2fia) X1 Dpew @i (0) 0377y Ypey ai(8) = 1327, iy (v)

(0O - J NE
Dt (9)9evir (0) 2 =15 (v) (31 Ysev @i (9)]
_ -1 _ -1
Z}]:1 Zf;ev ;i (9) Z@ev A;(0)
The Hessian of f;(a) can then be written as V?f,(a) = m%i(a), where
veEV Tt
H,(a) is the following matrix:
ail(y) a“(y) Ozil(ﬁ) aiJ(ﬁ)

a;1(v) %&w W -1 1

i (v) %&;*A@ W 1 1
@i1(D) -1 -1 e
i (v) -1 -1 - e o

We now show that V?f;(a) is positive semi-definite. To do that, consider an

arbitrary vector x € R’V and evaluate 2" V*f,(a)z. Let x(v) € R’ for states v € V
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be such that x can be obtained by concatenating vectors z(v) across all v € V. Let

e denote the vector consisting of J ones, i.e. €” =[1,...,1] € R’. We then have:
1 2sev Ai(0) — Ai(v)
IV i) = ————— ( eV eTx fez: e’ z(v )
e = =T & A 12
1 Ysev Ai(0) 2 T )
= = == — (e z(v))” — (e z( 2 _ el x(v e’ (v
ooy A0) ; (=5 = 2 et

_ZAzl(U 2—21/1(1;)2((6% “+elz(v) Y elu(0) >

veV GS veV D#£v
2 1 2

- S (et

Xm0 s A (3
Defining X (v) = e"x(v) for every v € V, we can write:
1
2IV2 fi(a)x = X2(v) — ( X (v )
@2=2 5 X ) S A 2 X

To show that V?*fi(«) is positive semi-definite, we have to show that the above

expression is weakly positive for all { X (v)},ey. In order to do that, we show that

s S am o s (E) e

veV

To that end, consider the restricted problem for some X € R given by:

}Uev{ A Zevl Sat ) X0) }

veV

The restricted problem is clearly convex in { X (v) },ev, hence the first order conditions

are necessary and sufficient for minimization. The Lagrangian is given by:

T ORALES o OO

veV

The optimality conditions are given by:

Ail(v) (v) =2n*=0 Yvevy,

Sy X*(v) = X.

The minimum is achieved at X*(v) = %, and the value of the objective
achieved at the minimum is given by:
1 A (v) X 1 ¢ Ai(v) X? 1 52
- X2 = - X
;Ai(v) (ZvGVA( )? Xev Ailv) ; (SCoey A4i(®)” Loev Ailv)
L Dl 1,
(Spey Ai(v)? 2vev Ai(v)



implying that the minimal value achieved in the restricted problem is zero for every
X e R, implying in turn that the minimal value achieved by the unrestricted problem
is also zero, hence z"V?f;(a)x > 0 for every x € R’V and that V?f;(«) is positive

semi-definite, which means that f;(«) is convex. O

Recall that c(a) = H(uo) + .., f.(a) and hence is a sum of convex functions,
implying that ¢(«) is convex. O

B Proof of Proposition 1 (Revelation principle)

Proof. Let (M, qi, tix) be a (possibly indirect) mechanism and [ (o, {m}, [&b]}&bezb),
(o, {m;, [65}}63625)}, where o* = (5%,8") and o* = (5%, S*), be its Nash equilibrium.
Let « be the information structure induced by the signals (ab, O’S). Using Lemmas 1

and 2, we can write the equilibrium conditions as follows.
e For the buyer: (S*, o, m! [c"]) solves the following problem:

. ax, DD D als® s%5v) (ain (i (s”), mix[o®](s%))u (v) — iy (M (s°), min[0°](5%)) — (@),
GOTIMIN (b Gb sSESTwEV

st. (1) $Pe 2(N), aeA(SP xS xV), mby:5° - My

(2) marggsyy& = marggs Q.

e For the seller: (S*, a, m; [0°]) solves the following problem:

max > S N7 a(sh, 5% 0) (i (miy[0®)(s7), tiy (s°)) — aiy (miy[0®)(s?), iy (s°))u® (v)) — (&),

8.8 Mix b ogh o cgs veV
st. (1) $* e 2(N), aeA(S*x 8" x V), mmiy:5° — M

(2) marggs, 1 & = marggs v 0.

Consider the following direct mechanism (MD, qD,tD), where the message space
is given by My = (5" U {my}) x (5° U {my}); the allocation function is defined

as q5(st,s7) = ¢ (mly[o*](s"), mj[0°](s*)), and the transfer function is given by

(s, s) = o, (mly[0*](s"), mi [0°](s")) for both players p € {b,s}. We claim that
[(o”, {m%[&b]}&bezb), (o7, {m;[&s]}&sezs)], where m?[67] = m?, for all 67 € X7 is a
Nash equilibrium in the direct mechanism.

Suppose for a contradiction that this is not the case, then one of the players has
a profitable deviation to untruthful reporting, a different signal, or both. Let us
suppose that it is the buyer who can profitably deviate (the argument for the seller
is identical), then the tuple (S*,a,m’) violates the constraint IC’ for the direct

mechanism (MD, qD,tD), i.e. there exists a signal 6° = (Sb, S”) inducing a new joint
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distribution & € A(gb X 5° X V) and marg,. , & = marg,. o, and a (not necessarily

truthful) reporting function m?, : S* — S* U {m,} such that for signal realization s":
Yo D alsh st (ap(mp(sh), s )ul (v) — th (i (s°), 5°)) — (@)
sbcSb ss€SsveV
> Z Z Z (s, 5% v) (qg(sb,ss)ub(v) - t%(sb,ss)) —(a),
sbeSb ss€Ss veV

implying (by definition of allocation and transfer functions in the direct mechanism):

ST ST alsh, 5% ) (g (min o] (1l (s°)), min[)(s%)) ul (v) — thy (miy [0 (i (1)), mi[0*)(s))) — (@)

sbeSbseSsveV

> 30 3T ST ol 5% ) (aby (mdn[eb)(s7), mig[0°](s%)) ub (v) — thy (mby[0®)(s?), miy[0®](s*))) — b (a),

sbesbsseSsveV
which in turn means that the tuple (S, a, m’[c’]) violates the buyer’s equilibrium

conditions, hence a contradiction. O

C Proof of Proposition 2

Let [(o”, {m’ [&b]}&b@b)a (o, {m* [65]}65625)] be a truthful-revelation Nash equi-
librium of a direct mechanism. It implies in particular m°[¢’] = m}, and m*[o*] = m;.
Use a € A(S" x S* x V) to denote the joint distribution of signal realizations and
states of the world induced by the on-path profile of signals (ab , 05). By assumption
(a, S?, mf;) satisfies IC%, for player p and « is Bayes-plausible.

Consider a profile [(¢*, {m?[6"] }&bezb), (o, {m;,,[67] }&SGZS)} where m?__[o7] =
m?, and m?__[67] for 6 # o are to be defined below. By construction, this strat-
egy profile is outcome-equivalent to the original Nash equilibrium strategy profile
[(o”, {mb[(%”]}&bezb), (o7, {m [63]}65625)]. We are now going to show that it can be
a perfect Bayesian equilibrium profile of the same direct mechanism. To do that,
let us first specify the players’ beliefs. Let Z7? ((3”,31”) denote the information set
achieved by player p who has played 7 € >* and observed a signal realization s € N.
Let » (&*”, s v|ZP (6”, s")) denote the belief of player p that player —p has played
o~" € Y77, has observed the signal realization s € N; and the state of the world is
v € V. We specify the players’ beliefs as follows:

1. The beliefs at information sets Z” (6‘7, s”) such that 67 # o are derived using

Bayes rule for the buyer from a[6®, 0°] and for the seller from «[o”, 5°]. These
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beliefs are given by:

(

al5b,0°%](s®,5%0) As s
b5 ol T (o %)) = SE% alsb,0%](i,5%50) for o° = o°.
y (O’ , 8% 0| (O’ ,s)) =
0 otherwise.
\
afob,6%)(s%,5%0) for 6° = o®
orot=o0
N +oo b 55](sb,j; )
/_ys<o_b’ Sb;U :Z:s(o_s’ss)) — ijla[o' &5](sb,75v)
0 otherwise.

\

2. The beliefs at Z” (ap, sp) are derived using Bayes rule from «. These beliefs are:

(

b s, ~
% for o = o*.
,yb(o_s7ss;vlzb(0_b78b)) — i=1 5873
0 otherwise.
\
a(sh,5%0) for 6° = o
=Ffeo or o° =0
(@, ol (o, 7)) = { ST >
b ) )
0 otherwise.

Let us now show that [(o”, {m;BE[&”]}&bGEb), (0%, {mEBE[‘3S]}&5€ES)] is sequen-

tially rational given the beliefs specified above.

C.1 Reporting after off-path information acquisition

Let us start with the off-path signals. Suppose the buyer has arrived at the
information set Z° (&b, sb) with 6° # ¢, obtain the report following (6”, s”) by solving

(in case there are many solutions, pick any):

: al6®,o°)(s", 5% v)
mboefo!]() = argmax 30 3 AT ) pm, )
meStU{my} scgs yey Lui=1 O‘[O— y O ](Z,S 7’0)

The resulting reporting function m?_,[6°] is sequentially rational.

Likewise, suppose the seller has arrived at the information set Z°* (65,35) with

0° # o, obtain the report following (65, 55) by solving:

b ss1(ob os.
mipplo?](s) = argmax 3 3 ol 5750)
mESSU{m@}SbEsb veV Lj=1 OC[O' » O ](3 7.771))

(ts (sb, m) — qs(sb, m)us(v))

The resulting reporting function m:_.[6°] is sequentially rational.
It remains to show sequential rationality of truthful reporting after choosing the

on-path signal.
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C.2 Reporting after on-path information acquisition

Let us now move on to the on-path signals. Suppose player p has arrived at
the information set Z? (op, s”). At this information set player p believes that player
—p has taken his on-path action as well with probability 1, and player p’s beliefs
about signal realizations are derived from « using Bayes’ rule. The proposed perfect
Bayesian equilibrium strategy prescribes truthful reporting after playing the on-path
information acquisition action. There are two ways, in which player p could deviate
from truthful reporting: he could misreport a particular signal realization, or he could
abstain following a particular signal realization. In what follows, we show that these

deviations are not profitable.

C.2.1 Misreporting a signal realization

If a signal realization s” occurs with positive probability given «, then the buyer is
willing to report it truthfully as long as the following interim incentive compatibility
condition is satisfied:

(IC%) Z Z a(sb, s%;v) (qb(sb, ss)ub(v) - tb(sb, ss))

sSeSs veV

> Z Z afsb, 5% ) (qb(§b, s ul(v) — (3, s%))

s5€5°5 veV
for all s* € S°.
Likewise if a signal realization s* occurs with positive probability given «, then
the buyer is willing to report it truthfully as long as the following interim incentive

compatibility condition is satisfied:

(ICY) Z Za(sb,ss;v)(ts(sb,38)—q5(sb,ss)ub(v))

sbeSbveV

> Z Z a(s®, 5% 0) (1°(sb, 5%) — ¢°(s%, 3°)u® (v))

sbeSbveV
for all 5° € S°.
The following lemma shows that the interim incentive compatibility conditions

are implied by ex ante incentive compatibility conditions:

Lemma 10. IC% = IC? for both players p € {b, s}
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Proof. We show that =IC? = —IC". The argument for the seller is again identical.
Suppose that the mechanism is not interim incentive compatible for the buyer, i.e.
there exists a signal realization x* € S°, which occurs with positive probability, and
a non-truthful report z* € S® such that:

Z Z oz, s%; ) (qb(:cb, sl (v) — (b, s%))

s$€Ss veV

< Z Zoz(:nb,ss;v)(qb(ib,ss)ub(v)—tb(:ib,ss))

sseSsveV
Consider an ez ante deviation to (S°, «, m’), where:
booif b £ b,
s?, if s #£ af

m’(s") =

zb, if sb = ab.

