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Abstract. We study a bilateral trade problem with flexible but costly information ac-

quisition. There is a buyer and a seller who can trade a single unit of a good through

an intermediary who designs a mechanism to facilitate their trade. In the beginning, the

buyer, the seller and the intermediary share a common prior over a finite set of states of

the world. The intermediary proposes a mechanism to the players, who can then acquire

information about the true state by privately designing a signal device. Assuming that

the information acquisition cost is proportional to the expected reduction in entropy, we

characterize the set of implementable allocations. Using the implementability conditions,

given by a finite-dimensional system of equations and inequalities, we maximize the inter-

mediary’s revenue over all implementable allocationally efficient mechanisms. Under certain

symmetry conditions, our revenue maximization problem can be solved in closed form.
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1 Introduction

Traders dealing with complex objects often do not have enough relevant infor-

mation to correctly estimate the object’s value at the outset, and therefore may

take potentially costly actions to acquire more information. Consider for example a

landowner (a seller) who owns a plot of land which is known to likely have a com-

mercially viable amount of oil under its surface. Suppose this landowner is not in the

oil business and is thus considering selling the mineral rights to an oil company (a

buyer). At the beginning neither party has a precise estimate of the amount of oil

under the surface, but each party could order exploratory drilling to obtain better

estimates. The outcomes of the two exploratory drilling studies could be more or

less correlated depending on how much coordination between studies the landowner

and the oil company achieve. It is possible that the parties decide to order a single

study together, in which case the outcomes will be perfectly correlated, or two inde-

pendent studies in different locations, in which case the outcomes can conceivably be

independent conditional on the amount of oil under the surface.

We are interested in the problem of a third party who intermediates trade between

the seller and the buyer, and is interested in maximizing her own revenue. The parties

communicate with each other via the intermediary who determines the communication

protocol and the resulting allocation and payments. The possibility of information

acquisition by the parties presents a considerable challenge for the intermediary: in

our example the landowner and the oil company may hide some aspects of their

exploratory studies from the intermediary (and each other), and thus have to be

incentivized to disclose what studies have been performed.

In order to understand the problem of such an intermediary, we build a model with

two players: a buyer and a seller who can trade an indivisible object, and a mechanism

designer who intermediates trade between them. The object’s quality (payoff-relevant

state) determines its value for the players. We assume that, conditional on knowing

the true quality, the players would always like to trade. Our designer is interested in

money and values the object at zero irrespective of the quality.

At the outset, neither the players nor the mechanism designer have any informa-

tion about the object’s quality beyond a commonly known prior. In the beginning,
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the mechanism designer commits to a mechanism which consists of messages to be

sent by the players later and the allocation and payment functions defined on the

messages. Once the mechanism designer has selected a mechanism, the players si-

multaneously generate signals to acquire more information about the quality of the

object. To model the information acquisition process, we assume that there is a

probability space of fundamental states of nature and that every random variable in

the model is a measurable mapping form the sample space of fundamental states to

another measurable space (e.g. the object’s quality is a random variable that maps

the fundamental states to the space of possible qualities). Before the game starts,

nature draws a fundamental state but nobody observes it. A player’s signal is a pair

consisting of a finite space of possible signal realizations and a random variable that

maps the fundamental states to the signal realizations. The signals generated by the

players are costly. The cost of a signal is proportional to the expected reduction of

entropy achieved by the player generating the signal (i.e. as in rational inattention,

see Sims (2003) and Matejka and McKay (2015)). Information acquisition is thus

costly but flexible, allowing for arbitrary correlations across signals and the object’s

quality. It is also hidden as neither player observes the signal chosen by the other

player and the intermediary does not observe the signal chosen by either player.

After the players have chosen their signals, they privately observe the signal re-

alization corresponding to the fundamental state chosen by nature. Having observed

their signal realization, they select a message to report to the designer who then an-

nounces the allocations and payments. The quality of the object corresponding to

the fundamental state is then revealed and the players’ payoffs are determined. The

players are interested in maximizing their payoffs net of information acquisition costs.

We consider Nash equilibria in pure strategies1 of the resulting mechanisms and,

in the case of multiplicity, select an equilibrium that maximizes the mechanism de-

signer’s revenue. One might wonder whether choosing an equilibrium concept that

takes into account the dynamic nature of our environment (e.g. perfect Bayesian

equilibrium) would change our results, but, fortunately, it is not the case. Intuitively,

since players only observe their own signal realizations, they obtain no information on

1Whether the restriction to pure strategies is without loss of generality or not is an open problem

that appears to be non-trivial. Appendix D discusses this issue in more detail.
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the signal chosen by the other player. Hence, an off-equilibrium information set can

only be achieved following a player’s own deviation, which makes sure that every Nash

equilibrium has an outcome-equivalent perfect Bayesian equilibrium (Proposition 2

proven in Appendix C formalizes this argument).

We establish a revelation principle (Proposition 1), which allows us to restrict

attention to truthful-revelation equilibria of direct mechanisms. Direct mechanisms

ask the players to report one of the signal realizations from the support of their

equilibrium signal. Signals chosen by the players induce a joint distribution over

object’s qualities and signal realizations (an information structure) whose marginal

on the set of qualities is equal to the prior. Moreover, we notice that any such

information structure can be induced by a pair of signals (see Lemmas 1 and 2, which

directly follow form Theorem 1 in Yang (2020)). This equivalence of signals and

information structures allows us to state our implementability conditions in terms of

information structures, which considerably simplifies the problem.

Simplifying the problem further, we show that we can consider a restricted class of

deviations for each player without loss of generality (Lemma 4). Intuitively, if along

the equilibrium path of a truthful-revelation Nash equilibrium a player has n signal

realizations, then he only has n + 1 available reporting deviations: he can choose to

report a different signal realization or abstain from participation altogether. With

only n+ 1 available actions the player would never want to deviate to an alternative

signal with more than n+1 signal realizations since additional information would be

learned but essentially wasted otherwise. Thus, when we want to check if a particular

information structure with a given number of signal realizations can be induced in a

truthful-revelation Nash equilibrium of a direct mechanism, it is enough to consider

information structures which have one additional signal realization for each player.

Considering this restricted class of deviations, we derive implementability condi-

tions. In order to show that a given information structure paired with truthful report-

ing is implementable, we divide the restricted class of deviations into two subclasses.

In the first subclass, we consider deviation-induced information structures that pre-

serve the set of signal realizations for each player. To show that the deviations in

the first subclass are unprofitable, we solve a finite-dimensional payoff-maximization

problem for each player, where the maximum is taken over information structures
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which preserve the set of signal realizations for that player. In the second subclass,

we consider deviation-induced information structures augmented with an additional

signal realization. We explicitly solve for the best deviation in this class (Lemma

6) and derive an unprofitability condition. Combining the unprofitability conditions

from the two subclasses, we obtain our implementability conditions (Proposition 3).

We then turn to our application and consider the problem of an intermediary

who seeks to implement allocationally efficient trade while simulataneously maximiz-

ing her own revenue (or, equivalently, minimizing the subsidy required to implement

allocationally efficient trade). To simplify our analysis, we assume that the set of

qualities is binary. One might think that, to maximize revenue, the intermediary

must incentivize the players to learn uncorrelated information, as it would require

a smaller subsidy for a larger amount of acquired information. The intermediary

is however restricted by the players’ incentive compatibilty constraints as the play-

ers might prefer to strategically acquire more correlated information. Surprisingly,

Lemma 7 shows that incentive compatibility forces the intermediary to pay for infor-

mation acquisition twice: allocationally efficient trade is implementable only if the

players acquire perfectly correlated information. To maximize revenue among mecha-

nisms with perfectly correlated information acquisition, we adapt the concavification

approach commonly used to solve Bayesian persuasion problems (see Kamenica and

Gentzkow (2011)) to our setting. Proposition 4 uses a concavification argument to

derive optimality conditions for the distribution of posteriors that is induced by the

revenue-maximizing mechanism. As we show in Subsection 4.3, this distribution of

posteriors (and thus a full characterization of the revenue-maximizing mechanism)

can be obtained in closed form under certain symmetry conditions.

1.1 Related literature

The literature on information acquisition in mechanism design goes back to Berge-

mann and Välimäki (2002) who study efficient implementation in transferable envi-

ronments with exogenously restricted information acquisition. They show that the

VCGmechanism achieves both ex ante and ex post efficiency if agents have private val-

ues, but not necessarily when they have common values. Bikhchandani (2010) points
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out that the full surplus extraction mechanism of Crémer and McLean (1988) may

not be robust to information acquisition because agents presented with a Crémer-

McLean lottery may have incentives to acquire additional information about their

competitors’ valuations. Bikhchandani and Obara (2017) study a mechanism design

problem, in which (similarly to our paper) agents can acquire costly signals about

a payoff-relevant state of nature. The space of signals available to each agent is,

however, exogenously restricted. Bikhchandani and Obara (2017) provide conditions

under which full surplus extraction is possible in their setting.

More recently, some consideration has been given to flexible information acquisi-

tion. In a paper closely related to ours, Mensch (2022) solves for a revenue-maximizing

auction among buyers who, like the players in our paper, can acquire costly and hid-

den information about the value of an object sold in an auction. The cost of infor-

mation acquisition belongs to the posterior-separable class, which contains, among

others, the entropy cost we use in our paper. Unlike in our paper, however, the

agents in Mensch (2022) have private values and are exogenously restricted to ac-

quire information about their own values. Terstiege and Wasser (2022) solve for a

revenue-maximizing auction with private values and flexible information acquisition

but assume that information acquistion is costless and public. In their environment,

the bidders’ choice of signals is publicly revealed before the bidders privately observe

a signal realization. Having observed the signals chosen by the bidders, the seller

proposes a mechanism to maximize her revenue. Gleyze and Pernoud (2023) study a

mechanism design problem with costly flexible information acquisition, transferable

utility, and private values but allow the agents to acquire information both on their

own preferences and the preferences of the other agents. Gleyze and Pernoud (2023)

are interested in informationally simple mechanisms, i.e. those in which the agents

have no incentive to acquire information about anyone’s preferences but their own.

In our paper, the players choose an information structure to maximize their own

payoffs, hence their choice may not necessarily be desirable from the designer’s per-

spective. This feature of our model makes our paper somewhat close to the literature

on “adverse” choice of information structures. Yamashita (2018) studies a private-

value auction, in which for any mechanism proposed by the seller, nature chooses an

information structure that minimizes the seller’s revenue. Bergemann et al. (2017)
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and Brooks and Du (2021) study analogous models of common-value auctions. Roesler

and Szentes (2017) study a bilateral trade model, in which the buyer can acquire

costless information about the good’s value and the seller sets revenue-maximizing

take-it-or-leave-it price in response. Ravid et al. (2022) consider the same setting as

Roesler and Szentes (2017) but make the buyer’s information acquisition costly.

We model information acquisition by giving the players access to a large space of

signals which partition an underlying set of fundamental states. This way of modeling

signals is introduced by Green and Stokey (1978) and is also used by Gentzkow and

Kamenica (2017) in the context of Bayesian persuasion with multiple senders.

2 Model

2.1 Setup

An indivisible good, whose quality v is drawn from a finite set of payoff-relevant

states of the world V , can be traded between two players: a seller and a buyer. The

buyer’s valuation for the good of quality v ∈ V is given by ub(v), the seller’s valuation

for the good of quality v ∈ V is given by us(v). We assume that gains from trade

always exist, i.e. ub(v) > us(v) for any v. To model information acquisition, we

assume that there is a set of fundamental states of the world x ∈ X = [0, 1] with

an associated Borel σ-algebra F and the uniform measure P, and a random variable

V : X → V . At the beginning of the game, this structure is commonly known. V

induces a common prior µ0 on the set of qualities such that the probability of quality

being equal to v is µ0(v) ≡
∫ 1

0
1{V(x)=v}dx. We assume that µ0 has full support on V .

The players can acquire costly information about the good’s quality by generating

signals. We assume that each player p has access to a countably infinite set of possible

signal realizations. Since the labels of signal realizations do not have any particular

meaning in our setup, we assume that the set of signal realizations is the set of all

natural numbers N ≡ {1, 2, 3, . . . }. We use P
(
N
)
to denote the collection of all finite

non-empty subsets of N. A signal is a pair σp =
(
Sp,Sp

)
, where Sp ∈ P

(
N
)
and

Sp is a random variable that maps fundamental states to signal realizations in Sp,

i.e. Sp : X → Sp. If the fundamental state is x, then player p observes the signal

realization sp = Sp(x). We use Σp to denote the set of all signals for player p. Signals
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are costly, the cost of a signal σp, denoted by C(σp), is proportional to the reduction

in entropy achieved by that signal. We introduce the cost function formally below.

The players maximize their utilities net of information acquisition costs.

There is a mechanism designer who intermediates trade between the seller and

the buyer. The designer commits to a mechanism at the ex ante stage. A mechanism

is a tuple
(
M, q, t

)
, where M =M b ×M s with M p being a finite set of messages sent

by player p to the mechanism designer. q is a tuple of allocation functions
(
qb, qs

)
,

where qp : M → [0, 1] determines the allocation for player p. t is a tuple of payment

functions
(
tb, ts

)
, where tb :M → R is a payment made by the buyer to the mechanism

designer, and ts :M → R is a payment made by the mechanism designer to the seller.

The mechanism designer is interested in maximizing her revenue.

To summarize, the timing of the interaction is as follows:

1. Nature draws x ∈ X uniformly, but nobody observes it.

2. The mechanism designer commits to a mechanism
(
M, q, t

)
.

3. Each player p privately chooses σp =
(
Sp,Sp

)
.

4. Each player p privately observes sp = Sp(x).

5. Each player privately sends mp ∈M p to the mechanism designer.

6. Allocations and transfers are determined according to (q, t).

The buyer gets qb(m)ub(v) − tb(m) − C(σb), the seller gets ts(m) − qs(m)us(v) −

C(σs), and the designer gets tb(m)− ts(m), where v = V(x) and m = (mb,ms).

We choose Nash equilibrium in pure strategies as our solution concept but this

choice has little effect on our analysis as we show in Proposition 2 that any Nash

equilibrium has an outcome-equivalent perfect Bayesian equilibrium (whether the

restriction to pure strategies leads to loss of generality or not is an open problem;

we elaborate on this issue in Appendix D). If there are multiple Nash equilibria, we

select one that maximizes the mechanism designer’s revenue. Naturally, we assume

that the mechanism designer is restricted to choose mechanisms that satisfy physical

feasibility, i.e. 0 ≤ qb(m) ≤ qs(m) ≤ 1 for any m ∈ M , and allow for voluntary

participation both ex ante and at the interim stage, i.e. we assume that there exists

a message m∅ ∈ M p for any player p, such that qp(m∅,m
−p) = tp(m∅,m

−p) = 0 for

any message m−p ∈M−p sent by by the other player.
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2.2 Information structures

A signal σp chosen by player p induces a joint distribution on Sp × V . We use

αp to denote this joint distribution and write αp(sp; v) for the probability of player

p observing the signal realization sp and the state of the world being v. When we

want to emphasize the dependence of αp on σp, we write αp[σp]. A pair of signals(
σb, σs

)
induces a joint distribution on Sb × Ss × V . We use α to denote this joint

distribution, and use α(sb, ss; v) to denote the joint probability of the buyer observing

the signal realization sb, the seller observing the signal realization ss, and state of the

world being v. When we want to emphasize the dependence of α on
(
σb, σs

)
, we write

α[σb, σs]. Clearly, we have margSp×Vα = αp for any player p. In what follows, we

refer to α as information structure. Following Kamenica and Gentzkow (2011), we

introduce the following definition:

Definition 1 (Bayes-plausibility). α is Bayes-plausible if margVα = µ0.

Any information structure induced by a pair of signals must be Bayes-plausible.

The following lemma shows that the converse is also true:

Lemma 1. For any Bayes-plausible α there exists a profile of signals that induces it.

Now suppose that player p deviates to an alternative signal σ̃p. Which alter-

native information structures α̃ can this deviation induce? Clearly, we must have

margS−p×V α̃ = margS−p×V α, i.e. a deviation by player p cannot change the joint

distribution of player −p’s signal realizations and states of the world. The following

lemma shows that the converse is also true:

Lemma 2. Fix a signal profile
(
σp, σ−p

)
and the associated information structure

α. Consider any joint distribution α̃ on S̃p × S−p × V such that margS̃−p×V α̃ =

margS−p×V α. There exists σ̃p ∈ Σp such that
(
σ̃p, σ−p

)
induces α̃.

Lemmas 1 and 2 both follow immediately from Theorem 1 in Yang (2020), hence

their proofs are omitted. Lemmas 1 and 2 will allow us to rewrite the mechanism

designer’s problem in terms of information structures, and thus avoid having to ex-

plicitly model players’ signal choices. We return to this issue below in Subsection 2.4

after we discuss the cost of information acquisition.
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2.3 Cost of information acquisition

Consider a signal σp chosen by player p and the distribution αp[σp] induced by

that signal. Having chosen σp, player p observes signal realization sp with probability

τ [σp](sp) ≡
∑

v∈V
α[σp](sp; v). If τ [σp](sp) > 0, then the signal realization sp induces

a posterior distribution over states of the world µp[σp](sp). The posterior probability

of state v is µp[σp](sp; v) ≡ αp[σp](sp;v)

τ [σp](sp)
. The cost of signal σp is proportional to the

expected reduction in entropy achieved by αp[σp]:

C(σp) = c(αp[σp]) ≡ χ

(
H(µ0)−

∑
sp|τ [σp](sp)>0

τ [σp](sp)H
(
µp[σp](sp)

))
,

where H(µ) = −
∑

v∈V
µ(v) log

(
µ(v)

)
with the standard convention 0 log 0 = 0.

In what follows, we normalize χ to 1. Whenever we consider a pair of signals(
σp, σ−p

)
inducing a joint distribution α, we find it convenient to work with a cost

function defined directly on information structures as follows: cp(α) ≡ c(margSp×Vα).

Clearly, we have C(σp) = cp(α[σp, σ−p]) for each player p. The following lemma, whose

proof is relegated to Appendix A, will be helpful later in our analysis:

Lemma 3. cp(α) is convex in α for any player p ∈ {b, s}.

2.4 Strategies, equilibria, and direct mechanisms

Consider a mechanism
(
M, q, t

)
. A strategy is a tuple

(
σp,

{
mp[σ̂p]

}
σ̂p∈Σp

)
, where

σp is a signal chosen by player p on path, and
{
mp[σ̂p]

}
σ̂p∈Σp

is a family of reporting

functions, one for each σ̂p ∈ Σp, mapping signal realizations from σ̂p to the mecha-

nism’s messages, i.e. mp[σ̂p] : Ŝp → M p for each σ̂p ∈ Σp. As player p chooses σp at

the information acquisition stage, his on-path reports are given by mp[σp], i.e. when

player p observes a signal realization sp ∈ Sp, then he sends the message mp[σp](sp).

In what follows, we omit the dependence of the on-path reports on σp and simply

write mp(sp) for the message sent by player p who has observed sp.

We focus our attention on direct mechanisms. In a direct mechanism, each player

p chooses a signal σp = (Sp, Sp), and the mechanism designer asks the players to

report their signal realizations or send the abstention message, thus M p = Sp ∪ {m∅}

for each player p. Let α be the information structure induced by a pair of signals(
σb, σs

)
and let mp

T be the truthful reporting function for player p, i.e. for any
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sp ∈ Sp we have mp
T (s

p) = sp, and consider truthful-revelation Nash equilibria in

direct mechanisms. Using Lemmas 1 and 2, we can write the truthful-revelation

Nash equilibrium conditions in a direct mechanism in terms of α and mp
T . α and mp

T

can arise in a truthful-revelation Nash equilibrium of a direct mechanism if and only

if α Bayes-plausible (BP) and

• They are ex ante incentive compatible for the buyer2:

(ICb
A) (Sb, α,mb

T ) ∈ argmax
α̃,S̃b,m̃b

∑
sb∈S̃b

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qb(m̃b(sb), ss)ub(v)− tb(m̃b(sb), ss)

)
− cb(α̃),

s.t. (1) S̃b ∈ P
(
N
)
, α̃ ∈ ∆

(
S̃b × Ss × V

)
, m̃b : S̃b → Sb ∪ {m∅};

(2) margSs×V α̃ = margSs×V α.

• They are ex ante incentive compatible for the seller2:

(ICs
A) (Ss, α,ms

T ) ∈ argmax
α̃,S̃s,m̃s

∑
sb∈Sb

∑
ss∈S̃s

∑
v∈V

α̃(sb, ss; v)
(
ts(sb, m̃s(ss))− qs(sb, m̃s(ss))ub(v)

)
− cs(α̃),

s.t. (1) S̃s ∈ P
(
N
)
, α̃ ∈ ∆

(
Sb × S̃s × V

)
, m̃s : S̃s → Ss ∪ {m∅};

(2) margSb×V α̃ = margSb×V α.

We now show that our focus on direct mechanisms is without loss of generality:

Proposition 1 (Revelation principle). For any Nash equilibrium of an indirect

mechanism there exists an outcome-equivalent truthful-revelation Nash equilibrium of

a direct mechanism.

The proof of the Revelation principle is relegated to Appendix B.

One could argue that we should have chosen perfect Bayesian equilibrium as our

solution concept since our environment has dynamic structure. The following propo-

sition shows that the two equilibrium concepts are outcome-equivalent in our setting.

Proposition 2. Every truthful-revelation Nash equilibrium of a direct mechanism has

an outcome-equivalent perfect Bayesian equilibrium in this direct mechanism.

2Observe that this formulation of ex ante incentive compatibility takes care of ex ante individual

rationality as well. Consider e.g. a deviation for the buyer (S̃b, α̃, m̃b), where S̃b = {1}, α̃(1, ss; v) =∑
sb∈Sb α(sb, ss; v), and m̃b(1) = m∅. Observe that margSs×V α̃ = margSs×V α The payoff from

this deviation is
∑

ss∈Ss

∑
v∈V α̃(1, s

s; v)0 − cb(α̃) = −cb(α̃). Bayes-plausibility implies αb(1, v) =∑
ss∈Ss α̃(1, ss; v) = µ0(v), hence c

b(α̃) = H(µ0) −H(µ0) = 0. By ex ante incentive compatibility

we have:
∑

sb∈Sb

∑
ss∈Ss

∑
v∈V α(s

b, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α) ≥ 0.
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The proof of Proposition 2 (presented in Appendix C) is somewhat tedious but

the intuition is straightforward. Since the players’ signals are chosen simultaneously,

player p has no information about the signal chosen by player −p. Moreover, the

information that player p gets at the signal realization stage does not reveal any

information about the signal chosen by player −p either, hence a player can achieve

an off-equilbrium information set only by deviating to a different signal himself. Then,

if truthful reporting along the equilibrium path is not sequentially rational, it will not

be optimal from the ex ante perspective either. In other words, if a player suddenly

finds it profitable to misreport after observing a signal realization sp, then he must

have contingently planned to misreport following sp from the start, but then of course

truthful revelation could not have been a Nash equilibrium in the first place.

3 Implementability

The above ex ante incentive compatibility constraints are rather complicated.

They prevent players from deviating to a possibly different information structure and

misreporting their signal realizations at the same time. The class of such deviations

is extremely large. In this section, we show that it is without loss of generality to

consider a much smaller class of ex ante deviations.

3.1 Restricted ex ante deviations

We first show that it is without loss of generality to restrict attention to those

ex ante deviations, in which a player augments his information structure with an

additional signal realization sp∅ and chooses a new joint distribution on the augmented

signal realization space. The player abstains from participation after observing sp∅

and reports truthfully otherwise. This idea is captured by restricted ex ante incentive

compatibility constraints.

• The restricted ex ante incentive compatibility constraint for the buyer is:

(R-ICb

A) (Sb, α) ∈ argmax
α̃,S̃b

∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α̃),

s.t. (1) S̃b = Sb ∪ {sb∅}, α̃ ∈ ∆
(
S̃b × Ss × V

)
;

(2) margSs×V α̃ = margSs×Vα.
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• The restricted ex ante incentive compatibility constraint for the seller is:

(R-ICs

A) (Ss, α) ∈ argmax
α̃,S̃s

∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
ts(sb, ss)− qs(sb, ss)us(v)

)
− cs(α̃),

s.t. (1) S̃s = Ss ∪ {ss∅}, α̃ ∈ ∆
(
Sb × S̃s × V

)
;

(2) margSb×V α̃ = margSb×Vα.

The following lemma, whose proof is relegated to Appendix E, establishes that

restricted ex ante incentive compatibility implies ex ante incentive compatibility.

Lemma 4. R-ICp

A ⇒ ICp

A for both players p ∈ {b, s}.

The argument at the core of Lemma 4’s proof is straightforward. In any direct

mechanism, a player, whose on-path signal has n possible signal realizations, can

choose between n+1 possible actions: this player can report one of the signal realiza-

tions (possibly misreporting) or abstain from participation altogether. Suppose this

player has a profitable unrestricted ex ante deviation, i.e. there is a pair consisting

of an information structure and a reporting function that gives this player a strictly

larger expected payoff. If the information structure in this unrestricted deviation has

more than n + 1 signal realizations, than at least two signal realizations will lead to

the same action. If we scramble all signal realizations leading to the same action, we

will obtain an information structure with a one-to-one mapping between signal real-

izations and actions. Since the labels of signal realizations do not have any specific

meaning, we can always relabel them to ensure that those that do not lead to an

abstention are reported truthfully. In that way, we can construct a restricted ex ante

deviation whose information structure is less informative in the Blackwell sense and

is therefore less costly. Since the rest of the payoff is exactly the same, the restricted

ex ante deviation is even more profitable than the unrestricted one.

