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Abstract

Variance components of linear models with many covariates exhibit small-sample bias. This is known as
limited mobility bias in the context of variance decompositions in AKM regressions. The direct computation
for a bias correction is not feasible when the number of covariates is large. We propose a bootstrap method
for correcting this bias that accommodates general heteroskedasticity and serial correlation of the errors.
Our approach is suited to correct variance decompositions and the bias of multiple quadratic forms of the
same linear model without increasing the computational cost. We show with Monte Carlo simulations that
our bootstrap procedure is effective in correcting the bias and find that is faster than other methods in the
literature. Using administrative data for France, we correct variance decompositions overall and per groups
such as commuting zones. We find that the correlation between worker and firm fixed effects becomes
positive depending on the specification and that the positive correlation between the covariance of worker
and firm effects per commuting zone and its population is stable to the corrections.
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1 Introduction

Researchers have used employer-employee matched datasets to study the sorting patterns of work-

ers into firms. Various papers have estimated a linear model of log wages with person and firm

fixed effects, following the seminal work of Abowd, Kramarz, and Margolis (1999) (AKM hence-

forth). These studies compute the correlation between the person and firm fixed effects to deter-

mine the degree of sorting in the labor market. Most studies have found zero or negative cor-

relations, casting doubt on whether there is sorting in the labor market. However, as noted by

Abowd, Kramarz, Lengermann, and Pérez-Duarte (2004) this correlation is likely to suffer from

small-sample bias, dubbed limited mobility bias in their paper. Bonhomme, Holzheu, Lamadon,

Manresa, Mogstad, and Setzler (2023) show that the limited mobility bias is substantial when per-

forming a variance decomposition of log wages for several countries.

The elements of a variance decomposition of a linear model are quadratic objects in the param-

eters. As long as the parameters are estimated with noise, these quadratic objects are subject to

small-sample bias. This bias can be substantial in typical applications and can even change the sign

of estimated covariances. Moreover, in most applications this bias does not fade away by increasing

the sample size. This is the case when using panel data, as the number of parameters to estimate

grows with the sample size.

Andrews, Gill, Schank, and Upward (2008) derive formulas for correcting the bias when the

errors are homoskedastic. Gaure (2014) provides formulas for more general variance structures.

Unfortunately, the direct implementation of these corrections in high dimensional models is in-

feasible. The reason is that the corrections entail computing the inverse of an impractically large

matrix, which has prevented the direct application of the correction formulas.1

In this paper we propose a bootstrap method to correct limited mobility bias of variance com-

ponents. The main advantage of our bootstrap method is that it allows the computation of many

corrections at the same time without increasing the computational cost. On top of being scalable

in the number of corrections, out method is easy to implement, fast, and it accommodates different

assumptions on the error structure.

To illustrate the advantages of our method, consider a researcher who is interested in under-

standing how much the different components of an AKM model explain the variance of log wages

for different subgroups of the population. This can be done, for example, by estimating doing

separate variance decompositions for workers by race and gender (Gerard, Lagos, Severnini, and

Card, 2021), or by city (Dauth, Findeisen, Moretti, and Suedekum, 2022). The computational cost

of correcting for the variance components with other alternative methods scales linearly with the

number of subgroups. The increasing cost has prevented researchers from analyzing variance com-

ponents at increasingly finer partitions of the data.2 Our method overcomes this limitation. The

computational cost of doing an arbitrary number of corrections with our method is practically the

same cost of doing one correction.

Our method consists on re-estimating the same quadratic forms of a linear model on boot-
1Some examples of papers doing a variance decomposition of log wages into worker and firm fixed effects without correcting the

limited mobility bias are: Song, Price, Guvenen, Bloom, and Von Wachter (2019), Sorkin (2018), Card, Cardoso, Heining, and Kline (2018),
Alvarez, Benguria, Engbom, and Moser (2018) (who focus on changes over time and assume the bias is constant) and Arellano-Bover
and San (2023).

2One could think of conditioning for different occupations, industries, commuting zones, education groups etc. in the AKM model.
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strapped data. The sample means of these quadratic forms are our bias correction terms. Using

Monte Carlo simulations we show that our method successfully corrects the bias of quadratic forms

for multiple assumptions on the variance structure of the error term, such as heteroskedasticity, se-

rial correlation or clustering. In practice, under the assumption of a diagonal covariance matrix, we

use a wild bootstrap. When the covariance matrix is assumed non-diagonal, we use a wild block

bootstrap (Cameron, Gelbach, and Miller, 2008) that is valid for unrestricted dependence of the

error terms within group. The wild block bootstrap is flexible in the definition of the group and

therefore allows, for example, the clustering of the errors depending on geographical area or serial

correlation within the worker-firm match.3

Our bootstrap approach is similar to the ones proposed by Gaure (2014) and by Kline, Saggio,

and Sølvsten (2020). The bias is equal to the trace of a matrix. When the number of covariates of

the linear model is large, the explicit computation of this trace is not feasible. Like ours, both of

their methods rely on iterative procedures to compute an estimate of the trace term. Gaure exploits

the fact that the trace can be represented as the expectation of a more manageable quadratic form

in a random vector. This expectation can in turn be approximated by estimating a sample mean

after simulating different random vectors.4

Kline, Saggio, and Sølvsten (2020) (KSS henceforth) follow a similar approach to Gaure (2014).

In their large-scale computation procedure, they estimate the trace term leading to the bias and

implement a bias correction assuming either heteroskedasticity or serial correlation of the errors.

An important point of their paper is that their leave-one-out covariance-matrix estimate is unbiased.

Our approach differs in the way we estimate the trace term which allows us to be more flexible and

to increase the number of corrections without increasing the computational cost. We adapt our

method to use their unbiased estimator of the variance of the error terms.

The computational cost in Gaure and KSS comes from estimating a bias correction for each inter-

ested quadratic form, as it requires solving a large system of linear equations in each iteration that

are particular to each quadratic form. In contrast, we re-estimate the model with bootstrapped data

and show that a sample mean of the bootstrapped moment estimates is an unbiased and consistent

estimator of the direct bias correction term. In our method, the computational cost comes from

estimating the linear model in each bootstrap but does not increase depending on the number of

moments to correct. We need to solve from one to two systems of linear equations per bootstrap

regardless of the number of moments to correct, while with the Gaure and KSS methods, one needs

to solve as many systems of equations per iteration as needed corrections.5 They implement correc-

tions of the second order moments of the two leading fixed effects while we can directly perform

a full variance decomposition, which is therefore suited for corrections on multi-way fixed effect

regressions.

Our method is easy to implement as it only requires estimating linear models. While of course
3Other examples include errors correlated within firms, workers or occupations.
4In particular, the way Gaure estimates the trace is known as the Hutchinson method. Denote a random vector x ∈ Rn, where each

individual entry is independently distributed Rademacher (entries can take values of 1 or -1 with probability 1/2). Then, for a square
matrix A ∈ Rn×n we have that tr(A) = E(x′Ax). The Hutchinson estimator of the trace of matrix A is 1

M ∑M
i=1 x′i Axi , where xi is the i-th

draw of the random vector x; see Hutchinson (1989) and Avron and Toledo (2011). Gaure’s R package lfe implements the correction when
the error terms are assumed homoskedastic. The function applying the correction is bccorr; see Gaure (2013). Gaure (2014) sketches the
procedure to correct for the bias when the error terms are heteroskedastic, but to the best of our knowledge he does not implement it in
his R package.

5Consider the linear model yt = X1tβ1 + X2tβ2 + εt where one is interested in doing a variance decomposition for each period t. This
would yield three quadratic objects to correct (Var(X1 β̂1), Var(X2 β̂2), Cov(X1 β̂1, X2 β̂2)) per period.
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this requires solving a system of linear equations, like in the case of Gaure and KSS, these systems

are more ubiquitous. Therefore, there is a wide range of algorithms that estimate linear models for

different softwares. We provide codes in Matlab, but the user can easily implement the correction

method by taking profit of other algorithms in alternative softwares.

We apply our method to French administrative data and perform a variance decomposition of

an estimated AKM type model. Consistent with the Andrews et al. (2008) formulation, we find that

sample variances of person and firm effects are reduced and their covariance increased after the

correction. The estimated correlation at the connected set passes from -0.10 to almost zero under

the assumption of serial correlation of the error terms within the match.6 We show the usefulness of

our method by correcting variance decompositions per commuting zone and per commuting zone-

occupation combinations. In the latter case, that entails doing about 4000 corrections. Performing

decompositions per commuting zone, we find that the positive gradient between the correlation

of worker and firm fixed effects and population is robust flattened after correcting second order

moments.

Labor economists have been aware of the small-sample bias problem with quadratic forms in the

parameters and the difficulty in estimating a correction at least since Andrews et al. (2008). There

have been several attempts to correct this bias when performing variance decompositions of esti-

mated linear models. Some methods are based on variations of the jacknife, such as the split-panel

jacknife estimator by Dhaene and Jochmans (2015) or the leave-one-out estimator by KSS mentioned

above. Bonhomme, Lamadon, and Manresa (2019) relax the exogenous mobility assumption from

the AKM model and mitigate the small-sample bias by reducing the dimensionality of the esti-

mated parameters. Borovičková and Shimer (2017) propose an alternative method to estimate the

correlation between worker and firm types.

2 The Bias

For clarity of exposition we layout the source of the bias. Consider the following linear model:

Y = Xβ + u, (1)

where Y is a n × 1 vector representing the endogenous variable, X is a matrix of covariates of size

n × k, and β is a vector of parameters.7 The error term u satisfies mean independence E(u|X) = 0.

The OLS estimate of β is,

β̂ = β + Qu,

where Q = (X′X)−1 X′.

We are interested in estimating the following quadratic form φ = β′Aβ for some matrix A of

dimensions k × k, where E(A|X) = A. From the expression for β̂ we can decompose the plug-in

estimator φ̂PI = β̂′Aβ̂ as,

φ̂PI = β′Aβ + u′Q′AQu + 2u′Q′Aβ. (2)

6Abowd et al. (2004), also using French data but a different sample, found a correlation of -0.28.
7We follow loosely the notation in Kline et al. (2020) for the interested reader to compare the papers.
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Using the general formula for the expectation of quadratic forms, the exclusion restriction E(u|X) =

0, and E(A|X) = A we obtain,8

E (φ̂PI |X) = β′Aβ + trace
(
Q′AQV(u|X)

)
= φ + δ, (3)

where the bias δ ≡ trace (Q′AQV(u|X)) comes from the fact that β̂ is estimated with noise.

To get a bias correction one needs an estimate of the trace term δ. One option is to just plug-in

the estimate for the conditional covariance matrix V̂(u|X). We define δ̂ as the direct bias correction

term:

δ̂ ≡ trace
(

Q′AQV̂(u|X)
)

. (4)

Computing δ̂ is difficult when the number of covariates is large because it requires to calculate first

the matrix Q, which is itself a function of the inverse of a very large matrix.9 In the next section we

propose a methodology to apply a computationally feasible correction.

We define the following bias-corrected estimate of the quadratic form φ as:

φ̂ = β̂′Aβ̂ − δ̂.

As long as E(δ̂|X) = δ, then it follows that E(φ̂|X) = φ.

Proposition 1. The direct bias correction δ̂ is an unbiased estimate of the bias term δ if and only if V̂(u|X)

is an unbiased estimator of V(u|X).

Thus, it is necessary to have an unbiased estimate of the covariance matrix V(u|X) to have an

unbiased estimate of the quadratic form φ.