The payoff from this deviation is given by:
35T S a(st, 55 0) (¢ 0(sY), 5l () — (il (%), 57)) — M)
sbeSb ss€Ss veV
> Z Z Z a(8b7 SS; U) (qb(sbv Ss)ub(v) - tb(sbv SS)) - Cb(a)?
sbeSb s5€Ss veV

implying that the mechanism is not ex ante incentive compatible for the buyer. The

argument for the seller is identical. O

C.2.2 Abstaining instead of reporting a signal realization

If a signal realization s® occurs with positive probability given «, the buyer is
willing to report it instead of abstaining if the following interim individual rationality
condition is satisfied:

(IR?) Z Z (s, % v) (qb(sb, s ul(v) — 1°(s°, s°)) > 0.
sSESS veV

Likewise if a signal realization s* occurs with positive probability given «, the
seller is willing to report it instead of abstaining if the following interim individual
rationality condition is satisfied:

(IR{) Z Z (s, s°; v)(ts(sb, s%) — ¢°(s®, ss)ub(v)) > 0.
sbeSbveV
The following lemma shows that the interim individual rationality conditions are

implied by ez ante incentive compatibility conditions:
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Lemma 11. IC, = IR} for both players p € {b, s}

Proof. We show that -IR? = —IC"%. The argument for the seller is again identical.
Suppose that the mechanism is not interim individually rational for the buyer, i.e.
there exists a signal realization x® € S°, which occurs with positive probability, such

that
Z Z a(a:b, s%; v)(qb(xb, ss)ub(v) - tb(mb, SS)) <0

sSeSsveV

Consider an ez ante deviation to (S*, «, m"), where:

b oie b b
s if s° #£ x%;
m’(s’) = 7 7

my, if s =2t

The payoff from this deviation is given by:
Yo D alsh st (i’ (s), sl (v) — P (m(s"), %)) - ()
sbeSb ss€Ss veV
> Z Z Z a(sb> SS; U) (qb(sbv Ss)ub(v) - tb(sbv SS)) - Cb(a)>
sbeSb s5€Ss veV
implying that the mechanism is not ex ante incentive compatible for the buyer. The

argument for the seller is identical. n

D Mixed and correlated strategies

In this appendix, we provide an argument suggesting that the treatment of mixed
and correlated strategies in our environment might require altogether different meth-
ods. In particular, we explore a natural approach one could take to prove that mixed
and correlated strategies are outcome-equivalent to pure strategies, and show, by
providing a counterexample, that this approach does not yield the desired result.

Suppose that the players randomize over the sets of signals R’ = {o?,02,... 0%}
and R* = {o7,0%,...,0%}. Their strategy profile gives rise to the following joint

distribution over signals

of 3 oN
ot | Plof,of]  Plof,a3] Plot, o]
o3 | Plos,of]  Plos,o3] Plog, o]
o | Plog.oil  Plok, 03] Plok.ox]




Note that these randomizations could in principle be correlated if we enriched our
setup with an additional communication stage at the beginning of the game, in which
the mechanism designer would issue correlated recommendations to the players. We
show below, however, that even independent randomizations cause difficulties.

If one wanted to prove that our restriction to pure strategies is without loss of
generality, one could define a new information structure by finding the average over

the information structures given above as follows
sl,sj,v Z Z Plob, o* ](sf,s],v)
obeRb o°ER®

and notice that, due to Bayes-plausibility of the new information structure, the
new information structure can be induced by a pure strategy profile (&b, 63). One
could then hope that if the original distribution of the information structures arises in
some equilibrium, then the new information structure could also arise in an outcome-
equivalent equilbrium of a possibly different mechanism. The next counterexample
shows that this strategy will not work: it is possible to construct a deviation from
the resulting pure strategy profile (&”, &S) that induces an information structure that
cannot be induced by a deviation from the original mixed/correlated strategy profile
(see Gentzkow and Kamenica (2017) and Li and Norman (2018) who point out a

similar issue in the context of multisender Bayesian persuasion).

D.1 Counterexample

Consider the following strategy profile:

In words, the seller mixes between o7 and o with equal probabilities. The buyer

plays ¢® with probability 1. The strategies are defined as follows:
= (5%, 8"), where S* = {s!, 55} and S" is given by:

st if 2 €]0,0.25] U (0.5,0.75],

s if 2 € (0.25,0.5] U (0.75,1].

The corresponding partition of X = [0, 1] is illustrated by:
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P
WA

e 0; = (5;,8;), where S; = {s;,s;} and S; is given by:

. s; if 2 €]0,0.25] U (0.5,0.75],
Si(x) =
sy if x € (0.25,0.5] U (0.75,1].

The corresponding partition of X = [0, 1] is illustrated by:

: } : '
-
0 025 05 075 1
e 0;=(5;,S;), where S; = {s:,s;} and S; is given by:
) i if € (0.25,0.5] U (0.75, 1],
S5(x) =
sy ifz €[0,0.25]U (0.5,0.75].
The corresponding partition of X = [0, 1] is illustrated by:

.
&

i

Observe that if the players play the signal profile (O’b, Jf), they induce the infor-

mation structure afo®, o?] given by:

State v ‘ s 85 State v ‘ 5] 85
b 1 b 1
b 1 b 1
52 0 1 52 0 1

Likewise, if the players play the signal profile (0”, a;), they induce the information

structure afo®, 03] given by

State v | 8§ s State U ‘ si 85
b 1 b 1
b 1 b 1
52 i 0 52 rY
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The average over the two information structures a0, ;] + safo’, 03] is:

S S o S S

State v | s{ 53 State v | s{ 53
b 11 b 11

51 § 8 51 5 8

b 101 b 101

52 8 8 52 8 8

Lemma 1 in the main text ensures that afo®, ;] + tafo’, 03] can be induced by a
profile of pure signals. Let (&b, &S) be such a profile of pure signals. Lemma 2 in the
main text shows that, by deviating to some 6° (i.e. to the pure signal profile (5'”, 65)),
the buyer can induce any information structure that has the same seller-marginals
as talo’, 03] + tafo’, 03]. In particular, there exists ¢ such that (6”,6*) induces
alo’, o;] since afo’, o;] has the same seller-marginals as Safo’, 0] + ;afo’, 03], The
next proposition, however, shows that it’s impossible to obtain «a[o®, o¢] by taking
averages over the information structures induced by any deviation from ¢® when the

seller plays his original mixed strategy o5 + S0
Proposition 6. There is no 6" such that a[o’,0}] = sa[0", 03] + ta[o", 03]

Proof. Suppose for a contradiction that such 6" exists, and recall that af[c®, o7] is:

State v | s s3 State v | s s;
b 1 b 1

S, " 0 S n 0

s 0 2 s 0 2

2

Since only signal realizations s? and s} occur with positive probability under o°,
it is without loss of generality to restrict attention to & = (S°, Sb) such that 5" =
{s*,s2} and S® : X — S’. To obtain a contradiction, note the following:

e afo’, o:](st, s5;v) = 0, hence it is true that a[c”, o2](st, s5;v) = a[a’, 03](sh, s5;0) =

0. Given the above definitions of ¢* and ¢ these imply that [S”]"'(s") N
(0.25,0.5] = 0 and [S®]7*(s) N [0,0.25] = § respectively, which in turn means
that [S”]~*(s*) N [0,0.5] = 0.

o afo’,0:](sh, si;v) = 0, hence it is true that a[6", o3](sh, s3;v) = a6’ 03] (8%, s3;0) =
0. Given the above definitions of ¢; and o) these imply that [Sb]’l(sg) N
0,0.25] = ) and [S®]*(s) N (0.25,0.5] = @ respectively, which in turn means
that [S*]~*(s%) N [0,0.5] = 0.

Hence ( [SP]-*(s?)U[SP](s?) )N[0,0.5] = @ implying that [SP]-1(s?)U[SP] 7 (s) #
X, implying in turn that S® cannot be a function from X to S°. O
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E Proof of Lemma 4

Proof. We show that —IC, = —R-IC}. The argument for the seller is identical.
Suppose that the mechanism violates ex ante incentive compatibility for the buyer, i.e.
there exists an ez ante deviation (S”’ &, m’) where S* € P(N), a e A(Sb x S x V),

0 S8 — S§*U {m,}, and marg,. & = marg,, o, such that
YD D a5t o) (b (s), sl (v) — P (m(s"), %)) — (@)
sbeSb sSESS veV
> Z Z Z a(sb,ss;v)(qb(sb,ss)ub(v) —tb(sb, %)) — ¢ (a).
sbeSb sseSs veV
We are going to show that there is a restricted deviation (S;;,dR) where S'f.’{ =
S*U{sh}, ax € A(Sﬁ x S*x V), and marg,. &y = marg,. ., «, such that
Z Z ZQR (s”,s%v) b(sb s5)ul(v) —tb(sb,ss)) — (ag)
sbeSb s5€Ss veV
> Z Z Z a(sb,ss;v)(qb(sb,ss)ub(v) - tb(sb,ss)) —&(a).
sbeSb sseSs veV
Define X*(s*) = {z* € S*|m’(2*) = s} and X*(m,) = {z* € S*|m’(z*) = m,},
i.e. the set of all signal realizations z* € S* such that the reports of s* and m, are

submitted respectively under m®. Define the restricted information structure as:

&R(sb, s%v) = Z &(xb, s%;v) Vst e S,

dR(SIQ))a SS; U)

I
™
2
8
o
VA
<

zbeX?(my)
The restricted information structure respects the marginals of the seller by con-

struction, and thus also can be a part of a feasible deviation. Indeed,

Z &R(sb,ss;v)—i—&R(sg,ss;v): Z [ Z :L‘ , 8% v) + Z d($b,55;v)}

sbest sbeSh " pbeXb(sh) zbeXb(my)

= Z a(x®, % v)

xbeS”b

for every s°* € S*

Clearly by construction we also obtain
S S S an(st s o) (@ (st sl (v) — (s, )

sbeSb s5€Ss veV
=D ) D a(sh 5% ) (¢ (mb(sh), s*)ul (v) — (b (s"), 5)).

sbe§b s5€Ss veV
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By construction ay, is Blackwell-less-informative than & for the buyer, which means
that the expected entropy of @ is lower than that of &y, implying ¢*(ar) < ¢’(&), which

in turn implies

Z Z Z&R(sb, ss;v)(qb(sb,ss)ub(v) - tb(sb,ss)) — ®(ag)

sbeSb s5€Ss veV

> 30 S S a0 (@l (1), 5l (0) — £2(0Y (), 5°)) - (),

sbeSb s5€Ss veV

establishing the claim. O]

F  Proof of Lemma 5 (Strictly positive posteriors)

Proof. We prove the statement of the lemma for the buyer only. The proof for the
seller is analogous. We have to distinguish two cases. Case 1. [ = 1: by Bayes-
plausibility we have u(v) = po(v) > 0 for any v € V, hence the statement of the
lemma holds trivially. Case 2. I > 1: suppose for a contradiction that there exists a
state v € V such that after receiving signal realization s} the buyer puts probability
zero on state v', i.e. u}(v’) = 0. Note that since the labels of signal realizations do not
have any particular meaning in our analysis, choosing s’ is without loss of generality.