Suppose now that the mechanism designer hopes that a particular information

structure α ∈ ∆
(
Sb × Ss × V

)
will be induced in the truthful-revelation Nash equi-

librium of her direct mechanism
(
(Sb ∪ {m∅}) × (Ss ∪ {m∅}), q, t

)
. If |Sb| = I and

|Ss| = J , then α is essentially a collection of I × J matrices, one for each state (we

adopt the convention that the buyer is the row player and the seller is the column

player). From now on, let us use αij(v) to denote the joint probability of the buyer
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observing the signal realization sbi and the seller observing the signal realization ssj in

state v (we will also use qpij and t
p
ij to denote the respective allocation and transfer of

player p). We also denote µb
i(v) the posterior probability of state v as evaluated by

the buyer who receives the signal realization sbi , and µ
s
j(v) the posterior probability

of state v as evaluated by the seller who receives the signal realization ssj.

Lemma 4 shows that to make sure that her desired α will indeed be induced,

the mechanism designer should only check whether (R-ICs

A) and (R-ICs

A) constraints

are satisfied, i.e. should only check deviations that augment α by not more than one

signal realization. To analyze these deviations, we find it useful to split them into two

classes. The first class of deviations consists of possibly different joint distributions

over the same signal realizations while the deviations in the second class augment

the set of the signal realizations by exactly one realization. The usefulness of this

approach will become clear by the end of this section. Let us deal with the first class

of the restricted ex ante deviations first.

3.1.1 Class 1 of restricted ex ante deviations

• Class 1-deviations are unprofitable for the buyer as long as α satisfies:

(R-ICb

A-1) α ∈ argmax
α̃

I∑
i=1

J∑
j=1

∑
v∈V

α̃ij(v)
(
qbiju

b(v)− tbij
)
− cb(α̃), s.t.

(1) α̃ ∈ ∆
(
Sb × Ss × V

)
;

(2) margSs×V α̃ = margSs×Vα.

• Class 1-deviations are unprofitable for the seller as long as α satisfies:

(R-ICs

A-1) α ∈ argmax
α̃

I∑
i=1

J∑
j=1

∑
v∈V

α̃ij(v)
(
tsij − qsiju

s(v)
)
− cs(α̃), s.t.

(1) α̃ ∈ ∆
(
Sb × Ss × V

)
;

(2) margSb×V α̃ = margSb×Vα.

Notice that (R-ICb

A-1) and (R-ICs

A-1) are finite dimensional maximization prob-

lems with concave objectives and affine constraints. Moreover, observe that a Bayes-

plausible information structure that allows a player to put a posterior probability of

zero on any of the states of the world can never be a solution to the maximization

14



problems in (R-ICb

A-1) and (R-ICs

A-1). This is due to the properties of the entropy

cost function, which makes sure that marginal costs of information acquisition go to

infinity as soon as any of the posteriors approaches zero. The following lemma, whose

proof is relegated to Appendix F, establishes the claim formally:

Lemma 5 (Strictly positive posteriors). Suppose α is Bayes-plausible, and sat-

isfies (R-ICp

A-1) for both players p ∈ {b, s}, then for any v ∈ V and for any sbi ∈ Sb

we have µb
i(v) > 0, likewise for any v ∈ V and for any ssj ∈ Ss we have µs

j(v) > 0.

Lemma 5 makes sure that the objective functions in (R-ICb

A-1) and (R-ICs

A-1) are

differentiable at any optimum, hence all deviations in the first class are unprofitable

iff α satisfies the Karush-Kuhn-Tucker optimality conditions in both problems.

3.1.2 Class 2 of restricted ex ante deviations

• Class 2-deviations are unprofitable for the buyer as long as α satisfies:

(R-ICb
A-2)

I∑
i=1

J∑
j=1

∑
v∈V

αij(v)
(
qbiju

b(v)− tbij
)
− cb(α) ≥

I∑
i=1

J∑
j=1

∑
v∈V

α̃ij(v)
(
qbiju

b(v)− tbij
)
− cb(α̃),

for all α̃ such that:

(1) α̃ ∈ ∆
(
S̃b × Ss × V

)
, where S̃b = Sb ∪ {sb∅} and ∃ssj ∈ Ss, v ∈ V s.t. α∅,j(v) > 0;

(2) margSs×V α̃ = margSs×V α.

• Class 2-deviations are unprofitable for the seller as long as α satisfies:

(R-ICs
A-2)

I∑
i=1

J∑
j=1

∑
v∈V

αij(v)
(
tsij − qsiju

s(v)
)
− cs(α) ≥

I∑
i=1

J∑
j=1

∑
v∈V

α̃ij(v)
(
tsij − qsiju

s(v)
)
− cs(α̃)

for all α̃ such that:

(1) α̃ ∈ ∆
(
Sb × S̃s × V

)
, where S̃s = Ss ∪ {ss∅} and ∃sbi ∈ Sb, v ∈ V s.t. αi,∅(v) > 0;

(2) margSb×V α̃ = margSb×V α.

The usefulness of splitting the deviations into these two classes is illustrated by the

next lemma, which shows that if α satisfies (R-ICb

A-1) and (R-ICs

A-1), then (R-ICb

A-2)

and (R-ICs

A-2) can be considerably simplified.

Lemma 6. Suppose α satisfies R-ICp

A-1 for both players p ∈ {b, s}, then

• α satisfies R-ICb

A-2 if and only if
∑

v∈V
exp

(
− yb(v)

)
≤ 1, where

yb(v) ≡ min
(i,j)|αij(v)>0

{
qbiju

b(v)− tbij − log
(
µb

i(v)
)}

;
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• α satisfies R-ICs

A-2 if and only if
∑

v∈V
exp

(
− ys(v)

)
≤ 1, where

ys(v) ≡ min
(i,j)|αij(v)>0

{
tsij − qsiju

s(v)− log
(
µs

j(v)
)}
.

The full proof of Lemma 6 is relegated to Appendix G, but we illustrate the

main ideas of the proof below using a simple example with two states and two signal

realizations for each player. Suppose there are indeed two payoff-relevant states of

the world, i.e. V = {v, v}, and we would like to find out whether the following

information structure (denoted α) satisfies (R-ICb

A-2) for a given mechanism assuming

that it satisfies (R-ICb

A-1) for the same mechanism.

State v ss1 ss2

sb1 α11 α12

sb2 α21 α22

State v ss1 ss2

sb1 α11 α12

sb2 α21 α22

Let us suppose that it does not actually satisfy the constraint (R-ICb

A-2), then

we must be able to find a profitable deviation, which induces a different information

structure, which transfers some probability mass from the existing signal realizations

to sb∅, after which the buyer abstains. For some ϵ > 0 we can write down the infor-

mation structure induced by this deviation as follows:

State v ss1 ss2

sb1 α11 − ϵβ
11

α12 − ϵβ
12

sb2 α21 − ϵβ
21

α22 − ϵβ
22

sb∅ ϵ
∑2

i=1 βi1 ϵ
∑2

i=1 βi2

State v ss1 ss2

sb1 α11 − ϵβ11 α12 − ϵβ12

sb2 α21 − ϵβ21 α22 − ϵβ22

sb∅ ϵ
∑2

i=1 βi1 ϵ
∑2

i=1 βi2

We denote the gain from this deviation Gα(ϵβ). By assumption, Gα(ϵβ) > 0 for

some ϵ > 0. First of all, we notice that the payoff function of the buyer is concave and

hence for any global profitable deviation there is a local deviation with a marginal

gain MGα(β) ≡ limϵ→0
1

ϵ
Gα(ϵβ) that is also strictly positive. Moreover, once we

consider local deviations, we can without loss of generality take all βij’s to be weakly

positive because, locally, any direction of improvement of α can be represented as a

linear combination of a direction that is feasible in (R-ICb

A-1) and another direction,

in which all βij’s are weakly positive. Since α solves (R-ICb

A-1) by assumption, any

improvement must come from the second component of this linear combination.
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Calculating the marginal gain MGα(β), we obtain:

MGα(β) =−
2∑

i=1

2∑
j=1

(
β

ij

[
qbiju

b(v)− tbij − log
(
µb

i(v)
)]

+ βij

[
qbiju

b(v)− tbij − log
(
µb

i(v)
)])

−
[
B log

(
B

B +B

)
+B log

(
B

B +B

)]
,

where B ≡
∑2

i=1

∑2

j=1
β

ij
and B ≡

∑2

i=1

∑2

j=1
βij.

Since all βij’s are weakly positive, we can obtain a better direction of payoff

improvement, whose marginal gain will be equal to:

−Byb(v)−Byb(v)−
[
B log

(
B

B +B

)
+B log

(
B

B +B

)]
> 0.

Defining P ≡ B

B+B
, we can write

−Pyb(v)− (1− P )yb(v)− P log
(
P
)
− (1− P ) log

(
1− P

)
> 0.

Maximizing over P , we can identify an even better direction of improvement:

max
P

{
− Py(v)− (1− P )y(v)− P log

(
P
)
− (1− P ) log

(
1− P

)∣∣∣∣P ∈ [0, 1]

}
> 0

⇔ exp
(
− yb(v)

)
+ exp

(
− yb(v)

)
> 1,

which establishes the “if” direction of our special case of Lemma 6 by contrapositive.

To see why the “only if” direction also holds, observe that if exp
(
− yb(v)

)
+ exp

(
−

yb(v)
)
> 1, then we can construct a profitable local Class 2-deviation by taking away

some probability mass from those (i, j) in each state v, for which qbiju
b(v) − tbij −

log
(
µb

i(v)
)
is minimal, and putting this probability mass on sb∅.

3.2 Implementability conditions

Combining the Karush-Kuhn-Tucker optimality conditions from the maximization

problems in (R-ICb

A-1) and (R-ICs

A-1) with the optimality conditions from Lemma 6,

we obtain our main implementability result:

Proposition 3 (Implementability conditions). The tuple (α, Sb, Ss) satisfies re-

stricted ex ante incentive compatibility R-ICp

A for both players p ∈ {b, s} if and only

if there are multipliers λb
i(v), λ

s
j(v) for all i and j respectively, and ϕb

ij(v), ϕ
s
ij(v) for
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all pairs (i, j) such that the following conditions are satisfied:

(STb) qbiju
b(v)− tbij − log

(
µb

i(v)
)
− λb

j(v) + ϕb

ij(v) = 0 ∀(i, j), v ∈ V ;

(STs) tsij − qsiju
s(v)− log

(
µs

j(v)
)
− λs

i(v) + ϕs

ij(v) = 0 ∀(i, j), v ∈ V ;

(DF) ϕb

ij(v) ≥ 0, ϕs

ij(v) ≥ 0 ∀(i, j), v ∈ V ;

(CS) αij(v)ϕ
b

ij(v) = 0, αij(v)ϕ
s

ij(v) = 0 ∀(i, j), v ∈ V ;

(NA)
∑
v∈V

exp
(
−min

j
{λb

j(v)}
)
≤ 1,

∑
v∈V

exp
(
−min

i
{λs

i(v)}
)
≤ 1.

Proof. (STb) and (STs) are stationarity conditions in (R-ICb

A-1) and (R-ICs

A-1) respec-

tively. (DF) are dual feasibility conditions, which make sure that the multipliers on

non-negativity constraints on joint probabilities are themselves non-negative. (CS)

are complementary slackness conditions. To obtain (NAb), recall from Lemma 6 that

if (R-ICb

A-1) is satisfied, (R-IC
b

A-2) is equivalent to:∑
v∈V

exp

(
− min

(i,j)|αij(v)>0

{
qij(v)u

b(v)− tbij − log
(
µb

i(v)
)})

≤ 1,

which, combined with (STb), is equivalent to
∑

v∈V
exp

(
− min(i,j)|αij(v)>0

{
λb

j(v) +

ϕb
ij(v)

})
≤ 1. (DFb) and (CSb) together imply that ϕb

ij(v) = 0 whenever αij(v) > 0,

which means that
∑

v∈V
exp

(
− min(i,j)|αij(v)>0

{
λb

j(v)
})

≤ 1. Lemma 5 says that all

the seller’s posteriors must be strictly positive, which means that in every column j

there is at least one strictly positive αij(v) in every state v. We can therefore simply

minimize over columns instead, hence
∑

v∈V
exp

(
−minj

{
λb

j(v)
})

≤ 1. (NAs) can be

obtained using a similar argument.

4 Application: revenue maximization among efficient mechanisms

We now turn to our application and consider the problem of maximizing revenue

for a mechanism designer who is interested in allocational efficiency. We assume that

the state of the world is binary, i.e. V = {v, v}. We will refer to v as the low state,

and to v as the high state. To ease notation, we will use underlined letters to denote

the respective state-v variables and parameters, and overlined letters to denote the

respective state-v variables and parameters. We make the following assumption:

Assumption 1 (Parameter values). up < up for both p ∈ {b, s}.
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Assumption 1 imposes a common interpretation of the states on the players. The

opposite case could be solved just as easily using our method, but is less natural,

and hence omitted. Since we also assume that there are gains from trade in both

states, the designer must always allocate the good to the buyer to achieve allocational

efficiency. We allow the designer to implement information structures of arbitrary

dimensionality. More precisely, the designer could choose any α on Sb × Ss × V ,

where Sb = {1, . . . , I} and Ss = {1, . . . , J} for any I, J . The implementability

conditions for all pairs (i, j) can then be written as:

(STb

ij) ub − tbij − log
(
µb

i

)
− λb

j + ϕb

ij
= 0,

ub − tbij − log
(
µb

i

)
− λ

b

j + ϕ
b

ij = 0;

(DFb

ij) ϕb

ij
≥ 0, ϕ

b

ij ≥ 0;

(CSb

ij) αijϕ
b

ij
= αijϕ

b

ij = 0;

(NAb) exp
(
− Λb

)
+ exp

(
− Λ

b) ≤ 1,

Λb ≡ min
j
{λb

j}, Λ
b ≡ min

j
{λ

b

j}.

(STs

ij) tsij − us − log
(
µs

j

)
− λs

i + ϕs

ij
= 0,

tsij − us − log
(
µs

j

)
− λ

s

i + ϕ
s

ij = 0;

(DFs

ij) ϕs

ij
≥ 0, ϕ

s

ij ≥ 0;

(CSs

ij) αijϕ
s

ij
= αijϕ

s

ij = 0;

(NAs) exp
(
− Λs

)
+ exp

(
− Λ

s) ≤ 1,

Λs ≡ min
i
{λs

i}, Λ
s ≡ min

i
{λ

s

i}.

The mechanism designer solves:

sup
α,I,J;t;ϕ,λ

I∑
i=1

J∑
j=1

(
αij + αij

)(
tbij − tsij

)
, s.t.

(α-F) Sb = {1, . . . , I}, Ss = {1, . . . , J}, α ∈ ∆
(
Sb × Ss × V

)
, BP, µb

i , µ
s

i ∈ (0, 1);

(Imp) STb, STs,DFb, DFs, CSb, CSs, NAb, NAs.

4.1 Perfect correlation of signal realizations

We start by establishing that it is without loss of generality to focus our attention

on information structures that feature perfect correlation of signal realizations:

Lemma 7 (Perfect correlation of signal realizations). If (α, I, J ; t;ϕ, λ) satisfies

the implementability conditions and α is Bayes-plausible, there is (α′, I ′, J ′; t′;ϕ′, λ′)

where α′ is Bayes-plausible, I ′ = J ′, and α′
ij = α′

ij = 0 for all i ̸= j, which also satis-

fies the implementability conditions and achieves the same revenue as (α, I, J ; t;ϕ, λ).

Proof sketch. The complete proof is in Appendix H. Observe that the signal real-

izations can be ordered according to their posteriors without loss of generality, i.e.

µb

1 ≥ · · · ≥ µb

I and µ
s

1 ≥ · · · ≥ µs

J . We establish the following claims:
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Claim 1. For all j ∈ Ss there exists I∗(j) ⊆ Sb such that

1. αij = 0 for all i > max I∗(j) ≡ i
∗
(j),

2. αij = 0 for all i < min I∗(j) ≡ i∗(j).

Moreover, for any i, i′ ∈ I∗(j) we get µb

i = µb

i′.

Claim 2. For all i ∈ Sb there exists J ∗(i) ⊆ Ss such that

1. αij = 0 for all j > maxJ ∗(i) ≡ j
∗
(i),

2. αij = 0 for all j < minJ ∗(i) ≡ j∗(i).

Moreover, for any j, j ′ ∈ J ∗(i) we get µs

j = µs

j′.

Claims 1 and 2 have analogous proofs, thus we only sketch the proof of Claim 1.

Proof sketch of Claim 1. Fix j ∈ Ss. Set i
∗
(j) ≡ max{i|αij > 0}, and define I∗(j) ≡

{i|µb

i = µb

i
∗
(j)} and i∗(j) ≡ min I∗(j). Suppose for a contradiction that ∃i < i∗(j) such

that αij > 0. Note that µb

i > µb

i
∗
(j) since µ

b

i ≥ µb

i
∗
(j) by the ordering assumption and

i /∈ I∗(j). The combination of (STb

ij) and (STb

i
∗
(j),j) then implies µb

i
∗
(j) ≥ µb

i , which is

the desired contradiction.

We proceed further in the inductive manner. We introduce the following sets:

Î1 ≡ {i|µb

i = µb

1}, Ĵ1 ≡ {j|µs

j = µs

1}, and Ĩ1 ≡ {i|J ∗(i) = Ĵ1}, J̃1 ≡ {j|I∗(i) = Î1};

and show that Ĩ1 and J̃1 are non-empty. We then establish the base case:

Claim 3 (Base case of the induction).

1. For all i ∈ Î1 and j /∈ Ĵ1 we have αij = αij = 0.

2. For all i /∈ Î1 and j ∈ Ĵ1 we have αij = αij = 0.

Proof sketch of Claim 3. Suppose i′ /∈ Ĩ1 = {i|J ∗(i) = Ĵ1}, then J ∗(i′) ̸= Ĵ1. We

must have minJ ∗(i′) > max Ĵ1. Claim 2 then implies that αi′j = 0 for all j ∈ Ĵ1.

Recall that 1 ∈ Ĵ1 and the posteriors of all signal realizations in Ĵ1 are the same, hence

µs

1 is equal to the weighted average of the posteriors of signal realizations from Ĵ1. It

can be shown that this weighted average does not exceed
∑

j∈Ĵ1

∑
i∈Ĩ1

αij∑
j∈Ĵ1

∑
i∈Ĩ1

(αij+αij)
. Suppose

now i′ ∈ Ĩ1, i.e. J ∗(i′) = Ĵ1. Claim 2 implies that αi′j = 0 for all j /∈ Ĵ1 = J ∗(i′).

By the ordering assumption, µb

1 is higher than the weighted average of the posteriors

of signal realizations from Ĩ1. This weighted average can then be shown to exceed∑
i∈Ĩ1

∑
j∈Ĵ1

αij∑
i∈Ĩ1

∑
j∈Ĵ1

(αij+αij)
, implying µs

1 ≤ µb

1. A similar argument, but for J̃1 and Î1, leads to
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µb

1 ≤
∑

j∈J̃1

∑
i∈Î1

αij∑
j∈J̃1

∑
i∈Î1

(αij+αij)
≤ µs

1, implying µb

1 ≤ µs

1, hence µ
s

1 = µb

1, which implies Î1 = Ĩ1

and Ĵ1 = J̃1. Claim 1 then implies that αij = 0 for all i /∈ Î1 and j ∈ Ĵ1. Likewise,

Claim 2 then implies that αij = 0 for all i ∈ Î1 and j /∈ Ĵ1. To establish the claim for

αij, let j
′ /∈ Ĵ1. Since Ĵ1 = J̃1, we have j

′ /∈ J̃1 = {j|I∗(j) = Î1}, i.e. I∗(j ′) ̸= Î1. We

then have min I∗(j ′) > max Î1 and Claim 1 implies αij′ = 0 for all i ∈ Î1. A similar

argument works for any i′ /∈ Î1 and j ∈ Ĵ1.

Since the posteriors of all signal realizations in Î1 and Ĵ1 are the same, we can

merge all signal realizations in Î1 and Ĵ1 into a single signal realization for the buyer

and a single signal realization for the seller respectively. We then show that the

resulting mechanism is implementable and leads to the same revenue. Having shown

that, we formulate our induction hypothesis:

Induction hypothesis 1. There exists k < min{I, J} such that αij = αij = 0 if

i ̸= j and (i ≤ k − 1 or j ≤ k − 1). Moreover, µb

1 > · · · > µb

k ≥ · · · ≥ µb

I and

µs

1 > · · · > µs

k ≥ · · · ≥ µs

J.

We then introduce the following sets: Îk ≡ {i|µb

i = µb

k}, Ĵk ≡ {j|µs

j = µs

k}, and

Ĩk ≡ {i|J ∗(i) = Ĵk}, J̃k ≡ {j|I∗(i) = Îk}; and show that Îk = Ĩk and Ĵk = J̃k

by essentially repeating the argument used in the proof of Claim 3 with appropriate

modifications. Îk = Ĩk and Ĵk = J̃k combined with Induction hypothesis 1 then

implies αij = αij = 0 for all i ∈ Îk and j /∈ Ĵk, and αij = αij = 0 for all i /∈ Îk and j ∈

Ĵk. We then merge all signal realizations in Îk and Ĵk into a single signal realization

for the buyer and a single signal realization for the seller respectively, and show that

the resulting mechanism is implementable and leads to the same revenue.

4.2 Revenue maximization under perfect correlation of signal realizations

We have shown above that it is without loss of generality to restrict attention

to perfectly correlated information structures. From now on, let us maintain that

Sb = Ss = {1, . . . , I}, and let ∆̃(Sb × Ss × V ) be the collection of such information

structures. If α ∈ ∆̃(Sb ×Ss ×V ), then αij = αij = 0 unless i = j. We therefore drop

the double subscripts and write ·i to mean ·ii for all variables with double subscripts.

Since µb

i = µs

i under perfect correlatation, we drop the player superscripts from the
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posteriors too. The implementability conditions are then as follows:

(STb

i) ub − tbi − log
(
µ

i

)
= λb

i ,

ub − tbi − log
(
µi

)
= λ

b

i ;

(NAb) exp
(
− Λb

)
+ exp

(
− Λ

b) ≤ 1,

Λb ≡ min
i
{λb

i}, Λ
b ≡ min

i
{λ

b

i}.

(STs

i) tsi − us − log
(
µ

i

)
= λs

i ,

tsi − us − log
(
µi

)
= λ

s

i ;

(NAs) exp
(
− Λs

)
+ exp

(
− Λ

s) ≤ 1,

Λs ≡ min
i
{λs

i}, Λ
s ≡ min

i
{λ

s

i}.

We take a relaxed program approach, and relax implementabilty as follows:

(Rel-STb

i) ub − tbi − log
(
µ

i

)
≥ Λb,

ub − tbi − log
(
µi

)
≥ Λ

b

;

(NAb) exp
(
− Λb

)
+ exp

(
− Λ

b) ≤ 1.

(Rel-STs

i) tsi − us − log
(
µ

i

)
≥ Λs,

tsi − us − log
(
µi

)
≥ Λ

s

;

(NAs) exp
(
− Λs

)
+ exp

(
− Λ

s) ≤ 1.

The mechanism designer’s relaxed problem can then be written as:

sup
α,I,t;Λ

I∑
i=1

(
αi + αi

)(
tbi − tsi

)
, s.t.

(α-F) Sb = Ss = {1, . . . , I}, α ∈ ∆̃
(
Sb × Ss × V

)
, BP, µi ∈ (0, 1);

(Imp) Rel-STb, Rel-STs, NAb, NAs.

We solve this problem using a concavification approach, similar to the one used in

the Bayesian persuasion literature. Let τi ≡ αi + αi, and notice that (Rel-STb

i)

is equivalent to tbi ≤ min
{
ub − log(µ

i
) − Λb, ub − log(µi) − Λ

b}
, and (Rel-STs

i) is

equivalent to −tsi ≤ min
{
−us − log(µ

i
)−Λs, −us − log(µi)−Λ

s}
. It is immediately

clear that, written this way, both (Rel-STb

i) and (Rel-STs

i) are binding at the optimum

for all i. Define the following function:

T
(
x, x

)
≡ min

{
ub−log(x)−Λb, ub−log(x)−Λ

b}
+min

{
−us−log(x)−Λs, −us−log(x)−Λ

s}
.

The mechanism designer’s relaxed revenue maximization problem can then be

written as:

(RM) sup
µ,τ ;I;Λ

{ I∑
i=1

τiT
(
µ

i
, µi

) ∣∣∣∣ I∑
i=1

τiµ
i
= µ

0
,

I∑
i=1

τiµi = µ0; µi
, µi ∈ (0, 1); NAb, NAs

}
.