2.1 Components of a variance decomposition as quadratic objects

When performing a variance decomposition of a linear model, one can think of each element as a

particular form of β̂′Aβ̂ with the appropriate choice of A. To see this, we can rewrite (1) as:

Y = X1β1 + X2β2 + u, (5)

where X1 and X2 are matrices of covariates of size n × k1 and n × k2, k = k1 + k2 with X = [X1 X2]

and β′ = [β′
1 β′

2].

We are interested in the sample variances (v̂ar(X1β1), v̂ar(X2β2)) and covariance (ĉov(X1β1, X2β2)),

denoted, respectively, as σ2
1 , σ2

2 and σ12.10 Define 1 as a vector of ones with appropriate length.

Then, denote the demeaning operator as M1 = I − 1
n 11′. We can then write the sample variances

and covariances in matrix notation as:

σ2
j = β′Ajβ, for j = {1, 2} and

σ12 = β′A12β,

8Given a random vector x and a symmetric matrix B we have that E(x′Bx) = E(x′)BE(x) + trace(BV(x)).
9The dimension of this matrix is related to the number of covariates that are estimated in the linear model. In a typical AKM type

model the data will comprise of hundreds of thousands or millions of workers and tens of thousands of firms, each representing a
covariate in the model.

10The sample variance for a vector x = {x1, x2, ..., xn} is v̂ar(x) = 1
n−1 ∑N

i=1 (xi − x)2, where x is the sample mean. Similarly, the sample
covariance for vectors x and y is ĉov(x, y) = 1

n−1 ∑N
i=1 (xi − x) (yi − y).
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where the symmetric matrices A1, A2 and A12 are equal to:

A1 =
1

n − 1

(
X′

1M1X1 0

0 0

)
, A2 =

1
n − 1

(
0 0

0 X′
2M1X2

)
, A12 =

1
2(n − 1)

(
0 X′

1M1X2

X′
2M1X1 0

)
.

The plug-in estimators of σ2
1 , σ2

2 and σ12, obtained by substituting β with the OLS estimate β̂, are

just particular examples of φ̂PI . Therefore, these estimates are biased.

3 Bootstrap Correction

The bootstrap correction estimates the direct bias correction (4) by replicating the bias structure of

the plug-in estimates (2). In this section we present the bootstrap correction and discuss different

implementations depending on the choice of the covariance matrix estimate.

Suppose that we have the residuals of our original regression û = Y − Xβ̂. Using these residuals

we can construct an estimate of the covariance matrix, V̂(u|X). We generate a new dependent

variable for the bootstrap Y∗ as:

Y∗ = v∗,

where v∗ is a vector containing the bootstrapped residuals. This is equivalent to performing a linear

regression on bootstrapped data, while setting β̂ = 0. The construction of v∗ will depend ultimately

in the assumption that we are making about the error term. In particular, we need that the variance

of the bootstrapped errors V(v∗|X, u) to be equal to V̂(u|X). The following proposition states the

main result of the paper and all the proofs are left to the Appendix.

Proposition 2. Suppose the regression model (1) is correctly specified. Let p denote the number of bootstraps

and v∗(j) the vector of bootstrapped residuals for the j-th bootstrap iteration. Define β∗(j) as the OLS estimate

of regressing v∗(j) over X for the j-th bootstrap iteration. If the conditional variance-covariance matrix of the

bootstrapped residuals V(v∗(j)|X, u) is equal to V̂(u|X), and E(v∗(j)|X, u) = 0, then

δ∗ ≡ 1
p

p

∑
j=1

β∗(j)′Aβ∗(j)

is an unbiased and consistent estimator of the direct bias correction δ̂.

The proposition tells us that instead of computing directly the direct bias correction term δ̂, we

can estimate it using a sample average of estimated quadratic forms.

The intuition behind our bias estimator is that in every bootstrap iteration we are replicating the

source of the bias, which is the noise embedded in the estimated parameters. The computational

burden of our method comes from estimating β∗(j) for each bootstrap.11 The main advantage of

our method is that we can correct several moments simultaneously, without increasing the compu-

tational time. Therefore, our method is easily scalable to the estimation of many moments. Assume

we are interested in doing a variance decomposition per groups, for example for each city or com-

muting zone as Dauth et al. (2022). Then, we would need to do a correction for the variances and

the covariances for every group, for example city or commuting zone, but do the bootstrap only
11Current softwares avoid the inversion of the X′X matrix to estimate linear models and are therefore able to estimate linear models

even when the number of covariates is large.
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one time.12 Other advantages of our method are its flexibility and implementability. We further

discuss them after presenting the implementation of the method for different assumptions on the

covariance matrix structure of the error terms.

The key for the bootstrap correction to work is that V(v∗|X, u) is equal to the sample variance-

covariance matrix V̂(u|X), so the bootstrap correction δ∗ is an unbiased and consistent estimator of

the direct bias correction term δ̂. Therefore, the bootstrap procedure has to be compatible with the

underlying assumption on the structure of the error term.

The small sample properties of the bootstrap estimate δ∗ would depend ultimately on the choice

of estimate for the covariance matrix V(u|X). In particular, we have the following corollary for the

bias which is just a consequence of Propositions 1 and 2.

Corollary 1. Conditioning on X, if V̂(u|X) is an unbiased estimator of V(u|X), then the bootstrap correc-

tion δ∗ is an unbiased estimator of the bias δ.

In what follows we provide examples for some popular choices for estimators of the covariance

matrix and how to implement the bootstrap correction. We complement the examples in the Online

Appendix for non-block-diagonal covariance matrices.

Example 1: Homoskedasticity. When the errors are homoskedastic, we can use the well-known un-

biased estimate of the covariance matrix σ̂2I, where σ̂2 = n/(n − k)∑n
i=1 û2

i .13 A suitable bootstrap

could be a residual bootstrap with a degrees of freedom correction. This would mean resampling

with replacement the estimated residuals and multiplying them by
√

n/(n − k). Thus the variance

of the bootstrapped errors would be equal to the estimated covariance-matrix σ̂2I. Another possi-

bility could be to simulate errors from a normal distribution with zero mean and variance σ̂2. In

the case of homoskedastic errors, the proposed bootstraps can replicate the variance of an unbiased

estimate of the covariance matrix. Thus, the bootstrap bias correction δ∗ is an unbiased estimate of

the bias term δ; see Corollary 1.

Example 2. Heteroskedasticity I. Assume the covariance matrix is diagonal, with non-zero ith diag-

onal element equal to ψi. Let ψ̂i be the estimate of the variance for the ith observation error term.

MacKinnon and White (1985) explore different consistent variance estimates ψ̂i. These include:

HC0 : ψ̂i = û2
i , HC1 : ψ̂i =

n
n − k

û2
i and HC2 : ψ̂i =

û2
i

1 − hii
,

where hii is the ith diagonal element of the projection matrix H = X (X′X)−1 X′. The term hii is

sometimes known as the leverage of observation i, because, as explained by Angrist and Pischke

(2008), it tell us how much pull a particular observation exerts over the regression line.

A suitable bootstrap for the different covariance matrix estimators is the Wild bootstrap. In

our exercises below, we implement this bootstrap by first generating i.i.d. Rademacher random
12Dauth et al. (2022) correct their variance component decompositions city-by-city to implement the KSS correction. Beyond the

increase in computational time, other drawbacks are that one cannot compare the estimates across cities due to the normalization and
that the set of firms in the per-city connected set might be different as it excludes firm effects identified by across-city mobility. As
they note in footnote 21 "This implies that the plant effects are now only identified from within-city mobility. Their first moments are therefore not
comparable across cities. This prevents us from using this procedure as our baseline model. The procedure is computationally very demanding, both
in terms of speed and memory".

13The origin of the bias is again a trace term that under homoskedasticity is equal to n − k. For a textbook explanation see Proposition
1.2. in Hayashi (2000).
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variables that take values of 1 or −1 with probability 1/2. Then we multiply
√

ψ̂i to the ith

Rademacher entry ri. This would constitute the ith bootstrapped residual. For example, if we use

HC0, the bootstrap residual would be v∗i = ûri. The Online Appendix outlines the algorithms to

implement this procedure.

When using the HC2 estimates, we need first to calculate the leverage hii. When the number

of covariates is large, a direct computation of the leverage is unfeasible. In the Online Appendix

we show how to estimate this leverages by means of averaging the squared fitted values of linear

regressions. We also provide a diagnostic and correction method to ensure that the estimated

leverages are bounded above by 1.

In general, the three alternatives of covariance matrix estimates (HC0, HC1 and HC2) are bi-

ased.14 For example, for HC0 we have:

E(û2
i |X) = ψi − 2ψihii + h′iV(u|X)hi,

where hi is the ith column of the projection matrix H.15 Thus, while δ∗ is an unbiased estimate of δ̂

(Proposition 2), it would be biased with respect to δ (Proposition 1).

Example 3. Heteroskedasticity II: Unbiased Estimator. Recently, Kline et al. (2020) and Jochmans

(2018) have proposed the following unbiased estimator of the conditional variance of the ith error

term:16

HCU : ψ̂i =
Yiûi

1 − hii
. (6)

In practice, we sometimes obtain negative estimates of the conditional variance when using HCU .

Therefore, taking the square root of ψ̂i, as in Example 2, gives imaginary numbers. As a result,

the bootstrap residual vector v∗—which is equal to the left-hand-side bootstrap variable Y∗—may

contain complex numbers. Thus, our bootstrap correction procedure needs to be adapted to account

for the presence of complex numbers.

Let Y∗ ≡ Y∗
R + iY∗

Z, where Y∗
R and Y∗

Z represent the real and imaginary parts of Y∗, and i ≡
√
−1.

The resulting OLS estimator β∗ is also a complex number given by the standard OLS formula:

β∗ =
(
X′X

)−1 X′Y∗ =
(
X′X

)−1 X′Y∗
R + i

(
X′X

)−1 X′Y∗
Z = β∗

R + iβ∗
Z,

where β∗
R and β∗

Z are the real and imaginary parts of β∗.

For every bootstrap iteration, we can then estimate β∗ and obtain the quadratic object:

β∗′Aβ∗ =
(

β∗′
R + iβ∗′

Z

)
A (β∗

R + iβ∗
Z)

= β∗′
R Aβ∗

R − β∗′
Z Aβ∗

Z︸ ︷︷ ︸
Real part

+ i 2β∗′
R Aβ∗

Z︸ ︷︷ ︸
Imaginary part

.

This quadratic object is also complex number. It turns out that we can construct a bias correction by

taking the average of only the real part of the above quadratic object. This is because, in expectation,

the imaginary part of the quadratic object is equal to zero. As we show in Proposition 3 below, the
14A particular case where the estimate is unbiased is when using HC1 and the error terms are homoskedastic.
15A textbook exposition of these issues can be found in Chapter 8 of Angrist and Pischke (2008).
16See page 1,862 of Kline et al. (2020).
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real part of the quadratic object is an unbiased and consistent estimator of the direct bias correction

when using HCU to estimate the covariance matrix. But before introducing the Proposition, let us

introduce some notation.

Note that whenever the ith element of Y∗
R is equal to zero, then the ith element of Y∗

Z is different

from zero, and viceversa. This is entirely determined by the sign of the ψ̂ estimate. It would then

be convenient to treat the observations separately depending on the sign of ψ̂. Define for each

observation i the following:

ψ̂R,i =

ψ̂i if ψ̂i ≥ 0

0 otherwise,

ψ̂Z,i =

|ψ̂i| if ψ̂i < 0

0 otherwise.