Since s° leads to a zero posterior on v’, the information structure at v’ is written as:

State v’ s3 s5 . sy e 55
s 0 0 . 0 . 0
Sg 0421(1}/) (%)) (U/) e Q9] (’Ul) e a9 g (U/)
sb am (V) ap(v) oo an(®) oo apg(v)
b arn(v)  ap®) ... ap®) ... ap®)

The payoft from this information structure is given by:

1

Z Z 041] ql] + Z Z Z al] qu ) - tlz?j) - H(NO)

J=lveV\{v'} i=2 j=1veV

- > (éalj(vobg[zJ Lz 040 A]—Ologo

veV\{v'} j=1 2pev\fory @15 (0) ] e
I J Joo
-2, (Z Oéij(U)> log [ JZJ:I i (?) - ] .
i=2veV N j=1 Zj:l > vev @ij(0)

Observe that at least one of the «;(v") for some i # 1 must be strictly positive by
Bayes-plausibility. Otherwise Bayes -plausibility would imply p,(v') = 0 contradicting
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the full support assumption. Assume without loss of generality that «,,(v') > 0 and
consider now an alternative information structure &, in which every a,;(v) = ay;(v)
for all pairs (7, 7) in all states v # v'. In state v’, we transfer a small probability mass

from (s°, s7) to (s%,s7), the alternative information structure in state v’ is written as:

State v’ s3 s5 e sy s%
st 0 0 o € o 0
4 a1 (V') ag(v) ... (V') ceeagg(v)
st am (V) ape(v) o an()—e .. apg(v)
b ann(v)  ap®) ... ag (v ceoapg(v)

for some small € > 0. Observe that marg,. ,& = marg,., ,«, and hence & can be a

feasible deviation for the buyer in (R-IC-1). The payoff from this deviation is:

f(‘hzu —tu +Z Z (v Ch; ()—tlfj)

j=1veV\{v'}

I J
+ Z Z Z O‘ZJ( )(q” ( ) — t?j) - €(Q£lub(7/) - tf«l) — H(po)

i=2 j=1veV

- 2 <i%( ))IOg{ZJ i an(v) A }

veV\{v'} j=1 Zf;ev\{v’} a1;(0) + €

—elog [ ¥ ‘ - ]
D=1 2pev\fory @1i(0) + €

Z (Z]:larj(v)> log [ZJ Zj:l arj(v)A J
=

veV\{v'} j=1 > ey arj(0) —

_ (Zj:arj(v’) - 6) log [Zj 125;322 (?)7) 6]

-5 5 (St e[ ]

1#1l,rveV j=1 Zﬁe\/ Qi (U)
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The gain from this deviation as a function of € is given by:
G(e) = (qlfzub( ) - tll) (%Izlub( ) - t )

N e

veV\{v'} j=1 Zf;e\/\{v'} a1;(0) + €

—clos [zj 12 GV\;}am >+J
T s
( > o [Zjléjgelx/\;/(} )Ollj(@)]

vGV\{U’} =

(;O‘m > log [Z"Zj:l ar;(v) T € J

j=1 > sev (D) —

- 5 (B[R]

veV\{v'}

TERINE; S

Define the function v(€) = *G(¢). It can be written as

vGV\{v’}

:bb/_tb_bb/_tb_l{ € }
P(e) = (qqu’(v') —t7;) — (gu’ (V') —t7;) —log 231:1 S ecvoy 013 (0) + ¢
— Z p1(e;v) — Z pr(e;v) —&(e),
veV\{v'} veV\{v'}
where
1/ Yoy a1(v) Yoy anj(v)

1(gv) = - oj(v lo J —lo J ,
Pl = <Z « >>( ° [zj_l > sevr gy @12 (0) +J ° {zj_l zﬁev\{,ﬂ}auw)D

| =

mwgwwqmiggkﬂﬁgﬁw’

(Za oy {Zﬁf-larj<v'>(ﬁ) }—(Zam >log{sz;’_1arj<v'> |

j=1 > oev Qrj j=1 Y oev (D)

a | =

We are now going to determine the right-limit of ¥)(¢) as € approaches zero.
Lemma 12. lim,_,+ ¢(€) = 4o0.

Proof. Observe first that since z Y

sevi gy Q15 (0) > 0, we have:

€
lim ( g (v) —t7,) — (qu’(v) — t7,) — log 0 D m
0t ( 1 ”) ( l l) Zjﬂ Dseviiony 1 (0) + e
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It thus remains to show that the remaining terms converge to a finite value.

e Consider p,(€;v) for some v € V '\ {v'}. There are two possibilities:
(i) If Zj:1 ay;(v) = 0, then p,(€) = 2[0log 0 — 0log 0] = 0, hence lim, o+ p,(€) = 0.
(i) If 7 o, (v) > 0, then lim, o+ pi(€) = —Z},ﬁéizlva\:j?au(ﬁ), which is finite.

e Consider p,(€;v) for some v € V' \ {v'}. There are again two possibilities:
(i) If Zj:1 a,;(v) = 0, then p,(€) = 2[0log 0 — 0log 0] = 0, hence lim, o+ p, (€) = 0.
(i) 17, a,,(v) > 0, then lim, - p,(€) = ZZZ—V”() which is finite.

e Consider £(€). Recall that by assumption Z;l a,;(v") > 0, hence we have

. Z"Izl &Tj(vl) Z"]:1 arj(vl>
lim () = =7 — —log | —| -1,
ot Zj:l Zﬁev Q,; (U> Z]'=1 Z@ev Oérj(v)

which is finite. O

Since lim,_,o+ 1(€) = 400, we conclude that for all n > 0 there exists € > 0 small

enough such that ¢(¢) = 1G(e) > n, implying G(e) > en > 0, implying that the

constructed deviation & is profitable for all € small enough, and thus contradicting

the optimality of a. O

G  Proof of Lemma 6

Proof. We prove the statement of the lemma for the buyer only (the proof for the
seller is almost identical). “If”. To establish the “if” direction of the claim we prove

the contrapositive statement. Consider an I x J information structure a given by:

State v 57 55 o 5%
s ann(v) o) ... aig(v)
58 ag1(v)  aga(v) ... agy(v)
sh ann(v) ap) ... apg(v)

The buyer’s payoff from this information structure is given by:

I

DD > (o) (dhu’(v) — 1) — ()

i=1 j=1veV
S ! ! > aij(v)

= aij(v bul(v) — b)) — H — a;j(v) | lo ] .
>33 auto)dto) 1) - ) ZZV(Z o) g[z},ﬂzw%@)
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Suppose that « satisfies R-IC -1 but does not satisfy R-IC’-2, then there exists
a profitable deviation for the buyer which involves augmenting o with a an I + 1-st

signal realization sj. This deviation has the following form:

State v s3 55 . 5%
s a11(v) = Bii(v)  aqa(v) = Bi2(v) ... oag(v) — Pr(v)
s§ az1(v) — fa1(v)  ao2(v) = Baa(v) ... azs(v) — Pa2s(v)
sh an(v) = prn(v) ap)—=PBr() ... arj(v)—PFr(v)
s iy B (v) S Be) . XL Bisv)
where >0 Z;’:I Y vy Bi(v) > 0. The payoff from this deviation is given by:
I J
D (i) = Bij(v)) (ghu (v) — t8;) — H (po)
i=1 j=1veV
I J J
_ a Z] 1 (alj( ) = Bis( ))
I (Z (0 (0) ~ 3 ) ) o [zj ]

- (iiﬂij(@) log [legl i1 55(0) - },

J
veV Ni=1 j=1 i=1 Zj:l Eﬁev Bij(U)

which can be rewritten as:

Z Z D (aij(v) = Bij(v)) (fu’ (v) = 1) = (= B)

i=1 j=1veV
L Zilzl E}'Izl Bij (v)
- ij (U lo .
%:/ <;;ﬁ ( )> ; [Zle PRI P ﬁij(@>:|

We now define the gain-from-deviation function as the difference between the

payoff from the deviation and the payoff from a:

——ZZZ% (ul () — ) — (o~ B) +P(a)

i=1 j=1veV
L it Y- Bi(v)
_ i (v lo ? J )
UEZV <; ; . )> i [Zle i1 Ysev Bij ()

Since the deviation under consideration is profitable, we have G, () > 0, We now

define ¥(€) = G (¢f8) for € > 0. Clearly (1) = G.(B8) > 0. ¥(e€) is written as:

1

ZZZ&J (qhub(v) — 1) + b(a_ei_cb(a)
=1 j=1veV
L J S Bii(v)
— i \U lo J |
1;/ <;;B ( )> © [Zle Z}'Izl Zﬁev 572]’(”)
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We establish the following lemma:

Lemma 13. ¢(¢) is weakly decreasing.

w is weakly decreasing. To that end, take

Proof. 1t is enough to show that
0 < ¢ < € <1 and observe that o — ¢, = (1 - :—;)oz + Z_;(O‘ — 6,3). Recall that

*(a) is convex by Lemma 3, hence ¢’(a — €,8) < (1 — Z—;)cb(a) + 2’ (a — 63), or

Llazaf)-t@) > daza @) u
-

—ea

equivalently,

We now define the marginal gain-from-deviation MG, (5) = lim G, (ef). Recall
e—0
that « satisfies R-IC’,-1 by assumption, hence Lemma 5 ensures that all the posteriors
induced by « are strictly positive, which in turn makes sure that the limit lim G, (¢/3)
e—0

is well-defined and given by:

=YY A - )

=1 j=1veV
Z}Izl i (v)
ij(v)lo -
+;JZ11;/6 © [Z}]1 Z@ev az’j(v)]
L Zz‘I:1 ZJ:1 Bij (v)
— ij v lo J = s
1;/ <; ]Z:; il )> ° |:ZiI:1 Z}'Izl Zﬁev Bij (U)]

which can be rewritten as:

Z Z > B,w) (g (v) — 2, — log (1 (v)))

i=1 j=1 veV

-2 (Z iﬁ”(”)) o8 [ZZEZZMB)(J

VeV i=1 j=1

Defining y’,(v) = ¢’,u’(v) — t, — log (p!(v)), we can rewrite MG, (3) as follows:

) . I S Z;-Izl Bij(v)
ZZ Zﬁzg yz] Z (ZZ&J > |:Zz]1 Zj:l Z@Ev ﬁl]({))] '

i=1 j=1veV veV Ni=1 j=1

The following lemma holds:

Lemma 14. MG, (3) > 0.

Proof. Recall that MG, (8) = lim :G,(ef) = lim 24)(¢). By Lemma 13, 1 (e) > (1)
e—0 e—0
for every 0 < € < 1, hence lim(e) > (1) > 0. O
e—0
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Decompose the marginal deviation under consideration into two parts, 8’ and 3”:

Bij(v) — ZJ(U Zz 1 Bij(v) if agj(v) >0

Bi;(v) = ;
Bij(v), otherwise
1 I :
o) Yoicq Bij(v), if ayi(v) >0 .
6;; (U) = ! )
0, otherwise
where z;(v) is the number of zero elements in the vector [ay;(v),. .., a.;(v)]. Observe

that by construction we have for every j:
I I . I
D BL(0) = 3 Bue) = 50) s 3 Bylv) =
=t =1 TN =1

I 1 I I
> Bw) = o) > Bijw) = Bij(v)
i=1 =1

We can now rewrite the marginal gain in terms of 5’ and 5" as follows:

I J
==2_2. 2 B
=1

j=lveV
I J J 1 J "
Zi:1 > 1 B (v)
- /B yz ( B > log |: . J 1/~ )

which in turn implies MG, (8) = — .., Z;’I:I Yooy B0yl (v) + MG (B7). We

establish the following lemma:

Lemma 15. MG, (5") > 0.

Proof. Observe that — Z;l Zj:1 > wev Bi;(v)ye (v) is the directional derivative of the
objective function in R-IC,-1 at a in the direction —f3'. Since « satisfies the constraint

R-IC-1 by assumption and —f' is a feasible direction in R-IC-1, we must have
-3 ijl Y ey B ()Yl (v) < 0. Since MG, (B) > 0, we have MG, (") >0. O

Defining B"(v) = 3! | ijl B"(v), we can rewrite MG, (") as follows:
B//(,U) :|

J
MGa(3) = = 3230 3 Aol ) = 3 B0 ok [ .

I
i=1 j=1veV veV

Recall that y*(v) = min, )a,,-01¥;;(v)}. The following lemma holds:

Lemma 16. — ) _ B"(v)y'(v) = > ., B"(v)log [#gw)] > 0.
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Proof. Recall that all 8} (v) are weakly positive by construction, and are equal to zero

whenever «,;(v) = 0. We then have > _, B"(v)y*(v) < 3.1 ijl > wer Bl )yl (v),
= Y By (0) =X, B"(v)log [£2-575] = MG, (5"), which together with

the previous lemma establishes the claim. O

Dividing the expression in the lemma above by ). B"(?), we get
7 2 "
S S GRS 0 R 0 Y

~Y — 108 -
sov 2eoev B7(0) = 2iev B'(2) 2 pev B"(9)
Defining P(v) = ZB—(];)(>7 we can rewrite the above inequality as:
veV v
= P)y’(v) = ) P(v)log (P(v)) >0,
veV veV

which clearly implies:

0<{Pmax { ZP — > P)log (P(v)) s.t. > P(v) =1, )zow}.