Note that RM could in principle achieve its supremum at a point, in which one

of the posteriors is extreme, i.e. µ
i′
= 0 or µi′ = 0 for some i′, which would not be

implementable by Lemma 5. We show in Appendix J that, at least in the symmetric
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case (to be formally defined below), most such cases can be ruled out. We have

not yet ruled out one solution candidate with extreme posteriors, but we conjecture,

based on numerical computations, that it can be ruled out too (see Appendix J for

details). However, even if it cannot be ruled out, one can still virtually implement

a solution with extreme posteriors by allowing the appropriate off-path punishments

to grow without bound3. In the remainder of this section, we focus on non-extreme

posteriors and assume that RM achieves a maximum on its feasible set. We establish

the following optimality conditions:

Proposition 4 (Optimality conditions). Suppose RM achieves a maximum, then

we can set I = 2 w.l.o.g., and moreover the optimal posteriors satisfy

(Optb) ub − log(µ
1
)− Λb = ub − log(µ1)− Λ

b

,

(Opts) us + log(µ
2
) + Λs = us + log(µ2) + Λ

s

.

Proof. Suppose Λp and Λ
p

are optimally chosen for both p ∈ {b, s} and let us maximize∑I

i=1
τiT

(
µ

i
, µi

)
subject to BP. Let (µ

1
, µ1) and (µ

2
, µ2) be as defined in (Optb) and

(Opts) respectively. It is easy to see that they are uniquely defined. Define f(x) ≡

T (x, 1− x). If µ
1
≤ µ2, then

f(x) =


ub − us − 2 log(1− x)− Λ

b − Λ
s

if x < µ
1
,

ub − us − log(x)− log(1− x)− Λb − Λ
s

if µ
1
≤ x ≤ µ

2
,

ub − us − 2 log(x)− Λb − Λs if x > µ
2
.

Likewise, if µ
2
≤ µ1, then

f(x) =


ub − us − 2 log(1− x)− Λ

b − Λ
s

if x < µ
2
,

ub − us − log(x)− log(1− x)− Λ
b − Λs if µ

2
≤ x ≤ µ

1
,

ub − us − 2 log(x)− Λb − Λs if x > µ
1
.

3Recall that the main idea behind the proof of Lemma 5 is that the marginal cost of an extreme

posterior is infinite. A player, therefore, would always want to acquire slighgtly less information and

potentially end up with an off-path report profile since the punishment for submitting such an off-

path profile is assumed to be bounded. However, if we allow the respective off-path punishment to

go to infinity (at an appropriately chosen speed of convergence) as the players’ posterior approaches

zero, then an extreme posterior can be “implemented in the limit”, i.e. virtually implemented.
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Consider coc[f ](x), the concave closure of f(x). By the standard argument from

Bayesian persuasion, the desired maximum is equal to coc[f ](µ
0
). Observe that

− log(1 − x) is strictly increasing and strictly convex in x, − log(x) − log(1 − x)

is strictly convex in x, and − log(x) is strictly decreasing and strictly convex in x. It

implies that in either of the two cases the convex hull of the graph of f(x) can have at

most four extreme points:
(
0, f(0)

)
,
(
µ

1
, f(µ

1
)
)
,
(
µ

2
, f(µ

2
)
)
, and

(
1, f(1)

)
. Moreover

f(x) < coc[f ](x) for any x /∈ {0, µ
1
, µ

2
, 1}, which implies that other posteriors cannot

be optimal. Since both 0 and 1 are infeasible, we are done.

The following corollary is immediate:

Corollary 1. If RM achieves a maximum, then its solution is implementable.

Proof. Set λb

1 ≡ Λb, λ
b

1 ≡ Λ
b

and λs

2 ≡ Λs, λ
s

2 ≡ Λ
s

. Set λb

2 ≡ ub − tb2 − log(µ
2
) ≥ Λb,

λ
b

2 ≡ ub−tb2− log(µ2) ≥ Λ
b

and λs

1 ≡ ts1−us− log(µ
1
) ≥ Λs, λ

s

1 ≡ ts1−us− log(µ1) ≥ Λ
s

.

Clearly, (STb

i) and (STs

i) are then satisfied for both i ∈ {1, 2} = Sb = Ss.

The objective in RM weakly decreases in Λp and Λ
p

for both p ∈ {b, s}, hence

both (NAp) can be assumed to bind. Coupled with Proposition 4, it gives us the

following optimality conditions:u
b − log(µ

1
)− Λb = ub − log(µ1)− Λ

b

,

exp
(
− Λb

)
+ exp

(
− Λ

b)
= 1.

u
s + log(µ

2
) + Λs = us + log(µ2) + Λ

s

,

exp
(
− Λs

)
+ exp

(
− Λ

s)
= 1.

We solve for
(
Λp,Λ

p)
for both p and plug the resulting Λ’s into the objective. Define

∆b ≡ ub − ub and ∆s ≡ ub − us. BP implies that there are three possible cases.

Case 0: µ
1
= µ

0
= µ

2
, In this case, I = 1, and the designer’s revenue is:

RCase 0 = − log
[
µ
0
e−ub

+ µ0e
−ub]− log

[
µ
0
eu

s
+ µ0e

us]
= − log

[
µ
0
e∆

b
+ µ0

]
− log

[
µ
0
+ µ0e

∆s]
+ ub − us.

Case 1: µ
2
< µ

0
< µ

1
. In this case, I = 2, and the designer’s revenue is:

RCase 1 = τ1
[
ub − log(µ1)− Λ

b − us − log(µ
1
)− Λs

]
+ τ2

[
ub − log(µ2)− Λ

b − us − log(µ
2
)− Λs

]
= log

[
µ1µ2

]
− τ1 log

[
µ
1
µ1

]
− τ2 log

[
µ
2
µ2

]
− log

[
µ
1
e−ub

+ µ1e
−ub]− log

[
µ
2
eu

s
+ µ2e

us]
= log

[
µ1µ2

]
− τ1 log

[
µ
1
µ1

]
− τ2 log

[
µ
2
µ2

]
− log

[
µ
1
e∆

b
+ µ1

]
− log

[
µ
2
+ µ2e

∆s]
+ ub − us.
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Case 2: µ
1
< µ

0
< µ

2
. In this case, I = 2, and the designer’s revenue is:

RCase 2 = τ1
[
ub − log(µ

1
)− Λb − us − log(µ1)− Λ

s]
+ τ2

[
ub − log(µ

2
)− Λb − us − log(µ2)− Λ

s]
.

= log
[
µ
1
µ2

]
− τ1 log

[
µ
1
µ1

]
− τ2 log

[
µ
2
µ2

]
− log

[
µ
1
e−ub

+ µ1e
−ub]− log

[
µ
2
eu

s
+ µ2e

us]
= log

[
µ
1
µ2

]
− τ1 log

[
µ
1
µ1

]
− τ2 log

[
µ
2
µ2

]
− log

[
µ
1
e∆

b
+ µ1

]
− log

[
µ
2
+ µ2e

∆s]
+ ub − us.

We now show that Case 1 can never be optimal:

Proposition 5. For any (µ1, µ2) ∈ Case 1, there exists (µ′
1, µ

′
2) ∈ Case 2 such that

the revenue from (µ′
1, µ

′
2) exceeds the revenue from (µ1, µ2).

Proof. Suppose (µ1, µ2) belongs to Case 1, i.e. µ
2
< µ

0
< µ

1
, and let RCase 1 be the

corresponding revenue. Let (µ′
1, µ

′
2) be such that µ′

1
= µ

2
and µ′

2
= µ

1
. Obviously,

(µ′
1, µ

′
2) belongs to Case 2. Bayes-plausibility then implies τ ′

1 = τ2 and τ ′
2 = τ1. The

revenue at (µ′
1, µ

′
2) is then given by:

R′
Case 2 = log

[
µ
2
µ1

]
− τ1 log

[
µ
1
µ1

]
− τ2 log

[
µ
2
µ2

]
− log

[
µ
2
e−ub

+ µ2e
−ub]− log

[
µ
1
eu

s
+ µ1e

us]
= RCase 1 + log

[
µ
1
e−ub

+ µ1e
−ub

µ
2
e−ub + µ2e

−ub

]
︸ ︷︷ ︸
> 0 as µ

1
> µ

2
& ub > ub

+ log

[
µ
2
eu

s
+ µ2e

us

µ
1
eus + µ1e

us

]
︸ ︷︷ ︸
> 0 as µ

1
> µ

2
& us > us

> RCase 1.

4.3 Symmetric revenue maximization problem

We now turn our attention to the symmetric problem, defined as follows:

Definition 2 (Symmetry). RM is symmetric if µ
0
= µ0 = 0.5 and ∆b = ∆s ≡ ∆.

Consider first Case 2. Under Definition 2, the Case 2-revenue can be written as

RCase 2 = log
(
µ

1
µ2

)
−τ1 log

(
µ

1
µ1

)
−τ2 log

(
µ

2
µ2

)
−log

[
µ

1
e∆+µ1

]
−log

[
µ

2
+µ2e

∆
]
+ub−us.

Let us rewrite the Case 2-revenue as a function of (µ
1
, µ2) only

RCase 2(µ
1
, µ2) = log

(
µ

1
µ2

)
− 0.5− µ2

1− µ
1
− µ2

log
(
µ

1
(1− µ

1
)
)
−

0.5− µ
1

1− µ
1
− µ2

log
(
µ2(1− µ2)

)
− log

[
1− µ

1
+ µ

1
e∆
]
− log

[
1− µ2 + µ2e

∆
]
+ ub − us.

We show that any interior solution to our symmetric problem must be symmetric:
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Lemma 8. Let (µ∗
1
, µ∗

2) ∈ argmax(µ
1
,µ2)∈(0,0.5)2 RCase 2(µ

1
, µ2), then µ

∗
1
= µ∗

2.

Proof. Follows from strict supermodularity of RCase 2(µ
1
, µ2), see Appendix I.

Lemma 8 allows us to write down the revenue of a symmetric problem as a function

of µ1 only:

RSym =

−2 log
[
0.5e∆ + 0.5

]
+ ub − us, Case 0 (µ

1
= µ

0
= 0.5)

log
[
µ1

]
− log

[
µ1

]
− 2 log

[
µ

1
e∆ + µ1

)]
+ ub − us, Case 2 (µ

1
< µ

0
= 0.5)

Maximizing RSym with respect to µ1 is a basic calculus problem, whose solution can

be obtained in closed form:

µ∗
1 =


µ0 = 0.5 if 0 < ∆ ≤ ∆∗,

3

4
+ 1

4

√
9 + 8 exp (∆)

1−exp (∆)
if ∆ > ∆∗,

where ∆∗ ≈ 2.366203279542585, and is obtained numerically. The mechanism de-

signer achieves:

R∗
Sym =


−2 log

[
e∆ + 1

]
+ 2 log 2 if 0 < ∆ ≤ ∆∗,

log

[ √
e∆−1−

√
e∆−9

3
√

e∆−1+
√

e∆−9

]
− 2 log

[
3 + e∆ −

√
(e∆ − 1)(e∆ − 9)

]
+ 4 log 2 if ∆ > ∆∗.

5 Concluding remarks

We have considered a mechanism design problem with information acquisition

in a bilateral trade environment. At the beginning, the buyer, the seller, and the

mechanism designer have no information about the good’s quality beyond a common

prior. The buyer and the seller can generate signals from a large signal space to acquire

more information about the good’s quality. The mechanism designer commits to a

mechanism taking information acquisition by the players into account.

We characterize the set of implementable mechanisms. To check whether a par-

ticular tuple of allocations, transfers, and signals is implementable, one has to check

whether these allocations, transfers, and the information structure induced by the

signals satisfy a finite-dimensional system of equations and inequalities.

Using our characterization of implementability, we address the problem of maxi-

mizing revenue for an intermediary interested in implementing allocationally efficient
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trade. We show that implementability implies that the players will acquire perfectly

correlated signals in any mechanism. We then use concavification to maximize the

intermediary’s revenue over mechanisms with perfectly correlated signals, and show

that symmetric revenue maximization problems can be solved in closed form.

A Proof of Lemma 3

Proof. We prove the statement for the buyer only as the proof for the seller is analo-

gous. Suppose the set of payoff-relevant states of the world is given by V = {v, . . . , v}
and suppose that the proposed information structure has I signal realizations for the

buyer and J signal realizations for the seller. If |Sb| = I and |Ss| = J , then the

information structure is a collection of I × J matrices, one for each state (we adopt

the convention that the buyer is a row player and the seller is a column player):

State v ss1 ss2 . . . ssJ

sb1 α11(v) α12(v) . . . α1J(v)

sb2 α21(v) α22(v) . . . α2J(v)
...

...
...

. . .
...

sbI αI1(v) αI2(v) . . . αIJ(v)

The cost of this information structure for the buyer is given by:

cb(α) = H(µ0) +

I∑
i=1

∑
v∈V

[( J∑
j=1

αij(v)

)
log

( ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

)]
.

Define fi(α) ≡
∑

v∈V

[(∑J

j=1
αij(v)

)
log

( ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

)]
, the expected entropy

component of signal realization sbi . The cost function can then be written as cb(α) =

H(µ0) +
∑I

i=1
fi(α). We first show the following:

Lemma 9. fi(α) is convex for every i.

Proof. We first find ∇fi(α). To do that, note that the partial derivative of fi(α) with

respect to any αil(v) is the same across all l and is given by:

∂fi(α)

∂αil(v)
= log

( ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

)
+

( J∑
j=1

αij(v)

)∑J
j=1

∑
v̂∈V αij(v̂)∑J

j=1 αij(v)

∂

∂αil(v)

( ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

)

+
∑
v̂ ̸=v

( J∑
j=1

αij(v̂)

)∑J
j=1

∑
v̂∈V αij(v̂)∑J

j=1 αij(v̂)

∂

∂αil(v)

( ∑J
j=1 αij(v̂)∑J

j=1

∑
v̂∈V αij(v̂)

)
,
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which can be rewritten as:

∂fi(α)

∂αil(v)
= log

( ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

)
+

( J∑
j=1

∑
v̂∈V

αij(v̂)

)
∂

∂αil(v)

(∑
v̂∈V

∑J
j=1 αij(v̂)∑J

j=1

∑
v̂∈V αij(v̂)

)

= log

( ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

)
+

( J∑
j=1

∑
v̂∈V

αij(v̂)

)
∂

∂αil(v)
1

= log

( ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

)
.

To determine the Hessian of fi(α) we have to take second-order derivatives. Note

that for any l and r and for any state v the following is true:

∂2fi(α)

∂αil(v)∂αir(v)
=

∑J
j=1

∑
v̂∈V αij(v̂)∑J

j=1 αij(v)

1
∑J

j=1

∑
v̂∈V αij(v̂)− 1

∑J
j=1 αij(v)[∑J

j=1

∑
v̂∈V αij(v̂)

]2
=

1∑J
j=1 αij(v)

∑J
j=1

∑
v̂∈V αij(v̂)−

∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

Defining Ai(v) ≡
∑J

j=1
αij(v), we can write:

∂2fi(α)

∂αil(v)αir(v)
=

1

Ai(v)

∑
v̂∈V Ai(v̂)−Ai(v)∑

v̂∈V Ai(v̂)

For every l and r and for any pair of states v ̸= ṽ the following is true:

∂2fi(α)

∂αil(ṽ)∂αir(v)
=

∑J
j=1

∑
v̂∈V αij(v̂)∑J

j=1 αij(v)

0
∑J

j=1

∑
v̂∈V αij(v̂)− 1

∑J
j=1 αij(v)[∑J

j=1

∑
v̂∈V αij(v̂)

]2
=

−1∑J
j=1

∑
v̂∈V αij(v̂)

=
−1∑

v̂∈V Ai(v̂)

The Hessian of fi(α) can then be written as ∇2fi(α) = 1∑
v̂∈V Ai(v̂)

Hi(α), where

Hi(α) is the following matrix:

αi1(v) . . . αiJ (v) . . . . . . αi1(v) . . . αiJ (v)

αi1(v)
∑

v̂∈V Ai(v̂)−Ai(v)

Ai(v)
. . .

∑
v̂∈V Ai(v̂)−Ai(v)

Ai(v)
. . . . . . −1 · · · −1

...
...

. . .
...

...
...

...
. . .

...

αiJ (v)
∑

v̂∈V Ai(v̂)−Ai(v)

Ai(v)
. . .

∑
v̂∈V Ai(v̂)−Ai(v)

Ai(v)
. . . . . . −1 . . . −1

...
...

...
...

. . .
. . .

...
...

...

...
...

...
...

. . .
. . .

...
...

...

αi1(v) −1 . . . −1 . . . . . .
∑

v̂∈V Ai(v̂)−Ai(v)

Ai(v)
. . .

∑
v̂∈V Ai(v̂)−Ai(v)

Ai(v)

...
...

. . .
...

...
...

...
. . .

...

αiJ (v) −1 . . . −1 . . . . . .
∑

v̂∈V Ai(v̂)−Ai(v)

Ai(v)
. . .

∑
v̂∈V Ai(v̂)−Ai(v)

Ai(v)

We now show that ∇2fi(α) is positive semi-definite. To do that, consider an

arbitrary vector x ∈ RJ|V | and evaluate xT∇2fi(α)x. Let x(v) ∈ RJ for states v ∈ V
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be such that x can be obtained by concatenating vectors x(v) across all v ∈ V . Let

e denote the vector consisting of J ones, i.e. eT = [1, . . . , 1] ∈ RJ . We then have:

xT∇2fi(α)x =
1∑

v̂∈V Ai(v̂)

∑
v∈V

(∑
v̂∈V Ai(v̂)−Ai(v)

Ai(v)

(
eTx(v)

)2 − eTx(v)
∑
v̂ ̸=v

eTx(v̂)

)

=
1∑

v̂∈V Ai(v̂)

∑
v∈V

(∑
v̂∈V Ai(v̂)

Ai(v)

(
eTx(v)

)2 − (
eTx(v)

)2 − eTx(v)
∑
v̂ ̸=v

eTx(v̂)

)

=
∑
v∈V

1

Ai(v)

(
eTx(v)

)2 − 1∑
v̂∈V Ai(v̂)

∑
v∈V

((
eTx(v)

)2
+ eTx(v)

∑
v̂ ̸=v

eTx(v̂)

)

=
∑
v∈V

1

Ai(v)

(
eTx(v)

)2 − 1∑
v∈V Ai(v)

(∑
v∈V

eTx(v)

)2

.

Defining X(v) ≡ eTx(v) for every v ∈ V , we can write:

xT∇2fi(α)x =
∑
v∈V

1

Ai(v)
X2(v)− 1∑

v∈V Ai(v)

(∑
v∈V

X(v)

)2

To show that ∇2fi(α) is positive semi-definite, we have to show that the above

expression is weakly positive for all {X(v)}v∈V . In order to do that, we show that

min
{X(v)}v∈V

{∑
v∈V

1

Ai(v)
X2(v)− 1∑

v∈V Ai(v)

(∑
v∈V

X(v)

)2}
≥ 0.

To that end, consider the restricted problem for some X̆ ∈ R given by:

min
{X(v)}v∈V

{∑
v∈V

1

Ai(v)
X2(v)− 1∑

v∈V Ai(v)
X̆2 s.t.

∑
v∈V

X(v) = X̆

}
.

The restricted problem is clearly convex in {X(v)}v∈V , hence the first order conditions

are necessary and sufficient for minimization. The Lagrangian is given by:

L
(
X; η

)
=

∑
v∈V

1

Ai(v)
X2(v)− 1∑

v∈V Ai(v)
X̆2 − 2η

(∑
v∈V

X(v)− X̆

)
.

The optimality conditions are given by:
1

Ai(v)
2X∗(v)− 2η∗ = 0 ∀v ∈ V,∑

v∈V X
∗(v) = X̆.

The minimum is achieved at X∗(v) = Ai(v)X̆∑
v̂∈V Ai(v̂)

, and the value of the objective

achieved at the minimum is given by:∑
v∈V

1

Ai(v)

A2
i (v)X̆

2(∑
v̂∈V Ai(v̂)

)2 − 1∑
v∈V Ai(v)

X̆2 =
∑
v∈V

Ai(v)X̆
2(∑

v̂∈V Ai(v̂)
)2 − 1∑

v∈V Ai(v)
X̆2

= X̆2

[ ∑
v∈V Ai(v)(∑
v∈V Ai(v)

)2 − 1∑
v∈V Ai(v)

]
= 0,
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implying that the minimal value achieved in the restricted problem is zero for every

X̆ ∈ R, implying in turn that the minimal value achieved by the unrestricted problem

is also zero, hence xT∇2fi(α)x ≥ 0 for every x ∈ RJ|V | and that ∇2fi(α) is positive

semi-definite, which means that fi(α) is convex.

Recall that c(α) = H(µ0) +
∑I

i=1
fi(α) and hence is a sum of convex functions,

implying that c(α) is convex.

B Proof of Proposition 1 (Revelation principle)

Proof. Let
(
MIN, qIN, tIN

)
be a (possibly indirect) mechanism and

[(
σb,

{
mb

IN[σ̂
b]
}

σ̂b∈Σb

)
,(

σs,
{
ms

IN[σ̂
s]
}

σ̂s∈Σs

)]
, where σb =

(
Sb,Sb

)
and σs =

(
Ss,Ss

)
, be its Nash equilibrium.

Let α be the information structure induced by the signals
(
σb, σs

)
. Using Lemmas 1

and 2, we can write the equilibrium conditions as follows.
• For the buyer: (Sb, α,mb

IN[σ
b]) solves the following problem:

max
α̃,S̃b,m̃b

IN

∑
sb∈S̃b

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qbIN

(
m̃b

IN(sb),ms
IN[σs](ss)

)
ub(v)− tbIN

(
m̃b

IN(sb),ms
IN[σs](ss)

)
− cb(α̃),

s.t. (1) S̃b ∈ P
(
N
)
, α̃ ∈ ∆

(
S̃b × Ss × V

)
, m̃b

IN : S̃b → Mb
IN;

(2) margSs×V α̃ = margSs×V α.

• For the seller: (Ss, α,ms
IN[σ

s]) solves the following problem:

max
α̃,S̃s,m̃s

IN

∑
sb∈Sb

∑
ss∈S̃s

∑
v∈V

α̃(sb, ss; v)
(
tsIN

(
mb

IN[σb](sb), m̃s
IN(ss)

)
− qsIN

(
mb

IN[σb](sb), m̃s
IN(ss)

)
us(v)

)
− cs(α̃),

s.t. (1) S̃s ∈ P
(
N
)
, α̃ ∈ ∆

(
Sb × S̃s × V

)
, m̃s

IN : S̃s → Ms
IN;

(2) margSb×V α̃ = margSb×V α.

Consider the following direct mechanism
(
MD, qD, tD

)
, where the message space

is given by MD ≡
(
Sb ∪ {m∅}

)
×

(
Ss ∪ {m∅}

)
; the allocation function is defined

as qpD(s
b, ss) ≡ qpIN

(
mb

IN[σ
b](sb),ms

IN[σ
s](ss)

)
, and the transfer function is given by

tpD(s
b, ss) ≡ tpIN

(
mb

IN[σ
b](sb),ms

IN[σ
s](ss)

)
for both players p ∈ {b, s}. We claim that[(

σb,
{
mb

D[σ̂
b]
}

σ̂b∈Σb

)
,
(
σs,

{
ms

D[σ̂
s]
}

σ̂s∈Σs

)]
, where mp

D[σ̂
p] = mp

T for all σ̂p ∈ Σp is a

Nash equilibrium in the direct mechanism.

Suppose for a contradiction that this is not the case, then one of the players has

a profitable deviation to untruthful reporting, a different signal, or both. Let us

suppose that it is the buyer who can profitably deviate (the argument for the seller

is identical), then the tuple (Sb, α,mb
T ) violates the constraint ICb

A for the direct

mechanism
(
MD, qD, tD

)
, i.e. there exists a signal σ̃b =

(
S̃b, S̃b

)
inducing a new joint
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distribution α̃ ∈ ∆
(
S̃b×Ss×V

)
and margSs×V α̃ = margSs×Vα, and a (not necessarily

truthful) reporting function m̃b
D : S̃b → Sb ∪{m∅} such that for signal realization sb:∑

sb∈S̃b

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qbD(m̃

b
D(s

b), ss)ub(v)− tbD(m̃
b
D(s

b), ss)
)
− cb(α̃)

>
∑

sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qbD(s

b, ss)ub(v)− tbD(s
b, ss)

)
− cb(α),

implying (by definition of allocation and transfer functions in the direct mechanism):

∑
sb∈S̃b

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qbIN

(
mb

IN[σb](m̃b
D(sb)),ms

IN[σs](ss)
)
ub(v)− tbIN

(
mb

IN[σb](m̃b
D(sb)),ms

IN[σs](ss)
))

− cb(α̃)

>
∑

sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qbIN

(
mb

IN[σb](sb),ms
IN[σs](ss)

)
ub(v)− tbIN

(
mb

IN[σb](sb),ms
IN[σs](ss)

))
− cb(α),

which in turn means that the tuple (Sb, α,mb
IN[σ

b]) violates the buyer’s equilibrium

conditions, hence a contradiction.