Then define two bootstrapped residuals for each observation i as follows:

v∗R,i =
√

ψ̂R,i × ri, and (7)

v∗Z,i =
√

ψ̂Z,i × ri, (8)

where ri is an independent Rademacher entry. The following proposition establishes a result to

apply a bootstrap correction when the variance estimate is HCU .

Proposition 3. Suppose the regression model (1) is correctly specified. Let p denote the number of bootstraps,

and v∗R
(j) and v∗Z

(j) are vectors of bootstrapped residuals for the j-th bootstrap iteration given by (7) and (8).

Let the conditional variance estimate V̂(u|X) be diagonal, with non zero ith diagonal element given according

to (6). Define β∗
R
(j) and β∗

Z
(j) as the OLS estimate of regressing v∗R

(j) and v∗Z
(j), respectively, over X for the

j-th bootstrap iteration. Then,

δ∗HCU
≡ 1

p

p

∑
j=1

(
β∗

R
(j)′Aβ∗

R
(j)
)
− 1

p

p

∑
j=1

β∗
Z
(j)′Aβ∗

Z
(j)

is an unbiased and consistent estimator of the direct bias correction δ̂ when using a variance estimate V̂(u|X)

according to equation (6).

Corollary 2. Let V(u|X) be diagonal. Then the bootstrap correction δ∗HCU
is an unbiased estimator of the

bias δ.

However, even though HCU is unbiased and HC2 is not, it is not clear that minimizes the mean

squared error compared to other variance estimates. For example, let Ŷi = h′iY be the fitted value

for observation i. Then,

HCU =
Yiûi

1 − hii
=

(
Ŷi + ûi

)
ûi

1 − hii
=

Ŷiûi
1 − hii

+ HC2.

While the expectation of HCU is equal to ψi, it can be the case that its variance is larger than the

one of HC2. Thus, it is not clear that using the correction with HCU would yield a more efficient

bias corrected estimate of the quadratic forms compared to HC2. In fact, we show in the simulation

exercises below that our method is in general more efficient in terms of mean squared errors when
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using the HC2 estimator instead of HCU . However, as MacKinnon and White (1985) note, the HC2 is

biased and Cattaneo, Jansson, and Newey (2018) found that this bias does not vanish asymptotically

when the number of covariates increases with the sample size. This is the case in most applications

that use panel data.

Example 3: Clustered errors and serial correlation. When the error terms are clustered or present se-

rial correlation within group, the covariance matrix is no longer diagonal. We restrict our attention

to dependence of the errors only within a given group. Thus, we restrict to the case where the

variance covariance matrix is block diagonal, as there are non zero elements around the diagonal

corresponding to the dependence of the errors within the group g, but not across groups.17 One

particular example is when the group is a worker-firm match and errors are autocorrelated within

match. Following Roodman, Nielsen, MacKinnon, and Webb (2019) we estimate the variance of

observation i, ψ̂i, with a variant of HC1 from Example 2 that takes into account the number of

groups G: ψ̂i =
G

G−1
n

n−k û2
i .

When the errors present dependence within the group we use a wild block bootstrap as pro-

posed by Cameron et al. (2008). This consists of a wild bootstrap that takes into account the group

dependence of the data. It has the benefit of accommodating any structure of the dependence

within group. The Online Appendix describes the algorithm to implement our bias correction that

keeps the dependence structure among groups through a wild block bootstrap.

In the following we describe the main features of our correction method and the source of

efficiency gains from generating the dependent variable directly from bootstrapped residuals.

Scalability, flexibility, and easy implementation. Our method stands out for its: (i) scalability to

correct many moments at once, (ii) flexibility on the assumption of the covariance matrix of the

error terms, and (iii) it is easy to implement.

First, the method is suited to correct for additional quadratic objects besides the variances and

covariances of the two leading fixed effects, say worker and firm fixed effects, as well as to per-

form corrections per subgroups, without increasing the computational cost. For example, on top

of correcting the correlation of workers and firms fixed effects, one could correct for other mo-

ments that reflect labor market sorting, like the correlation between the worker fixed effect and the

average fixed effect of the coworkers, as proposed by Lopes de Melo (2018). Also, one could do

the correction of a quadratic object for the entire sample or for subsamples, like different periods,
17Assume that the the errors have a first order autocorrelation within group g and the true innovations are i.i.d. and therefore

homoskedastic. We consider that the error term u of worker i at group g at time t in (1) is:

ui,g,t = ρui,g,t−1 + εi,g,t, εi,g,t i.i.d.

We denote the variance of the innovation ε as σ2
ε . Ordering the data by group, suppose the first group has three observations and the

second group two observations. Then, V(u|X) is:

V(u|X) =
σ2

ε

1 − ρ2



1 ρ ρ2 0 · · · 0

ρ 1 ρ
...

. . .
...

ρ2 ρ 1 0 · · · 0
0 · · · 0 1 ρ 0 · · · 0

ρ 1 0
. . .

...
. . .

...
. . . 0

0 0 1


.

The covariance matrix under clustering of the errors is similar but with al non-zero elements out of the diagonal equal to ρ.
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genders, occupations, locations, etc. Similar to the previous case, this does not increase the number

of bootstraps needed to estimate the corrections nor entail any computational burden in terms of

methods available.

Second, our method is also flexible because it allows for a wide range of assumptions on the

error’s covariance matrix. It is only limited by the capacity of the bootstrap to replicate the assumed

covariance matrix.

Finally, our method is easy to implement as it relies only on estimating linear regressions in

every iteration. Thus, our method can profit from the development of any fast estimation procedure

handling linear regressions with many covariates. The estimated coefficients of a linear regression β̂

are defined as the unknowns that solve for the normal equations, X′Xβ̂ = X′Y. Standard algorithms

solve the normal equations, without explicitely computing the inverse of X′X. In fact, if we could

compute that inverse, we could compute directly the bias correction term δ̂ as defined in equation

(4). There has been significant progress in the development of efficient algorithms to estimate

linear models with a large number of covariates. Especially when that large number stems from

fixed effects. For example, when we compare our method with existing alternatives in Section 4,

we use the preconditioned conjugate gradient method in Matlab to solve for the normal equations.

However, the choice of algorithm for solving the normal equations is up to the user.

Efficiency gains. Using the bootstrap to correct for biases is ubiquitous in the literature. MacKinnon

and Smith Jr (1998) (MS, henceforth) propose a similar bootstrap to correct for flat biases like the one

considered here.18 MS propose building the bootstrapped dependent variable by using the original

estimate of β, Y∗ = Xβ̂ + v∗. In the context of our application, that would mean to compute the

quadratic objects β∗
MS

(j)′Aβ∗
MS

(j) for each bootstrap j and use them to create a bias correction:

δ∗MS =
1
p

p

∑
j=1

β∗
MS

(j)′Aβ∗
MS

(j) − β̂′Aβ̂.

MS already note that one can estimate a flat bias correction by using any β̂ to generate Y∗. For

example, one can use β̂ = 0, as we do in Proposition 2.

Analogously to equation (2) we have that in bootstrap j, β∗
MS

(j)′Aβ∗
MS

(j) = β̂′Aβ̂+ v∗(j)′Q′AQv∗(j)+

2v∗(j)′Q′Aβ̂. When the errors are independent and the third moment is zero, it can be shown that

the covariance of the last two terms conditional on X and u is equal to zero.19 Thus we have that

the variance of their bias correction conditional on X and u is:

V(δ∗MS|X, u) =
1
p

V(v∗′Q′AQv∗|X, u) +
4
p

V(v∗′Q′Aβ̂|X, u).

The expression above can be rewritten as:

V(δ∗MS|X, u) = V(δ∗|X, u) +
4
p

V(v∗′Q′Aβ̂|X, u), (9)

which is larger than the variance of our estimator, V(δ∗|X, u), attributable to the presence of the last
18A flat bias is one that does not depend on the levels of the original estimates. The bias from the quadratic forms is flat because the

trace term in (3) is independent of β̂.
19These conditions would be satisfied, for example, if the error terms would be distributed normal, or, as in our applications, when we

use the Rademacher errors for the bootstrap. A formal proposition of the statement and its proof can be found in the Online Appendix.
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term, similarly to equation (2). While both methods yield an unbiased and consistent estimate of

the direct bias correction δ̂, δ∗ is more efficient. The Online Appendix shows an illustrative example

that δ∗ is an unbiased estimate of δ̂ and that it yields lower Mean Squared Errors (MSE) than δ∗MS.

4 Comparison of Methods

In this section we first compare our method to Gaure (2014) and Kline et al. (2020). Both methods

aim to estimate the trace term in equation (3). In the Online Appendix we also compare our method

with Borovičková and Shimer (2017) who propose an alternative method to estimate directly some

quadratic forms without first estimating a linear model.

The differences between Gaure, KSS and our method are on the scope of error structures allowed,

the covariance matrix estimation and how easy they are to apply. All three methods are in prin-

ciple suited to perform corrections with homoskedastic and heteroskedastic errors. Nevertheless,

Gaure implemented his bias correction method on the R package lfe only under the assumption of

homoskedastic errors. In contrast, KSS and ourselves provide corrections under heteroskedasticity

and serial correlation or clustering of the errors.

Our method is the only one capable of doing multiple corrections at a time, for more covari-

ates or corrections per groups, without increasing the computational cost. KSS and Gaure, on the

contrary, need to solve new sets of equations in order to approximate each trace term that corre-

sponds to any additional correction. Finally, our method is flexible in specifying serial correlation

at different levels than the match.

4.1 Labor market simulations

An important application of two-way fixed effect models are the AKM type log wage regressions

with worker and firm fixed effects. We closely follow Card, Heining, and Kline (2013) to implement

the estimation of the following regression model for the log of the wage of worker i at time t:

wit = θi + ψJ(i,t) + qitγ + εit, (10)

where the function J(i, t) gives the identity of the unique firm that employs worker i at time t, θi is

a worker fixed effect, ψJ(i,t) is the firm J(i, t) fixed effect, qit are time varying observables (age and

education interacted with year effects), and εit is the error term.

Equation (10) can be estimated by OLS where the person and firm fixed effect estimators have

the same structure as the ones in Section 2. Thus, the second order moments exhibit a similar bias

and the implementation of the correction is analogous.

We compare the correction methods by simulating many labor markets under different assump-

tions on the error terms and evaluate them in terms of computation time and mean squared errors.

In the Online Appendix, we also explore differences between the covariance estimation methods

described in Section 3.

We first compare the bootstrap correction to Gaure and KSS under conditional homoskedasticity

of the errors. We explore the HC2 and HCU estimators of the covariance matrix in our correction.

Results are in Table 1. All the methods reduce the initial bias of the plug-in estimate. Gaure,

12



Table 1: Monte Carlo simulations. Homoskedastic errors.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 6.637 0.341 0.114 2.364
Gaure 17.3 0.050 0.109 0.015 0.058
Boot HC2 0.9 0.050 0.106 0.014 0.057
Boot HCU 1.0 0.050 0.106 0.014 0.057
KSS 0.9 0.050 0.106 0.014 0.057

Notes: Plug-in: naive plug-in estimator, Gaure: Gaure (2014) method implemented through the R package lfe, Boot HC2: bootstrap
correction with HC2 covariance matrix estimator of the error term, Boot HCU: bootstrap correction with HCU , KSS: Kline et al. (2020)
method leaving the observation out, Time: computing time in seconds. True moments are computed at the final sample for each
method, i.e. largest connected set for Gaure and the largest leave-one-out connected set for Boot HC2, Boot HCU and KSS. σ̂2

θ , σ̂2
ψ and

σ̂θ,ψ present respectively the mean squared errors (MSE) of the corrected estimates of the variance of the worker fixed effects, vari-
ance of the firm fixed effects and the covariance between worker and firm effects. All the MSE are multiplied by 100. Average is the
average MSE (also scaled).