Nvev veEV veEV

To evaluate the right-hand side, relax the non-negativity constraints and write
down the Lagrangian of the relaxed problem:

==Y P)y’(v) - > P(v)log (P —V<ZP )

veV veV veV

Observe that the objective function in the relaxed problem is strictly concave and
the feasible set is convex, implying that the first order conditions are necessary and
sufficient for optimality. The optimality conditions are therefore given by:

—yt(v) —log (P*(v)) —1—v*=0 Yo eV,
Yopev PH(v) =1

. . . o (— b (w
The optimum is achieved at P*(v) = =2 —. We then have:
pev eXpP—1

= > P w)y’(v) = Y P*(v)log (P*(v)) >0

veV veV
o (—A0) e en(—0) (e (=)
- veV >sev exp (—1°(0)) v veV >sev exp (—1°(0)) o8 <Zf)ev exp (- yb({’))> =Y

exp (—yb(v
@—Zexp(— Zexp log<Z p( y(y)b)@))>>0

veV veV vev €XP ( o
= Z exp ( — yb(v)) log <Z exp ( — yb(@))> >0
veV veV
@log<Zexp @ >>O
%
& Z exp (— yb(@)) > 1,
eV
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which establishes the contrapositive claim.

“Only if”. To establish the “only if” direction, we again prove the contrapositive
statement. Suppose that o satisfies R-IC,-1 and Y, _ exp (—4"(9)) > 1. The above
calculations show that it is possible to construct profitable local deviation from «
that involves augmenting o with a I 4 1-st signal realization. This deviation involves
transferring probability mass to the I + 1-st signal realization from those «,,(v) that
satisfy (r,1) = argmax, ;. . -,{¥;;(v)} for each state v € V. The profitability of this
deviation implies that « violates R-IC-2. [

H Proof of Lemma 7 (Perfect correlation of signal realizations)

Proof. Observe first that the signal realizations can be ordered according to the or-
dering of their posteriors without loss of generality, hence in what follows we will
assume that 7, > -+ > 7, and @} > --- > 1°. We will present the proof in a series

of auxiliary lemmas starting with the following pair:

Lemma 17. For all j € S® there exists Z*(j) C S® such that
1. o, =0 for all i > maxT*(j) = i(9),
2. a,; =0 for alli <minZ*(j) =i"(j).

Moreover, for anyi,i' € T*(j) we get i, = ..

Lemma 18. For alli € S there ezists J*(i) C S* such that
1. a, =0 for all j > max J"(i) = j (i),
2. a; =0 for all j <min J*(i) = j*(i).

Moreover, for any j,j € J*(i) we get =1,

Lemmas 17 and 18 have analogous proofs, thus we only prove Lemma 17 here.

Proof of Lemma 17. Fix j € S°. Set i (j) = max{i
{i

that @, > 0. Note that 7i; > f&. , since fi; > fiz. , by the ordering assumption and

a,; > 0}, and define Z*(j) =

fi; = Jiz-;,} and i7(j) = minZ*(j). Suppose for a contradiction that 3i < i*(j) such

i ¢ Z*(j). Consider the following stationarity conditions of the buyer:

b b b b b b b b b b b __ b
(STY) w’ —ty; —log () = Af = =&, (STpy) ) W' =ty 5 —log (i ) = Aj = =977

—b b o L —b b —b 3o 7b
w —ty; —log (i) — \j = —¢1;. i N log (Nz*(j)) =N = =07 ()
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—b L o .
By complementary slackness we have ¢,; = 0 since @;; > 0, likewise qﬁf_’*(_) =0 since
— (7):7

Q;+(;,,; > 0 by definition of i (j). Dual feasibility implies ¢’ >0, hence (ST;,) imply

W~ log (1)) — X, > u' —log (') — A\ (1)

b
P

Similarly, dual feasibility implies 5; s = 0, hence (ST ) ) imply

—b

' —log (p. ) =X =0 —log ([Ii-;)) = A, (2)

Adding (1) and (2), we get

@ —log () — X+’ ~log (il ;) = X} 2 u” — log () = X} + 7" — log (- ;) — X,

|X:\

b , implying 7., > fi;, which is the desired contradiction. [

—b
. . . Hse .
which implies —£ >

B ()

I=
>

We proceed further in the inductive manner. Let us introduce the following sets:
il = {i ﬂ? = ES’L jl ={j o= i }; and jl = {i|T" () = jl}, jl = {J|T"(@) = Z}

Define ;1 = maxZ, and 51 = max J,. We prove the following pair of auxiliary lemmas:

Lemma 19. Z, = {i|J"(i) = J,} # 0.
Lemma 20. 7, = {j|Z°() = 1,} # 0.

Lemmas 19 and 20 have analogous proofs, hence we only prove Lemma 19 here.
Proof of Lemma 19. Suppose for a contradiction that Z, = (), i.e. for all i we have
J*(i) # J,. Since both J*(i) and J, are sets of signal realizations with equal poste-

riors and the posteriors are ordered, we have min J* (i) > max J, for all i. Lemma 18

then implies that a;, = 0 for all ¢, which implies zi; = 0 contradicting Lemma 5. [

In the following lemma we establish the base case of our induction argument:

Lemma 21 (Base case of the induction).
1. Foralli € I, and j ¢ J, we have a,, =a,; =0.
2. For alli ¢ 7, and j € J, we have o, =a;=0.

Proof of Lemma 21. Suppose @ ¢ I, = {i|7*(i) = J,}, then J*(i') # J;. Since both
J* (') and J, are sets of signal realizations with equal posteriors and the posteriors
are ordered, we must have min J* (') > max J:. Lemma 18 then implies that a,; =0

for all j € Ji. Recall that 1 € J, and the posteriors of all signal realizations in 7
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are the same, hence p] is equal to the weighted average of the posteriors of signal

realizations from 7:

) S
—s ngyllu’ 21 1(Oé +QU) o Zjejl Zi:l Ay

v = —
' Zjejl Zi:l(aij + Qij) Zjejl Z;l(am + gij)
Zjejl |:21611 Qs + Zz¢11 id
Zjejl {Ziez (az'j + ) + Zzgfl( i +gij):|

— 2]6.71 Zzell ij Z]ejl 21611 ij
Zjejl Ziell (O{ + azg) + Zjejl Zzgll —=ij N Zjejl 21511 (aij + Q”>

Suppose now i’ € 7, ie. T (1) = Ji. Lemma 19 guarantees that such ¢’ exist.

Lemma 18 implies that a,,, = 0 for all j ¢ J, = J*("). By the ordering assumption,
72 is higher than the weighted average of the posteriors of signal realizations from 7
ﬁb > Zieil ﬁ? Z] 1(04 + Oé ) _ Ziefl Zj:1 aij
' Ziefl Zj:l(aij + gij) Ziefl Zj:l(aij + Qij)
Zieil [Zjejl @i + Zjejl 5,-]}
Zieil Zjejl (v + Qij) + ngzjl (v + % )

= by L18

_ 2ien 2aien O T 2ien 2oien O
Zzefl Zjegl(a + Q”) + Ziefl ngjl Qi
22611 Z]EJI
N Zzell Zjeg (a, + Qi]-)‘

Combining the above, we get

—s < 21611 2]6.71 < /_,Lb
1 — — 17
Z'LEII 23671 (Oé’ij + g”)

implying that 75 < 7.
7(j) = 1.}, i.e. T*(j') # Z,. Since both Z*(j') and Z,

Suppose now j' ¢ J, =
are sets of signal realizations with equal posteriors, and the posteriors are ordered, we
have minZ*(j') > maxZ,. Lemma 17 then implies that @,, = 0 for all i € Z,. Recall

that 1 € Z, and the posteriors of all signal realizations in 7, are the same, hence 71!
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is equal to the weighted average of the posteriors of signal realizations in 7,:

—b __ Ziefl Ef Zj 1<a + gz]) . Ziei’l Zj:l aij

L = —
' Zieil Zj 1(0& + Q”> Zz‘eil Zj:1 (aij + Qij)

=0 by L17

Dien, |:Zj€j1 Wy + 205, /ﬁ?
Sen | S @+ 0,) + £ 32 421

<~

=0 by L17

— ZZEII 23651 21611 Z]ejl
Zieil Zjejl (a + gu> + Zzezl dejl =1j B Zzezl Z]Ejl (aij + gij)

Suppose now j’ € J,, i.e. I (j) = Z,. Lemma 20 guarantees that such j' exist.

Lemma 17 implies that o, = 0 for all 7 ¢ 7, = I*(j'). By the ordering assumption,
7; is higher than the weighted average of the posteriors of signal realizations from T
> Zjejl # Zf (@ + ay) _ Zjejl 25:1 [
1 — I I —
Zjejl Zz 1(a + Q”) Zjejl Zi:1(ai]' + Q”)
Zj6j1 [Zinl aij + Zz¢i1 a’bﬂ}
Zjéjl Ziefl (@, + gij) + Ziefl (@ + % )

=0 by L17

_ Zjejl Zieil ay; + dejl Zlgzl [
2se 2uier, @+ Q) ¥ 20505 D s, Wy
dejl Zzezl ij
B dejl 21611 (O‘ij + Qij>'

Combining the above, we get

—b Zjejl Zlell ﬁé
Zjejl Zzezl<aij + gij) -

implying 7z, < ;. But we have also shown above that 0 < 71, hence i = 1i’. The

next claim is almost immediate:
Claim 4. 71'1 = 7:'1 and jl = jl

Proof. To see that fl = fl, recall that we have shown above that

Ziefl ﬂf Z] 1(04 + gz]) > Zz’eil Zjejl a” > ,Us _ ﬁb
Zieil Zj 1(@ +Q”) B Zieil Zjejl (aij +gij) - '

i.e. that the weighted average of the posteriors in Z, exceeds 7i,. But from the ordering

assumption we know that 7i° > 7, for any i’ € Z,, which then immediately implies
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. =, for any i’ € fl and therefore il = fl. The proof of jl = jl follows exactly

the same lines and therefore omitted. O

Claim 4 combined with Lemma 17 then immediately implies that o, = 0 for all
ié¢ fl and j € jl Likewise, Claim 4 combined with Lemma 18 then immediately
implies that o, = 0 for all i € 7, and j ¢ J..

We conclude the proof of the base case by establishing the following two claims:
Claim 5. @, =0 for alli € Z, and j ¢ J,.

Claim 6. a,; =0 for alli ¢ 7, and j € T,

The proofs of Claims 5 and 6 are analogous, hence we only prove Claim 5.

Proof of Claim 5. Let j' ¢ Ji. Since J, = J, by Claim 4 we have j’ ¢ J =
{JIZ(5) = Z}, ie. I*(y') # Z,. Since both Z*(j') and 7, are sets of signal realizations

with equal posteriors and the posteriors are ordered, we have minZ*(j’) > max Z,.