C Proof of Proposition 2

Let
[(
σb,

{
mb[σ̂b]

}
σ̂b∈Σb

)
,
(
σs,

{
ms[σ̂s]

}
σ̂s∈Σs

)]
be a truthful-revelation Nash equi-

librium of a direct mechanism. It implies in particularmb[σb] = mb
T andms[σs] = ms

T .

Use α ∈ ∆(Sb × Ss × V ) to denote the joint distribution of signal realizations and

states of the world induced by the on-path profile of signals
(
σb, σs

)
. By assumption(

α, Sp,mp
T

)
satisfies ICp

A for player p and α is Bayes-plausible.

Consider a profile
[(
σb,

{
mb

PBE[σ̂
b]
}

σ̂b∈Σb

)
,
(
σs,

{
ms

PBE[σ̂
s]
}

σ̂s∈Σs

)]
wheremp

PBE[σ
p] ≡

mp
T and mp

PBE[σ̂
p] for σ̂ ̸= σp are to be defined below. By construction, this strat-

egy profile is outcome-equivalent to the original Nash equilibrium strategy profile[(
σb,

{
mb[σ̂b]

}
σ̂b∈Σb

)
,
(
σs,

{
ms[σ̂s]

}
σ̂s∈Σs

)]
. We are now going to show that it can be

a perfect Bayesian equilibrium profile of the same direct mechanism. To do that,

let us first specify the players’ beliefs. Let Ip
(
σ̂p, sp

)
denote the information set

achieved by player p who has played σ̂p ∈ Σp and observed a signal realization sp ∈ N.

Let γp
(
σ̂−p, s−p, v|Ip

(
σ̂p, sp

))
denote the belief of player p that player −p has played

σ̂−p ∈ Σ−p, has observed the signal realization s−p ∈ N; and the state of the world is

v ∈ V . We specify the players’ beliefs as follows:

1. The beliefs at information sets Ip
(
σ̂p, sp

)
such that σ̂p ̸= σp are derived using

Bayes rule for the buyer from α[σ̂b, σs] and for the seller from α[σb, σ̂s]. These
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beliefs are given by:

γb
(
σ̂s, ss; v|Ib

(
σb, sb

))
=


α[σ̂b,σs](sb,ss;v)∑+∞
i=1

α[σ̂b,σs](i,ss;v)
for σ̂s = σs.

0 otherwise.

γs
(
σ̂b, sb; v|Is

(
σs, ss

))
=


α[σb,σ̂s](sb,ss;v)∑+∞
j=1

α[σb,σ̂s](sb,j;v)
for σ̂b = σb,

0 otherwise.

2. The beliefs at Ip
(
σp, sp

)
are derived using Bayes rule from α. These beliefs are:

γb
(
σ̂s, ss; v|Ib

(
σb, sb

))
=


α(sb,ss;v)∑+∞
i=1

α(i,ss;v)
for σ̂s = σs.

0 otherwise.

γs
(
σ̂b, sb; v|Is

(
σs, ss

))
=


α(sb,ss;v)∑+∞
j=1

α(sb,j;v)
for σ̂b = σb,

0 otherwise.

Let us now show that
[(
σb,

{
mb

PBE[σ̂
b]
}

σ̂b∈Σb

)
,
(
σs,

{
ms

PBE[σ̂
s]
}

σ̂s∈Σs

)]
is sequen-

tially rational given the beliefs specified above.

C.1 Reporting after off-path information acquisition

Let us start with the off-path signals. Suppose the buyer has arrived at the

information set Ib
(
σ̂b, sb

)
with σ̂b ̸= σb, obtain the report following

(
σ̂b, sb

)
by solving

(in case there are many solutions, pick any):

mb
PBE[σ̂

b](sb) ≡ argmax
m∈Sb∪{m∅}

∑
ss∈Ss

∑
v∈V

α[σ̂b, σs](sb, ss; v)∑+∞
i=1 α[σ̂

b, σs](i, ss; v)

(
qb(m, ss)ub(v)− tb(m, ss)

)
The resulting reporting function mb

PBE[σ̂
b] is sequentially rational.

Likewise, suppose the seller has arrived at the information set Is
(
σ̂s, ss

)
with

σ̂s ̸= σs, obtain the report following
(
σ̂s, ss

)
by solving:

ms
PBE[σ̂

s](ss) ≡ argmax
m∈Ss∪{m∅}

∑
sb∈Sb

∑
v∈V

α[σb, σ̂s](sb, ss; v)∑+∞
j=1 α[σ

b, σ̂s](sb, j; v)

(
ts(sb,m)− qs(sb,m)us(v)

)
The resulting reporting function ms

PBE[σ̂
s] is sequentially rational.

It remains to show sequential rationality of truthful reporting after choosing the

on-path signal.
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C.2 Reporting after on-path information acquisition

Let us now move on to the on-path signals. Suppose player p has arrived at

the information set Ip
(
σp, sp

)
. At this information set player p believes that player

−p has taken his on-path action as well with probability 1, and player p’s beliefs

about signal realizations are derived from α using Bayes’ rule. The proposed perfect

Bayesian equilibrium strategy prescribes truthful reporting after playing the on-path

information acquisition action. There are two ways, in which player p could deviate

from truthful reporting: he could misreport a particular signal realization, or he could

abstain following a particular signal realization. In what follows, we show that these

deviations are not profitable.

C.2.1 Misreporting a signal realization

If a signal realization sb occurs with positive probability given α, then the buyer is

willing to report it truthfully as long as the following interim incentive compatibility

condition is satisfied:

(ICb
I)

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
≥

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(s̃b, ss)ub(v)− tb(s̃b, ss)

)
for all s̃b ∈ Sb.

Likewise if a signal realization ss occurs with positive probability given α, then

the buyer is willing to report it truthfully as long as the following interim incentive

compatibility condition is satisfied:

(ICs
I )

∑
sb∈Sb

∑
v∈V

α(sb, ss; v)
(
ts(sb, ss)−qs(sb, ss)ub(v)

)
≥

∑
sb∈Sb

∑
v∈V

α(sb, ss; v)
(
ts(sb, s̃s)− qs(sb, s̃s)us(v)

)
for all s̃s ∈ Ss.

The following lemma shows that the interim incentive compatibility conditions

are implied by ex ante incentive compatibility conditions:

Lemma 10. ICp

A ⇒ ICp

I for both players p ∈ {b, s}
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Proof. We show that ¬ICb
I ⇒ ¬ICb

A. The argument for the seller is again identical.

Suppose that the mechanism is not interim incentive compatible for the buyer, i.e.

there exists a signal realization xb ∈ Sb, which occurs with positive probability, and

a non-truthful report x̃b ∈ Sb such that:

∑
ss∈Ss

∑
v∈V

α(xb, ss; v)
(
qb(xb, ss)ub(v)− tb(xb, ss)

)
<

∑
ss∈Ss

∑
v∈V

α(xb, ss; v)
(
qb(x̃b, ss)ub(v)− tb(x̃b, ss)

)
Consider an ex ante deviation to (Sb, α, m̃b), where:

m̃b(sb) =


sb, if sb ̸= xb;

x̃b, if sb = xb.

The payoff from this deviation is given by:

∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(m̃b(sb), ss)ub(v)− tb(m̃b(sb), ss)

)
− cb(α)

>
∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α),

implying that the mechanism is not ex ante incentive compatible for the buyer. The

argument for the seller is identical.

C.2.2 Abstaining instead of reporting a signal realization

If a signal realization sb occurs with positive probability given α, the buyer is

willing to report it instead of abstaining if the following interim individual rationality

condition is satisfied:

(IRb
I)

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
≥ 0.

Likewise if a signal realization ss occurs with positive probability given α, the

seller is willing to report it instead of abstaining if the following interim individual

rationality condition is satisfied:

(IRs
I )

∑
sb∈Sb

∑
v∈V

α(sb, ss; v)
(
ts(sb, ss)− qs(sb, ss)ub(v)

)
≥ 0.

The following lemma shows that the interim individual rationality conditions are

implied by ex ante incentive compatibility conditions:
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Lemma 11. ICp

A ⇒ IRp

I for both players p ∈ {b, s}

Proof. We show that ¬IRb
I ⇒ ¬ICb

A. The argument for the seller is again identical.

Suppose that the mechanism is not interim individually rational for the buyer, i.e.

there exists a signal realization xb ∈ Sb, which occurs with positive probability, such

that ∑
ss∈Ss

∑
v∈V

α(xb, ss; v)
(
qb(xb, ss)ub(v)− tb(xb, ss)

)
< 0

Consider an ex ante deviation to (Sb, α, m̃b), where:

m̃b(sb) =


sb, if sb ̸= xb;

m∅, if sb = xb.

The payoff from this deviation is given by:∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(m̃b(sb), ss)ub(v)− tb(m̃b(sb), ss)

)
− cb(α)

>
∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α),

implying that the mechanism is not ex ante incentive compatible for the buyer. The

argument for the seller is identical.

D Mixed and correlated strategies

In this appendix, we provide an argument suggesting that the treatment of mixed

and correlated strategies in our environment might require altogether different meth-

ods. In particular, we explore a natural approach one could take to prove that mixed

and correlated strategies are outcome-equivalent to pure strategies, and show, by

providing a counterexample, that this approach does not yield the desired result.

Suppose that the players randomize over the sets of signals Rb = {σb
1, σ

b
2, . . . , σ

b
K}

and Rs = {σs
1, σ

s
2, . . . , σ

s
N}. Their strategy profile gives rise to the following joint

distribution over signals

σs1 σs2 . . . σsN

σb1 P[σb1, σ
s
1] P[σb1, σ

s
2] . . . P[σb1, σ

s
N ]

σb2 P[σb2, σ
s
1] P[σb2, σ

s
2] . . . P[σb2, σ

s
N ]

...
...

...
. . .

...

σbK P[σbK , σ
s
1] P[σbK , σ

s
2] . . . P[σbK , σ

s
N ]
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Note that these randomizations could in principle be correlated if we enriched our

setup with an additional communication stage at the beginning of the game, in which

the mechanism designer would issue correlated recommendations to the players. We

show below, however, that even independent randomizations cause difficulties.

If one wanted to prove that our restriction to pure strategies is without loss of

generality, one could define a new information structure by finding the average over

the information structures given above as follows

α̂(sbi , s
s
j ; v) ≡

∑
σb∈Rb

∑
σs∈Rs

P[σb, σs]α[σb, σs](sbi , s
s
j ; v),

and notice that, due to Bayes-plausibility of the new information structure, the

new information structure can be induced by a pure strategy profile
(
σ̂b, σ̂s

)
. One

could then hope that if the original distribution of the information structures arises in

some equilibrium, then the new information structure could also arise in an outcome-

equivalent equilbrium of a possibly different mechanism. The next counterexample

shows that this strategy will not work: it is possible to construct a deviation from

the resulting pure strategy profile
(
σ̂b, σ̂s

)
that induces an information structure that

cannot be induced by a deviation from the original mixed/correlated strategy profile

(see Gentzkow and Kamenica (2017) and Li and Norman (2018) who point out a

similar issue in the context of multisender Bayesian persuasion).

D.1 Counterexample

Consider the following strategy profile:

σs1 σs2

σb 1
2

1
2

In words, the seller mixes between σs
1 and σs

2 with equal probabilities. The buyer

plays σb with probability 1. The strategies are defined as follows:

• σb =
(
Sb,Sb

)
, where Sb = {sb1, sb2} and Sb is given by:

Sb(x) =


sb1 if x ∈ [0, 0.25] ∪ (0.5, 0.75],

sb2 if x ∈ (0.25, 0.5] ∪ (0.75, 1].

The corresponding partition of X = [0, 1] is illustrated by:
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• σs
1 =

(
Ss

1 ,S
s
1

)
, where Ss

1 = {ss1, ss2} and Ss
1 is given by:

Ss
1(x) =


ss1 if x ∈ [0, 0.25] ∪ (0.5, 0.75],

ss2 if x ∈ (0.25, 0.5] ∪ (0.75, 1].

The corresponding partition of X = [0, 1] is illustrated by:

• σs
2 =

(
Ss

2 ,S
s
2

)
, where Ss

2 = {ss1, ss2} and Ss
2 is given by:

Ss
2(x) =


ss1 if x ∈ (0.25, 0.5] ∪ (0.75, 1],

ss2 if x ∈ [0, 0.25] ∪ (0.5, 0.75].

The corresponding partition of X = [0, 1] is illustrated by:

Observe that if the players play the signal profile
(
σb, σs

1

)
, they induce the infor-

mation structure α[σb, σs
1] given by:

State v ss1 ss2

sb1
1
4 0

sb2 0 1
4

State v ss1 ss2

sb1
1
4 0

sb2 0 1
4

Likewise, if the players play the signal profile
(
σb, σs

2

)
, they induce the information

structure α[σb, σs
2] given by

State v ss1 ss2

sb1 0 1
4

sb2
1
4 0

State v ss1 ss2

sb1 0 1
4

sb2
1
4 0
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The average over the two information structures 1

2
α[σb, σs

1] +
1

2
α[σb, σs

2] is:

State v ss1 ss2

sb1
1
8

1
8

sb2
1
8

1
8

State v ss1 ss2

sb1
1
8

1
8

sb2
1
8

1
8

Lemma 1 in the main text ensures that 1

2
α[σb, σs

1]+
1

2
α[σb, σs

2] can be induced by a

profile of pure signals. Let
(
σ̂b, σ̂s

)
be such a profile of pure signals. Lemma 2 in the

main text shows that, by deviating to some σ̃b (i.e. to the pure signal profile
(
σ̃b, σ̂s

)
),

the buyer can induce any information structure that has the same seller-marginals

as 1

2
α[σb, σs

1] +
1

2
α[σb, σs

2]. In particular, there exists σ̃b such that
(
σ̃b, σ̂s

)
induces

α[σb, σs
1] since α[σ

b, σs
1] has the same seller-marginals as 1

2
α[σb, σs

1] +
1

2
α[σb, σs

2]. The

next proposition, however, shows that it’s impossible to obtain α[σb, σs
1] by taking

averages over the information structures induced by any deviation from σb when the

seller plays his original mixed strategy 1

2
σs

1 +
1

2
σ2

s :

Proposition 6. There is no σ̃b such that α[σb, σs
1] =

1

2
α[σ̃b, σs

1] +
1

2
α[σ̃b, σs

2].

Proof. Suppose for a contradiction that such σ̃b exists, and recall that α[σb, σs
1] is:

State v ss1 ss2

sb1
1

4
0

sb2 0 1

4

State v ss1 ss2

sb1
1

4
0

sb2 0 1

4

Since only signal realizations sb1 and sb2 occur with positive probability under σ̃b,

it is without loss of generality to restrict attention to σ̃b = (S̃b, S̃b) such that S̃b =

{sb1, sb2} and S̃b : X → S̃b. To obtain a contradiction, note the following:

• α[σb, σs
1](s

b
1, s

s
2; v) = 0, hence it is true that α[σ̃b, σs

1](s
b
1, s

s
2; v) = α[σ̃b, σs

2](s
b
1, s

s
2; v) =

0. Given the above definitions of σs
1 and σs

2 these imply that [S̃b]−1(sb1) ∩

(0.25, 0.5] = ∅ and [S̃b]−1(sb1) ∩ [0, 0.25] = ∅ respectively, which in turn means

that [S̃b]−1(sb1) ∩ [0, 0.5] = ∅.

• α[σb, σs
1](s

b
2, s

s
1; v) = 0, hence it is true that α[σ̃b, σs

1](s
b
2, s

s
1; v) = α[σ̃b, σs

2](s
b
2, s

s
1; v) =

0. Given the above definitions of σs
1 and σs

2 these imply that [S̃b]−1(sb2) ∩

[0, 0.25] = ∅ and [S̃b]−1(sb2) ∩ (0.25, 0.5] = ∅ respectively, which in turn means

that [S̃b]−1(sb2) ∩ [0, 0.5] = ∅.

Hence
(
[S̃b]−1(sb1)∪ [S̃b]−1(sb2)

)
∩ [0, 0.5] = ∅ implying that [S̃b]−1(sb1)∪ [S̃b]−1(sb2) ̸=

X, implying in turn that S̃b cannot be a function from X to S̃b.
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E Proof of Lemma 4

Proof. We show that ¬ICb

A ⇒ ¬R-ICb

A. The argument for the seller is identical.

Suppose that the mechanism violates ex ante incentive compatibility for the buyer, i.e.

there exists an ex ante deviation (S̃b, α̃, m̃b) where S̃b ∈ P
(
N
)
, α̃ ∈ ∆

(
S̃b ×Ss × V

)
,

m̃b : S̃b → Sb ∪ {m∅}, and margSs×V α̃ = margSs×Vα, such that∑
sb∈S̃b

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qb(m̃b(sb), ss)ub(v)− tb(m̃b(sb), ss)

)
− cb(α̃)

>
∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α).

We are going to show that there is a restricted deviation (S̃b
R, α̃R) where S̃b

R =

Sb ∪ {sb∅}, α̃R ∈ ∆
(
S̃b

R × Ss × V
)
, and margSs×V α̃R = margSs×Vα, such that∑

sb∈Sb

∑
ss∈Ss

∑
v∈V

α̃R(s
b, ss; v)

(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α̃R)

>
∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α(sb, ss; v)
(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α).

Define X̃ b(sb) ≡ {xb ∈ S̃b|m̃b(xb) = sb} and X̃ b(m∅) ≡ {xb ∈ S̃b|m̃b(xb) = m∅},
i.e. the set of all signal realizations xb ∈ S̃b such that the reports of sb and m∅ are

submitted respectively under m̃b. Define the restricted information structure as:

α̃R(s
b, ss; v) ≡

∑
xb∈X̃ b(sb)

α̃(xb, ss; v) ∀ sb ∈ Sb,

α̃R(s
b
∅, s

s; v) ≡
∑

xb∈X̃ b(m∅)

α̃(xb, ss; v).

The restricted information structure respects the marginals of the seller by con-

struction, and thus also can be a part of a feasible deviation. Indeed,∑
sb∈Sb

α̃R(s
b, ss; v) + α̃R(s

b
∅, s

s; v) =
∑
sb∈Sb

[ ∑
xb∈X̃ b(sb)

α̃(xb, ss; v) +
∑

xb∈X̃ b(m∅)

α̃(xb, ss; v)

]

=
∑
xb∈S̃b

α̃(xb, ss; v)

for every ss ∈ Ss

Clearly by construction we also obtain∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α̃R(s
b, ss; v)

(
qb(sb, ss)ub(v)− tb(sb, ss)

)
=

∑
sb∈S̃b

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qb(m̃b(sb), ss)ub(v)− tb(m̃b(sb), ss)

)
.
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By construction α̃R is Blackwell-less-informative than α̃ for the buyer, which means

that the expected entropy of α̃ is lower than that of α̃R, implying cb(α̃R) ≤ cb(α̃), which

in turn implies

∑
sb∈Sb

∑
ss∈Ss

∑
v∈V

α̃R(s
b, ss; v)

(
qb(sb, ss)ub(v)− tb(sb, ss)

)
− cb(α̃R)

≥
∑
sb∈S̃b

∑
ss∈Ss

∑
v∈V

α̃(sb, ss; v)
(
qb(m̃b(sb), ss)ub(v)− tb(m̃b(sb), ss)

)
− cb(α̃),

establishing the claim.

F Proof of Lemma 5 (Strictly positive posteriors)

Proof. We prove the statement of the lemma for the buyer only. The proof for the

seller is analogous. We have to distinguish two cases. Case 1. I = 1: by Bayes-

plausibility we have µb
1(v) = µ0(v) > 0 for any v ∈ V , hence the statement of the

lemma holds trivially. Case 2. I > 1: suppose for a contradiction that there exists a

state v′ ∈ V such that after receiving signal realization sb1 the buyer puts probability

zero on state v′, i.e. µb
1(v

′) = 0. Note that since the labels of signal realizations do not

have any particular meaning in our analysis, choosing sb1 is without loss of generality.

Since sb1 leads to a zero posterior on v′, the information structure at v′ is written as:

State v′ ss1 ss2 . . . ssl . . . ssJ

sb1 0 0 . . . 0 . . . 0

sb2 α21(v
′) α22(v

′) . . . α2l(v
′) . . . α2J(v

′)
...

...
...

. . .
...

. . .
...

sbr αr1(v
′) αr2(v

′) . . . αrl(v
′) . . . αrJ(v

′)
...

...
...

. . .
...

. . .
...

sbI αI1(v
′) αI2(v

′) . . . αIl(v
′) . . . αIJ(v

′)

The payoff from this information structure is given by:

J∑
j=1

∑
v∈V \{v′}

α1j(v)
(
qb1ju

b(v)− tb1j
)
+

I∑
i=2

J∑
j=1

∑
v∈V

αij(v)
(
qbiju

b(v)− tbij
)
−H(µ0)

−
∑

v∈V \{v′}

( J∑
j=1

α1j(v)

)
log

[ ∑J
j=1 α1j(v)∑J

j=1

∑
v̂∈V \{v′} α1j(v̂)

]
− 0 log 0︸ ︷︷ ︸

=0

−
I∑

i=2

∑
v∈V

( J∑
j=1

αij(v)

)
log

[ ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

]
.

Observe that at least one of the αij(v
′) for some i ̸= 1 must be strictly positive by

Bayes-plausibility. Otherwise Bayes -plausibility would imply µ0(v
′) = 0 contradicting
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the full support assumption. Assume without loss of generality that αrl(v
′) > 0 and

consider now an alternative information structure α̃, in which every α̃ij(v) = αij(v)

for all pairs (i, j) in all states v ̸= v′. In state v′, we transfer a small probability mass

from (sbr, s
s
l ) to (sb1, s

s
l ), the alternative information structure in state v′ is written as:

State v′ ss1 ss2 . . . ssl . . . ssJ

sb1 0 0 . . . ϵ . . . 0

sb2 α21(v
′) α22(v

′) . . . α2l(v
′) . . . α2J(v

′)
...

...
...

. . .
...

. . .
...

sbr αr1(v
′) αr2(v

′) . . . αrl(v
′)− ϵ . . . αrJ(v

′)
...

...
...

. . .
...

. . .
...

sbI αI1(v
′) αI2(v

′) . . . αIl(v
′) . . . αIJ(v

′)

for some small ϵ > 0. Observe that margSs×V α̃ = margSs×Vα, and hence α̃ can be a

feasible deviation for the buyer in (R-ICb

A-1). The payoff from this deviation is:

ϵ
(
qb1lu

b(v′)− tb1l
)
+

J∑
j=1

∑
v∈V \{v′}

α1j(v)
(
qb1ju

b(v)− tb1j
)

+
I∑

i=2

J∑
j=1

∑
v∈V

αij(v)
(
qbiju

b(v)− tbij
)
− ϵ

(
qbrlu

b(v′)− tbrl
)
−H(µ0)

−
∑

v∈V \{v′}

( J∑
j=1

α1j(v)

)
log

[ ∑J
j=1 α1j(v)∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) + ϵ

]

− ϵ log

[
ϵ∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) + ϵ

]

−
∑

v∈V \{v′}

( J∑
j=1

αrj(v)

)
log

[ ∑J
j=1 αrj(v)∑J

j=1

∑
v̂∈V αrj(v̂)− ϵ

]

−
( J∑

j=1

αrj(v
′)− ϵ

)
log

[ ∑J
j=1 αrj(v

′)∑J
j=1

∑
v̂∈V αrj(v̂)− ϵ

]

−
∑
i ̸=1,r

∑
v∈V

( J∑
j=1

αij(v)

)
log

[ ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

]
.
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The gain from this deviation as a function of ϵ is given by:

G(ϵ) ≡ ϵ
(
qb1lu

b(v′)− tb1l
)
− ϵ

(
qbrlu

b(v′)− tbrl
)

−
∑

v∈V \{v′}

( J∑
j=1

α1j(v)

)
log

[ ∑J
j=1 α1j(v)∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) + ϵ

]

− ϵ log

[
ϵ∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) + ϵ

]

+
∑

v∈V \{v′}

( J∑
j=1

α1j(v)

)
log

[ ∑J
j=1 α1j(v)∑J

j=1

∑
v̂∈V \{v′} α1j(v̂)

]

−
∑

v∈V \{v′}

( J∑
j=1

αrj(v)

)
log

[ ∑J
j=1 αrj(v)∑J

j=1

∑
v̂∈V αrj(v̂)− ϵ

]

−
( J∑

j=1

αrj(v
′)− ϵ

)
log

[ ∑J
j=1 αrj(v

′)− ϵ∑J
j=1

∑
v̂∈V αrj(v̂)− ϵ

]

+
∑

v∈V \{v′}

( J∑
j=1

αrj(v)

)
log

[ ∑J
j=1 αrj(v)∑J

j=1

∑
v̂∈V αrj(v̂)

]

+

( J∑
j=1

αrj(v
′)

)
log

[ ∑J
j=1 αrj(v

′)∑J
j=1

∑
v̂∈V αrj(v̂)

]
.