KSS and our method are very similar in terms of MSE, and even look identical after rounding

the numbers, with Gaure doing slightly worse.20 Gaure is the slowest method and the bootstrap

correction is similar to KSS in time.

Table 2 presents the comparison of our method using HC2 and HCU to KSS under conditional

heteroskedasticity for different degrees of worker mobility.21 Both methods reduce by more than

97% the MSE compared to the plug-in estimates in the low mobility case.22 Our method with the

HC2 estimator is slightly more efficient for both mobility cases, and it also outperforms KSS in

terms of time. The bootstrap correction using the HCU estimator for the covariance matrix of the

errors is identical to KSS in terms of MSE and time.23 In the Online Appendix, we show that HC2

estimate for the covariance matrix outperforms HC0, HC1 and HCU measured by MSE when doing

the bias correction with heteroskedastic errors.

Table 3 presents the results from a simulation with a non diagonal covariance matrix. In par-

ticular, we assume that there is serial correlation of the wages within a given match and the true

innovation is homoskedastic. The table compares the plug-in estimate to our bootstrap correction

and to KSS. Boot is the best performing correction method in terms of accuracy and time. We

show in the Online Appendix that the differences in performance are amplified when we have

heteroskedastic innovations at the match level.

Why can our method be faster? In the above simulations, our method is faster when using the

HC2 covariance matrix estimator and similar to the method proposed by KSS when using HCU .

The underlying reason is that our method with HC2 needs to do at most two iterative procedures

regardless of the number of corrections: one for estimating the leverage—for example, if one uses

HC2 for the covariance matrix estimator—and one for the bootstrap. When using the HCU estimator

we need to estimate at most three iterative procedures. On the other hand, KSS method needs to
20We use the bccor command of Gaure’s lfe R package with 300 maximum samples and tolerance of 1e-6. We run Version 3 of KSS

Matlab code eliminating observations (instead of matches) for the leave-one-out estimation with 300 simulations to estimate the leverage
and corrections at once. We run our corrections in Matlab with tolerance of 1e-6 and 300 simulations.

21When workers are more mobile, the firm fixed effect estimates are less noisy. As this noise is the source of the bias of the quadratic
objects, more precise estimates will yield a smaller bias as one can see from the Plugin estimates in Table 2.

22Table 1 in Kline et al. (2020) shows that their connected set is similar to our low mobility scenario with 2.7 movers per firm and
average firm size of 12.

23In the Online Appendix, we compare the densities of the bias for the different methods. The densities show that both methods (KSS
and bootstrap) are similar but the bootstrap method with HC2 has smaller variance for the reasons suggested in Section 3. We also show
in the Online Appendix that the results are similar even when using a more realistic sample size of roughly 5 million observations.
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Table 2: Monte Carlo simulations. Heteroskedastic errors.

Mean Squared Error (MSE×102)

Mov/firm Model Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Low Mobility

3 Plug-in 22.885 7.702 6.451 12.346
3 Boot HC2 0.6 0.225 0.666 0.192 0.361
3 Boot HCU 0.7 0.265 0.711 0.233 0.403
3 KSS 0.7 0.268 0.709 0.233 0.404

Mid Mobility

5 Plug-in 10.518 1.670 1.070 4.419
5 Boot HC2 0.7 0.085 0.256 0.048 0.130
5 Boot HCU 0.8 0.086 0.258 0.049 0.131
5 KSS 0.8 0.087 0.258 0.049 0.131

Notes: Plug-in: naive plug-in estimator, Boot HC2: bootstrap correction with HC2 covariance matrix estimator of the error term, Boot
HCU: bootstrap correction with HCU , KSS: Kline et al. (2020) method leaving the observation out. True moments are computed at
the leave-one-out connected set. Mov/firm: number of movers per firm and the average firm has 12 employees, Time: computing time
in seconds. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors of the corrected estimates of the variance of the worker

fixed effects, variance of the firm fixed effects and the covariance between worker and firm effects. All the MSE are multiplied by
100. Average is the average MSE (also scaled).

Table 3: Monte Carlo simulations. Serial correlation with homoskedasticity.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 94.352 1.670 0.603 32.208
Boot 0.5 9.674 0.263 0.053 3.330
KSS 1.1 21.572 0.254 0.052 7.293
Notes: Plug-in is the naive plug-in estimator, Boot refers to our method with a wild block bootstrap where each match defines a
block and we skip the pruning of the data. KSS is the Kline et al. (2020) method leaving a match out. The average firm has 10
movers and 12 employees. Time is the computing time in seconds. True moments are computed at the largest connected set for
Boot and at the largest leave-one-out connected set for KSS. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors (MSE)

multiplied by 100 of the corrected estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the
covariance between worker and firm effects. Average is the average MSE (also scaled).

do, in general, the same number of iterative procedures as number of corrections plus the iteration

for the leverage estimation. When interested in the two leading fixed effects, they can reduce

the minimum number of iterative procedures to three: one for the leverage and two extra for the

variance of the worker fixed effects, the variance of firm fixed effects, and their covariance.24 With

HCU , having the same number of iterative procedures than KSS, the computational times are also

similar. Table ?? in the Online Appendix shows in a Monte Carlo simulation with a larger sample

size that the bootstrap correction with HC2 is about a third faster than with HCU .

5 Application

In the application we use a panel data from the French statistical agency (INSEE) from 2002 to

2019.25 Our dependent variable is (log) gross daily wage of full time employees with ages between
24See section 2.3.2 in the computational appendix of KSS.
25In particular we use Panel tous salariés-EDP that consists of a random subsample of workers with firm identifiers and socio-

demographic variables. The sample consists of workers born in October on certain days. The sample size was increased in 2002 so
we took this as the starting year.
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Table 4: Application. Plug-in vs corrected decomposition.

Plug-in Boot HCU Plug-in Boot HCU

Var(y) 0.2929 0.2929 2Cov(θ̂i, ψ̂j) -0.0107 0.0054
Var(θ̂i) 0.1791 0.1595 2Cov(θ̂i, qγ̂) -0.0125 -0.0123
Var(ψ̂j) 0.0425 0.0320 2Cov(ψ̂j, qγ̂) 0.0002 0.0002
Var(qγ̂) 0.0173 0.0173 Corr(θ̂i, ψ̂j) -0.0615 0.0375
Var(ϵ̂) 0.0770 0.0909 Obs. 4652631 4652631

Notes: Plug-in refers to the uncorrected estimates of each of the variance components at the largest connected set and Boot HCU
refers to the estimates after our bootstrapped correction using the HCU estimator of the variance of the error terms. Var(y) is the
variance of log wages, Var(θ̂i) the variance of worker fixed effects (naive σ̂2

θ or corrected σ̃2
θ ), Var(ψ̂j) is the variance of firm fixed

effects, Var(qγ̂) is the variance of other covariates and Var(ϵ̂) is the variance of the error term. The other terms of the decompo-
sition are twice the covariances between the fixed effects and the covariates (2Cov(θ̂i , ψ̂j), 2Cov(θ̂i , qγ̂) and 2Cov(ψ̂j, qγ̂)). Finally,
Corr(θ̂i , ψ̂j) is the estimated correlation between worker and firm fixed effects and Obs. is the number of observations.

20 and 60 working at private firms.

The goal is to use our bootstrap method to do a bias corrected variance decomposition of log

wages. Table 4 shows the variance decomposition of log wages as well as the correlation between

firm and worker fixed effects using the plug-in moments and the corrected ones under the assump-

tion of diagonal covariance matrix using the HCU estimator. The variance of the person and firm

effects are both reduced and they explain a lower share of the total variance after the correction.

The correlation becomes positive but still close to zero. Naturally, the variances and covariance of

the person and firm effects are the moments that change the most after the correction. The reason

is that the underlying estimates of the person and fixed effects are very noisy. In contrast, when

the underlying estimates of a particular moment are estimated with precision, as it is in the case

of the parameters γ̂ associated with the common covariates q, the change between the plug-in and

corrected moments is negligible.

We explore the benefits of our method by computing the correlation between the worker fixed

effect and the average fixed effect of coworkers (Lopes de Melo, 2018). We find in the applica-

tion that the estimate of the plugin correlation between workers and coworkers is slightly upward

biased. The estimated correlation goes from 0.263 with the plugin to 0.243 after the correction.

To fully exploit the benefit of our bootstrap correction method we also perform several variance

decompositions per commuting zone. Figure 1 presents the relationship between the correlation of

worker and firm fixed effects with the commuting zone population. Taking the plugin estimates on

Panel (a), most of the commuting zone sorting estimates are negative and there seems to be a pos-

itive gradient between sorting and commuting zone size. Similarly, Panel (b) shows the estimates

after correcting for limited mobility bias with the HCU estimator of the variance of the error terms.

We find that many correlations turn to be positive and the sorting-population gradient is stable.

Finally, we compare our method with HC2 and HCU estimators against KSS using the French

data in the Online Appendix.

6 Conclusion

In this paper, we propose a computationally feasible bootstrap method to correct for the small-

sample bias found in all quadratic forms in the parameters of linear models with a very large
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Figure 1: Application. Correlation of Worker and Firm Fixed Effects.

Notes: These figures present on the x axis commuting zone population. On the y axis, Panel (a) shows on the estimated correlation
between worker and firm fixed effects with the plugin estimates and Panel (b) shows the analogous with the HCU estimator of the
variance of the error terms. We remove the commuting zone with the highest population for readability of the figure.

number of covariates. We show using Monte Carlo simulations that the method is effective at re-

ducing the bias. The application to French labor market data shows that the correction increases

the correlation between firm and worker fixed effects. Depending on the sample and on the speci-

fication, our bias correction method changes the sign of that correlation and in all cases it changes

the relative importance of the different components in explaining the variance of log wages.

The only requirements to implement our correction is to have a bootstrap procedure that is

consistent with the assumption on the variance-covariance matrix of the error term and to estimate

the model several times. The correction can thus be applied easily to any study running an AKM

type regression or two-way fixed effects regressions. Our method is similar in time to Kline et al.

(2020) and as accurate in the simulations. The main advantage of our approach is that it allows to

increase the number of moments to correct without increasing the computational costs.
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Appendix for Publication

A Proofs

Proposition 1

Proof. By the linearity of the trace and expectation operators we have that

E(δ̂|X) = E
(

trace
(

Q′AQV̂(u|X)
)
|X
)
= trace

(
Q′AQE

(
V̂(u|X)|X

))
= trace

(
Q′AQV(u|X)

)
= δ

Proposition 2

Proof. First, note that for any bootstrap estimate j of the quadratic form
(

β∗(j)
)′

Aβ∗(j) we have that

(
β∗(j)

)′
Aβ∗(j) = (v∗(j))′Q′AQv∗(j).

Under the bootstrap, i.e. conditional on X and u, the only source of randomness is v∗(j). Tak-

ing expectations under the bootstrap of
(

β∗(j)
)′

Aβ∗(j), conditioning on X and u, and using the

assumption E(v∗(j)|X, u) = 0, we get

Ev∗

((
β∗(j)

)′
Aβ∗(j)

∣∣∣∣X, u
)
= trace

(
Q′AQV(v∗(j)|X, u)

)
.