Lemma 17 then immediately implies a,; = 0. [
This concludes the proof of Lemma 21. n
Lemma 21 has the following corollary:

Corollary 2. Let i € 1,, j € J.. If a,; +@; >0, then 17, = u* —log(p’) — N o=

—J

u’ —log(m)) — X:. and t3; = u* + log(p’) + A; = u" + log(z;) + A

Proof. We only show the claim for the buyer, the proof for the seller is analogous.
Lemma 21 implies that 7° = 7° for all i € Z,, thus a,, +a; > 0, combined with
stationarity and complementary slackness, implies either £, = u" — log(ﬁi) — XJ’. or
t =u" —log(f) —X:, or both. We now show that u’—log(p’) = A = @’ —log(f,) —Xl;.
For any j € J, there is i € Z, such that a,; > 0 (if not, Lemma 21 would imply
a,; > 0 for all 4, implying W= 0 and contradicting Lemma 5). Also, for any j € J,
there is " € Z, such that @,,; > 0 (if not, Lemma 21 would imply @;; > 0 for all i,
implying 7z = 0 and contradicting Lemma 5). Consider (ST;) and (ST, ,):

b b b b b b

_ ] ~b —b _ - —b
(ST;,) implies that " — log(z;) — Xj. < w’ —log(p') — A, and (ST;,;) implies that

u® —log(p!) — A <@ —log(m}) — Xj., hence u” —log(p’) — X =u" —log(m}) — Xj.. O
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We can now merge the buyer’s and the seller’s signal realizations in 7, and J, re-
spectively, and still achieve the same revenue. More formally, define a new information
structure o on {1, gl—i—l LIy xAd, §1+1, ..., J}xV such that o/;; = Z Z
and o'y = Zil ' @,, while o;, = a/;; =0 forall j # 1 and o;; = &/; = 0 for

i=1 ij 9

j= 1—13

all i # 1; and the remaining probablhties are the same: o/, = o, and o/;; = @; for
(i,j) € {ts+1,..., I} x {j, +1,...,J}. o can be illustrated as follows:

v s3 2 s T s3 = 85
— 71 Jp+1 J 71 Jit1 J
b L1 31 b ’21 51
57 > 0 0 s > @y 0 . 0
i=1j=1 i=1j=1
b b — —
sb 0 o = e oz 52 0 a = e O
11+1 —t1+1,5,+1 —u+1,J 11+1 i1+1,7,+1 11+1,J
b _ b — _
s7 0 Q3 ary s7 0 a5 arg

Define further ¢, = 2, for all (i,7) € {i, + 1,...,T} x {j, + 1,...,J} and both
p € {bs}, and set t}, =t =T and #';, =5, = —T for all i # 1 and j # 1, where
T is a large number, and define for both p € {b, s}:
Zieil,j6j1|5ij+gij>0(aij + Qij)tfj
(aij + gij) '

D it je iy ay >0
Clearly, with transfers so defined, («/, ") achieves the same revenue as (a, t). If we
define N = u’* —t'}; — log (p ”i) and y? =u' —t"% —log (1;) , we will make sure that
the (ST}, )-conditions are satisfied. Likewise, if we define \'; = #'3. — u® — log (&’1)
and N, = ¢, — 7 — log (1r';), we will make sure that all the (ST};)-conditions are
satisfied. By complementary slackness we then have gb’b = 5?1 = ¢’f’[ = 5; = 0.

Choosing T to be large enough makes sure that g = —u"+T+log ( ’b) +)\’b >0
and abj = -+ 7T +log (1)) + )\’ > 0 for all (i,7) = (1,5) and (4,5) = (i,1)
thus satisfying the (ST},), (CS},), and (DF; )-conditions for all such (i, 7). Likewise,
choosing T' to be large enough makes sure that g =u'+T+log ( ’s) +A” >0 and
5.. =u +T—|—log( )+)\’ > 0 for all (4,j) = (i,j) and (i,7) = (i,1) thus satisfying
the (ST},), (CS;,), and (DF;,)-conditions for all such (3, 7).

The remaining values of A and ¢’ are equal to their respective values in A and
¢, and thus, by construction, the remaining (ST), (CS), and (DF)-conditions are left
unchanged under the new structure.

To show that (o/, I, J'; t'; ¢', ') satisfy the implementability conditions, it remains
to show that the (NA)” and (NA)*- conditions are satisfied:
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Lemma 22. The (NA")-condition is satisfied by the new structure, i.e.

exp(— min {\'})+exp(— min {Yj}) <1.
je(s=\J)uii} je(se\Jnuii}
Lemma 23. The (NA®)-condition is satisfied by the new structure, i.e.
exp(— min {X})+exp(— min {}}) <L

ie(SP\I1)u{l} ie(Sh\Z1)u{i}

Lemmas 22 and 23 have analogous proofs, hence we only prove Lemma 22 here.

Proof of Lemma 22. Consider first min;e s 7,001, {A}. Bither minc s\ z01{A"} =
. b . b . b . b 2 .
Min ez, {A } = minjcg 7, {A;} > minje. {A}; or mingese\ g0, {A} = 1. We will

show that X7 > min,.s.{A’} too:

.. b
b Zieil,jejllaij+gij>0(a” +g7’-7)tl.7 b
=u - S @i + ;) —10g(g1)
i€ty jedi|a@ij+a;; >0\ T Lij

by Corollary 2

— b b b
b Zieil,jejﬂaij-l—gij)O(aij +Qij) (E - 10g(ﬁl) - Aj) b
=u’ - — — —log (1))
Zi6117j€j1\aij+gij>0(a” + Qij)

— b _ . b
Ziei’l,jej1|aij+gij>ﬂ(aij + Qz’j)Aj - Zieil,jejl |aij+gij>0(aij + Qz‘j) Mminjegss {Aj} ) {)\b}
Zieil,jejl |a¢j+gl-]->0(o‘ij +a;) Zieim’ejl |a¢j+g,-j>0(a"j + ;) jes= 7

. . . ——b . —b
Using an analogous argument, we can establish min, ¢ s.\ 7)o {A;} > minjes.{A}.
. b . b
Hence we have exp ( — Mileso\ 700y {4 ) +exp ( - mlnje(ss\jl)u{i}{)\/j}) < exp ( -

min,cs.{A’}) + exp ( — mines. {X?}) < 1. O

Let us now formulate our induction hypothesis

Induction hypothesis 2. There exists k < min{l,J} such that o, = @; = 0 if
i#jand (i<k—1orj<k-—1):

S s s S T S S S S
v s1 Sh_1 Sk LN v EH . Sp_1 B s
s oy e 0 0 ... 0 st | an 0 0 0
sb 0 a 0 0 st 0 a 0 0
k—1 Qg 1,k—1 k—1 k—1,k—1
SII; 0 0 QL Qg SZ 0 0 agk agg
sb 0 0 a a st 0 0 a a
T A aryg T Ik IJ

Moreover, fi; > --- >, > --- >, and fi; > -+ > [, > -+ >[5,
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We now show the following two lemmas:

Lemma 24. For every i’ < k —1 we have J*(i') = {i'}.
Lemma 25. For every j' < k — 1 we have Z*(j') = {j'}.

Lemmas 24 and 25 have analogous proofs thus we only prove Lemma 24 here.
Proof of Lemma 24. Suppose J*(i') # {i'}. The following cases are possible:

Case 1: J*(') = {j*} for some j* < i'. If i/ = 1, then this case does not apply,
hence suppose ¢ # 1. Induction hypothesis 2 then implies that o, = 0 for all j # 7".
Since j* < #', Lemma 18 implies o, = 0, hence p’ = 0, contradicting Lemma 5.

Case 2: minJ"(¢') > ¢. Induction hypothesis 2 implies that @,; = 0 for all
j # 1. Lemma 18 implies @, = 0, hence 71, = 0, contradicting Lemma 5. O]

We also establish the following:

Lemma 26. Ifi >k, then J*(i) # {j*} for any j* < k — 1.
Lemma 27. If j > k, then Z*(j) # {i*} for anyi* <k —1.

Lemmas 26 and 27 have analogous proofs, hence we only prove Lemma 26 here.
Proof of Lemma 26. Suppose for a contradiction that there is ¢ > k and J*(i) = {j*}
for some j* < k —1. Induction hypothesis 2 implies o;; = 0 forall 1 < j <k —1, and

Lemma 18 implies a,; = 0 for all j* +1 < j < J, hence p* = 0, which means that

a,; = 0 for all j, contradicting Lemma 5. O]

m =}, J. = {ilm = m}; and
I (i) = i’k} Define i, = maxZ, and jk = max J,. We

Let us introduce the following sets: Z,, = {i
L ={il7 (i) = J}, T =1{j

prove the following pair of auxiliary lemmas:

Lemma 28. 7, = {i|J*(i) = J,} # 0.

Lemma 29. 7, = {j|Z°(i) = Z,} # 0.

Lemmas 28 and 29 have analogous proofs, hence we only prove Lemma 28 here.

Proof of Lemma 28. Suppose for a contradiction that 7, =0, i.e. for any ¢ we have
T (i) # J.. From Lemma 24 we know that J*(i) = {i} # J, for i < k — 1, hence let
us consider cases ¢ > k. If i > k , then J~ (i) # {j*} for any j* < k—1 by Lemma 26,

55



hence the only possibility is min J*(7) > max ., which implies @;, = 0 by Lemma 18.
Since ¢ > k was arbitrarily chosen, we get @,, = 0 for all + > k. Induction hypothesis

2 implies @, = 0 for all ¢ < k — 1, implying u; = 0, contradicting Lemma 5. O]
We can now establish the step case of our induction:

Lemma 30 (Step case of the induction).
1. Foralli € i’k and j ¢ j; we have a,; = a,; = 0.
2. For alli ¢ 7, and j € J,. we have a, =a; =0.

Proof. Suppose ¢ > k and i ¢ T, = {i| T (i) = J.}, ie. T*(@) # J,. Lemma 26
implies that J*(¢') # {j*} for any j* < k — 1, hence the only remaining possibility
is min J*(¢') > max J.. Lemma 18 then implies @,; =0 for any j € J.. Moreover,
a,; = 0 for all j < k — 1 by Induction hypothesis 2. Recall that k € J,. and the
posteriors of all signal realizations in J, are the same, hence I, is equal to the weighted
average of the posteriors of signal realizations from T

= Dien 1 Z;;l_(aw‘ tay,) _ Zjejkl Zf_:l@ij

Zjejk > (@, + gij) Zjejk Do (@ + Qij)

=0 by TH2 =0 by L18

~ _ ~
Zjejk {ZKkl 91/] _'_Zieik Qi + Zizk,igik %

S | St @)+ Do @+ 2,) + S 34, +0)

=0 by IH2 =0 by L18
_ Zjejk Zieik aij < Zjejk Zieik aij .
Zjejk Eiezk (o, + gij) + Zjejk Eizk,igik Q; Zjejk Ziefk (@ + Qij)

Suppose now that 7 € Z,, i.e. J*(i') = J,. Lemma 28 guarantees that such i’

exist, and Lemma 24 implies that i’ > k (otherwise we would have J* (') = {#'} # J,).
Lemma 18 and Induction hypothesis 2 imply that o, = 0 for all j ¢ T = J*(1"). By

the ordering assumption, 7z, is then higher than the weighted average of the posteriors
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of signal realizations from Z,:

ﬁb > Ziei’“ ﬁf Zj:l <aij ™ gij) _ Zieik ijl Qi
k= T — - T
Zieik Zj:1(aij + Qij) Zieik Zj:l (aij + Qij)
Zieik [Zjejk aij + Zj€jk aij]

Doier, | 2ogen @y ) + 305 (@ + 3/:/ )
=0 by L18 & IH2
_ 2ien 2uen P T 2ien, 2ien W
Zzeik dejk (C“ + 0‘”) + Zzelk nggk
D ier, Dieq, Qi
- Zlezk > seq (@ + Qij)'

Combining the above, we get

—s < ZZEIk ZJEJIC ,Eb
e = Zzelk Z]ej (v +Q¢j) -

implying that 7, < 7.
T°(j) = L.}, ie. I°(j)) # I.. Lemma 27

Suppose now j' > k and j' ¢ J, = {j
implies that Z*(j') # {i*} for any i* < k — 1, hence the only remaining possibility
is minZ*(j) > maxZ,. Lemma 17 then implies @,, = 0 for any i € Z,. Moreover,
o, = 0 for all ¢ < k — 1 by Induction hypothesis 2. Recall that k € Ik and the
posteriors of all signal realizations in 7, are the same, hence 71, is equal to the weighted

average of the posteriors of signal realizations from Z,:

—b Zieik ﬁf Z; 1(am + Q; ) - Ziefk Zj:l aij

K = —
’ Zieik Zj:l (aij + Qz‘j) Ziefk Zj:1(aij + Qij)

=0 by IH2 =0 by L17

~> _ ~>
Ziei’k |:Zj<k—1 % + Zjejk Qi + ijk,jéjk %
Zieik |:ng1€1 (M) + Zjejk (aij + Qij) + ijk,jgéjk( E’;/J/ +gij):|

=0 by IH2 =0 by L17
_ Zzezk Z]ejk ZzeIk ZC/EJk
Zieik Zjej (a + Qw) + Zzelk Z]>k ¢ T —U B ZZEIk Zjejk (aij + Qij)

Suppose now that j' € J,, i.e. I (j) = 7,. Lemma 29 guarantees that such j’
exist, and Lemma 25 implies that j’ > k (otherwise we would have Z*(j*) = {j'} # 1,).
Lemma 17 and Induction hypothesis 2 imply that o, = 0 for all i ¢ 7, =T°(j). By

the ordering assumption, fi; is then higher than the weighted average of the posteriors
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of signal realizations from J,:

ﬁs > Zjejk ﬁj Zj:l(aij + gzg) _ Zjejk Zj—l aij
o ZjEjlc Zf:l (a” + Qij> Ziejk Zj 1(& + Qz])
Zjij [Zieik Qy; + Zigik aij]

Zjejk Zieik (@, + Q”) + Zigik (q; + % )
=0 by L17 & TH2
_ Zjejk Zieik aij + Zjejk Z,gjk Q.
D sed 2uier, @iy a,) + D05 ka
2seq 2oicr, i
B Z]EJk ZzEIk (@ + Qij).