Define the function ψ(ϵ) ≡ 1

ϵ
G(ϵ). It can be written as

ψ(ϵ) ≡
(
qb1lu

b(v′)− tb1l
)
−
(
qbrlu

b(v′)− tbrl
)
− log

[
ϵ∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) + ϵ

]
−

∑
v∈V \{v′}

ρ1(ϵ; v)−
∑

v∈V \{v′}

ρr(ϵ; v)− ξ(ϵ),

where

ρ1(ϵ; v) ≡
1

ϵ

( J∑
j=1

α1j(v)

)(
log

[ ∑J
j=1 α1j(v)∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) + ϵ

]
− log

[ ∑J
j=1 α1j(v)∑J

j=1

∑
v̂∈V \{v′} α1j(v̂)

])
,

ρr(ϵ; v) ≡
1

ϵ

( J∑
j=1

αrj(v)

)(
log

[ ∑J
j=1 αrj(v)∑J

j=1

∑
v̂∈V αrj(v̂)− ϵ

]
− log

[ ∑J
j=1 αrj(v)∑J

j=1

∑
v̂∈V αrj(v̂)

])
,

ξ(ϵ) ≡ 1

ϵ

( J∑
j=1

αrj(v
′)− ϵ

)
log

[ ∑J
j=1 αrj(v

′)− ϵ∑J
j=1

∑
v̂∈V αrj(v̂)− ϵ

]
− 1

ϵ

( J∑
j=1

αrj(v
′)

)
log

[ ∑J
j=1 αrj(v

′)∑J
j=1

∑
v̂∈V αrj(v̂)

]
.

We are now going to determine the right-limit of ψ(ϵ) as ϵ approaches zero.

Lemma 12. limϵ→0+ ψ(ϵ) = +∞.

Proof. Observe first that since
∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) > 0, we have:

lim
ϵ→0+

((
qb1lu

b(v′)− tb1l
)
−

(
qbrlu

b(v′)− tbrl
)
− log

[
ϵ∑J

j=1

∑
v̂∈V \{v′} α1j(v̂) + ϵ

])
= +∞.
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It thus remains to show that the remaining terms converge to a finite value.

• Consider ρ1(ϵ; v) for some v ∈ V \ {v′}. There are two possibilities:

(i) If
∑J

j=1
α1j(v) = 0, then ρ1(ϵ) =

1

ϵ

[
0 log 0− 0 log 0

]
= 0, hence limϵ→0+ ρ1(ϵ) = 0.

(ii) If
∑J

j=1
α1j(v) > 0, then limϵ→0+ ρ1(ϵ) = −

∑J
j=1 α1j(v)∑J

j=1

∑
v̂∈V \{v′} α1j(v̂)

, which is finite.

• Consider ρr(ϵ; v) for some v ∈ V \ {v′}. There are again two possibilities:

(i) If
∑J

j=1
αrj(v) = 0, then ρ1(ϵ) =

1

ϵ

[
0 log 0− 0 log 0

]
= 0, hence limϵ→0+ ρ1(ϵ) = 0.

(ii) If
∑J

j=1
αrj(v) > 0, then limϵ→0+ ρr(ϵ) =

∑J
j=1 αrj(v)∑J

j=1

∑
v̂∈V αrj(v̂)

, which is finite.

• Consider ξ(ϵ). Recall that by assumption
∑J

j=1
αrj(v

′) > 0, hence we have

lim
ϵ→0+

ξ(ϵ) =

∑J

j=1
αrj(v

′)∑J

j=1

∑
v̂∈V

αrj(v̂)
− log

[ ∑J

j=1
αrj(v

′)∑J

j=1

∑
v̂∈V

αrj(v̂)

]
− 1,

which is finite.

Since limϵ→0+ ψ(ϵ) = +∞, we conclude that for all n > 0 there exists ϵ > 0 small

enough such that ψ(ϵ) = 1

ϵ
G(ϵ) > n, implying G(ϵ) > ϵn > 0, implying that the

constructed deviation α̃ is profitable for all ϵ small enough, and thus contradicting

the optimality of α.

G Proof of Lemma 6

Proof. We prove the statement of the lemma for the buyer only (the proof for the

seller is almost identical). “If”. To establish the “if” direction of the claim we prove

the contrapositive statement. Consider an I × J information structure α given by:

State v ss1 ss2 . . . ssJ

sb1 α11(v) α12(v) . . . α1J(v)

sb2 α21(v) α22(v) . . . α2J(v)
...

...
...

. . .
...

sbI αI1(v) αI2(v) . . . αIJ(v)

The buyer’s payoff from this information structure is given by:

I∑
i=1

J∑
j=1

∑
v∈V

αij(v)
(
qbiju

b(v)− tbij
)
− cb(α)

=
I∑

i=1

J∑
j=1

∑
v∈V

αij(v)
(
qbiju

b(v)− tbij
)
−H(µ0)−

I∑
i=1

∑
v∈V

( J∑
j=1

αij(v)

)
log

[ ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

]
.
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Suppose that α satisfies R-ICb

A-1 but does not satisfy R-ICb

A-2, then there exists

a profitable deviation for the buyer which involves augmenting α with a an I + 1-st

signal realization sb∅. This deviation has the following form:

State v ss1 ss2 . . . ssJ

sb1 α11(v)− β11(v) α12(v)− β12(v) . . . α1J(v)− β1J(v)

sb2 α21(v)− β21(v) α22(v)− β22(v) . . . α2J(v)− β2J(v)
...

...
...

. . .
...

sbI αI1(v)− βI1(v) αI2(v)− βI2(v) . . . αIJ(v)− βIJ(v)

sb∅
∑I

i=1 βi1(v)
∑I

i=1 βi2(v) . . .
∑I

i=1 βiJ(v)

where
∑I

i=1

∑J

j=1

∑
v∈V

βij(v) > 0. The payoff from this deviation is given by:

I∑
i=1

J∑
j=1

∑
v∈V

(
αij(v)− βij(v)

)(
qbiju

b(v)− tbij
)
−H(µ0)

−
I∑

i=1

∑
v∈V

( J∑
j=1

(
αij(v)− βij(v)

))
log

[ ∑J
j=1

(
αij(v)− βij(v)

)∑J
j=1

∑
v̂∈V

(
αij(v̂)− βij(v̂)

)]

−
∑
v∈V

( I∑
i=1

J∑
j=1

βij(v)

)
log

[ ∑I
i=1

∑J
j=1 βij(v)∑I

i=1

∑J
j=1

∑
v̂∈V βij(v̂)

]
,

which can be rewritten as:
I∑

i=1

J∑
j=1

∑
v∈V

(
αij(v)− βij(v)

)(
qbiju

b(v)− tbij
)
− cb(α− β)

−
∑
v∈V

( I∑
i=1

J∑
j=1

βij(v)

)
log

[ ∑I
i=1

∑J
j=1 βij(v)∑I

i=1

∑J
j=1

∑
v̂∈V βij(v̂)

]
.

We now define the gain-from-deviation function as the difference between the

payoff from the deviation and the payoff from α:

Gα(β) ≡−
I∑

i=1

J∑
j=1

∑
v∈V

βij(v)
(
qbiju

b(v)− tbij
)
− cb(α− β) + cb(α)

−
∑
v∈V

( I∑
i=1

J∑
j=1

βij(v)

)
log

[ ∑I
i=1

∑J
j=1 βij(v)∑I

i=1

∑J
j=1

∑
v̂∈V βij(v̂)

]
.

Since the deviation under consideration is profitable, we have Gα(β) > 0, We now

define ψ(ϵ) ≡ 1

ϵ
Gα(ϵβ) for ϵ > 0. Clearly ψ(1) = Gα(β) > 0. ψ(ϵ) is written as:

ψ(ϵ) =−
I∑

i=1

J∑
j=1

∑
v∈V

βij(v)
(
qbiju

b(v)− tbij
)
+
cb(α− ϵβ)− cb(α)

−ϵ

−
∑
v∈V

( I∑
i=1

J∑
j=1

βij(v)

)
log

[ ∑I
i=1

∑J
j=1 βij(v)∑I

i=1

∑J
j=1

∑
v̂∈V βij(v̂)

]
.
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We establish the following lemma:

Lemma 13. ψ(ϵ) is weakly decreasing.

Proof. It is enough to show that cb(α−ϵβ)−cb(α)

−ϵ
is weakly decreasing. To that end, take

0 < ϵ1 < ϵ2 < 1 and observe that α − ϵ1β =
(
1 − ϵ1

ϵ2

)
α + ϵ1

ϵ2
(α − ϵ2β). Recall that

cb(α) is convex by Lemma 3, hence cb(α − ϵ1β) ≤
(
1 − ϵ1

ϵ2

)
cb(α) + ϵ1

ϵ2
cb(α − ϵ2β), or,

equivalently, cb(α−ϵ1β)−cb(α)

−ϵ1
≥ cb(α−ϵ2β)−cb(α)

−ϵ2
.

We now define the marginal gain-from-deviation MGα(β) ≡ lim
ϵ→0

1

ϵ
Gα(ϵβ). Recall

that α satisfies R-ICb

A-1 by assumption, hence Lemma 5 ensures that all the posteriors

induced by α are strictly positive, which in turn makes sure that the limit lim
ϵ→0

1

ϵ
Gα(ϵβ)

is well-defined and given by:

MGα(β) =−
I∑

i=1

J∑
j=1

∑
v∈V

βij(v)
(
qbiju

b(v)− tbij
)

+
I∑

i=1

J∑
j=1

∑
v∈V

βij(v) log

[ ∑J
j=1 αij(v)∑J

j=1

∑
v̂∈V αij(v̂)

]

−
∑
v∈V

( I∑
i=1

J∑
j=1

βij(v)

)
log

[ ∑I
i=1

∑J
j=1 βij(v)∑I

i=1

∑J
j=1

∑
v̂∈V βij(v̂)

]
,

which can be rewritten as:

MGα(β) =−
I∑

i=1

J∑
j=1

∑
v∈V

βij(v)
(
qbiju

b(v)− tbij − log
(
µb

i(v)
))

−
∑
v∈V

( I∑
i=1

J∑
j=1

βij(v)

)
log

[ ∑I

i=1

∑J

j=1
βij(v)∑I

i=1

∑J

j=1

∑
v̂∈V

βij(v̂)

]
.

Defining yb
ij(v) ≡ qbiju

b(v)− tbij − log
(
µb

i(v)
)
, we can rewrite MGα(β) as follows:

MGα(β) = −
I∑

i=1

J∑
j=1

∑
v∈V

βij(v)y
b
ij(v)−

∑
v∈V

( I∑
i=1

J∑
j=1

βij(v)

)
log

[ ∑I
i=1

∑J
j=1 βij(v)∑I

i=1

∑J
j=1

∑
v̂∈V βij(v̂)

]
.

The following lemma holds:

Lemma 14. MGα(β) > 0.

Proof. Recall that MGα(β) = lim
ϵ→0

1

ϵ
Gα(ϵβ) = lim

ϵ→0

1

ϵ
ψ(ϵ). By Lemma 13, ψ(ϵ) ≥ ψ(1)

for every 0 < ϵ < 1, hence lim
ϵ→0

ψ(ϵ) ≥ ψ(1) > 0.
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Decompose the marginal deviation under consideration into two parts, β ′ and β ′′:

β′ij(v) ≡


βij(v)− 1

zj(v)

∑I
i=1 βij(v) if αij(v) > 0

βij(v), otherwise

;

β′′ij(v) ≡


1

zj(v)

∑I
i=1 βij(v), if αij(v) > 0

0, otherwise

;

where zj(v) is the number of zero elements in the vector [α1j(v), . . . , αIj(v)]. Observe

that by construction we have for every j:

I∑
i=1

β′ij(v) =

I∑
i=1

βij(v)− zj(v)
1

zj(v)

I∑
i=1

βij(v) = 0

I∑
i=1

β′′ij(v) = zj(v)
1

zj(v)

I∑
i=1

βij(v) =
I∑

i=1

βij(v).

We can now rewrite the marginal gain in terms of β ′ and β ′′ as follows:

MGα(β) =−
I∑

i=1

J∑
j=1

∑
v∈V

β′ij(v)y
b
ij(v)

−
I∑

i=1

J∑
j=1

∑
v∈V

β′′ij(v)y
b
ij(v)−

∑
v∈V

( I∑
i=1

J∑
j=1

β′′ij(v)

)
log

[ ∑I
i=1

∑J
j=1 β

′′
ij(v)∑I

i=1

∑J
j=1

∑
v̂∈V β

′′
ij(v̂)

]
,

which in turn implies MGα(β) = −
∑I

i=1

∑J

j=1

∑
v∈V

β ′
ij(v)y

b
ij(v) + MGα(β

′′). We

establish the following lemma:

Lemma 15. MGα(β
′′) > 0.

Proof. Observe that −
∑I

i=1

∑J

j=1

∑
v∈V

β ′
ij(v)y

b
ij(v) is the directional derivative of the

objective function in R-ICb

A-1 at α in the direction −β ′. Since α satisfies the constraint

R-ICb

A-1 by assumption and −β ′ is a feasible direction in R-ICb

A-1, we must have

−
∑I

i=1

∑J

j=1

∑
v∈V

β ′
ij(v)y

b
ij(v) ≤ 0. Since MGα(β) > 0, we have MGα(β

′′) > 0.

Defining B′′(v) =
∑I

i=1

∑J

j=1
β ′′(v), we can rewrite MGα(β

′′) as follows:

MGα(β
′′) = −

I∑
i=1

J∑
j=1

∑
v∈V

β′′ij(v)y
b
ij(v)−

∑
v∈V

B′′(v) log

[
B′′(v)∑
v̂∈V B

′′(v̂)

]
.

Recall that yb(v) = min(i,j)|αij>0{yb
ij(v)}. The following lemma holds:

Lemma 16. −
∑

v∈V
B′′(v)yb(v)−

∑
v∈V

B′′(v) log
[

B′′(v)∑
v̂∈V B′′(v̂)

]
> 0.
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Proof. Recall that all β ′′
ij(v) are weakly positive by construction, and are equal to zero

whenever αij(v) = 0. We then have
∑

v∈V
B′′(v)yb(v) ≤

∑I

i=1

∑J

j=1

∑
v∈V

β ′′
ij(v)y

b
ij(v),

i.e. −
∑

v∈V
B′′(v)yb(v)−

∑
v∈V

B′′(v) log
[

B′′(v)∑
v̂∈V B′′(v̂)

]
≥MGα(β

′′), which together with

the previous lemma establishes the claim.

Dividing the expression in the lemma above by
∑

v̂∈V
B′′(v̂), we get

−
∑
v∈V

B′′(v)∑
v̂∈V B

′′(v̂)
yb(v)−

∑
v∈V

B′′(v)∑
v̂∈V B

′′(v̂)
log

[
B′′(v)∑
v̂∈V B

′′(v̂)

]
> 0.

Defining P (v) ≡ B′′(v)∑
v̂∈V B′′(v̂)

, we can rewrite the above inequality as:

−
∑
v∈V

P (v)yb(v)−
∑
v∈V

P (v) log
(
P (v)

)
> 0,

which clearly implies:

0 < max
{P (v)}v∈V

{
−

∑
v∈V

P (v)yb(v)−
∑
v∈V

P (v) log
(
P (v)

)
s.t.

∑
v∈V

P (v) = 1, P (v) ≥ 0 ∀v
}
.

To evaluate the right-hand side, relax the non-negativity constraints and write

down the Lagrangian of the relaxed problem:

L
(
P ; ν

)
= −

∑
v∈V

P (v)yb(v)−
∑
v∈V

P (v) log
(
P (v)

)
− ν

(∑
v∈V

P (v)− 1

)
.

Observe that the objective function in the relaxed problem is strictly concave and

the feasible set is convex, implying that the first order conditions are necessary and

sufficient for optimality. The optimality conditions are therefore given by:
−yb(v)− log

(
P ∗(v)

)
− 1− ν∗ = 0 ∀v ∈ V,∑

v∈V P
∗(v) = 1.

The optimum is achieved at P ∗(v) = exp (−yb(v))∑
v̂∈V exp (−yb(v̂))

. We then have:

−
∑
v∈V

P ∗(v)yb(v)−
∑
v∈V

P ∗(v) log
(
P ∗(v)

)
> 0

⇔−
∑
v∈V

exp
(
− yb(v)

)∑
v̂∈V exp

(
− yb(v̂)

)yb(v)− ∑
v∈V

exp
(
− yb(v)

)∑
v̂∈V exp

(
− yb(v̂)

) log( exp
(
− yb(v)

)∑
v̂∈V exp

(
− yb(v̂)

)) > 0

⇔−
∑
v∈V

exp
(
− yb(v)

)
yb(v)−

∑
v∈V

exp
(
− yb(v)

)
log

(
exp

(
− yb(v)

)∑
v̂∈V exp

(
− yb(v̂)

)) > 0

⇔
∑
v∈V

exp
(
− yb(v)

)
log

(∑
v̂∈V

exp
(
− yb(v̂)

))
> 0

⇔ log

(∑
v̂∈V

exp
(
− yb(v̂)

))
> 0

⇔
∑
v̂∈V

exp
(
− yb(v̂)

)
> 1,
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which establishes the contrapositive claim.

“Only if”. To establish the “only if” direction, we again prove the contrapositive

statement. Suppose that α satisfies R-ICb

A-1 and
∑

v̂∈V
exp

(
− yb(v̂)

)
> 1. The above

calculations show that it is possible to construct profitable local deviation from α

that involves augmenting α with a I +1-st signal realization. This deviation involves

transferring probability mass to the I + 1-st signal realization from those αrl(v) that

satisfy (r, l) = argmax(i,j)|αij(v)>0{yb
ij(v)} for each state v ∈ V . The profitability of this

deviation implies that α violates R-ICb

A-2.

H Proof of Lemma 7 (Perfect correlation of signal realizations)

Proof. Observe first that the signal realizations can be ordered according to the or-

dering of their posteriors without loss of generality, hence in what follows we will

assume that µb

1 ≥ · · · ≥ µb

I and µs

1 ≥ · · · ≥ µs

J . We will present the proof in a series

of auxiliary lemmas starting with the following pair:

Lemma 17. For all j ∈ Ss there exists I∗(j) ⊆ Sb such that

1. αij = 0 for all i > max I∗(j) ≡ i
∗
(j),

2. αij = 0 for all i < min I∗(j) ≡ i∗(j).

Moreover, for any i, i′ ∈ I∗(j) we get µb

i = µb

i′.

Lemma 18. For all i ∈ Sb there exists J ∗(i) ⊆ Ss such that

1. αij = 0 for all j > maxJ ∗(i) ≡ j
∗
(i),

2. αij = 0 for all j < minJ ∗(i) ≡ j∗(i).

Moreover, for any j, j ′ ∈ J ∗(i) we get µs

j = µs

j′.

Lemmas 17 and 18 have analogous proofs, thus we only prove Lemma 17 here.

Proof of Lemma 17. Fix j ∈ Ss. Set i
∗
(j) ≡ max{i|αij > 0}, and define I∗(j) ≡

{i|µb

i = µb

i
∗
(j)} and i∗(j) ≡ min I∗(j). Suppose for a contradiction that ∃i < i∗(j) such

that αij > 0. Note that µb

i > µb

i
∗
(j) since µ

b

i ≥ µb

i
∗
(j) by the ordering assumption and

i /∈ I∗(j). Consider the following stationarity conditions of the buyer:

(STb
ij) u

b − tbij − log
(
µb
i

)
− λbj = −ϕb

ij
,

ub − tbij − log
(
µbi
)
− λ

b
j = −

�
�ϕ
b
ij .

(STb
i
∗
(j),j

) ub − tb
i
∗
(j),j

− log
(
µb
i
∗
(j)

)
− λbj = −

�
���ϕb
i
∗
(j),j

,

ub − tb
i
∗
(j),j

− log
(
µb
i
∗
(j)

)
− λ

b
j = −ϕbi∗(j),j .
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By complementary slackness we have ϕ
b

ij = 0 since αij > 0, likewise ϕb

i
∗
(j),j

= 0 since

αi
∗
(j),j > 0 by definition of i

∗
(j). Dual feasibility implies ϕb

ij
≥ 0, hence (STb

ij) imply

ub − log
(
µb

i

)
− λ

b

j ≥ ub − log
(
µb

i

)
− λb

j. (1)

Similarly, dual feasibility implies ϕ
b

i
∗
(j),j ≥ 0, hence (STb

i
∗
(j),j) imply

ub − log
(
µb

i
∗
(j)

)
− λb

j ≥ ub − log
(
µb

i
∗
(j)

)
− λ

b

j. (2)

Adding (1) and (2), we get

ub − log
(
µbi
)
− λ

b
j + ub − log

(
µb
i
∗
(j)

)
− λbj ≥ ub − log

(
µb
i

)
− λbj + ub − log

(
µb
i
∗
(j)

)
− λ

b
j ,

which implies
µb
i∗(j)

µb
i∗(j)

≥ µb
i

µb
i

, implying µb

i
∗
(j) ≥ µb

i , which is the desired contradiction.

We proceed further in the inductive manner. Let us introduce the following sets:

Î1 ≡ {i|µb

i = µb

1}, Ĵ1 ≡ {j|µs

j = µs

1}; and Ĩ1 ≡ {i|J ∗(i) = Ĵ1}, J̃1 ≡ {j|I∗(i) = Î1}.

Define î1 ≡ max Î1 and ĵ1 ≡ max Ĵ1. We prove the following pair of auxiliary lemmas:

Lemma 19. Ĩ1 = {i|J ∗(i) = Ĵ1} ≠ ∅.

Lemma 20. J̃1 = {j|I∗(i) = Î1} ≠ ∅.

Lemmas 19 and 20 have analogous proofs, hence we only prove Lemma 19 here.

Proof of Lemma 19. Suppose for a contradiction that Ĩ1 = ∅, i.e. for all i we have

J ∗(i) ̸= Ĵ1. Since both J ∗(i) and Ĵ1 are sets of signal realizations with equal poste-

riors and the posteriors are ordered, we have minJ ∗(i) > max Ĵ1 for all i. Lemma 18

then implies that αi1 = 0 for all i, which implies µs

1 = 0 contradicting Lemma 5.

In the following lemma we establish the base case of our induction argument:

Lemma 21 (Base case of the induction).

1. For all i ∈ Î1 and j /∈ Ĵ1 we have αij = αij = 0.

2. For all i /∈ Î1 and j ∈ Ĵ1 we have αij = αij = 0.

Proof of Lemma 21. Suppose i′ /∈ Ĩ1 = {i|J ∗(i) = Ĵ1}, then J ∗(i′) ̸= Ĵ1. Since both

J ∗(i′) and Ĵ1 are sets of signal realizations with equal posteriors and the posteriors

are ordered, we must have minJ ∗(i′) > max Ĵ1. Lemma 18 then implies that αi′j = 0

for all j ∈ Ĵ1. Recall that 1 ∈ Ĵ1 and the posteriors of all signal realizations in Ĵ1
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are the same, hence µs

1 is equal to the weighted average of the posteriors of signal

realizations from Ĵ1:

µs

1 =

∑
j∈Ĵ1

µs

j

∑I

i=1
(αij + αij)∑

j∈Ĵ1

∑I

i=1
(αij + αij)

=

∑
j∈Ĵ1

∑I

i=1
αij∑

j∈Ĵ1

∑I

i=1
(αij + αij)

=

∑
j∈Ĵ1

[∑
i∈Ĩ1

αij +
∑

i/∈Ĩ1

=0 by L18︷︸︸︷
��αij

]
∑

j∈Ĵ1

[∑
i∈Ĩ1

(αij + αij) +
∑

i/∈Ĩ1
( ��αij︸︷︷︸
=0 by L18

+αij)

]

=

∑
j∈Ĵ1

∑
i∈Ĩ1

αij∑
j∈Ĵ1

∑
i∈Ĩ1

(αij + αij) +
∑

j∈Ĵ1

∑
i/∈Ĩ1

αij

≤
∑

j∈Ĵ1

∑
i∈Ĩ1

αij∑
j∈Ĵ1

∑
i∈Ĩ1

(αij + αij)
.

Suppose now i′ ∈ Ĩ1, i.e. J ∗(i′) = Ĵ1. Lemma 19 guarantees that such i′ exist.

Lemma 18 implies that αi′j = 0 for all j /∈ Ĵ1 = J ∗(i′). By the ordering assumption,

µb

1 is higher than the weighted average of the posteriors of signal realizations from Ĩ1:

µb

1 ≥
∑

i∈Ĩ1
µb

i

∑J

j=1
(αij + αij)∑

i∈Ĩ1

∑J

j=1
(αij + αij)

=

∑
i∈Ĩ1

∑J

j=1
αij∑

i∈Ĩ1

∑J

j=1
(αij + αij)

=

∑
i∈Ĩ1

[∑
j∈Ĵ1

αij +
∑

j /∈Ĵ1
αij

]
∑

i∈Ĩ1

[∑
j∈Ĵ1

(αij + αij) +
∑

j /∈Ĵ1
(αij + ��

αij︸︷︷︸
= by L18

)

]

=

∑
i∈Ĩ1

∑
j∈Ĵ1

αij +
∑

i∈Ĩ1

∑
j /∈Ĵ1

αij∑
i∈Ĩ1

∑
j∈Ĵ1

(αij + αij) +
∑

i∈Ĩ1

∑
j /∈Ĵ1

αij

≥
∑

i∈Ĩ1

∑
j∈Ĵ1

αij∑
i∈Ĩ1

∑
j∈Ĵ1

(αij + αij)
.