By assumption V(v∗(j)|X, u) = V̂(u|x), then Ev∗

((
β∗(j)

)′
Aβ∗(j)

∣∣∣∣ X, u
)
= δ̂.

Unbiased. Taking expectations over δ∗ ≡ 1
p ∑

p
j=1

((
β∗(j)

)′
Aβ∗(j)

)
, conditioning on X and u, we

obtain

Ev∗(δ
∗|X, u) =

1
p

p

∑
j=1

Ev∗

((
β∗(j)

)′
Aβ∗(j)

∣∣∣∣ X, u
)
=

1
p

p

∑
j=1

δ̂ = δ̂.

Consistent. From the definition of δ∗ ≡ 1
p ∑

p
j=1

((
β∗(j)

)′
Aβ∗(j)

)
, we have that

1
p

p

∑
j=1

((
β∗(j)

)′
Aβ∗(j)

)
p−→ Ev∗

((
β∗(j)

)′
Aβ∗(j)

∣∣∣∣ X, u
)
= δ̂.

Corollary 1

Proof. Using the Law of Iterated Expectations we get

E(δ∗|X) = Eu (Ev∗(δ
∗|X, u) | X) = Eu(δ̂|X) = δ.
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Proposition 3

Proof. Let the vector of complex bootstrap residuals v∗ be equal to

v∗ = v∗R + iv∗Z.

Let β∗ be the complex bootstrap estimate when using v∗ as the left-hand-side variable in the regres-

sion. Then, the conditional expectation of the quadratic object is equal to:

Ev∗
(

β∗′Aβ∗ ∣∣X, u
)
= trace

(
Q′AQV(v∗|X, u)

)
.

The variance of the complex residuals is

V(v∗|X, u) = Ev∗
(
v∗v∗′

∣∣X, u
)

= Ev∗
(
v∗Rv∗′R

∣∣X, u
)
− Ev∗

(
v∗Zv∗′Z

∣∣X, u
)
+ iEv∗

(
v∗Rv∗′Z + v∗Zv∗′R

∣∣X, u
)

.

Now, E (v∗Rv∗′Z |X, u) is equal to zero. This is because whenever v∗R is different than zero then

v∗Z is zero, and viceversa (see equations (7) and (8)). So all of the diagonal terms of the matrix

v∗Rv∗′Z are equal to zero. The expectation of all the off-diagonal terms are also equal to zero by the

independence of the Rademacher entries for different observations. Clearly, also the conditional

expectation of the transpose matrix is equal to zero. Therefore, we have that

V(v∗|X, u) = Ev∗
(
v∗Rv∗′R

∣∣X, u
)
− Ev∗

(
v∗Zv∗′Z

∣∣X, u
)
= Ψ̂R − Ψ̂Z,

where Ψ̂R and Ψ̂Z are matrices where their ith diagonal terms are ψ̂R,i and ψ̂Z,i, respectively,

and their off diagonal terms are equal to zero. Then, V(v∗|X, u) = V̂(u|x), where the covariance

estimate V̂(u|x) is a diagonal matrix, with diagonal elements given by equation (6).

Now that we have established that the conditional variance V(v∗|X, u) is equal to V̂(u|x), then

we have that Ev∗ (β∗′Aβ∗ |X, u) is equal to the direct bias correction δ̂ when using HCU as the

covariance estimator. Now let establish that the bootstrap correction δ∗HCU
is an unbiased and con-

sistent estimator of δ̂.

Unbiased. Let the OLS estimates for the real and imaginary terms of the jth bootstrapped estimate

be equal to:

βR∗ (j) =
(
X′X

)−1 X′vR∗ (j)

βZ∗ (j) =
(
X′X

)−1 X′vZ∗ (j).

Taking expectations over δ∗HCU
≡ 1

p ∑
p
j=1

(
βR∗ (j)′AβR∗ (j)

)
− 1

p ∑
p
j=1

(
βZ∗ (j)′AβZ∗ (j)

)
, conditioning

on X and u, we obtain

Ev∗(δ
∗
HCU

|X, u) =
1
p

p

∑
j=1

Ev∗
(

βR∗ (j)′AβR∗ (j)
∣∣∣ X, u

)
− 1

p

p

∑
j=1

Ev∗
(

βZ∗ (j)′AβZ∗ (j)
∣∣∣ X, u

)
= Ev∗

(
β∗

R
′Aβ∗

R

∣∣∣ X, u
)
− Ev∗

(
β∗

Z
′Aβ∗

Z

∣∣∣ X, u
)

,
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where we omitted the j terms in the last equality to ease on notation. Let B ≡ Q′AQ. Then,

Ev∗(δ
∗
HCU

|X, u) = trace (BV(v∗R|X, u))− trace (BV(v∗Z|X, u))

= ∑
i=1

Biiψ̂R,i − ∑
i=1

Biiψ̂Z,i = ∑
i=1

Bii
(
ψ̂R,i − ψ̂Z,i

)
= ∑

i=1
Biiψ̂i = trace

(
BV̂(u|x)

)
= δ̂.

Consistent. From the definition of δ∗HCU
≡ 1

p ∑
p
j=1

(
βR∗ (j)′AβR∗ (j)

)
− 1

p ∑
p
j=1

(
βZ∗ (j)′AβZ∗ (j)

)
, we

have that:

1
p

p

∑
j=1

(
βR∗ (j)′AβR∗ (j)

)
− 1

p

p

∑
j=1

(
βZ∗ (j)′AβZ∗ (j)

)
p−→ Ev∗

(
βR∗ (j)′AβR∗ (j)

∣∣∣ X, u
)
− Ev∗

(
βZ∗ (j)′AβZ∗ (j)

∣∣∣ X, u
)
= δ̂.

Corollary 2

Proof. If the covariance matrix of the error terms V(u|x) is diagonal, then the HCU covariance

estimate V̂(u|x) = Ψ, whose diagonal terms are given by equation (6) and off-diagonal terms are

zero, is an unbiased estimate of the covariance matrix V(u|x). Then, just apply Proposition 1 and

Corollary 1.

Although this is not our result, for completeness, we write down the proof that the HCU covari-

ance estimate is an unbiased estimator if V(u|x) is diagonal.

Following Angrist and Pischke (2008), note that the vector of estimated residuals û is equal to:

û = Y − X
(
X′X

)−1 X′Y =
[

I − X
(
X′X

)−1 X′
]
(Xβ + u) = Mu,

where M ≡ I − X (X′X)−1 X′ is a symmetric non-sthocastic matrix and u is the error term. Let mi

be the ith column of M. Then ûi = u′mi.

Assume the true covariance matrix Ψ is diagonal with non-zero off diagonal ith term equal to

ψi. Let ψ̂i be the HCU estimate of ψi. This estimate is equal to ψ̂i =
yi ûi

1−hii
, where hii = X

(
X′

i X
)−1 X′

i .

To further simplify let mi = ℓi − hi where ℓi is the ith column of the identity matrix I and hi =

X (X′X)−1 X′
i is the ith column of the H matrix. Then the expectation of ψ̂i is equal to:

E
(
ψ̂i
∣∣ X
)
= E

(
yiûi

1 − hii

∣∣∣∣ X
)
=

1
1 − hii

E
(
yi(u′mi)

∣∣ X
)

=
1

1 − hii
E
(
ℓ′iY(u

′mi)
∣∣ X
)
=

1
1 − hii

E
(
ℓ′iY(u

′mi)
∣∣ X
)

=
1

1 − hii
E
(
ℓ′i(Xβ + u)(u′mi)

∣∣ X
)
=

1
1 − hii

[
ℓ′iE

(
uu′ ∣∣ X

)
(ℓi − hi)

]
=

1
1 − hii

[
ℓ′iΨ(ℓi − hi)

]
=

1
1 − hii

[
ψi − ℓ′iΨhi

]
=

1
1 − hii

[ψi − ψihii] = ψi.
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Online Appendix

Limited Mobility Bias: More Corrections But No More Cost

Miren Azkarate-Askasua and Miguel Zerecero

In this Appendix we first illustrate our bootstrap correction method in a simple example. Second,

we provide details on how we construct the simulated labor markets that we use to test and com-

pare our bootstrap correction. Third, we explain how to estimate the leverage of an observation in

a linear regression model. This is useful when one uses covariance matrix estimators that require

the leverage, and when the direct computation of the leverage is computationally costly. Fourth,

we briefly explain how to choose the number of bootstraps based in Chebyshev’s inequality. Sixth,

we discuss additional structures of the covariance matrix and explain the algorithms used in the

paper. Seventh, we compare our method to KSS in the application and to Borovičková and Shimer

(2017), both with simulated labor market data and the French data. Eighth, we present a formal

proposition that yields as a corollary that our bias correction is more efficient than the one pro-

posed by MacKinnon and Smith Jr (1998). Finally, we present tables and figures that correspond to

additional exercises that complement the analysis in the main text.

OA-1 Simple illustration

We illustrate the effectiveness of our bias correction method with some simple Monte Carlo sim-

ulations. The model design is the same as in equation (5) with homoskedastic errors and sample

size n = 500. The number of covariates is k1 = k2 = 200. We keep this number relatively low to be

able to compute what we dubbed previously the direct bias correction δ̂. We do 10,000 simulations

in total. In each simulation, keeping X fixed, we draw new error terms to form the dependent

variable. We estimate β̂ and compute the direct bias correction terms. After the estimation, we

perform p = 100 bootstraps and use them to compute the estimation of the bootstrap correction.

We do a Wild bootstrap consistent with using HC1 as the covariance estimator.1

Figures OA-1a and OA-1b show the effectiveness of our method. Figure OA-1a plots the distri-

bution of the difference between the plug-in estimate of the variance (σ̂2
1,PI) and the true variance

(σ2
1,PI). The figure also plots the difference between the bootstrap corrected variance (σ̂2

1,b) and the

true variance. Figure OA-1b shows analogous distributions of differences between estimates and

true moments but for the covariance (σ12,PI). The figures show that the distribution of the differ-

ences between the plug-in estimates the true moment are not centered at zero, reflecting the bias.

On the other hand the distribution of difference between the bootstrap corrected moments and the

true ones are centered at zero, suggesting our method is effective in reducing the bias.

In terms of efficiency, our methods is very close to the direct correction—which is the best one

can do—but outperforms more traditional bootstrap methods. Table OA-1 presents the mean and

variance of the differences of our bootstrap method δ∗ and the bootstrap following MacKinnon and
1In other words, for each observation and bootstrap iteration, we sample a Rademacher random variable and multiply it to each

observation’s residual times
√

N/(N − K).

1



Figure OA-1: Differences between the true moments with plug-in and bootstrap estimators

(a) Density of σ̂2
1,PI − σ2

1 and σ̂2
1,b − σ2

1 (b) Density of σ̂12,PI − σ12 and σ̂12,b − σ12

Notes: The left figure presents the distributions of the differences between the true variance σ2
1 and both, the naive plug-in

estimated variance σ̂2
1,PI and the bias corrected estimated variance σ̂2

1,b. The distribution of the difference between the true
moment and the bias corrected estimated covariance is centered at zero. The right figure does the same but for the covariance
σ12.

Table OA-1: Comparison Bootstrap and Direct Estimations.