Combining the above, we get

—b < Z]Ejk ZZEI,C ﬁs
My > > My,
Zjejk Zzezk (aij + gij)

implying that @, < 7. Above, we have established 7i; < 7, hence @, = @,. The

next claim is analogous to Claim 4.
Claim 7. Z, = Z, and J, = J,.

Proof. To see that ik = fk recall that we have shown above that

zl’efk Ezb z;’ 1(06 + gz]) > ZZGik szjk a” > ES o ﬂb
J i — jui - I
Ziei’k Zj:l(aij + Qij) Zieik Zjejk (@ + Qij> ’ ’

i.e. that the weighted average of the posteriors in Z, exceeds m. Ifi e 7., then
Lemma 24 implies that @' > k (otherwise we would have J*(7') = {i'} # J.), but
then we know from the ordering assumption that @, > 7, for any i’ € T, which then

immediately implies i = 7%, for any i’ € Z,, and therefore Z, = Z,. The proof of
T = T, follows exactly the same lines. O

Claim 7 combined with Lemma 17 and Induction hypothesis 2 then immediately
implies that o, = 0 for all 2 ¢ i’k and j € jk Claim 7 combined with Lemma 18 and
Induction hypothesis 2 implies that o, = 0 for all ¢ € 7, and Jjé¢ T

We conclude the proof of the base step by establishing the following two claims:

Claim 8. @,; =0 for alli € 7, and j ¢ T

Claim 9. @, = 0 for all i ¢ Z, and j € J,.
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The proofs of Claims 8 and 9 are analogous, hence we only prove Claim 8.

Proof of Claim 8. Let j' ¢ Jo. It 7 <k —1, then @, =0 for all i € Z, by Induction
hypothesis 2. Let j° > maxjk. Since jk = jk by Claim 7, we have j' ¢ jk =
{|1Z°(j) = L.}, i.e. T*(j') # Z,. Recall that Lemma 27 implies Z*(j) # {i*} for any

i* < k — 1, and thus the only possible case is minZ*(j') > maxZ,. Lemma 17 then

implies @,;, = 0 for all i € Z,. O
This concludes the proof of Lemma 30. n

Lemma 30 has the following corollary, analogous to Corollary 2.

Corollary 3. Leti € Z,, j € J.. If o, +a; >0, then t') = u* —log(p’) — X' =

D2
u’ —log(f;) — Xi and t3; = u* +log(p’) + A =’ + log(1;) + A
Proof. We only prove the claim for the buyer, the proof for the seller is analogous.
Lemma 30 implies that 7 = 7 for all ¢ € Z,, thus a,, + @,; > 0, combined with
stationarity and complementary slackness, implies either ¢}, = u’ — log(p!) — A or

tr =u"—log(f,) —Xj., or both. We now show that u”—log(u’) — X =u"—log(m;) — A,

For any j € J.. there is i’ € 7, such that a,, > 0 (if not, Lemma 30 would imply
a,; > 0 for all 4, implying W= 0 and contradicting Lemma 5). Also, for any j € VA
there is ¢ € jk such that @,,; > 0 (if not, Lemma 30 would imply @,; > 0 for all i,

implying 7z; = 0 and contradicting Lemma 5). Consider (ST}, ) and (ST, ):

N . —b —b _ — 3o
@ —ty; —log (1) — Xj = —¢i; < 0. @ —ty; — log () = Aj = 0.

(ST;,) implies that @* — log(7;) — X:. < u’ —log(p) — Al and (ST},,) implies that
u’ —log(p’) — A7 < u" —log(7y) —Xj., hence u* —log(p*) — X} = u” —log(zi;,) — X. O

b
k J
Corollary 3 allows us to merge the buyer’s and the seller’s signal realizations in

7, and J, respectively, and still achieve the same revenue. The construction of the

merger is analogous to that of the base case and thus omitted. O]
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I Proof of Lemma 8

Proof. To simplify the notation let (z,y) = (p ,7,) and define the following function:

05—z

f(z,y) = log(zy) — 05-y log( (1-— x)) — m

[ log (y(1 —y))

— log [1—x—yeﬂ —log[l—y—l—yeﬂ +u —ut.

Our problem is then equivalent to max, ,ceosy f(2,y), which can only have sym-
metric solutions because f(z,y) is symmetric and strict-supermodular®. Symmetry is

immediate, to check strict-supermodularity, let us compute % and show that it is

strictly positive for all (z,y) € (0.0.5)*. Start with 2L:

_ _ _ _ A _
g—l—i- 05—y log[y<l y)}_ 05—y 1—2x et —1

or  x  (1—xz—y) z(1—x) l—z—yx(l—2) 1—xz+azed

0%
Now compute -

o'f :—ﬂ—x—y)+%1—$—w®5—yﬁo[Ml—w]

0xdy (1 —x—y)* z(1—x)
N 05—y 1-—2y _—(1—:1:—y)+0.5—y1—2x
Q—z—yryl-y) A-z—yp  z(l-z)

which simplifies to:

of _ _a-y o [vd-9], 1 (1 —2y)° 1 (1 —22)°
1gLO—wJ+2M1—wO—w—yV 22(1—2)(1 —2 —y)*

oxdy (1 —x—y)?
4Strict-supermodular functions cannot have asymmetric maxima. Indeed suppose for a contra-

diction that (z*,y*) € max(, y)e(0,0.5)2 f(z,y) for some symmetric and strict-supermodular f(z,y),

and z* > y* wlog. By symmetry, we have f(z*,y*) = f(y*,2*). Optimality then implies
fly*,2%) = fa*,z7),
fyr) < fla*,y7),

which implies f(z*,z*) — f(y*,2*) <0< f(z*,v*) — f(y*,y*). To obtain a contradiction, observe

fla*, ") — fly*,z") — [f(:c*,y* / f (z,x" dzf/g( *)dz

[ B /”ﬁwywdwmo

*
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Direct calculation shows that for x = y we get aa;;y = 1171) > 0. Let z < y wlog:
0% f y(l-y)]  1-z-y[(1-2y)*  (1-22)°
Oxdy (e y)loe [w(lw)] T {y(ly) 56(193)}

y(1-y) l—z—y[(1—-2y)? (1-2x)?
Z(x_y)[ _1]+ 2 [y(l—y) $(1—x)]
_1]+1_x_y”f(l_@(l—29)2+y(1—y)(1—2w)2
2 z(1—z)y(l —y)

xy(l—y)(x—1y) [y(l —y) —z(1— m)] + H% [:1:(1 —z)(1— 2y)2 +y(l—y)(1— 2x)2]

= (=)~ D)y~ D)~z =)+ e Y[ 21~ 20)° + 91— )1 20)°]

o —2y(1 —y)(y — 2)* + (1 — 2y)°x(1 — z) + (1 — 22)°y(1 — y)
> —2y(1—y)(y —z)* + (1 — 22)%y(1 — y)
=y(1—y)[(1-22)* —2(y — 2)?]

o (1—-22)% —2(y —2)* > (1 — 22)? = 2(0.5 — x)* = 2(0.5 — ) > 0.

J Sufficient optimality conditions for strictly positive posteriors

Rewrite the designer’s revenue maximization problem as follows:

max Z (a,+a@)(th—t) st

(ST") ' —# —log(u) =X > A" Vi,
@ —t—log (@) =\, >N Vi,
(ST?) & —w —log(p) =X = A" Vi,
tr—w —log (@) =X\, > A Vi,

(NA")  exp(— miin{gf}) +exp (— miin{Xf}) <1,

—— ——
=AY ="
(NA*)  exp (—min{A’}) +exp ( — min{\}) <1,
2 K3

=As A°

(aF) S"=8"={1,...,n},a € A(S" x S*x V), BP,

O<p <1, 0<p <l
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The problem can then be rewitten as follows:

T —A >t +1log(
(NA")  exp(—A") +exp(—
(NA")  exp(—A") +exp(—A

(a-F) BP, 0<p <1, 0<p <l

(ST")  exp (w)exp (—A") > p exp (1) Vi,
. ~ , —i
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Finally, relax the strict inequalities:

(ST")  ("exp (u') > p exp (1) Vi,
Cexp (@) > i, exp (1) Vi,
(ST)  Cexp(—w) > pexp(—1t;) Vi,
Cexp(—u) >pexp(—t) Vi,
(NA") ¢+ <1, ¢">0,C >0,
(NAY) ¢+C <1 ¢=0¢ =0,
(a-F) BP,0<p<1, 0<p<l

Let us now solve the relaxed Revenue maximization problem (3). The interior
cases were considered above. We will now consider the cases, in which one or both

posteriors are extreme.

J.1 Case EO: both posteriors are extreme

In this case we have p = @, = 0 and p = 71, = 1. The Bayes-plausibilty

conditions can be written as:
g+ np =10+nl=n=pn,
T, + Tofty, = 11 + 7,0 =1, =71,

The relaxed stationarity conditions can then be written as:

(ST") gb exp ('l_Lb> > Oexp (ti)J7 (ST?) g exp ( — gs) > 0 exp ( — tj)J,
always holds always holds

Eb exp (u’) > lexp (8), ¢ exp (—w)>lexp(—t),

gbexp (gb) > lexp (t;), gsexp(—gs) > 1exp(—t;),

Zb exp (u’) > Oexp (tg)J Cexp (—w) >0exp(— t;)}.

-~

always holds always holds
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The relaxed maximization problem can therefore be rewritten as:

max T (1) —15) +p (t; — t5) sit. (4)
(ST*) ¢ exp (ﬂb) > exp (ti), Qb exp (gb) > exp (t; ,
(ST*) ¢ exp ( — ES) > exp ( — tf), ¢ exp ( — g“‘) > exp ( — t;),
(NA") ¢'+C <1, ¢">0,C >0
(NA*) ¢+¢ <L, ¢>0,( >0

The following claim applies:

Claim 10. At the optimum of the revenue maximization problem (4) we have ¢* >0
and Zp > 0 for both p € {b,s}. Suppose not, then the respective payment has to
be equal to —oco to satisfy the relaxed stationarity constraints. But (NA”) implies
that ¢" < 1 and " < 1, which implies that the remaining payments are bounded
from above, implying in turn that the revneue has to be equal to —oo as well, which

obviously cannot be optimal.