Combining the above, we get

µs

1 ≤
∑

i∈Ĩ1

∑
j∈Ĵ1

αij∑
i∈Ĩ1

∑
j∈Ĵ1

(αij + αij)
≤ µb

1,

implying that µs

1 ≤ µb

1.

Suppose now j ′ /∈ J̃1 = {j|I∗(j) = Î1}, i.e. I∗(j ′) ̸= Î1. Since both I∗(j ′) and Î1

are sets of signal realizations with equal posteriors, and the posteriors are ordered, we

have min I∗(j ′) > max Î1. Lemma 17 then implies that αij′ = 0 for all i ∈ Î1. Recall

that 1 ∈ Î1 and the posteriors of all signal realizations in Î1 are the same, hence µb

1
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is equal to the weighted average of the posteriors of signal realizations in Î1:

µb

1 =

∑
i∈Î1

µb

i

∑J

j=1
(αij + αij)∑

i∈Î1

∑I

i=1
(αij + αij)

=

∑
i∈Î1

∑J

j=1
αij∑

i∈Î1

∑J

j=1
(αij + αij)

=

∑
i∈Î1

[∑
j∈J̃1

αij +
∑

j /∈J̃1

=0 by L17︷︸︸︷
��αij

]
∑

i∈Î1

[∑
j∈J̃1

(αij + αij) +
∑

j /∈J̃1
( ��αij︸︷︷︸
=0 by L17

+αij)

]

=

∑
i∈Î1

∑
j∈J̃1

αij∑
i∈Î1

∑
j∈J̃1

(αij + αij) +
∑

i∈Î1

∑
j /∈J̃1

αij

≤
∑

i∈Î1

∑
j∈J̃1

αij∑
i∈Î1

∑
j∈J̃1

(αij + αij)
.

Suppose now j ′ ∈ J̃1, i.e. I∗(j ′) = Î1. Lemma 20 guarantees that such j ′ exist.

Lemma 17 implies that αij′ = 0 for all i /∈ Î1 = I∗(j ′). By the ordering assumption,

µs

1 is higher than the weighted average of the posteriors of signal realizations from J̃1:

µs

1 ≥
∑

j∈J̃1
µs

j

∑I

i=1
(αij + αij)∑

j∈J̃1

∑I

i=1
(αij + αij)

=

∑
j∈J̃1

∑I

i=1
αij∑

j∈J̃1

∑I

i=1
(αij + αij)

=

∑
j∈J̃1

[∑
i∈Î1

αij +
∑

i/∈Î1
αij

]
∑

j∈J̃1

[∑
i∈Î1

(αij + αij) +
∑

i/∈Î1
(αij + ��

αij︸︷︷︸
=0 by L17

)

]

=

∑
j∈J̃1

∑
i∈Î1

αij +
∑

j∈J̃1

∑
i/∈Î1

αij∑
j∈J̃1

∑
i∈Î1

(αij + αij) +
∑

j∈J̃1

∑
i/∈Î1

αij

≥
∑

j∈J̃1

∑
i∈Î1

αij∑
j∈J̃1

∑
i∈Î1

(αij + αij)
.

Combining the above, we get

µb

1 ≤
∑

j∈J̃1

∑
i∈Î1

αij∑
j∈J̃1

∑
i∈Î1

(αij + αij)
≤ µs

1,

implying µb

1 ≤ µs

1. But we have also shown above that µs

1 ≤ µb

1, hence µ
s

1 = µb

1. The

next claim is almost immediate:

Claim 4. Î1 = Ĩ1 and Ĵ1 = J̃1.

Proof. To see that Î1 = Ĩ1, recall that we have shown above that∑
i∈Ĩ1

µb

i

∑J

j=1
(αij + αij)∑

i∈Ĩ1

∑J

j=1
(αij + αij)

≥
∑

i∈Ĩ1

∑
j∈Ĵ1

αij∑
i∈Ĩ1

∑
j∈Ĵ1

(αij + αij)
≥ µs

1 = µb

1,

i.e. that the weighted average of the posteriors in Ĩ1 exceeds µ
b

1. But from the ordering

assumption we know that µb

1 ≥ µb

i′ for any i′ ∈ Ĩ1, which then immediately implies
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µb

1 = µb

i′ for any i
′ ∈ Ĩ1 and therefore Î1 = Ĩ1. The proof of Ĵ1 = J̃1 follows exactly

the same lines and therefore omitted.

Claim 4 combined with Lemma 17 then immediately implies that αij = 0 for all

i /∈ Î1 and j ∈ Ĵ1. Likewise, Claim 4 combined with Lemma 18 then immediately

implies that αij = 0 for all i ∈ Î1 and j /∈ Ĵ1.

We conclude the proof of the base case by establishing the following two claims:

Claim 5. αij = 0 for all i ∈ Î1 and j /∈ Ĵ1.

Claim 6. αij = 0 for all i /∈ Î1 and j ∈ Ĵ1.

The proofs of Claims 5 and 6 are analogous, hence we only prove Claim 5.

Proof of Claim 5. Let j ′ /∈ Ĵ1. Since Ĵ1 = J̃1 by Claim 4 we have j ′ /∈ J̃1 =

{j|I∗(j) = Î1}, i.e. I∗(j ′) ̸= Î1. Since both I∗(j ′) and Î1 are sets of signal realizations

with equal posteriors and the posteriors are ordered, we have min I∗(j ′) > max Î1.

Lemma 17 then immediately implies αij′ = 0.

This concludes the proof of Lemma 21.

Lemma 21 has the following corollary:

Corollary 2. Let i ∈ Î1, j ∈ Ĵ1. If αij + αij > 0, then tbij = ub − log(µb

1
) − λb

j =

ub − log(µb

1)− λ
b

j and t
s
ij = us + log(µs

1
) + λs

j = us + log(µs

1) + λ
s

j.

Proof. We only show the claim for the buyer, the proof for the seller is analogous.

Lemma 21 implies that µb

i = µb

1 for all i ∈ Î1, thus αij + αij > 0, combined with

stationarity and complementary slackness, implies either tbij = ub − log(µb

1
) − λb

j or

tbij = ub− log(µb

1)−λ
b

j, or both. We now show that ub− log(µb

1
)−λb

j = ub− log(µb

1)−λ
b

j.

For any j ∈ Ĵ1 there is i′ ∈ Î1 such that αi′j > 0 (if not, Lemma 21 would imply

αij > 0 for all i, implying µs

j
= 0 and contradicting Lemma 5). Also, for any j ∈ Ĵ1

there is i′′ ∈ Î1 such that αi′′j > 0 (if not, Lemma 21 would imply αij > 0 for all i,

implying µs

j = 0 and contradicting Lemma 5). Consider (STb

i′j) and (STb

i′′j):

(STb
i′j) ub − tbi′j − log

(
µb
1

)
− λbj = 0,

ub − tbi′j − log
(
µb1

)
− λ

b
j = −ϕbi′j ≤ 0.

(STb
i′′j) ub − tbi′′j − log

(
µb
1

)
− λbj = −ϕb

i′′j
≤ 0,

ub − tbi′′j − log
(
µb1

)
− λ

b
j = 0.

(STb

i′j) implies that ub − log(µb

1) − λ
b

j ≤ ub − log(µb

1
) − λb

j and (STb

i′′j) implies that

ub − log(µb

1
)− λb

j ≤ ub − log(µb

1)− λ
b

j, hence u
b − log(µb

1
)− λb

j = ub − log(µb

1)− λ
b

j.
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We can now merge the buyer’s and the seller’s signal realizations in Î1 and Ĵ1 re-

spectively, and still achieve the same revenue. More formally, define a new information

structure α′ on {1̂, î1+1, . . . , I}×{1̂, ĵ1+1, . . . , J}×V , such that α′
1̂1̂ ≡

∑î1

i=1

∑ĵ1

j=1
αij

and α′
1̂1̂ ≡

∑î1

i=1

∑ĵ1

j=1
αij, while α

′
1̂j = α′

1̂j ≡ 0 for all j ̸= 1̂ and α′
i1̂ = α′

i1̂ ≡ 0 for

all i ̸= 1̂; and the remaining probabilities are the same: α′
ij ≡ αij and α

′
ij ≡ αij for

(i, j) ∈ {̂i1 + 1, . . . , I} × {ĵ1 + 1, . . . , J}. α′ can be illustrated as follows:

v ss
1̂

ss
ĵ1+1

. . . ssJ

sb
1̂

î1∑
i=1

ĵ1∑
j=1

αij 0 . . . 0

sb
î1+1

0 α
î1+1,ĵ1+1

. . . α
î1+1,J

...
...

...
. . .

...

sbI 0 α
I,ĵ1+1

. . . αIJ

v ss
1̂

ss
ĵ1+1

. . . ssJ

sb
1̂

î1∑
i=1

ĵ1∑
j=1

αij 0 . . . 0

sb
î1+1

0 α
î1+1,ĵ1+1

. . . α
î1+1,J

...
...

...
. . .

...

sbI 0 α
I,ĵ1+1

. . . αIJ

Define further t′pij ≡ tpij for all (i, j) ∈ {̂i1 + 1, . . . , I} × {ĵ1 + 1, . . . , J} and both

p ∈ {b, s}, and set t′b1̂j = t′bi1̂ ≡ T and t′s1̂j = t′si1̂ ≡ −T for all i ̸= 1̂ and j ̸= 1̂, where

T is a large number, and define for both p ∈ {b, s}:

t′p1̂1̂ ≡
∑

i∈Î1,j∈Ĵ1|αij+αij>0
(αij + αij)t

p
ij∑

i∈Î1,j∈Ĵ1|αij+αij>0
(αij + αij)

.

Clearly, with transfers so defined, (α′, t′) achieves the same revenue as (α, t). If we

define λ′b
1̂ ≡ ub − t′b1̂1̂ − log

(
µ′b

1̂

)
and λ′

b

1̂ ≡ ub − t′b1̂1̂ − log
(
µ′b

1̂

)
, we will make sure that

the (STb

1̂1̂)-conditions are satisfied. Likewise, if we define λ′s
1̂ ≡ t′s1̂1̂ − us − log

(
µ′s

1̂

)
and λ′

s

1̂ ≡ t′s1̂1̂ − us − log
(
µ′s

1̂

)
, we will make sure that all the (STs

1̂1̂)-conditions are

satisfied. By complementary slackness we then have ϕ′b

1̂1̂
= ϕ′

b

1̂1̂ = ϕ′s

1̂1̂
= ϕ′

s

1̂1̂ = 0.

Choosing T to be large enough makes sure that ϕ′b

ij
≡ −ub+T +log

(
µ′b

i

)
+λ′b

j ≥ 0

and ϕ′
b

ij ≡ −ub + T + log
(
µ′b

i

)
+ λ′

b

j ≥ 0 for all (i, j) = (1̂, j) and (i, j) = (i, 1̂)

thus satisfying the (STb

ij), (CS
b

ij), and (DFb

ij)-conditions for all such (i, j). Likewise,

choosing T to be large enough makes sure that ϕ′s

ij
≡ us +T + log

(
µ′s

j

)
+λ′s

j ≥ 0 and

ϕ′
s

ij ≡ ub+T +log
(
µ′s

j

)
+λ′

s

j ≥ 0 for all (i, j) = (1̂, j) and (i, j) = (i, 1̂) thus satisfying

the (STs

ij), (CS
s

ij), and (DFs

ij)-conditions for all such (i, j).

The remaining values of λ′ and ϕ′ are equal to their respective values in λ and

ϕ, and thus, by construction, the remaining (ST), (CS), and (DF)-conditions are left

unchanged under the new structure.

To show that (α′, I ′, J ′; t′;ϕ′, λ′) satisfy the implementability conditions, it remains

to show that the (NA)b and (NA)s- conditions are satisfied:
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Lemma 22. The (NAb)-condition is satisfied by the new structure, i.e.

exp
(
− min

j∈(Ss\Ĵ1)∪{1̂}
{λ′b

j}
)
+ exp

(
− min

j∈(Ss\Ĵ1)∪{1̂}
{λ′

b

j}
)
≤ 1.

Lemma 23. The (NAs)-condition is satisfied by the new structure, i.e.

exp
(
− min

i∈(Sb\Î1)∪{1̂}
{λ′s

i}
)
+ exp

(
− min

i∈(Sb\Î1)∪{1̂}
{λ′

s

i}
)
≤ 1.

Lemmas 22 and 23 have analogous proofs, hence we only prove Lemma 22 here.

Proof of Lemma 22. Consider first minj∈(Ss\Ĵ1)∪{1̂}{λ′b
j}. Either minj∈(Ss\Ĵ1)∪{1̂}{λ′b

j} =

minj∈Ss\Ĵ1
{λ′b

j} = minj∈Ss\Ĵ1
{λb

j} ≥ minj∈Ss{λb

j}; or minj∈(Ss\Ĵ1)∪{1̂}{λ′b
j} = 1̂. We will

show that λ′b
1̂ ≥ minj∈Ss{λb

j} too:

λ′
b
1̂ = ub − t′

b
1̂1̂ − log

( =µb
1︷︸︸︷

µ′
b

1̂

)
= ub −

∑
i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)t

b
ij∑

i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)
− log

(
µb
1

)

= ub −

∑
i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)

by Corollary 2︷ ︸︸ ︷
(ub − log(µb

1
)− λbj)∑

i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)
− log

(
µb
1

)
=

∑
i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)λ

b
j∑

i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)
≥

∑
i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)minj∈Ss{λbj}∑

i∈Î1,j∈Ĵ1|αij+αij>0(αij + αij)
= min

j∈Ss
{λbj}.

Using an analogous argument, we can establish minj∈(Ss\Ĵ1)∪{1̂}{λ′
b

j} ≥ minj∈Ss{λ
b

j}.

Hence we have exp
(
−minj∈(Ss\Ĵ1)∪{1̂}{λ′b

j}
)
+ exp

(
−minj∈(Ss\Ĵ1)∪{1̂}{λ′

b

j}
)
≤ exp

(
−

minj∈Ss{λb

j}
)
+ exp

(
−minj∈Ss{λ

b

j}
)
≤ 1.

Let us now formulate our induction hypothesis

Induction hypothesis 2. There exists k < min{I, J} such that αij = αij = 0 if
i ̸= j and (i ≤ k − 1 or j ≤ k − 1):

v ss1 . . . ssk−1 ssk . . . ssJ

sb1 α11 . . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...

sbk−1 0 . . . αk−1,k−1 0 . . . 0

sbk 0 . . . 0 αkk . . . αkJ

...
...

. . .
...

...
. . .

...

sbI 0 . . . 0 αIk . . . αIJ

v ss1 . . . ssk−1 ssk . . . ssJ

sb1 α11 . . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...

sbk−1 0 . . . αk−1,k−1 0 . . . 0

sbk 0 . . . 0 αkk . . . αkJ

...
...

. . .
...

...
. . .

...

sbI 0 . . . 0 αIk . . . αIJ

Moreover, µb

1 > · · · > µb

k ≥ · · · ≥ µb

I and µs

1 > · · · > µs

k ≥ · · · ≥ µs

J.
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We now show the following two lemmas:

Lemma 24. For every i′ ≤ k − 1 we have J ∗(i′) = {i′}.

Lemma 25. For every j ′ ≤ k − 1 we have I∗(j ′) = {j ′}.

Lemmas 24 and 25 have analogous proofs thus we only prove Lemma 24 here.

Proof of Lemma 24. Suppose J ∗(i′) ̸= {i′}. The following cases are possible:

Case 1: J ∗(i′) = {j∗} for some j∗ < i′. If i′ = 1, then this case does not apply,

hence suppose i′ ̸= 1. Induction hypothesis 2 then implies that αi′j = 0 for all j ̸= i′.

Since j∗ < i′, Lemma 18 implies αi′i′ = 0, hence µb

i′
= 0, contradicting Lemma 5.

Case 2: minJ ∗(i′) > i′. Induction hypothesis 2 implies that αi′j = 0 for all

j ̸= i′. Lemma 18 implies αi′i′ = 0, hence µb

i′ = 0, contradicting Lemma 5.

We also establish the following:

Lemma 26. If i ≥ k, then J ∗(i) ̸= {j∗} for any j∗ ≤ k − 1.

Lemma 27. If j ≥ k, then I∗(j) ̸= {i∗} for any i∗ ≤ k − 1.

Lemmas 26 and 27 have analogous proofs, hence we only prove Lemma 26 here.

Proof of Lemma 26. Suppose for a contradiction that there is i ≥ k and J ∗(i) = {j∗}

for some j∗ ≤ k− 1. Induction hypothesis 2 implies αij = 0 for all 1 ≤ j ≤ k− 1, and

Lemma 18 implies αij = 0 for all j∗ + 1 ≤ j ≤ J , hence µb

i
= 0, which means that

αij = 0 for all j, contradicting Lemma 5.

Let us introduce the following sets: Îk ≡ {i|µb

i = µb

k}, Ĵk ≡ {j|µs

j = µs

k}; and

Ĩk ≡ {i|J ∗(i) = Ĵk}, J̃k ≡ {j|I∗(i) = Îk}. Define îk ≡ max Îk and ĵk ≡ max Ĵk. We

prove the following pair of auxiliary lemmas:

Lemma 28. Ĩk = {i|J ∗(i) = Ĵk} ≠ ∅.

Lemma 29. J̃k = {j|I∗(i) = Îk} ≠ ∅.

Lemmas 28 and 29 have analogous proofs, hence we only prove Lemma 28 here.

Proof of Lemma 28. Suppose for a contradiction that Îk = ∅, i.e. for any i we have

J ∗(i) ̸= Ĵk. From Lemma 24 we know that J ∗(i) = {i} ≠ Ĵk for i ≤ k− 1, hence let

us consider cases i ≥ k. If i ≥ k , then J ∗(i) ̸= {j∗} for any j∗ ≤ k− 1 by Lemma 26,
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hence the only possibility is minJ ∗(i) > max Ĵk, which implies αik = 0 by Lemma 18.

Since i ≥ k was arbitrarily chosen, we get αik = 0 for all i ≥ k. Induction hypothesis

2 implies αik = 0 for all i ≤ k − 1, implying µs

k = 0, contradicting Lemma 5.

We can now establish the step case of our induction:

Lemma 30 (Step case of the induction).

1. For all i ∈ Îk and j /∈ Ĵk we have αij = αij = 0.

2. For all i /∈ Îk and j ∈ Ĵk we have αij = αij = 0.

Proof. Suppose i′ ≥ k and i′ /∈ Ĩk = {i|J ∗(i) = Ĵk}, i.e. J ∗(i′) ̸= Ĵk. Lemma 26

implies that J ∗(i′) ̸= {j∗} for any j∗ ≤ k − 1, hence the only remaining possibility

is minJ ∗(i′) > max Ĵk. Lemma 18 then implies αi′j = 0 for any j ∈ Ĵk. Moreover,

αi′j = 0 for all j ≤ k − 1 by Induction hypothesis 2. Recall that k ∈ Ĵk and the

posteriors of all signal realizations in Ĵk are the same, hence µs

k is equal to the weighted

average of the posteriors of signal realizations from Ĵk:

µs

k =

∑
j∈Ĵk

µs

j

∑I

i=1
(αij + αij)∑

j∈Ĵk

∑I

i=1
(αij + αij)

=

∑
j∈Ĵk

∑I

i=1
αij∑

j∈Ĵk

∑I

i=1
(αij + αij)

=

∑
j∈Ĵk

[∑
i≤k−1

=0 by IH2︷︸︸︷
��αij +

∑
i∈Ĩk

αij +
∑

i≥k,i/∈Ĩk

=0 by L18︷︸︸︷
��αij

]
∑

j∈Ĵk

[∑
i≤k−1

(�����αij + αij)︸ ︷︷ ︸
=0 by IH2

+
∑

i∈Ĩk
(αij + αij) +

∑
i≥k,i/∈Ĩk

( ��αij︸︷︷︸
=0 by L18

+αij)

]

=

∑
j∈Ĵk

∑
i∈Ĩk

αij∑
j∈Ĵk

∑
i∈Ĩk

(αij + αij) +
∑

j∈Ĵk

∑
i≥k,i/∈Ĩk

αij

≤
∑

j∈Ĵk

∑
i∈Ĩk

αij∑
j∈Ĵk

∑
i∈Ĩk

(αij + αij)
.

Suppose now that i′ ∈ Ĩk, i.e. J ∗(i′) = Ĵk. Lemma 28 guarantees that such i′

exist, and Lemma 24 implies that i′ ≥ k (otherwise we would have J ∗(i′) = {i′} ≠ Ĵk).

Lemma 18 and Induction hypothesis 2 imply that αi′j = 0 for all j /∈ Ĵk = J ∗(i′). By

the ordering assumption, µb

k is then higher than the weighted average of the posteriors

56



of signal realizations from Ĩk:

µb

k ≥
∑

i∈Ĩk
µb

i

∑J

j=1
(αij + αij)∑

i∈Ĩk

∑J

j=1
(αij + αij)

=

∑
i∈Ĩk

∑J

j=1
αij∑

i∈Ĩk

∑J

j=1
(αij + αij)

=

∑
i∈Ĩk

[∑
j∈Ĵk

αij +
∑

j /∈Ĵk
αij

]
∑

i∈Ĩk

[∑
j∈Ĵk

(αij + αij) +
∑

j /∈Ĵk
(αij + ��

αij︸︷︷︸
=0 by L18 & IH2

)

]

=

∑
i∈Ĩk

∑
j∈Ĵk

αij +
∑

i∈Ĩk

∑
j /∈Ĵk

αij∑
i∈Ĩk

∑
j∈Ĵk

(αij + αij) +
∑

i∈Ĩk

∑
j /∈Ĵk

αij

≥
∑

i∈Ĩk

∑
j∈Ĵk

αij∑
i∈Ĩk

∑
j∈Ĵk

(αij + αij)
.

Combining the above, we get

µs

k ≤
∑

i∈Ĩk

∑
j∈Ĵk

αij∑
i∈Ĩk

∑
j∈Ĵk

(αij + αij)
≤ µb

k,

implying that µs

k ≤ µb

k.

Suppose now j ′ ≥ k and j ′ /∈ J̃k = {j|I∗(j) = Îk}, i.e. I∗(j ′) ̸= Îk. Lemma 27

implies that I∗(j ′) ̸= {i∗} for any i∗ ≤ k − 1, hence the only remaining possibility

is min I∗(j ′) > max Îk. Lemma 17 then implies αij′ = 0 for any i ∈ Îk. Moreover,

αij′ = 0 for all i ≤ k − 1 by Induction hypothesis 2. Recall that k ∈ Îk and the

posteriors of all signal realizations in Îk are the same, hence µb

k is equal to the weighted

average of the posteriors of signal realizations from Îk:

µb

k =

∑
i∈Îk

µb

i

∑J

j=1
(αij + αij)∑

i∈Îk

∑J

j=1
(αij + αij)

=

∑
i∈Îk

∑J

j=1
αij∑

i∈Îk

∑J

j=1
(αij + αij)

=

∑
i∈Îk

[∑
j≤k−1

=0 by IH2︷︸︸︷
��αij +

∑
j∈J̃k

αij +
∑

j≥k,j /∈J̃k

=0 by L17︷︸︸︷
��αij

]
∑

i∈Îk

[∑
j≤k−1

(�����αij + αij)︸ ︷︷ ︸
=0 by IH2

+
∑

j∈J̃k
(αij + αij) +

∑
j≥k,j /∈J̃k

( ��αij︸︷︷︸
=0 by L17

+αij)

]

=

∑
i∈Îk

∑
j∈J̃k

αij∑
i∈Îk

∑
j∈J̃k

(αij + αij) +
∑

i∈Îk

∑
j≥k,j /∈J̃k

αij

≤
∑

i∈Îk

∑
j∈J̃k

αij∑
i∈Îk

∑
j∈J̃k

(αij + αij)
.

Suppose now that j ′ ∈ J̃k, i.e. I∗(j ′) = Îk. Lemma 29 guarantees that such j ′

exist, and Lemma 25 implies that j ′ ≥ k (otherwise we would have I∗(j ′) = {j ′} ≠ Îk).

Lemma 17 and Induction hypothesis 2 imply that αij′ = 0 for all i /∈ Îk = I∗(j ′). By

the ordering assumption, µs

k is then higher than the weighted average of the posteriors
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of signal realizations from J̃k:

µs

k ≥
∑

j∈J̃k
µs

j

∑I

i=1
(αij + αij)∑

j∈J̃k

∑I

i=1
(αij + αij)

=

∑
j∈J̃k

∑I

i=1
αij∑

i∈J̃k

∑I

i=1
(αij + αij)

=

∑
j∈J̃k

[∑
i∈Îk

αij +
∑

i/∈Îk
αij

]
∑

j∈J̃k

[∑
i∈Îk

(αij + αij) +
∑

i/∈Îk
(αij + ��

αij︸︷︷︸
=0 by L17 & IH2

)

]

=

∑
j∈J̃k

∑
i∈Îk

αij +
∑

j∈J̃k

∑
i/∈Îk

αij∑
j∈J̃k

∑
i∈Îk

(αij + αij) +
∑

j∈J̃k

∑
i/∈Îk

αij

≥
∑

j∈J̃k

∑
i∈Îk

αij∑
j∈J̃k

∑
i∈Îk

(αij + αij)
.