δ̂ − δ∗ δ̂ − δ∗MS Mean Squared Error
Mean Variance Mean Variance Plug-In Direct Boot Boot MS

v̂ar(X1β1) -0.00015 0.0015 -0.0037 0.08 47.78 24.34 24.34 24.44
v̂ar(X2β2) −1.2 × 10−5 0.0015 0.0054 0.19 79.00 55.55 55.55 55.74
ĉov (X1β1, X2β2) 9.3 × 10−5 0.0014 -0.0014 0.05 25.83 15.18 15.18 15.22

The first two columns represent, respectively, the mean and the variance of the difference between the direct correction δ̂ and the boot-
strap correction δ∗. Columns 3 and 4 are analogous but using the bootstrap correction proposed by MacKinnon and Smith Jr (1998),
δ∗MS. Columns 5 to 8 compute the Mean Squared Error between the different estimated moments and the true ones. Plug-In refers to
the non-corrected estimated moments using the estimates of the linear regression. Direct uses the estimated moments with the direct
bias correction. Boot and Boot MS refer, respectively, to the moments with our bootstrap correction and with the bootstrap correction
proposed by MacKinnon and Smith Jr (1998).

Smith Jr (1998) δ∗MS with respect to the direct correction δ̂.2 The mean differences of our method are

very small as well as the variances, meaning that the estimated bootstrap correction is performing

almost as well as the direct correction in almost all simulations. The alternative bootstrap correction

δ∗MS in Columns 3 and 4 performs worse in terms of bias and variance.

Table OA-1 also shows the Mean Squared Error (MSE) of the different estimated moments. The

MSE of naive plug-in estimators is larger than the one obtained with the directly corrected and

bootstrap corrected moments. As our estimator is a noisy estimate of the direct correction, it is

expected that the MSE of the corrected moments using our estimator to be larger than the directly

corrected moments, although very close. In fact, to the level of rounding presented in the table,

the two are indistinguishable. Also, as expected, our bootstrap has lower MSE than the alternative

bootstrap corrected moments which follows MacKinnon and Smith Jr (1998).

2As previously stated, MacKinnon and Smith Jr (1998) propose to generate the bootstrap dependent variable as Y∗ = Xβ̂ + v∗. Their

correction is: δ∗MS = 1
p ∑

p
j=1

(
β∗′

j,MS Aβ∗
j,MS

)
− β̂′Aβ̂, where the last term is the plug-in estimate.

2



OA-2 Construction of Simulated Labor Market Data

We construct several simulated labor markets depending on the number of movers per firm, and

type of error term. Here, we briefly describe the construction of the simulated labor markets.3

We start by determining the size of the labor market. We have 5000 unique workers and 400

unique firms at the beginning of the sample. This gives an average firm size of 12 workers which

is similar to the average firm size in the data used by Kline, Saggio, and Sølvsten (2020).4 Their

connected set with an average of 2.7 movers per firm is similar to our low mobility simulations

with 3 movers per firm. The sample runs for 7 periods (years) but we allow that workers randomly

drop from the sample with a minimum of 2 observations per worker. This leads to a total sample

size of roughly 22,000 observations.

Worker and firm fixed effects are random draws from normal distributions. We assume that

there is sorting depending on the permanent types, which leads to non negative correlations be-

tween worker and firm fixed effects while fulfilling exogenous mobility. That is, a low type worker

is more likely to match with a low type firm if we assume positive sorting but sorting does not de-

pend on match specific shocks. This preserves the exclusion restriction necessary for OLS. Matches

are formed either at the beginning of the sample or afterwards for the movers. Errors are i.i.d.

and normally distributed in the baseline simulation with homoscedastic errors. When we use het-

eroscedastic errors, these are also normally distributed with an observation (worker-year) specific

variance that is randomly drawn from a uniform distribution. Finally, when we use serially cor-

related errors, these are simulated from a first order autoregressive process with persistence of 0.7

and homoscedastic or heteroscedastic innovations. The simulated log wage is like equation (10) in

the main text with only the firm and worker fixed effects

wit = θi + ψJ(i,t) + εit. (OA-1)

OA-3 Leverage Estimation

The direct computation of the leverage, by using the diagonal of the projection matrix H ≡
X (X′X)−1 X′, is computationally infeasible when the number of covariates is large. Again, the

problem is the computation of (X′X)−1.

Here we follow a way to estimate the leverage first proposed by Kline, Saggio, and Sølvsten

(2021).5 This procedure is very similar to our bias estimator. We simulate repeatedly random

variables and use the fitted values of the projection into X to estimate the leverage. The procedure

starts by generating the endogenous variable ω where each entry is i.i.d. with (conditional) mean

equal to zero and (conditional) variance equal to 1. Projecting it into X, we have that the expectation

of the squared of the fitted value ω̂ is

E
(

ω̂2
i |X
)
= xi

(
X′X

)−1 X′E
(
ωω′|X

)
X
(
X′X

)−1 x′i = xi
(
X′X

)−1 x′i = hii,

where x′i is the ith row of matrix of covariates X. Let nh be the number of simulations for the vector

3We thank Simen Gaure for sharing with us a piece of code that we used as a base for the simulations.
4See Table 1 in Kline et al. (2020) where each worker is observed twice.
5The reference for Kline et al. (2021) which contains the details on the derivations of the leverage estimator can be found here.

3
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ω used to estimate the leverages ĥii. Similarly to what we do to estimate the bias correction, we

simulate different vectors of the dependent variable ω, compute the fitted values for each simulation

j and then take a sample mean across all the simulations j = {1, ..., nh} of ω.

Additionally, and following Kline et al. (2021), we can also estimate a value for one minus the

leverage, mii = 1− hii by averaging the squared residuals of the same regressions we run above. So

the ith residual is equal to ωi − ω̂i. Then, defining 1i as a vector of zeros except for the ith entry

which is equal to one we have that

E
(
(ωi − ω̂i)

2 |X
)
= E

(
ω2

i − 2ω̂iωi + ω̂2
i |X
)

= E
(

ω2
i |X
)
− 2xi

(
X′X

)−1 X′E (ωωi|X) + E
(

ω̂2
i |X
)

= 1 − 2xi
(
X′X

)−1 X′1i + hii

= 1 − 2hii + hii

= 1 − hii.

So we can take also a sample mean of the squared residuals to get an estimate for mii. Let

us define the estimated values with their corresponding hat variables, ĥii, m̂ii. Thus, we have

two estimates for the one minus the leverage, 1 − ĥii and m̂ii. As Kline et al. (2021) mention, the

infeasible variance minimizing unbiased linear combination of both estimators is

hii
mii + hii

m̂ii +
mii

mii + hii

(
1 − ĥii

)
.

The feasible estimator of mii would then be equal to

m̄ii ≡
m̂ii

m̂ii + ĥii
,

and h̄ii ≡ 1 − m̄ii. We then use m̄ii to construct the covariance matrix estimate when using HC2.

We do this by multiplying 1/m̄ii to the squared residual of observation i. We also correct for a bias

coming from the non-linear estimation of 1/m̄ii up to a second order. The expected value of the

second-order approximation of 1/mii is

E

(
1

m̄ii

)
≈ 1

mii
+

hii

m3
ii

E (m̂ii − mii)
2 − 1

m2
ii

(
E
(
(ĥii − hii)(m̂ii − mii)

))
.

Thus, the final estimate of 1/mii would be

1
m̄ii

(
1 − h̄ii

m̄2
ii

v̂ar(m̂ii) +
1

m̄ii
ĉov

(
ĥii, m̂ii

))
,

where v̂ar and ĉov are sample variance and covariance estimates.6

Direct computation. Alternatively, an exact computation of the leverage is possible by using the

definition of fitted values Ŷ = HY and a regression-intensive procedure. We have that the leverage

6The sample variance of m̂ii is 1
nh−1

(
1

nh
∑

nh
j=1

(
ωi,j − ω̂i,j

)2 − m̂2
ii

)
. The sample covariance is 1

nh−1

(
1

nh
∑

nh
j=1

(
ωi,j − ω̂i,j

)2
ω̂2

i,j − m̂ii ĥii

)
.
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of observation i is equal to

hii =
∂ŷi
∂yi

.

The following remark shows how to compute these leverages without computing the projection

matrix H using only linear regressions.

Proposition OA-1. Let Ỹ(i) be a vector of length n where every entry is equal to zero, except the ith entry

that is equal to one. The leverage of observation i is equal to the fitted value ŷi of a linear regression of Ỹ(i)

on X.

Proof. Let hi be the ith row of the projection matrix H. Then, for any vector Y we have that the ith

fitted value ŷi is equal to ŷi = hiY = ∑j hijyj. Let Y = Ỹ(i). Then ŷi = hii.

Recovering the estimates of a linear regression is very efficient nowadays and in principle we

could compute the leverages one by one in what would involve n regressions. When the data set

is large, this is clearly not plausible and we leave the exact computation for the problematic cases

identified by the following diagnostic.

Diagnostic and adjustment. Although, as mentioned by Kline et al. (2021), the above estimate of mii

rules out nonsensical estimates outside the [0, 1] interval, the estimates for 1/mii, could still violate

some theoretical bounds. We detect problematic estimations of 1/mii by checking that they are

within some bounds that are consistent with the theoretical bounds for the leverages hii ∈ [1/n, 1].

These bounds are derived from the following proposition, which might be well known for some

readers.

Proposition OA-2. Let X be a full rank matrix of dimensions n × k, where a vector of ones can be obtained

through column operations. Let H = X (X′X)−1 X′, with ith diagonal element hii. Then 1/n ≤ hii ≤ 1 for

all i.

Proof. As H is idempotent then hii = h2
ii + ∑j ̸=i h2

ij. Then hii ≤ h2
ii =⇒ hii ≤ 1.

Now, let X̃ be the full rank matrix of dimensions n × k that contains a vector of ones after doing

column operations on X. Then define H̃ = X̃
(
X̃′X̃

)−1 X̃′ with diagonal elements h̃ii. It is well

known that 1/n ≤ h̃ii (see for example Lemma 2.2 in Mohammadi (2016)). As X and X̃ have the

same column space, then H = H̃. Thus, 1/n ≤ hii.

The corollary of the proposition above is that 1/mii ≥ n/(n− 1). Thus, we check if our estimates

of 1/mii satisfy this bound.7 We directly compute leverages corresponding to the estimates of 1/mii

that fall outside those bounds by using the result of Remark OA-1.

Algorithm 4 in Section OA-6 of this Online Appendix takes as inputs the covariates X and gives

output a combination of actual and estimates for 1/mii.

Leave-one-out connected set. Two-way fixed effect models are only identified within a connected

set. In typical applications on the labor market or teacher evaluations, firm (school) fixed effects are
7When we use any estimate of the covariance matrix that requires calculating 1/(1 − hii), we prune the data such that observations

with hii = 1 are not in the sample.
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Figure OA-2: MSE of corrected σ̂(θ, ψ) by number of bootstraps.

Notes: This figure presents the mean squared error (MSE) of the covariance between worker-firm fixed effects σ̂(θ, ψ) across 1000
homoskedastic error simulations. The bootstrap correction assumes a diagonal covariance matrix and we use the HC1 covariance matrix
estimator.

only identified within the connected set that is generated by moving workers (teachers). Movers

therefore determine the connected set of firms (schools) whose fixed effect can be identified. When

the estimator of a the covariance matrix requires to compute 1/(1 − hii), as is the case with the

HC2 estimator, then we need to have hii < 1 for all i. In practice a leverage hii equal to 1 usually

means that one single observation identifies a particular fixed effect. For example, when one firm

has only one mover, then that worker is key to identify the firm fixed effect and will have a leverage

of 1. The leave-one-out connected set requires that no single observation is necessary to estimate

a particular fixed effect. That is, after eliminating any observation the set of fixed effects in the

connected set needs to remain the same. We achieve this by first pruning the data to get the leave-

one-out connected set without critical movers identifying a given firm fixed effect, and eliminating

unique observations. The pruning is the same as the one used by Kline et al. (2020). Algorithm 3

in Section OA-6 describes the details.