The revenue maximization problem (4) can therefore be rewritten in terms of the

original variables:

max 7i,(t; — ;) + p (8, = 1;) s.t.

t,A

) <@ N, th<u A
) —h<-w-N, —t;<—w - A,
(NA®)  exp ( — Ab) + exp ( — Kb) <1,
)

exp(—As) —i—exp(—KS) <1.
The constraints (ST)" and (ST)* are obviously binding at the optimum, hence the

revenue can be written as:

b

7Q’Case E0 — Ho(ﬂb - K - ES _KS) +HO(Hb - Ab - QS _AS)
— — —s s — —b s s
=10, ( — @) + p, (0 —w) = FN — p A =N — p A
Additive separability implies that it is enough to solve for both p € {b, s}:

max —7, A — HOAP s.t. exp ( — Ap) + exp ( — Kp) <1.

AP AP
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The optimal solution is given by A” = —log (EO) and A" = —log (ﬁo). The optimal

revenue can then be written as:
R o = Ho(@ =) + p (0 — u) +2 (ﬁo log (7°) + p, log (HO))
=u —u + {ﬁo (@ —w) +p (0 —w) -7 + g} +2 (,UO log (7°) + p, log (EO))
(0 )~ (- )+ 2 o () + 1, o (1) )
= —p A" = 1,A° + 2 <ﬁ0 log (7°) + p, log (g’)) + T -
In the symmetric case we get:

" . 1 1 1 1 1 1 —b s
7?’CaseEO_ QA 2A+2(210g (2)+210g (2))+u Q

=—-A—2log2+u" —u’.

J.2 Case E1: y, is extreme, p, is interior

Suppose p,o=0,0 =1 and 0 < B Be < 1. From Bayes-plausibility we then have:

Tip, +Tp, =10+ np = p n=1-2
- - =

)
Ha

Ty + Tofly = Tyl + Tofly, = Ty T2 = i_z

The relaxed stationarity conditions are then given by:

(ST")  Cexp (u’) > Oexp (t1),  (ST") (exp(—wu’) > Oexp(—t),

J/ J/
-~ -~

always holds always holds

exp (u’) > lexp (t!),

b

—s

¢ exp(—ﬂs) > 1exp(—tj),

Yexp () > p,exp (1), Cexp(—w) 2 p,exp(—1),
2. Zsexp(—ﬂs)zmexp(—t;).

b

DNy Y|

exp (0") > 1, exp (¢
We first establish the following claim:

Claim 11. ¥ are bounded from above, t; are bounded from below for all 7.

Proof. (NA") implies g’ < 1 and Eb <1, and (NA®) implies ¢* < 1 and <1 It
then follows from (ST") that t* < %" and t} < log min {i exp(u’), = exp(@’) }, and it
follows from (ST*) that ¢; > @ and t; > — log min {Mi exp(—u), = exp(—w)}. O
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We then establish the following:
Claim 12. At the optimum g’ >0, Zb >0 and ¢ >0, ¢ >o0.

Proof. 1f ¢ *=0or Zb = 0, then at least one of the buyer’s payments would be equal
to —oo. Since the remaining payments of the buyer are bounded from above and the
remaining payments to the seller are bounded from above, it would lead to revenue
equal to —oo, which cannot be optimal. If ¢* = 0 or ¢ =0, then at least one of the
seller’s payments would be equal to co. Since the remaining payments of the buyer
are bounded from above and the remaining payments to the seller are bounded from

above, it would lead to revenue equal to —oo, which cannot be optimal. O

Observe that at the optimum we must have Eb exp (ﬂb) = exp (tﬁ) . Moreover, we
must have either g’ exp (g”) =, exp (tg) or Zb exp (ﬂb = [i, exp (t’;), or both. We

establish the following lemma:

Lemma 31. (" exp (gb) = W, exp (t’;) at the optimum.

Proof. Suppose for a contradiction that this is not the case, then the other con-
straint in the pair must be binding, i.e. Zb exp (Eb) = i, exp (tg) Suppose now
that tj,t;,g,zs, W, [, are optimally chosen. To make sure that ', t5 and g’,zb are

optimally chosen, we solve:

(ST")  exp (tll’) =( exp (ﬂb),

(NAY) ¢"+('<1, ¢">0,C >0

The optimal solution to the above problem is to set (° = 0 and Zb = 1, which

contradicts Claim 12. O

Likewise, we must have at the optimum ¢ exp ( — ﬂ) = exp ( — t;). Moreover,
we must have either (" exp ( — g) = [, €xp ( — tf) or Zs exp ( — ES) = i, exp ( — tj),
or both. We establish the following lemma:

Lemma 32. (" exp ( — gs) = [, €Xp ( - t‘j) at the optimum.
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Proof. Analogous to Lemma 31 for the buyer. [

The revenue maximization problem can then be rewtitten in terms of the original

variables as follows:

max 7, (¢ — &) + () — 1;) s.t.

ENTR N
(ST") t'=u" -7,
b
tl;:ub—log(;_LQ) - A

(ST") —t'=-w R,

(NA")  exp(—A") +exp(— Kb) <1,
(NA")  exp (=A%) +exp (
(a-F) BP, 0<p <1, 0<pm, <l

The revenue in Case E1 can then be written as follows:

—b

Rewerms =T |0 — A _ES_KS} +Tz|:ﬂb_ﬂs_210g(ﬂz)_Ab_As .

Since Rea 1 18 strictly decreasing in A, both (NA®) and (NA®) are binding.
From our consideration of the concave closures above, it follows that we must
consider the following three cases:

S

Case E1.1 —t; = —u" —log (1) — A" = —w —log (1,) — A

o

Since (NA®) is binding, we can solve for A*:

—A" =’ +log (p,) — log [, exp(w’) + T, exp (@),

8 —_—

K =@ +log (7,) — log [, exp(u) + 7, exp(@)].
The revenue can then be written as follows:
Rewe pra = 71 [0 +1og (71,) —Kb] +7,[u’ —log (Hg) —A"] —log M2 exp(u’) -+, exp(T)].

Maximizing Roue s With respect to A” and N subject to (NA"), we get —A" =

log 7, and A = log 7,. The revenue can then be written as:
RCase BE1.1 = T1 [ﬂb + log (EQ) + log 71] + T [gb —log (Hg) + log Tg] —log MQ exp(u®) + My exp(ﬁs)]

= log (EQ) — 1o log (H2ﬁ2) — A’ + 7 log 11 + 12 log T — log [Hz + Tiy exp(AS)] + 7’ — .
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Recall that Case E1.1 applies only if the (ST")-constraints are satisfied, i.e.

b

w —log (p,) — A" <@ —log (7,) — A
< u” —log (u ) +logm, <@ —log (11,) + log 7

< log {l ] + log {Tﬂ < A’
i,

T

—b

Case E1.2 ) = v’ —log( ) AN =7 —log(,uz) A
Since (NA®) is binding, we can solve for A®:
—A" = —u’ +log (p,) — log [, exp(—u") + 1, exp(—a")],
—b . _ _ .
A" = @ +log (f,) — log [, exp(—u’) + 71, exp(—u")].
The revenue can then be written as follows:
RCase E1.2 = T1 [—ES—HOg (EQ)—KS]—H'Q[ u®—log ( ) AS] —log m exp(— )+ﬁ2 exp(—ﬂb)].
Maximizing Reae. 1. With respect to A° and A subject to (NA"), we get —A° =
log 7, and —A" = log 7,. The revenue can then be written as:
RCase E1.2 = T1 [ —u® 4 log (EQ) + log 7'1] + 7'2[ —u® —log (H2) + log 7'2] — log [H2 exp(—gb) + iy exp(
= log (/72) — 71 log (HQﬁQ) —11A% + 1 log 11 + T2 log 1o — log [/12 exp(Ab) + ﬁg] + a1’ — vt
Recall that Case E1.2 applies only if the (ST’)-constraints are satisfied, i.e.
—u® — log (E2) — N < -w —log (ﬁ2) - A
& —u' —log (EQ) +logm, < —u’ —log (HQ) +logm,

< log [ﬂﬂ + log {7—2} < =AC
K, T

Case E1.3: all constraints are binding

In this case we have:

/

—A" = —u’ +log (Hz) —log MQ exp(—u®) + 7, exp(—ﬂb)},
—A' =~ +log (i,) — log [, exp(—u’) + i, exp(—")],

—A" = w +log (p,) —log [, exp(w’) + i, exp(u’)],

| A" =@ +log () — log [, exp(u”) + Tz, exp(@*)].

The revenue then becomes:

Rease 15 = 27 10g (1,) — log [p1 exp(—u’) + 71, exp(—u")| — log [p, exp(w’) + T, exp ()]
= 27, log (7z,) — log [Hz exp(A’) + 71,] — log [L‘Q + I, exp(A*)] + 7 — w.
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J.3 Case E2: p, is interior, p, is extreme

Suppose 0 < Bom <1 and p, =1, 1,=0. From Bayes-plausibility, we have:

T T, =g+l =p, N T, = %’

Tifly + oy = Tafly + 7,0 = Ho- n,=1- Z_(l).

The relaxed stationarity conditions are then given by:

(ST")  exp (w') > pexp (1)),  (STY) Cexp(—u’) > p exp(—t;),
Cexp (W) > 7, exp (1), Cexp(—@) 2@ exp (1),
Cexp (u') > lexp (8), Cexp(—u') >Tlexp(—1t),
Cexp (@) = Oexp (t1) Coxp (=) > Oexp (—1;).
e ol v ol

We first establish the following claim:
Claim 13. t° are bounded from above, t; are bounded from below for all i.

Proof. (NA") implies gb < 1 and Zb <1, and (NA®) implies that ¢* < 1 and CIt
then follows from (ST") that ¢* < log min {ui exp(u’), - exp(@’)} and ¢ < v’ and it

follows from (ST®) that ¢{ > — log min {uL exp(—u’), = exp(—u’)} and ¢; > w. O
We then establish the following:
Claim 14. At the optimum gb > 0, Zb >0 and ¢ >0, ¢ >o0.

Proof. 1f ¢ *=0or Zb = 0, then at least one of the buyer’s payments would be equal
to —oo. Since the remaining payments of the buyer are bounded from above and the
remaining payments to the seller are bounded from above, it would lead to revenue
equal to —oo, which cannot be optimal. If (* = 0 or ¢’ =0, then at least one of the
seller’s payments would be equal to co. Since the remaining payments of the buyer
are bounded from above and the remaining payments to the seller are bounded from

above, it would lead to revenue equal to —oo, which cannot be optimal. O

Observe that at the optimum we must have ¢ " exp (gb) = exp (tg) . Moreover, we
must have either gb exp (g”) = p exp (tl;) or Zb exp (ﬂ”) = i, eXp (t’;), or both. We

establish the following lemma:
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Lemma 33. Zb exp (W) =, exp (%) at the optimum.

Proof. Suppose for a contradiction that this is not the case, then the other constraint
in the pair must be binding, i.e. gb exp (ﬂb) = j exp (t’;) Suppose now that t;, t;, ¢7,

b
12

¢ and K, i, are optimally chosen. To make sure that ¢, ¢; and ¢ . Zb are optimally

chosen, we solve:

max 7, (=) + 7t —t;) st
1

(ST")  exp (tll’) = gb exp (gb),

—1

exp (t5) = ¢"exp ('),

(NA") ¢"+C <1, ¢">0,( >0.

The optimal solution to the above problem is to set " = 1 and Zb = 0, which

contradicts Claim 14. O

Likewise, we must have at the optimum (" exp ( — gs) = exp ( — t;). Moreover,
we must have either " exp ( — g) = J €Xp ( — tj) or C exp ( — ﬂs) = [i, exp ( — tj),
or both. We establish the following lemma:

Lemma 34. ¢ exp ( — ES) = [i, exp ( — t*j) at the optimum.
Proof. Analogous to Lemma 33 for the buyer. n

The revenue maximization problem can then be rewtitten in terms of the original
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variables as follows:

max 7, () — &) + 1 (t — ;) s.t.

Tt A

(ST") ) <uw’ —log (u,) — A,
L= —log (1) — N,
ty=u" — A"

) — A

—s

b=~ —log (i) ~ X

(ST*)  —t; < —u —log (

=

—ty = —uw — A%
(NA")  exp(—A") +exp(— Kb) <1,
(NA®)  exp ( — AS) + exp ( — Ks) <1,

(a-F) BP, 0<p <1, 0<p <L
The revenue in Case E2 can then be written as follows:
RCaseEQ - 7_1 ab _as - 210g (ﬁl) _Kb _Ks‘| +7_2 |:gb _QS _Ab _As .