Combining the above, we get

µb

k ≤
∑

j∈J̃k

∑
i∈Îk

αij∑
j∈J̃k

∑
i∈Îk

(αij + αij)
≤ µs

k,

implying that µb

k ≤ µs

k. Above, we have established µs

k ≤ µb

k, hence µ
s

k = µb

k. The

next claim is analogous to Claim 4.

Claim 7. Îk = Ĩk and Ĵk = J̃k.

Proof. To see that Îk = Ĩk recall that we have shown above that∑
i∈Ĩk

µb

i

∑J

j=1
(αij + αij)∑

i∈Ĩk

∑J

j=1
(αij + αij)

≥
∑

i∈Ĩk

∑
j∈Ĵk

αij∑
i∈Ĩk

∑
j∈Ĵk

(αij + αij)
≥ µs

k = µb

k,

i.e. that the weighted average of the posteriors in Ĩk exceeds µb

k. If i′ ∈ Ĩk, then

Lemma 24 implies that i′ ≥ k (otherwise we would have J ∗(i′) = {i′} ̸= Ĵk), but

then we know from the ordering assumption that µb

k ≥ µb

i′ for any i
′ ∈ Ĩk, which then

immediately implies µb

k = µb

i′ for any i′ ∈ Ĩk, and therefore Îk = Ĩk. The proof of

Ĵk = J̃k follows exactly the same lines.

Claim 7 combined with Lemma 17 and Induction hypothesis 2 then immediately

implies that αij = 0 for all i /∈ Îk and j ∈ Ĵk. Claim 7 combined with Lemma 18 and

Induction hypothesis 2 implies that αij = 0 for all i ∈ Îk and j /∈ Ĵk.

We conclude the proof of the base step by establishing the following two claims:

Claim 8. αij = 0 for all i ∈ Îk and j /∈ Ĵk.

Claim 9. αij = 0 for all i /∈ Îk and j ∈ Ĵk.
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The proofs of Claims 8 and 9 are analogous, hence we only prove Claim 8.

Proof of Claim 8. Let j ′ /∈ Ĵk. If j
′ ≤ k − 1, then αij′ = 0 for all i ∈ Îk by Induction

hypothesis 2. Let j ′ > max Ĵk. Since Ĵk = J̃k by Claim 7, we have j ′ /∈ J̃k =

{j|I∗(j) = Îk}, i.e. I∗(j ′) ̸= Îk. Recall that Lemma 27 implies I∗(j) ̸= {i∗} for any

i∗ ≤ k − 1, and thus the only possible case is min I∗(j ′) > max Îk. Lemma 17 then

implies αij′ = 0 for all i ∈ Îk.

This concludes the proof of Lemma 30.

Lemma 30 has the following corollary, analogous to Corollary 2.

Corollary 3. Let i ∈ Îk, j ∈ Ĵk. If αij + αij > 0, then tbij = ub − log(µb

k
) − λb

j =

ub − log(µb

k)− λ
b

j and t
s
ij = us + log(µs

k
) + λs

j = us + log(µs

k) + λ
s

j.

Proof. We only prove the claim for the buyer, the proof for the seller is analogous.

Lemma 30 implies that µb

i = µb

k for all i ∈ Îk, thus αij + αij > 0, combined with

stationarity and complementary slackness, implies either tbij = ub − log(µb

k
) − λb

j or

tbij = ub− log(µb

k)−λ
b

j, or both. We now show that ub− log(µb

k
)−λb

j = ub− log(µb

k)−λ
b

j.

For any j ∈ Ĵk there is i′ ∈ Îk such that αi′j > 0 (if not, Lemma 30 would imply

αij > 0 for all i, implying µs

j
= 0 and contradicting Lemma 5). Also, for any j ∈ Ĵk

there is i′′ ∈ Îk such that αi′′j > 0 (if not, Lemma 30 would imply αij > 0 for all i,

implying µs

j = 0 and contradicting Lemma 5). Consider (STb

i′j) and (STb

i′′j):

(STb
i′j) ub − tbi′j − log

(
µb
k

)
− λbj = 0,

ub − tbi′j − log
(
µbk

)
− λ

b
j = −ϕbi′j ≤ 0.

(STb
i′′j) ub − tbi′′j − log

(
µb
k

)
− λbj = −ϕb

i′′j
≤ 0,

ub − tbi′′j − log
(
µbk

)
− λ

b
j = 0.

(STb

i′j) implies that ub − log(µb

k) − λ
b

j ≤ ub − log(µb

k
) − λb

j and (STb

i′′j) implies that

ub − log(µb

k
)− λb

j ≤ ub − log(µb

k)− λ
b

j, hence u
b − log(µb

k
)− λb

j = ub − log(µb

k)− λ
b

j.

Corollary 3 allows us to merge the buyer’s and the seller’s signal realizations in

Îk and Ĵk respectively, and still achieve the same revenue. The construction of the

merger is analogous to that of the base case and thus omitted.
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I Proof of Lemma 8

Proof. To simplify the notation let (x, y) ≡ (µ
1
, µ2) and define the following function:

f(x, y) ≡ log(xy)− 0.5− y

1− x− y
log

(
x(1− x)

)
− 0.5− x

1− x− y
log

(
y(1− y)

)
− log

[
1− x− ye∆

]
− log

[
1− y + ye∆

]
+ ub − us.

Our problem is then equivalent to max(x,y)∈(0,0.5)2 f(x, y), which can only have sym-

metric solutions because f(x, y) is symmetric and strict-supermodular4. Symmetry is

immediate, to check strict-supermodularity, let us compute ∂2f

∂x∂y
and show that it is

strictly positive for all (x, y) ∈ (0.0.5)2. Start with ∂f

∂x
:

∂f

∂x
=

1

x
+

0.5− y

(1− x− y)2
log

[
y(1− y)

x(1− x)

]
− 0.5− y

1− x− y

1− 2x

x(1− x)
− e∆ − 1

1− x+ xe∆
.

Now compute ∂2f

∂x∂y
:

∂2f

∂x∂y
=

−(1− x− y)2 + 2(1− x− y)(0.5− y)

(1− x− y)4
log

[
y(1− y)

x(1− x)

]
+

0.5− y

(1− x− y)2
1− 2y

y(1− y)
− −(1− x− y) + 0.5− y

(1− x− y)2
1− 2x

x(1− x)
,

which simplifies to:

∂2f

∂x∂y
=

x− y

(1− x− y)3
log

[
y(1− y)

x(1− x)

]
+
1

2

(1− 2y)2

y(1− y)(1− x− y)2
+
1

2

(1− 2x)2

x(1− x)(1− x− y)2
.

4Strict-supermodular functions cannot have asymmetric maxima. Indeed suppose for a contra-

diction that (x∗, y∗) ∈ max(x,y)∈(0,0.5)2 f(x, y) for some symmetric and strict-supermodular f(x, y),

and x∗ > y∗ wlog. By symmetry, we have f(x∗, y∗) = f(y∗, x∗). Optimality then impliesf(y
∗, x∗) ≥ f(x∗, x∗),

f(y∗, y∗) ≤ f(x∗, y∗),

which implies f(x∗, x∗)− f(y∗, x∗) ≤ 0 ≤ f(x∗, y∗)− f(y∗, y∗). To obtain a contradiction, observe

f(x∗, x∗)− f(y∗, x∗)−
[
f(x∗, y∗)− f(y∗, y∗)

]
=

x∗∫
y∗

∂f

∂x
(z, x∗)dz −

x∗∫
y∗

∂f

∂x
(z, y∗)dz

=

y∗∫
x∗

[
∂f

∂x
(z, x∗)− ∂f

∂x
(z, y∗)

]
dz =

y∗∫
x∗

y∗∫
x∗

∂2f

∂x∂y
(z, ω)dωdz > 0.
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Direct calculation shows that for x = y we get ∂2f

∂x∂y
= 1

x(1−x)
> 0. Let x < y wlog:

∂2f

∂x∂y
∝ (x− y) log

[
y(1− y)

x(1− x)

]
+

1− x− y

2

[
(1− 2y)2

y(1− y)
+

(1− 2x)2

x(1− x)

]
≥ (x− y)

[
y(1− y)

x(1− x)
− 1

]
+

1− x− y

2

[
(1− 2y)2

y(1− y)
+

(1− 2x)2

x(1− x)

]
= (x− y)

[
y(1− y)

x(1− x)
− 1

]
+

1− x− y

2

x(1− x)(1− 2y)2 + y(1− y)(1− 2x)2

x(1− x)y(1− y)

∝ y(1− y)(x− y)
[
y(1− y)− x(1− x)

]
+

1− x− y

2

[
x(1− x)(1− 2y)2 + y(1− y)(1− 2x)2

]
= −y(1− y)(y − x)(y − x)(1− x− y) +

1− x− y

2

[
x(1− x)(1− 2y)2 + y(1− y)(1− 2x)2

]
∝ −2y(1− y)(y − x)2 + (1− 2y)2x(1− x) + (1− 2x)2y(1− y)

≥ −2y(1− y)(y − x)2 + (1− 2x)2y(1− y)

= y(1− y)
[
(1− 2x)2 − 2(y − x)2

]
∝ (1− 2x)2 − 2(y − x)2 > (1− 2x)2 − 2(0.5− x)2 = 2(0.5− x)2 > 0.

J Sufficient optimality conditions for strictly positive posteriors

Rewrite the designer’s revenue maximization problem as follows:

max
n,α,t,λ

n∑
i=1

(
αi + αi︸ ︷︷ ︸

τi

)(
tbi − tsi

)
s.t.

(STb) ub − tbi − log
(
µ

i

)
= λb

i ≥ Λb ∀i,

ub − tbi − log
(
µi

)
= λ

b

i ≥ Λ
b ∀i,

(STs) tsi − us − log
(
µ

i

)
= λs

i ≥ Λs ∀i,

tsi − us − log
(
µi

)
= λ

s

i ≥ Λ
s ∀i,

(NAb) exp
(
−min

i
{λb

i}︸ ︷︷ ︸
≡Λb

)
+ exp

(
−min

i
{λ

b

i}︸ ︷︷ ︸
≡Λ

b

)
≤ 1,

(NAs) exp
(
−min

i
{λs

i}︸ ︷︷ ︸
≡Λs

)
+ exp

(
−min

i
{λ

s

i}︸ ︷︷ ︸
≡Λ

s

)
≤ 1,

(α-F) Sb = Ss = {1, . . . , n}, α ∈ ∆̃
(
Sb × Ss × V

)
, BP,

0 < µ
i
< 1, 0 < µi < 1.
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The problem can then be rewitten as follows:

max
n,τ,µ,t,Λ

n∑
i=1

τi
(
tbi − tsi

)
s.t.

(STb) ub − Λb ≥ tbi + log
(
µ

i

)
∀i,

ub − Λ
b ≥ tbi + log

(
µi

)
∀i,

(STs) − us − Λs ≥ −tsi + log
(
µ

i

)
∀i,

− us − Λ
s ≥ −tsi + log

(
µi

)
∀i,

(NAb) exp
(
− Λb

)
+ exp

(
− Λ

b) ≤ 1,

(NAs) exp
(
− Λs

)
+ exp

(
− Λ

s) ≤ 1,

(α-F) BP, 0 < µ
i
< 1, 0 < µi < 1.

Take exponentials on both sides of the STb and STs constraints:

max
n,τ,µ,t,Λ

n∑
i=1

τi
(
tbi − tsi

)
s.t.

(STb) exp
(
ub
)
exp

(
− Λb

)︸ ︷︷ ︸
≡ζb

≥ µ
i
exp

(
tbi
)

∀i,

exp
(
ub
)
exp

(
− Λ

b)︸ ︷︷ ︸
≡ζ

b

≥ µi exp
(
tbi
)

∀i,

(STs) exp
(
− us

)
exp

(
− Λs

)︸ ︷︷ ︸
≡ζs

≥ µ
i
exp

(
− tsi

)
∀i,

exp
(
− us

)
exp

(
− Λ

s)︸ ︷︷ ︸
≡ζ

s

≥ µi exp
(
− tsi

)
∀i,

(NAb) exp
(
− Λb

)︸ ︷︷ ︸
≡ζb

+ exp
(
− Λ

b)︸ ︷︷ ︸
≡ζ

b

≤ 1, ζb > 0, ζ
b

> 0,

(NAs) exp
(
− Λs

)︸ ︷︷ ︸
≡ζs

+ exp
(
− Λ

s)︸ ︷︷ ︸
≡ζ

s

≤ 1, ζs > 0, ζ
s

> 0,

(α-F) BP, 0 < µ
i
< 1, 0 < µi < 1.
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Finally, relax the strict inequalities:

max
n,τ,µ,t,ζ

n∑
i=1

τi
(
tbi − tsi

)
s.t. (3)

(STb) ζb exp
(
ub
)
≥ µ

i
exp

(
tbi
)

∀i,

ζ
b

exp
(
ub
)
≥ µi exp

(
tbi
)

∀i,

(STs) ζs exp
(
− us

)
≥ µ

i
exp

(
− tsi

)
∀i,

ζ
s

exp
(
− us

)
≥ µi exp

(
− tsi

)
∀i,

(NAb) ζb + ζ
b

≤ 1, ζb ≥ 0, ζ
b

≥ 0,

(NAs) ζs + ζ
s

≤ 1, ζs ≥ 0, ζ
s

≥ 0,

(α-F) BP, 0 ≤ µ
i
≤ 1, 0 ≤ µi≤ 1.

Let us now solve the relaxed Revenue maximization problem (3). The interior

cases were considered above. We will now consider the cases, in which one or both

posteriors are extreme.

J.1 Case E0: both posteriors are extreme

In this case we have µ
1
= µ2 = 0 and µ

2
= µ1 = 1. The Bayes-plausibilty

conditions can be written as:τ1µ1
+ τ2µ

2
= τ10 + τ21 = τ2 = µ

0
,

τ1µ1 + τ2µ2 = τ11 + τ20 = τ1 = µ0.

The relaxed stationarity conditions can then be written as:

(STb) ζb exp
(
ub
)
≥ 0 exp

(
tb1
)︸ ︷︷ ︸

always holds

,

ζ
b

exp
(
ub
)
≥ 1 exp

(
tb1
)
,

ζb exp
(
ub
)
≥ 1 exp

(
tb2
)
,

ζ
b

exp
(
ub
)
≥ 0 exp

(
tb2
)︸ ︷︷ ︸

always holds

.

(STs) ζs exp
(
− us

)
≥ 0 exp

(
− ts1

)︸ ︷︷ ︸
always holds

,

ζ
s

exp
(
− us

)
≥ 1 exp

(
− ts1

)
,

ζs exp
(
− us

)
≥ 1 exp

(
− ts2

)
,

ζ
s

exp
(
− us

)
≥ 0 exp

(
− ts2

)︸ ︷︷ ︸
always holds

.
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The relaxed maximization problem can therefore be rewritten as:

max
t,ζ

µ0

(
tb1 − ts1

)
+ µ

0

(
tb2 − ts2

)
s.t. (4)

(STb) ζ
b

exp
(
ub
)
≥ exp

(
tb1
)
, ζb exp

(
ub
)
≥ exp

(
tb2
)
,

(STs) ζ
s

exp
(
− us

)
≥ exp

(
− ts1

)
, ζs exp

(
− us

)
≥ exp

(
− ts2

)
,

(NAb) ζb + ζ
b

≤ 1, ζb ≥ 0, ζ
b

≥ 0,

(NAs) ζs + ζ
s

≤ 1, ζs ≥ 0, ζ
s

≥ 0.

The following claim applies:

Claim 10. At the optimum of the revenue maximization problem (4) we have ζp > 0

and ζ
p

> 0 for both p ∈ {b, s}. Suppose not, then the respective payment has to

be equal to −∞ to satisfy the relaxed stationarity constraints. But (NAp) implies

that ζp ≤ 1 and ζ
p

≤ 1, which implies that the remaining payments are bounded

from above, implying in turn that the revneue has to be equal to −∞ as well, which

obviously cannot be optimal.

The revenue maximization problem (4) can therefore be rewritten in terms of the

original variables:

max
t,Λ

µ0

(
tb1 − ts1

)
+ µ

0

(
tb2 − ts2

)
s.t.

(STb) tb1 ≤ ub − Λ
b

, tb2 ≤ ub − Λb

(STs) − ts1 ≤ −us − Λ
s

, −ts2 ≤ −us − Λs,

(NAb) exp
(
− Λb

)
+ exp

(
− Λ

b) ≤ 1,

(NAs) exp
(
− Λs

)
+ exp

(
− Λ

s) ≤ 1.

The constraints (ST)b and (ST)s are obviously binding at the optimum, hence the

revenue can be written as:

RCase E0 = µ0

(
ub − Λ

b − us − Λ
s)

+ µ
0

(
ub − Λb − us − Λs

)
= µ0

(
ub − us

)
+ µ

0

(
ub − us

)
− µ0Λ

b − µ
0
Λb − µ0Λ

s − µ
0
Λs.

Additive separability implies that it is enough to solve for both p ∈ {b, s}:

max
Λp,Λ

p
−µ0Λ

p − µ
0
Λp s.t. exp

(
− Λp

)
+ exp

(
− Λ

p) ≤ 1.
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The optimal solution is given by Λp = − log
(
µ0
)
and Λ

p

= − log
(
µ0
)
. The optimal

revenue can then be written as:

R∗
Case E0 = µ0

(
ub − us

)
+ µ

0

(
ub − us

)
+ 2

(
µ0 log

(
µ0
)
+ µ

0
log

(
µ0
))

= ub − us +

[
µ0

(
ub − us

)
+ µ

0

(
ub − us

)
− ub + us

]
+ 2

(
µ0 log

(
µ0
)
+ µ

0
log

(
µ0
))

= ub − us − µ
0

(
ub − ub

)
− µ0

(
us − us

)
+ 2

(
µ0 log

(
µ0
)
+ µ

0
log

(
µ0
))

= −µ
0
∆b − µ0∆

s + 2

(
µ0 log

(
µ0
)
+ µ

0
log

(
µ0
))

+ ub − us.

In the symmetric case we get:

R∗
Case E0 = −1

2
∆− 1

2
∆ + 2

(
1

2
log

(
1

2

)
+

1

2
log

(
1

2

))
+ ub − us

= −∆− 2 log 2 + ub − us.

J.2 Case E1: µ1 is extreme, µ2 is interior

Suppose µ
1
= 0, µ1 = 1 and 0 < µ

2
, µ2 < 1. From Bayes-plausibility we then have:τ1µ1

+ τ2µ
2
= τ10 + τ2µ

2
= µ

0
,

τ1µ1 + τ2µ2 = τ11 + τ2µ2 = µ0.

⇒

τ1 = 1− µ
0

µ
2

,

τ2 =
µ
0

µ
2

.

The relaxed stationarity conditions are then given by:

(STb) ζb exp
(
ub
)
≥ 0 exp

(
tb1
)︸ ︷︷ ︸

always holds

,

ζ
b

exp
(
ub
)
≥ 1 exp

(
tb1
)
,

ζb exp
(
ub
)
≥ µ

2
exp

(
tb2
)
,

ζ
b

exp
(
ub
)
≥ µ2 exp

(
tb2
)
.

(STs) ζs exp
(
− us

)
≥ 0 exp

(
− ts1

)︸ ︷︷ ︸
always holds

,

ζ
s

exp
(
− us

)
≥ 1 exp

(
− ts1

)
,

ζs exp
(
− us

)
≥ µ

2
exp

(
− ts2

)
,

ζ
s

exp
(
− us

)
≥ µ2 exp

(
− ts2

)
.

We first establish the following claim:

Claim 11. tbi are bounded from above, tsi are bounded from below for all i.

Proof. (NAb) implies ζb ≤ 1 and ζ
b

≤ 1, and (NAs) implies ζs ≤ 1 and ζ
s

≤ 1. It

then follows from (STb) that tb1 ≤ ub and tb2 ≤ logmin
{

1

µ
2

exp(ub), 1

µ2
exp(ub)

}
, and it

follows from (STs) that ts1 ≥ us and ts2 ≥ − logmin
{

1

µ
2

exp(−us), 1

µ2
exp(−us)

}
.
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We then establish the following:

Claim 12. At the optimum ζb > 0, ζ
b

> 0 and ζs > 0, ζ
s

> 0.

Proof. If ζb = 0 or ζ
b

= 0, then at least one of the buyer’s payments would be equal

to −∞. Since the remaining payments of the buyer are bounded from above and the

remaining payments to the seller are bounded from above, it would lead to revenue

equal to −∞, which cannot be optimal. If ζs = 0 or ζ
s

= 0, then at least one of the

seller’s payments would be equal to ∞. Since the remaining payments of the buyer

are bounded from above and the remaining payments to the seller are bounded from

above, it would lead to revenue equal to −∞, which cannot be optimal.

Observe that at the optimum we must have ζ
b

exp
(
ub
)
= exp

(
tb1
)
. Moreover, we

must have either ζb exp
(
ub
)
= µ

2
exp

(
tb2
)
or ζ

b

exp
(
ub
)
= µ2 exp

(
tb2
)
, or both. We

establish the following lemma:

Lemma 31. ζb exp
(
ub
)
= µ

2
exp

(
tb2
)
at the optimum.

Proof. Suppose for a contradiction that this is not the case, then the other con-

straint in the pair must be binding, i.e. ζ
b

exp
(
ub
)
= µ2 exp

(
tb2
)
. Suppose now

that ts1, t
s
2, ζ

s, ζ
s

, µ
2
, µ2 are optimally chosen. To make sure that tb1, t

b
2 and ζb, ζ

b

are

optimally chosen, we solve:

max
tb,ζb

τ1
(
tb1 − ts1

)
+ τ2

(
tb2 − ts2

)
s.t.

(STb) exp
(
tb1
)
= ζ

b

exp
(
ub
)
,

exp
(
tb2
)
=

1

µ2

ζ
b

exp
(
ub
)
,

(NAb) ζb + ζ
b

≤ 1, ζb ≥ 0, ζ
b

≥ 0.

The optimal solution to the above problem is to set ζb = 0 and ζ
b

= 1, which

contradicts Claim 12.

Likewise, we must have at the optimum ζ
s

exp
(
− us

)
= exp

(
− ts2

)
. Moreover,

we must have either ζs exp
(
− us

)
= µ

1
exp

(
− ts1

)
or ζ

s

exp
(
− us

)
= µ1 exp

(
− ts1

)
,

or both. We establish the following lemma:

Lemma 32. ζs exp
(
− us

)
= µ

2
exp

(
− ts1

)
at the optimum.
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Proof. Analogous to Lemma 31 for the buyer.

The revenue maximization problem can then be rewtitten in terms of the original

variables as follows:

max
τ,µ,t,Λ

τ1
(
tb1 − ts1

)
+ τ2

(
tb2 − ts2

)
s.t.

(STb) tb1 = ub − ub,

tb2 = ub − log
(
µ

2

)
− Λb,

tb2 ≤ ub − log
(
µ2

)
− Λ

b

;

(STs) − ts1 = −us − Λ
s

,

− ts2 = −us − log
(
µ

2

)
− Λs,

− ts2 ≤ −us − log
(
µ2

)
− Λ

s

;

(NAb) exp
(
− Λb

)
+ exp

(
− Λ

b) ≤ 1,

(NAs) exp
(
− Λs

)
+ exp

(
− Λ

s) ≤ 1,

(α-F) BP, 0 < µ
2
< 1, 0 < µ2 < 1.

The revenue in Case E1 can then be written as follows:

RCase E1 = τ1

[
ub − Λ

b − us − Λ
s

]
+ τ2

[
ub − us − 2 log

(
µ

2

)
− Λb − Λs

]
.

Since RCase E1 is strictly decreasing in Λ, both (NAb) and (NAs) are binding.

From our consideration of the concave closures above, it follows that we must

consider the following three cases:

Case E1.1 −ts2 = −us − log
(
µ

2

)
− Λs = −us − log

(
µ2

)
− Λ

s

.

Since (NAs) is binding, we can solve for Λs:−Λs = us + log
(
µ

2

)
− log

[
µ

2
exp(us) + µ2 exp(u

s)
]
,

−Λ
s

= us + log
(
µ2

)
− log

[
µ

2
exp(us) + µ2 exp(u

s)
]
.

The revenue can then be written as follows:

RCase E1.1 = τ1
[
ub+log

(
µ2

)
−Λ

b]
+τ2

[
ub− log

(
µ

2

)
−Λb

]
− log

[
µ

2
exp(us)+µ2 exp(u

s)
]
.