OA-4 Choosing the number of bootstraps

Some readers might feel uneasy with the arbitrary number of bootstraps necessary to correct the

bias. To guide our choice of number of bootstraps, we perform some simulations with a fixed set of

covariates with low mobility and simulate a thousand samples by simulating the error. With each

dataset we perform corrections from one to 300 bootstraps as in the Monte Carlo simulations of

Section 4. Figure OA-2 shows the mean squared error between the true covariance of person and

firm fixed effects and the corrected one for different number of bootstraps.8 The figure shows that

with the first 25 bootstraps the MSE reduces significantly and around 100 it flattens. This suggests

that few bootstraps are enough to gain accuracy.9

In this section we show a way to discipline the choice of the number of bootstraps. We exploit

the fact that our estimator δ∗ is a sample mean estimate of the direct bias correction term δ̂. This

allows us to exploit the information given by Chebyshev’s inequality.
8For all the samples we take the corrections obtained with different bootstraps and take the mean squared error against the true

moment.
9Throughout the application corrections we run corrections with 1000 iterations to estimate the leverage and 1000 bootstraps to

estimate the corrections of second order moments.
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Let δ∗j ≡ β∗′
j Aβ∗

j be the quadratic form for bootstrap j. In the proof for Proposition 2 we show

that Ev∗
(

δ∗j |X, u
)
= δ̂. Now assume that V(δ∗j |X, u) = η2 < ∞. As δ∗ is a sample mean over a

sequence of {δ̂∗j }
p
j=1, we have that Ev∗(δ̂

∗|X, u) = δ̂ (as shown in the proof of Proposition 2) and

V(δ∗|X, u) = 1
p η2.10 Then, by Chebyshev’s inequality we have

P
(∣∣∣δ̂∗ − δ̂

∣∣∣ ≥ k
η
√

p

∣∣∣∣ X, u
)
≤ 1

k2 .

Next one can choose the number of bootstraps p such that the distance between the bootstrap

estimate δ̂∗ and the direct bias correction term δ̂ is greater or equal than λ standard deviations with

probability smaller than α. So, for arbitrary α > 0 and λ > 0 we have

1
k2 = α,

k
√

p
= λ.

Solving for p we get p = 1
αλ2 . So if, for example, we set α = 0.05 and λ = 1/2 we get that the

number of bootstraps such that the distance between the bootstrap estimate and the unfeasible

correction term is greater than half a standard deviation is an event with a probability smaller than

5 percent is p = 1
0.05×(1/2)2 = 20 × 4 = 80. One could be more conservative and set λ = 0.1. In that

case, we would obtain p = 20 × 1000 = 2000 bootstraps.

Admittedly, the number of bootstraps suggested by inequality for any α and λ can be quite

conservative. But this just reflects the generality of the result. Indeed, this criteria would work

regardless the distribution of v∗, therefore regardless the choice of bootstrap.

OA-5 Additional error structures

While the method proposed by KSS can also be adapted to "settings where the data are organized

into mutually and independent ’clusters’" (page 1863 of Kline et al. (2020)), our method can also

accomodate more general settings as the example below explains.

Example: Non-block-diagonal covariance matrices. Sometimes, the assumption on the error depen-

dence do not yield a diagonal or block-diagonal covariance matrix. This can happen when there

are two (or more) dimensions of dependency. For example, when there are temporal and spatial

dependencies, as in Driscoll and Kraay (1998). In the AKM context, for example, there would be

a non-block-diagonal covariance matrix if there is temporal dependence at the person and firm di-

mensions. With workers changing firms, the resulting dependence across observations would break

any block-diagonal structure in the covariance matrix.

OA-6 Algorithms

In this Section we detail the implementation algorithms of our method. Algorithm 1 and 2 describe,

respectively, the estimation of the bias correction for diagonal and non diagonal covariance matrices.

10We have that V(δ∗|X, u) =
1
p2 V(∑

p
j δ̂∗j |X, u) =

1
p2 ∑

p
j V(δ̂∗j |X, u) =

1
p

η2 where we used the independence of different δ̂∗j conditional

on X and u.
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Algorithm 3 describes how to prune the data to ensure that the maximum leverage is below 1 and

Algorithm 4 details how to estimate the leverage.

To speed the solution of the normal equations, we use the preconditioner developed by Koutis,

Miller, and Tolliver (2011) when the matrix of covariates accepts a Laplacian representation. In our

setup, the Laplacian representation is possible when we only have two leading fixed effects or the

rest of the covariates are residualized previously.

Notation. For a number of moments to correct M (for example a variance decomposition of a two-

way fixed effect model has at least three corrections: the two variances of the fixed effects and their

covariance), the bias correction of the mth moment m ∈ {1, ..., M} is denoted as δ̂∗m.

Algorithm 1 Estimate {δ̂∗m}M
m=1 when the covariance matrix is diagonal

1: for j = 1, ..., p do
2: Simulate a vector r∗ of length n of mutually independent Rademacher entries.

3: Generate a vector of residuals v∗ of length n whose ith entry is equal to
√

ψ̂i × r∗i .
4: Compute β∗ as the estimate of a regression of v∗ on X.
5: Compute δ̂

(j)
aux,m = (β∗)′ Amβ∗ for all m ∈ {1, ..., M}.

6: end for

7: Compute δ̂∗m =
∑

p
j=1 δ̂

(j)
aux,m

p
for all m ∈ {1, ..., M}.

Algorithm 2 Estimate {δ̂∗m}M
m=1 when covariance matrix is non diagonal

1: Let G = {1, ..., G} be the set of groups g each with length ng.
2: for j = 1, ..., p do
3: Simulate a vector r∗g of length G of mutually independent Rademacher entries. All the observations

withing the group will have the same Rademacher entry.

4: Generate a vector of residuals v∗ of length n whose ith entry belonging to group g is equal to
√

ψ̂i × r∗g.
5: Compute β∗ as the estimate of a regression of v∗ on X.
6: Compute δ̂

(j)
aux,m = (β∗)′ Amβ∗ for all m ∈ {1, ..., M}.

7: end for

8: Compute δ̂∗m =
∑

p
j=1 δ̂

(j)
aux,m

p
for all m ∈ {1, ..., M}.

Algorithm 3 Leave-one-out connected set

1: Let Λ be the connected set.
2: a = 1.
3: while a > 0 do
4: Compute the articulation points a.
5: Eliminate articulation points a.
6: Compute the new connected set Λ1.
7: end while

8



Algorithm 4 Estimate leverages, diagnosis and compute those out of bounds

1: z(0)h = 0, z(0)m = 0, z(0)2 = 0, and z(0)hm = 0 are vectors of length n.
2: for j = 1, ..., p do
3: Simulate a vector ω∗ of length n of mutually independent Rademacher entries.
4: Compute fitted values ω̂∗ from a regression of ω∗ on X.

5: Compute z(j)
h = z(j−1)

h +
(

ω̂∗
)2

and z(j)
m = z(j−1)

m +
(

ω̂∗ − ω∗
)2

.

6: Compute z(j)
2 = z(j−1)

2 +
(

ω̂∗ − ω∗
)4

and z(j)
hm = z(j−1)

hm +
(

ω̂∗ − ω∗
)2 (

ω̂∗
)2

7: end for
8: Compute ĥii = z(p)

h,i /p and m̂ii = z(p)
m,i /p for all i ∈ {1, ..., n}.

9: Compute v̂ar(m̂ii) =
1

p−1

(
z(p)

m,i
p − m̂2

ii

)
for all i ∈ {1, ..., n}.

10: Compute ĉov(ĥii, m̂ii) =
1

p−1

(
z(p)

hm,i
p − ĥiim̂ii

)
for all i ∈ {1, ..., n}.

11: Compute m̄ii =
m̂ii

m̂ii+ĥii
for all i ∈ {1, ..., n}.

12: for i = 1, ..., n do

13: if 1
m̄ii

(
1 − h̄ii

m̄2
ii

v̂ar(m̂ii) +
1

m̄ii
ĉov

(
ĥii, m̂ii

))
≤ n

n−1 then

14: Generate Ỹ(i) ∈ Rn, where Ỹ(i)j ̸=i = 0, Ỹ(i)i = 1.

15: Compute the fitted values ̂̃Y(i) of a regression of Ỹ(i) on X.
16: Get actual leverage hii =

̂̃Y(i)i.
17: Get actual 1/mii = 1/(1 − hii).
18: end if
19: end for

OA-7 Comparison with Borovičková and Shimer (2017)

Borovičková and Shimer (2017) (henceforth BS) provide an alternative method to compute the

correlation of firm types and workers, which has the advantage of not requiring estimates of all

the worker and firm fixed effects and directly computing the correlation. Their method completely

bypasses the need to estimate a linear model and therefore avoids using noisy estimates—which

are the source of the bias—to compute the correlation.

As explained by BS, the worker and firm types that they define are different to the types defined

in the AKM model. In BS, a worker’s type, denoted λi, is defined to be the expected log wage of

the worker, while a firm’s type, denoted µJ(i,t), is defined to be the expected log wage that a firm

pays. In contrast, in the AKM model, a worker and firm types (θi, ψJ(i,t)) are defined as such that a

change in type will change the expected log wage while holding fixed the partner’s type.11

BS show that their correlation and the AKM correlation, ρ, will be the same if the joint distribu-

tion of θ and ψ is elliptical (e.g. a bivariate normal) and (σλ − ρσµ)(σµ − ρσλ) > 0, where σλ and σµ

are, respectively, the standard deviations of worker and firm types. With these assumptions, there

is also a direct correspondance between the standard deviation of AKM types and BS types:12

σθ =
σλ − ρσµ

1 − ρ2 , σψ =
σµ − ρσλ

1 − ρ2 .

11We refer to an old version of the Borovičková and Shimer from 2017 where they provide a way to translate the variances and
covariances of their worker and firm types to the ones in AKM. In the latest version, they slightly changed their estimator and no longer
provide this link.

12See Proposition 1 in Borovičková and Shimer (2017).
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Table OA-2: Monte Carlo simulations. Homoscedastic errors.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 6.637 0.341 0.114 2.364
BS 0.1 1.580 0.615 0.040 0.745
Gaure 17.3 0.050 0.109 0.015 0.058
Boot HC2 0.9 0.050 0.106 0.014 0.057
Boot HCU 1.0 0.050 0.106 0.014 0.057
KSS 0.9 0.050 0.106 0.014 0.057
Notes: Plug-in is the naive plug-in estimator, BS refers to Borovičková and Shimer (2017), Gaure refers to the method Gaure (2014) imple-
mented through the R package lfe, Boot is our method with HC2 covariance matrix estimator, and KSS is the Kline et al. (2020) method.
The results of Borovičková and Shimer correspond to the AKM worker and firm types present in the cited version of the paper. The av-
erage firm has 10 movers and 12 employees. Time is the computing time in seconds. True moments are computed at the final sample for
each method, i.e. largest connected set for Gaure and the largest leave-one-out connected set for Boot and KSS. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present re-

spectively the mean squared errors (MSE) of the corrected estimates of the variance of the worker fixed effects, variance of the firm fixed
effects and the covariance between worker and firm effects. All the MSE are multiplied by 100. Average is the average MSE (also scaled).