Since R ox 18 strictly decreasing in A, both (NA”) and (NA®) are binding.

From our consideration of the concave closures above, it follows that we must

consider the following three cases:
—b

Case E2.1: t* = v’ — log (Hl) — AN =7u —log(m,) — A
Since (NA®) is binding, we can solve for A®:
—A’ = —u’ +log (Hl) — log Ml exp(—u’) + 7, exp(—ﬂb)},
—b . _ _ .
—N = —u" +log (i,) — log [, exp(—u") + i, exp(—u")].
The revenue can then be written as follows:
Roue o1 = 7 [~ —log (71,) =N '] +7 [—uw +log (;_L)—AS} —log Ml exp(—u)+7, exp(—a")]

Maximizing Re... ms: With respect to A* and A subject to (NA"), we get —A° =

log 7, and —A" = log 7. The revenue can then be written as:

Rease B2.1 = 71 [ = 1° —log (fiy) +log 1] + 72| — u® +log (u,) +log 2] —log [, exp(—u’) + iy exp(—7’)]

= log <H1> — 71 log (Hlﬁl) — 1A% + 1 log 1 + T2 log T — log [Hl exp(Ab) + o] + o —u’
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Recall that Case E2.1 applies only if the (ST")-constraints are satisfied, i.e.

—u’ —log 1) A< u—log(,u) AN

(7

& —u —log(ul)—i—logﬂg —u’ —log(u)—{—logT2

S —A° <log Lll} +log[ ]
I

S

Case E2.2: t: = —u’ —log (Hl) — AN =-w—log(m)—A
Since (NA®) is binding, we can solve for A’
—A" = w +log (p,) —log [p, exp(w’) + i, exp(w’)],
—\" = +log (11,) — log [, exp(w’) + 11, exp(w’)].
The revenue can then be written as follows:
— — - s _— —s
Rene 22 = T [ub —log (ul) —A ] +7 [gb—i-log (ﬁl) —Ab} —log Ml exp(u’)+71, exp(u )] )
Maximizing Rea. ms» With respect to A” and Kbsubject to (NA®), we get —A" =
log 7, and A = log 7,. The revenue can then be written as:
Rease B2.2 = 71 [0 — log () + log 71] + 72 [u’ + log (p,) + log 72] — log [, exp(u®) + iy exp(u®)]
= log </l1) — 71 log (L‘lﬁl) — 1A + 1y log 71 4 2 log 72 — log [/i1 + 1y exp(A®)] + W —u’
Recall that Case E2.2 applies only if the (ST*)-constraints are satisfied, i.e.
@ —log (1) ~ A < u’ —log () — A"
U —log (1,) + logm, < v’ —log (El) + log 7,
SA" <log {,u ] + log [T]
K, T
Case E2.3: all constraints are binding

In this case we have:

)
—A" = —u’ +log (Hl) — log M1 exp(—u’) + 7, exp(—ﬂb)},
N =+ log (ﬁl) — log Ml exp(—u’) + 1, exp(—ﬂ”)},

—A" = w +log (p,) —log [p, exp(w’) + i, exp(u’)],

—A =u’ +log () — log Ml exp(uw’) + 7, exp(T’)].

The revenue then becomes:

Rease 23 = 2Ty log (g ) — log [p exp(—u’) + 71, exp(—u")| — log [ exp(w’) + 7, exp ()]
= 27,log (El) — log [Hl exp(A’) +71,| — log [H] + 1, exp(A%)] + 7 — w.
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J.4 Ruled-out cases

Lemma 35. Roue po1 = Rouse w22 for all A <log ( ) + log ( )

= |E\

Proof. Rcase g2.1 = Recase p2.0 Can equivalently be written as

7A +log [ exp(A) + 71, ] < A +log [p, + i, exp(A)],

which in turn can be rewritten as

ELA + log [, oxp(A) + 7]

1

_&E_E<@_1) ﬁ_(gul_l) I
Hy T Hy\Ho H,

Define the function f(A) = = A +log 1, exp(A)
goal is to show f(A) <0 for all A > 0 such that exp(A) < %(ﬂl
that f(0) = %O + log Ml + 7] )

—1

—log [, + 71, exp(A)] <

i,
Ml (1,

0

_H1>'

+7,) —log [pr, +7, exp(A)]. Our
— 1) Observe first
— log [,L_Ll +7,] = 0. We will now show that f(A) is

decreasing for all A > 0 such that exp(A) < 2(zz, —p ). First, let us compute f'(A):

b o)
fA)y==+— —
i,k exp(A) +70,

Ay exp(A)
1, + 7, exp(A)

K, (142 + 11y exp(A) — p 7, exp(A
==+ exp(A)
7iy _ (gl exp(A) +1,) (i, + 7, exp(A )
—m) (e + 7
B () (1, fl)(u i) 1
i, | (1, exp(A) +7,) (g, + 7, exp(A
[ Hl -
==L —exp(A) — }
i, (1, exp(A) + 11, (u + 7, exp(A
We now show that f'(A) < 0 for all A > 0 such that exp(A) < 2(z, — p ). The
condition f'(A) < 0 can be rewritten as:
I Ty — I,
= —exp(A) — } <0
7, (1, exp(A) +71,) (1, + 71, exp(A))
& 1 —exp(A) = (_ ) <0
(1, exp(A) +71,) (1, + 7, exp(A))
_ A,
< exp(—A) (g, exp(A) +7,) (p, + 7, exp(A)) < ). (5)

1
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Since exp(A) <

= |E\

(7, — p,), to show that (5) is true, it is enough to show that
exp(—A)(p, exp(A) +11,) (1, + 71, exp(A)) < exp(A)
& (ﬁl exp(A) +7,) (Hl + 7, exp(A)) — exp(2A) < 0.

To that end, define the function g(x) = (Hlx + ﬁl) (El + ﬁlx) — x°. We show that
g(x) <0 for all z > 1. First, observe that g(1) = (El +1,) (Hl +7,) —12=0. We

now show that g(x) is strictly decreasing for all > 1. Let us compute ¢'(x):
g(@)=p (p, +m)+a(pr+n) —20=pw+n —2(1—ppn.

To show that g'(z) < 0 for all > 1, observe that ¢'(1) = p? + 11} — 2+ 2u @i, =
(u, +1,)* —2=1°"—2=—1<0, which, combined with ¢"(z) = —2(1 — p 11,) <0,
gives the desired result. O]

Lemma 36 RCaSe E2.1 > RCase E2.3 fOT _A < ].Og (

h: |3:\

) + log (72)
Proof. Rcase 2.1 > Recase 525 Can be equivalently written as
—7,log(p ) — 71 log(@r,) — A + 71 log(7y) + 72 log 7, + log Ml + 7, exp(A)] > 0.

The condition —A < log (

= |:\

) + log (72) can be rewritten as:

ewp(-0) B E_B(R )
E1 Ti Hl /'1/0

|t|
|7:|

(2/L1 o 1) (ﬁl o H1>

I'=
I'=

1 1

Define f(A) = —nlog(p,) — 7 log(f,) — 1A + 7 log(m) + 72 log 7, + log Ml +
7, exp(A)]. Our goal is to show that f(A) > 0 for all A > —log (%) — log (:—f) Let
us first evaluate f at A = —log (Z—l) — log (:—f) (note that exp(A) = & —1):

B1 B1—py

f(A) = =y log(p,) — 71 log (1) + 7 [log (u

) + log ( )] + 71 log(71) + 2 log T2 + log ml + ﬁleé]
k] !

—(r2+ 1) log(p,) + (11 + 72) log 72 + log [, + iy exp(A)]

p,1
= —log(p,) +log T2 +log | p, + iy ==
My My — oy

1
= —log(p,) +log 7 + log(p, ) + log [1 + = ]
- - 1451 _Hl
1 iy — 2
_ :| zlog |:/’L1M1:| +10g |: H1 :| = 0.
fy = fy 201 i1 — fy
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Since f(A) = 0, it remains to show that f(A) is increasing for all A > A, ie.

|t:\

whenever exp(—A) < 2(z, — p ). To that end, we compute the derivative of f:

=

1

f’(A) - 7 + ﬁ1 eXp<A> _ L + ﬁ1

B+ mexp(A) 20, poexp(—A) + 7,

Direct calculation shows that f'(A) > 0 is equivalent to exp(—A) < 2(7, — p ),

which establishes the claim. O

Lt |1:\

Lemma 37. Ruoicaming = Recase m2.3-
Proof. The condition Ryoiearing = Rcase m2s Can equivalently be written as:
—2log [exp(A)+1]+2log2 > 27, log () —log Ml exp(A)+7, ] —log MI—I—E exp(A)].
Define the function f as follows:
f(z) =log Mlx +7,] + log Ml +m,z] — 2log(z + 1) + 2log 2 — 27, log(p.)-

The statement of the lemma is equivalent to showing that f(x) > 0 for all x > 1.

We first show that f is strictly decreasing for all z > 1 by computing its derivative:

fay=—b 2
prt+pe  p+mr xr+l
B 1 N o1
pr+p o+l p+pr x4+l
I i,

o+t (o +ma)e+ 1)

_ 2
By I B (B, —p) (1 —x) 0
z+1 (p+oz pr+n]  (@+1)p +n0)pe+n)
We now show that lim,_,, . f(z) > 0:
. . (p2 +m)(p, + m2)
T1_1)r+noof(x) = 11_13100 log { = (xl—i—IS? : ] +2log 2 — 27, log(j,)
. {2+ p i+ p e+
= xEIPoo log [— o n 2;+ 1 1] +2log 2 — 27, log (i)

= log(p,7,) + 2log 2 — 27, log (1)

= (1 —27,)log(p ) + log(f,) + 2log2

—1

= ﬁ_l log(, ) + log(f,) + 2log 2.

Define the function g(x) = - log(z) +log(1 —z) +2log 2. To conclude the proof,

we need to establish the following lemma:
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Lemma 38. g(x) >0 for all 0 < z <

1
5

Proof. First observe that g(;) = log(;) +1log(;) +2log2 = 0. To conclude the proof,

we show that g is strictly decreasing on 0 <z > =:
l-z+ux r 1 1 log(x)

T log(z) + - — = < 0.

9(@) l—zz 1—2z (1—ux)

J.5 Conjectures

Recall that at the (interior) optimum we have:

Rierior =l0g [Ver =1 —Ve2 — 9] —log [3v/ex — 1+ Ve2 — 9]

—2log [3+ e — v/(e2 — 1)(e* — 9)] + 4log 2.

Numerical computations suggest that the following conjecture is true:

E

Conjecture 1. For all A > log9 and —A < log [ ] + log [:—j] , we have

I=

1

Rinterior > Rease B21 = log(pt,) — 71 log(p,iy) — 1A + 71 log 71 + 7o log 75 — log [ e® + 7],

where p € (0,0.5) and the T’s are given by:

[

2m,

= |R\

T, + Tofl, = Tifh, + 7l = Ky T =
=

Ty + Tofly, = Tifty + 750 = T, T2 =

[a—
|
B g
I
|

B

20,

Recall that the no-learning revenue is given by:
7?’No—learning — _2 log [exp (A) —I'_ ].] + 2 ].Og 2

Numerical computations suggest that the following conjecture is true:

|t\

Conjecture 2. For all A <log9 and —A <log [2] +log [2], we have

1

I=

7-‘)'No-learning > Rcase B2.1 = log(ﬁl) -7 log(ﬁlﬁl) —71A+7 log 71 +72 log T2 —log [HleA +E1] )

where p € (0,0.5) and the 7’s are given by:

T + Toft, = Thft) +7nl= Ko T =
=

Tlﬁ1+72ﬁ2:7—1’_1’1+7-20:ﬁ0' 7-2:1_5_(1):1_L
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