Maximizing RCase E1.1 with respect to Λb and Λ
b

subject to (NAb), we get −Λb =

log τ2 and −Λ
b

= log τ1. The revenue can then be written as:

RCase E1.1 = τ1
[
ub + log

(
µ2

)
+ log τ1

]
+ τ2

[
ub − log

(
µ
2

)
+ log τ2

]
− log

[
µ
2
exp(us) + µ2 exp(u

s)
]

= log
(
µ2

)
− τ2 log

(
µ
2
µ2

)
− τ2∆

b + τ1 log τ1 + τ2 log τ2 − log
[
µ
2
+ µ2 exp(∆

s)
]
+ ub − us.
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Recall that Case E1.1 applies only if the (STb)-constraints are satisfied, i.e.

ub − log
(
µ

2

)
− Λb ≤ ub − log

(
µ2

)
− Λ

b

⇔ ub − log
(
µ

2

)
+ log τ2 ≤ ub − log

(
µ2

)
+ log τ1

⇔ log

[
µ2

µ
2

]
+ log

[
τ2
τ1

]
≤ ∆b.

Case E1.2 tb2 = ub − log
(
µ

2

)
− Λb = ub − log

(
µ2

)
− Λ

b

.

Since (NAb) is binding, we can solve for Λb:−Λb = −ub + log
(
µ

2

)
− log

[
µ

2
exp(−ub) + µ2 exp(−ub)

]
,

−Λ
b

= −ub + log
(
µ2

)
− log

[
µ

2
exp(−ub) + µ2 exp(−ub)

]
.

The revenue can then be written as follows:

RCase E1.2 = τ1
[
−us+log

(
µ2

)
−Λ

s]
+τ2

[
−us−log

(
µ
2

)
−Λs

]
−log

[
µ
2
exp(−ub)+µ2 exp(−ub)

]
.

Maximizing RCase E1.2 with respect to Λs and Λ
b

subject to (NAb), we get −Λs =

log τ2 and −Λ
s

= log τ1. The revenue can then be written as:

RCase E1.2 = τ1
[
− us + log

(
µ2

)
+ log τ1

]
+ τ2

[
− us − log

(
µ
2

)
+ log τ2

]
− log

[
µ
2
exp(−ub) + µ2 exp(−ub)

]
= log

(
µ2

)
− τ1 log

(
µ
2
µ2

)
− τ1∆

s + τ1 log τ1 + τ2 log τ2 − log
[
µ
2
exp(∆b) + µ2

]
+ ub − us.

Recall that Case E1.2 applies only if the (STb)-constraints are satisfied, i.e.

− us − log
(
µ

2

)
− Λs ≤ −us − log

(
µ2

)
− Λ

s

⇔ − us − log
(
µ

2

)
+ log τ2 ≤ −us − log

(
µ2

)
+ log τ1

⇔ log

[
µ2

µ
2

]
+ log

[
τ2
τ1

]
≤ −∆s.

Case E1.3: all constraints are binding

In this case we have:

−Λb = −ub + log
(
µ

2

)
− log

[
µ

2
exp(−ub) + µ2 exp(−ub)

]
,

−Λ
b

= −ub + log
(
µ2

)
− log

[
µ

2
exp(−ub) + µ2 exp(−ub)

]
,

−Λs = us + log
(
µ

2

)
− log

[
µ

2
exp(us) + µ2 exp(u

s)
]
,

−Λ
s

= us + log
(
µ2

)
− log

[
µ

2
exp(us) + µ2 exp(u

s)
]
.

The revenue then becomes:

RCase E1.3 = 2τ1 log
(
µ2

)
− log

[
µ

2
exp(−ub) + µ2 exp(−ub)

]
− log

[
µ

2
exp(us) + µ2 exp(u

s)
]

= 2τ1 log
(
µ2

)
− log

[
µ

2
exp(∆b) + µ2

]
− log

[
µ

2
+ µ2 exp(∆

s)
]
+ ub − us.
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J.3 Case E2: µ1 is interior, µ2 is extreme

Suppose 0 ≤ µ
1
, µ1 < 1 and µ

2
= 1, µ2 = 0. From Bayes-plausibility, we have:τ1µ1

+ τ2µ
2
= τ1µ

1
+ τ21 = µ

0
,

τ1µ1 + τ2µ2 = τ1µ1 + τ20 = µ0.

⇒

τ1 =
µ0

µ1
,

τ2 = 1− µ0

µ1
.

The relaxed stationarity conditions are then given by:

(STb) ζb exp
(
ub
)
≥ µ

1
exp

(
tb1
)
,

ζ
b

exp
(
ub
)
≥ µ1 exp

(
tb1
)
,

ζb exp
(
ub
)
≥ 1 exp

(
tb2
)
,

ζ
b

exp
(
ub
)
≥ 0 exp

(
tb2
)︸ ︷︷ ︸

always holds

.

(STs) ζs exp
(
− us

)
≥ µ

1
exp

(
− ts1

)
,

ζ
s

exp
(
− us

)
≥ µ1 exp

(
− ts1

)
,

ζs exp
(
− us

)
≥ 1 exp

(
− ts2

)
,

ζ
s

exp
(
− us

)
≥ 0 exp

(
− ts2

)︸ ︷︷ ︸
always holds

.

We first establish the following claim:

Claim 13. tbi are bounded from above, tsi are bounded from below for all i.

Proof. (NAb) implies ζb ≤ 1 and ζ
b

≤ 1, and (NAs) implies that ζs ≤ 1 and ζ
s

. It

then follows from (STb) that tb1 ≤ logmin
{

1

µ
1

exp(ub), 1

µ1
exp(ub)

}
and tb2 ≤ ub and it

follows from (STs) that ts1 ≥ − logmin
{

1

µ
1

exp(−us), 1

µ1
exp(−us)

}
and ts2 ≥ us.

We then establish the following:

Claim 14. At the optimum ζb > 0, ζ
b

> 0 and ζs > 0, ζ
s

> 0.

Proof. If ζb = 0 or ζ
b

= 0, then at least one of the buyer’s payments would be equal

to −∞. Since the remaining payments of the buyer are bounded from above and the

remaining payments to the seller are bounded from above, it would lead to revenue

equal to −∞, which cannot be optimal. If ζs = 0 or ζ
s

= 0, then at least one of the

seller’s payments would be equal to ∞. Since the remaining payments of the buyer

are bounded from above and the remaining payments to the seller are bounded from

above, it would lead to revenue equal to −∞, which cannot be optimal.

Observe that at the optimum we must have ζb exp
(
ub
)
= exp

(
tb2
)
. Moreover, we

must have either ζb exp
(
ub
)
= µ

1
exp

(
tb1
)
or ζ

b

exp
(
ub
)
= µ1 exp

(
tb1
)
, or both. We

establish the following lemma:
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Lemma 33. ζ
b

exp
(
ub
)
= µ1 exp

(
tb1
)
at the optimum.

Proof. Suppose for a contradiction that this is not the case, then the other constraint

in the pair must be binding, i.e. ζb exp
(
ub
)
= µ

1
exp

(
tb1
)
. Suppose now that ts1, t

s
2, ζ

s,

ζ
s

and µ
1
, µ1 are optimally chosen. To make sure that tb1, t

b
2 and ζ

b, ζ
b

are optimally

chosen, we solve:

max
tb,ζb

τ1
(
tb1 − ts1

)
+ τ2

(
tb2 − ts2

)
s.t.

(STb) exp
(
tb1
)
=

1

µ
1

ζb exp
(
ub
)
,

exp
(
tb2
)
= ζb exp

(
ub
)
,

(NAb) ζb + ζ
b

≤ 1, ζb ≥ 0, ζ
b

≥ 0.

The optimal solution to the above problem is to set ζb = 1 and ζ
b

= 0, which

contradicts Claim 14.

Likewise, we must have at the optimum ζs exp
(
− us

)
= exp

(
− ts2

)
. Moreover,

we must have either ζs exp
(
− us

)
= µ

1
exp

(
− ts1

)
or ζ

s

exp
(
− us

)
= µ1 exp

(
− ts1

)
,

or both. We establish the following lemma:

Lemma 34. ζ
s

exp
(
− us

)
= µ1 exp

(
− ts1

)
at the optimum.

Proof. Analogous to Lemma 33 for the buyer.

The revenue maximization problem can then be rewtitten in terms of the original
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variables as follows:

max
τ,µ,t,Λ

τ1
(
tb1 − ts1

)
+ τ2

(
tb2 − ts2

)
s.t.

(STb) tb1 ≤ ub − log
(
µ

1

)
− Λb,

tb1 = ub − log
(
µ1

)
− Λ

b

,

tb2 = ub − Λb;

(STs) − ts1 ≤ −us − log
(
µ

1

)
− Λs,

− ts1 = −us − log
(
µ1

)
− Λ

s

,

− ts2 = −us − Λs;

(NAb) exp
(
− Λb

)
+ exp

(
− Λ

b) ≤ 1,

(NAs) exp
(
− Λs

)
+ exp

(
− Λ

s) ≤ 1,

(α-F) BP, 0 < µ
1
< 1, 0 < µ1 < 1.

The revenue in Case E2 can then be written as follows:

RCase E2 = τ1

[
ub − us − 2 log

(
µ1

)
− Λ

b − Λ
s

]
+ τ2

[
ub − us − Λb − Λs

]
.

Since RCase 2E is strictly decreasing in Λ, both (NAb) and (NAs) are binding.

From our consideration of the concave closures above, it follows that we must

consider the following three cases:

Case E2.1: tb1 = ub − log
(
µ

1

)
− Λb = ub − log

(
µ1

)
− Λ

b

Since (NAb) is binding, we can solve for Λb:−Λb = −ub + log
(
µ

1

)
− log

[
µ

1
exp(−ub) + µ1 exp(−ub)

]
,

−Λ
b

= −ub + log
(
µ1

)
− log

[
µ

1
exp(−ub) + µ1 exp(−ub)

]
.

The revenue can then be written as follows:

RCase E2.1 = τ1
[
−us−log

(
µ1

)
−Λ

s]
+τ2

[
−us+log

(
µ

1

)
−Λs

]
−log

[
µ

1
exp(−ub)+µ1 exp(−ub)

]
Maximizing RCase E2.1 with respect to Λs and Λ

s

subject to (NAs), we get −Λs =

log τ2 and −Λ
s

= log τ1. The revenue can then be written as:

RCase E2.1 = τ1
[
− us − log

(
µ1

)
+ log τ1

]
+ τ2

[
− us + log

(
µ
1

)
+ log τ2

]
− log

[
µ
1
exp(−ub) + µ1 exp(−ub)

]
= log

(
µ
1

)
− τ1 log

(
µ
1
µ1

)
− τ1∆

s + τ1 log τ1 + τ2 log τ2 − log
[
µ
1
exp(∆b) + µ1

]
+ ub − us

71



Recall that Case E2.1 applies only if the (STs)-constraints are satisfied, i.e.

− us − log
(
µ1

)
− Λ

s ≤ −us − log
(
µ

1

)
− Λs

⇔− us − log
(
µ1

)
+ log τ1 ≤ −us − log

(
µ

1

)
+ log τ2

⇔−∆s ≤ log

[
µ1

µ
1

]
+ log

[
τ2
τ1

]
Case E2.2: ts1 = −us − log

(
µ

1

)
− Λs = −us − log

(
µ1

)
− Λ

s

Since (NAs) is binding, we can solve for Λb:−Λs = us + log
(
µ

1

)
− log

[
µ

1
exp(us) + µ1 exp(u

s)
]
,

−Λ
s

= us + log
(
µ1

)
− log

[
µ

1
exp(us) + µ1 exp(u

s)
]
.

The revenue can then be written as follows:

RCase E2.2 = τ1
[
ub− log

(
µ1

)
−Λ

b]
+τ2

[
ub+log

(
µ

1

)
−Λb

]
− log

[
µ

1
exp(us)+µ1 exp(u

s)
]
.

Maximizing RCase E2.2 with respect to Λb and Λ
b

subject to (NAb), we get −Λb =

log τ2 and −Λ
b

= log τ1. The revenue can then be written as:

RCase E2.2 = τ1
[
ub − log

(
µ1

)
+ log τ1

]
+ τ2

[
ub + log

(
µ
1

)
+ log τ2

]
− log

[
µ
1
exp(us) + µ1 exp(u

s)
]

= log
(
µ
1

)
− τ1 log

(
µ
1
µ1

)
− τ2∆

b + τ1 log τ1 + τ2 log τ2 − log
[
µ
1
+ µ1 exp(∆

s)
]
+ ub − us

Recall that Case E2.2 applies only if the (STs)-constraints are satisfied, i.e.

ub − log
(
µ1

)
− Λ

b ≤ ub − log
(
µ

1

)
− Λb

⇔ub − log
(
µ1

)
+ log τ1 ≤ ub − log

(
µ

1

)
+ log τ2

⇔∆b ≤ log

[
µ1

µ
1

]
+ log

[
τ2
τ1

]
Case E2.3: all constraints are binding

In this case we have:

−Λb = −ub + log
(
µ

1

)
− log

[
µ

1
exp(−ub) + µ1 exp(−ub)

]
,

−Λ
b

= −ub + log
(
µ1

)
− log

[
µ

1
exp(−ub) + µ1 exp(−ub)

]
,

−Λs = us + log
(
µ

1

)
− log

[
µ

1
exp(us) + µ1 exp(u

s)
]
,

−Λ
s

= us + log
(
µ1

)
− log

[
µ

1
exp(us) + µ1 exp(u

s)
]
.

The revenue then becomes:

RCase E2.3 = 2τ2 log
(
µ

1

)
− log

[
µ

1
exp(−ub) + µ1 exp(−ub)

]
− log

[
µ

1
exp(us) + µ1 exp(u

s)
]

= 2τ2 log
(
µ

1

)
− log

[
µ

1
exp(∆b) + µ1

]
− log

[
µ

1
+ µ1 exp(∆

s)
]
+ ub − us.
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J.4 Ruled-out cases

Lemma 35. RCase E2.1 ≥ RCase E2.2 for all ∆ ≤ log
(

µ1

µ
1

)
+ log

(
τ2

τ1

)
.

Proof. RCase E2.1 ≥ RCase E2.2 can equivalently be written as

τ1∆+ log
[
µ

1
exp(∆) + µ1

]
≤ τ2∆+ log

[
µ

1
+ µ1 exp(∆)

]
,

which in turn can be rewritten as

µ
1

µ1

∆+ log
[
µ

1
exp(∆) + µ1

]
− log

[
µ

1
+ µ1 exp(∆)

]
≤ 0

The condition ∆ ≤ log
(

µ1

µ
1

)
+ log

(
τ2

τ1

)
can be rewritten as:

exp(∆) ≤ µ1

µ
1

τ2
τ1

=
µ1

µ
1

(
µ1

µ0

− 1

)
=
µ1

µ
1

(2µ1 − 1) =
µ1

µ
1

(µ1 − µ
1
).

Define the function f(∆) ≡ µ
1

µ1
∆+log

[
µ

1
exp(∆)+µ1

]
− log

[
µ

1
+µ1 exp(∆)

]
. Our

goal is to show f(∆) ≤ 0 for all ∆ ≥ 0 such that exp(∆) ≤ µ1

µ
1

(µ1 − µ
1
). Observe first

that f(0) =
µ
1

µ1
0 + log

[
µ

1
+ µ1

]
− log

[
µ

1
+ µ1

]
= 0. We will now show that f(∆) is

decreasing for all ∆ ≥ 0 such that exp(∆) ≤ µ1

µ
1

(µ1−µ1
). First, let us compute f ′(∆):

f ′(∆) =
µ

1

µ1

+
µ

1
exp(∆)

µ
1
exp(∆) + µ1

− µ1 exp(∆)

µ
1
+ µ1 exp(∆)

=
µ

1

µ1

+ exp(∆)

[
µ2

1
+ µ

1
µ1 exp(∆)− µ

1
µ1 exp(∆)− µ2

1(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

) ]
=
µ

1

µ1

+ exp(∆)

[
(µ

1
− µ1)(µ1

+ µ1)(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

)]
=
µ

1

µ1

− exp(∆)

[
µ1 − µ

1(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

)].
We now show that f ′(∆) ≤ 0 for all ∆ ≥ 0 such that exp(∆) ≤ µ1

µ
1

(µ1 − µ
1
). The

condition f ′(∆) ≤ 0 can be rewritten as:

µ
1

µ1

− exp(∆)

[
µ1 − µ

1(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

)] ≤ 0

⇔ 1− exp(∆)

µ1

µ
1

(
µ1 − µ

1

)(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

) ≤ 0

⇔ exp(−∆)
(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

)
≤ µ1

µ
1

(µ1 − µ
1
). (5)
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Since exp(∆) ≤ µ1

µ
1

(µ1 − µ
1
), to show that (5) is true, it is enough to show that

exp(−∆)
(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

)
≤ exp(∆)

⇔
(
µ

1
exp(∆) + µ1

)(
µ

1
+ µ1 exp(∆)

)
− exp(2∆) ≤ 0.

To that end, define the function g(x) ≡
(
µ

1
x + µ1

)(
µ

1
+ µ1x

)
− x2. We show that

g(x) ≤ 0 for all x ≥ 1. First, observe that g(1) =
(
µ

1
+ µ1

)(
µ

1
+ µ1

)
− 12 = 0. We

now show that g(x) is strictly decreasing for all x ≥ 1. Let us compute g′(x):

g′(x) = µ
1
(µ

1
+ µ1) + µ1(µ1

x+ µ1)− 2x = µ2

1
+ µ2

1 − 2(1− µ
1
µ1)x.

To show that g′(x) < 0 for all x ≥ 1, observe that g′(1) = µ2

1
+ µ2

1 − 2 + 2µ
1
µ1 =

(µ
1
+ µ1)

2 − 2 = 12 − 2 = −1 < 0, which, combined with g′′(x) = −2(1 − µ
1
µ1) < 0,

gives the desired result.

Lemma 36. RCase E2.1 > RCase E2.3 for −∆ ≤ log
(

µ1

µ
1

)
+ log

(
τ2

τ1

)
.

Proof. RCase E2.1 > RCase E2.3 can be equivalently written as

−τ2 log(µ
1
)− τ1 log(µ1)− τ1∆+ τ1 log(τ1) + τ2 log τ2 + log

[
µ

1
+ µ1 exp(∆)

]
≥ 0.

The condition −∆ ≤ log
(

µ1

µ
1

)
+ log

(
τ2

τ1

)
can be rewritten as:

exp(−∆) ≤ µ1

µ
1

τ2
τ1

=
µ1

µ
1

(
µ1

µ0

− 1

)
=
µ1

µ
1

(2µ1 − 1) =
µ1

µ
1

(µ1 − µ
1
).

Define f(∆) ≡ −τ2 log(µ
1
) − τ1 log(µ1) − τ1∆ + τ1 log(τ1) + τ2 log τ2 + log

[
µ

1
+

µ1 exp(∆)
]
. Our goal is to show that f(∆) ≥ 0 for all ∆ ≥ − log

(
µ1

µ
1

)
− log

(
τ2

τ1

)
. Let

us first evaluate f at ∆̂ ≡ − log
(

µ1

µ
1

)
− log

(
τ2

τ1

)
(note that exp(∆̂) =

µ
1

µ1

1

µ1−µ
1

):

f(∆̂) = −τ2 log(µ1)− τ1 log(µ1) + τ1

[
log

(
µ1
µ
1

)
+ log

(
τ2
τ1

)]
+ τ1 log(τ1) + τ2 log τ2 + log

[
µ
1
+ µ1e

∆̂
]

= −(τ2 + τ1) log(µ1) + (τ1 + τ2) log τ2 + log
[
µ
1
+ µ1 exp(∆̂)

]
= − log(µ

1
) + log τ2 + log

[
µ
1
+ µ1

µ
1

µ1

1

µ1 − µ
1

]
= − log(µ

1
) + log τ2 + log(µ

1
) + log

[
1 +

1

µ1 − µ
1

]
= log τ2 + log

[
1 +

1

µ1 − µ
1

]
= log

[
µ1 − µ

1

2µ1

]
+ log

[
2µ1

µ1 − µ
1

]
= 0.
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Since f(∆̂) = 0, it remains to show that f(∆) is increasing for all ∆ ≥ ∆̂, i.e.

whenever exp(−∆) ≤ µ1

µ
1

(µ1 − µ
1
). To that end, we compute the derivative of f :

f ′(∆) = −τ1 +
µ1 exp(∆)

µ
1
+ µ1 exp(∆)

= − 1

2µ1

+
µ1

µ
1
exp(−∆) + µ1

.

Direct calculation shows that f ′(∆) ≥ 0 is equivalent to exp(−∆) ≤ µ1

µ
1

(µ1 − µ
1
),

which establishes the claim.

Lemma 37. RNo-learning ≥ RCase E2.3.

Proof. The condition RNo-learning ≥ RCase E2.3 can equivalently be written as:

−2 log
[
exp(∆)+1

]
+2 log 2 ≥ 2τ2 log(µ

1
)−log

[
µ

1
exp(∆)+µ1

]
−log

[
µ

1
+µ1 exp(∆)

]
.

Define the function f as follows:

f(x) ≡ log
[
µ

1
x+ µ1

]
+ log

[
µ

1
+ µ1x

]
− 2 log(x+ 1) + 2 log 2− 2τ2 log(µ

1
).

The statement of the lemma is equivalent to showing that f(x) ≥ 0 for all x ≥ 1.

We first show that f is strictly decreasing for all x > 1 by computing its derivative:

f ′(x) =
µ

1

µ
1
x+ µ1x

+
µ1

µ
1
+ µ1x

− 2

x+ 1

=
µ

1

µ
1
x+ µ1

− 1

x+ 1
+

µ1

µ
1
+ µ1x

− 1

x+ 1

=
µ

1
− µ1

(µ
1
x+ µ1)(x+ 1)

+
µ1 − µ

1

(µ
1
+ µ1x)(x+ 1)

=
µ1 − µ

1

x+ 1

[
1

µ
1
+ µ1x

− 1

µ
1
x+ µ1

]
=

(
µ1 − µ

1

)2

(1− x)

(x+ 1)(µ
1
+ µ1x)(µ1

x+ µ1)
< 0.

We now show that limx→+∞ f(x) ≥ 0:

lim
x→+∞

f(x) = lim
x→+∞

log

[
(µ

1
x+ µ1)(µ1

+ µ1x)

(x+ 1)2

]
+ 2 log 2− 2τ2 log(µ1)

= lim
x→+∞

log

[
µ2

1
+ µ

1
µ1 + µ

1
µ1x

2 + µ2

1

x2 + 2x+ 1

]
+ 2 log 2− 2τ2 log(µ1)

= log(µ
1
µ1) + 2 log 2− 2τ2 log(µ1)

= (1− 2τ2) log(µ
1
) + log(µ1) + 2 log 2

=
µ

1

µ1

log(µ
1
) + log(µ1) + 2 log 2.

Define the function g(x) ≡ x

1−x
log(x)+ log(1−x)+2 log 2. To conclude the proof,

we need to establish the following lemma:
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Lemma 38. g(x) ≥ 0 for all 0 < x ≤ 1

2
.

Proof. First observe that g( 1

2
) = log( 1

2
) + log( 1

2
) + 2 log 2 = 0. To conclude the proof,

we show that g is strictly decreasing on 0 < x ≥ 1

2
:

g′(x) =
1− x+ x

(1− x)2
log(x) +

x

1− x

1

x
− 1

1− x
=

log(x)

(1− x)2
< 0.

J.5 Conjectures

Recall that at the (interior) optimum we have:

R∗
interior = log

[√
e∆ − 1−

√
e∆ − 9

]
− log

[
3
√
e∆ − 1 +

√
e∆ − 9

]
− 2 log

[
3 + e∆ −

√
(e∆ − 1)(e∆ − 9)

]
+ 4 log 2.

Numerical computations suggest that the following conjecture is true:

Conjecture 1. For all ∆ ≥ log 9 and −∆ ≤ log
[

µ1

µ
1

]
+ log

[
τ2

τ1

]
, we have

R∗
interior ≥ RCase E2.1 = log(µ

1
)− τ1 log(µ1µ1)− τ1∆+ τ1 log τ1 + τ2 log τ2 − log

[
µ
1
e∆ +µ1

]
,

where µ
1
∈ (0, 0.5) and the τ ’s are given by:τ1µ1

+ τ2µ
2
= τ1µ

1
+ τ21 = µ

0
,

τ1µ1 + τ2µ2 = τ1µ1 + τ20 = µ0.

⇒

τ1 =
µ0

µ1
= 1

2µ1
,

τ2 = 1− µ0

µ1
= 1− 1

2µ1
.

Recall that the no-learning revenue is given by:

RNo-learning = −2 log
[
exp

(
∆
)
+ 1

]
+ 2 log 2.

Numerical computations suggest that the following conjecture is true:

Conjecture 2. For all ∆ ≤ log 9 and −∆ ≤ log
[

µ1

µ
1

]
+ log

[
τ2

τ1

]
, we have

RNo-learning ≥ RCase E2.1 = log(µ
1
)−τ1 log(µ1µ1)−τ1∆+τ1 log τ1+τ2 log τ2−log

[
µ
1
e∆+µ1

]
,

where µ
1
∈ (0, 0.5) and the τ ’s are given by:τ1µ1

+ τ2µ
2
= τ1µ

1
+ τ21 = µ

0
,

τ1µ1 + τ2µ2 = τ1µ1 + τ20 = µ0.

⇒

τ1 =
µ0

µ1
= 1

2µ1
,

τ2 = 1− µ0

µ1
= 1− 1

2µ1
.
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