The key identifying assumption in the BS method is that for each worker and firm they have two

or more observations of the wage which are independent and identically distributed conditional on

the types. In AKM, the identifying assumption is a standard exclusion restriction, i.e. that the error

term is mean zero conditional on the types (and other covariates) with the underlying assumption

of exogenous mobility.

OA-7.1 Comparison of Methods

We perform two exercises to compare our method with BS. First, we simulate labor market data

that fulfills the key identifying assumptions of the AKM linear model and of BS. We find that both

methods correct the bias but ours outperforms theirs in terms of accuracy of the estimation of

each of the elements of the correlation, but is naturally more time consuming. Second, we apply

BS method to the French data which requires some changes to the original dataset in the sample

selection, which we explain in more detail below.

The results of the comparison using simulated data are in Table OA-2. For completeness we

also include Gaure and KSS’s methods in the comparison. The table shows that the least accurate

method is BS reducing by 56% the MSE of the naive estimates whereas the other three methods

reduce it by 98%.13 The objective of BS is to provide an estimate of the correlation but they base their

estimation in different worker and firm types (λ and µ respectively). Table 1 presents their estimates

of the corresponding AKM moments. Figure OA-3 shows the distribution of the difference of

the firm variances for the plug-in estimate and the true variance (σ̂2
ψ,PI − σ2

ψ), as well as the the

distributions of the differences using the different correction methods. The figure shows that our

method is very similar to KSS and both are the ones with lowest biases. Even if the bias of Gaure is

higher, his method has lower variance and outperforms KSS and ours in terms of MSE. Regarding

the computation time, BS is the fastest one with computation time of less than a second. Our

method is the one performing the fastest among the AKM based competitors (Gaure, KSS and our

method).14

13We wrote the code for BS following Borovičková and Shimer (2017) and converting the data to the match level.
14KSS and our method do not incorporate the simplifications that come from having homoscedastic errors. In particular, under

homoscedasticity of the errors, one could gain speed by using the covariance estimate HC1 which is unbiased, and therefore skip the
pruning of the data and the leverage estimation.

10



Figure OA-3: Model Comparison: Homoscedastic Errors.

Notes: This figure presents the distributions of the bias of σ̂2
ψ for the naive plug-in estimate and the corrected moments for the different

methods. Simulated errors are homoscedastic and labor mobility is high.

Table OA-3: Application. Comparison of the Methods.

Plug-in Boot HC2 Boot HCU KSS Boot Serial KSS Serial

σ̂2
θ 0.179 0.157 0.159 0.157 0.130 0.137

σ̂2
ψ 0.042 0.029 0.032 0.030 0.048 0.021

σ̂θ,ψ -0.005 0.005 0.003 0.005 -0.005 0.011
ρ̂θ,ψ -0.061 0.077 0.039 0.069 -0.061 0.202
Obs. 4652631 4652631 4652631 4652631 8075514 4652631
Time (min) 24 35 36 38 29

Notes: Plug-in are the plug-in estimates at the leave-one-out connected set, Boot HC2 are the results of our method under
diagonal covariance matrix estimator HC2 at the leave-one-out connected set, Boot Serial (Connected) are the results using
a Wild block bootstrap at the connected set, Boot Serial are the results using a Wild block bootstrap at the leave-one-out
connected set like KSS, KSS are the results corrected with Kline et al. at the leave-one-out connected set similarly to Boot
HC2 and KSS Serial are the results at the leave-one-out connected set when leaving a match out. σ̂2

θ and σ̂2
ψ are respectively

the estimates of the variance of worker and firm fixed effects. σ̂ψ,θ is the covariance, ρ̂ψ,θ the correlation between worker
and firm fixed effects, Obs. is the number of observations and Time (min) is the correction time in minutes.

Now, we compare BS method using the French data with our method as well as with KSS’s

method. In order to do so, we need to deviate in two aspects from the original sample used in our

main application: first, we need to restrict the sample to workers that have at least two jobs and

firms that have at least two workers; second, we need to take averages of every match between firm

and workers.15 The first restriction implies that the sample used for BS is about half of the original

sample of private firms.16 Suggestive of the potential sample selection issues is that the plug-in

estimate of the correlation between worker and firm fixed effects is -0.10 under the original data

whereas is -0.06 under the connected set generated from BS data.

We compare our method to in the application by first residualizing other covariates and we

then estimate the variances of worker and firm fixed effects together with their covariance and

correlation. The results are in Table OA-3.

In the application, our bootstrap method is slightly faster than the KSS correction when assum-

ing a diagonal covariance matrix but is slower when assuming serial correlation. Both methods

yield slightly different estimates of second order moments with HC2 and HCU that also lead to
15More precisely this would mean that if we observe one worker employed for a certain firms for several years, we would take the

average wage of that worker in that firm as one observation.
16The original data of private firms has 5.8 million observations while after filtering of two job and worker restrictions the sample has

only 2.5 million observations.
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Table OA-4: Application. Extended Comparison of the Methods (BS Data).

BS Plug-in Boot HC2 Boot HCU KSS

σ̂2
θ 0.037 0.111 0.058 0.058 0.058

σ̂2
ψ 0.014 0.070 0.040 0.041 0.041

σ̂θ,ψ 0.013 -0.008 0.004 0.005 0.005
ρ̂θ,ψ 0.570 -0.093 0.092 0.093 0.094
Obs. 1623985 1610912 1610912 1610912 1610912

Notes: The results of BS correspond to the AKM worker and firm types of Borovičková and Shimer. Plug-in are the plug-in estimates at
the connected set originated from BS data, Boot HC1 are the results of our method under diagonal covariance matrix estimator HC1 at the
connected set originated in the BS data, Boot HC2 are the results of our method under diagonal covariance matrix estimator HC2 at the leave-
one-out connected set in the BS data and KSS are the results corrected with the method of Kline et al. at the same sample as for Boot HC2.
σ̂2

θ and σ̂2
ψ are respectively the estimates of the variance of worker and firm fixed effects. σ̂ψ,θ is the covariance, ρ̂ψ,θ the correlation between

worker and firm fixed effects and Obs. is the number of observations.

differences in the estimate of the correlation between firm and worker fixed effects. When assum-

ing a diagonal covariance matrix with heteroskedastic errors (Boot HC2, Boot HCU and KSS), both

methods yield a positive estimate for the correlation between firm and worker fixed effects. The

estimate of this correlation with the bootstrap correction is 0.077 with HC2 and 0.039 with HCU

while the one of KSS is 0.069.17

When assuming that the error terms are correlated at the match level, the estimated correlation

between worker and firm fixed effects is positive with KSS under the leave-one-out connected

set. On the contrary, Boot Serial is estimated in the connected set and yields a negative estimate

for the worker-firm correlation of −0.061. We can conclude that, even after correcting for the

limited-mobility bias, the estimates of the correlation between workers and firms fixed effects are

sensitive to sample selection. The leave-one-out connected set is comprised of more mobile workers

who could have a different sorting pattern than the rest of the labor force. Thus, it could be that

the suggested small, yet positive correlation, is driven by those workers who change jobs more

frequently.

We also compare our method to BS first residualizing for other covariates. We use the averaged

match-level residual wage as the dependent variable to compute the moments for all the methods.

We estimate the bootstrap corrected moments at the connected set or leave-one-out-corrected set of

the BS final sample.

Table OA-4 compares the estimated moments using the BS method and the bootstrap correction

method on French data. Both columns report the moments using the AKM defined worker and firm

types. In contrast to the Monte Carlo simulations that satisfied the assumptions for both methods,

estimates differ by a large amount when using French labor market data. The bootstrap corrected

estimated correlation is 0.16 (0.09) under HC2 (HC1) covariance matrix estimation, well below the

estimated one using BS method, 0.56.18 Looking at each of the components of the correlation,

both variances are larger and the covariance is smaller when using the bootstrap corrected method

instead of BS method.

There are different reasons why BS estimates might differ from ours. To begin with, the types

defined by BS are fundamentally different from the ones defined in the AKM model. They are

related only when the assumptions stated at the beginning of this section are satisfied. It might be
17The results from Boot HCU are analogous to the ones in Table 4 but computed with residualized log wages.
18The BS estimates are obtained by using the formulas of Section 5.2. in Borovičková and Shimer (2017).
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Table OA-5: Application. Summary Statistics.

BS Data Obs. Mean Wage Mean Age Mean Education

0 4096250 4.40 41.73 4.29
1 4708713 4.39 37.24 4.57

Notes: BS Data is an indicator if the observation belongs to the final sample of Borovičková and Shimer (2017), Obs. is the number of
observations before taking match level averages in the original data and before computing the connected set, Mean Wage is the average
log daily wage, Mean Age is the average age in years and Mean Education is the average education where education is a discrete variable
between 1 (no education) and 8 (university degree).

that the two correlations are not comparable because, even if the log-linear AKM model is correctly

specified, these assumptions are violated, in particular, if the joint distribution of AKM types is not

elliptical. Second, it might be that the identification assumption of at least one of the methods fail.

It is easy to think of examples where both identification assumptions are violated. For example,

whenever there is selection of workers via the error term, some matches will be formed whenever

this idiosyncratic component is high. This endogenous mobility would violate both the AKM and

BS identification assumptions.

Results in Table OA-4 under our method also differ from the ones previously reported in Table 4

in the main text. Table OA-5 presents some summary statistics of the original data differentiated by

being in the final BS data or not.19 The Table shows that the requirements to use the Borovičková

and Shimer (2017) method are more demanding as only 77% of the original observations are in-

cluded in their final sample. Furthermore, Table OA-5 shows that their data requirements lead

to a sample with similar average wage but almost 5 years younger on average and slightly more

educated. The applied user might be worried by sample selection when using the BS method to

estimate worker and firm correlation as Lentz, Piyapromdee, and Robin (2018) document that most

of the worker-firm sorting happens early in the career which would lead to higher correlations for

younger workers.

OA-8 Additional Results and Proofs

The following proposition gives conditions under where our bootstrap estimate is more efficient

than the one proposed by MacKinnon and Smith Jr (1998) (MS). The proposition proofs that a

covariance is zero. When that is the case, the variance of the bias correction of MS is strictly larger

than the one from our bias correction as shown by equation 9 in the main text.

Proposition OA-3. Let X and u be the exogenous covariates and the error term in the original model. Let v∗i
be the bootstrap residual for observation i. These are independent across observations with E

(
v∗i
∣∣ X, u

)
=

0, E
(
(v∗i )

2
∣∣ X, u

)
= ψi, and E

(
(v∗i )

3
∣∣ X, u

)
= 0. Let Q = (X′X)−1 X′ and A independent of v∗,

conditional on X and u. Then,

cov
(

v∗′i Q′AQv∗i , 2v∗′i Q′Aβ̂|X, u
)
= 0.

Proof. Let the matrix Q′AQ ≡ R, with elements (i, j) equal to ri,j. Also, let the vector Q′Aβ̂ ≡ S

19The original data constitutes of almost 5.9 million observations that translate into a connected set of 5.1 million observations as in
Table 4.
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Table OA-6: Monte Carlo simulations with a larger sample. Heteroscedastic errors.

Mean Squared Error (MSE×103)

Model Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 20.366 6.059 5.280 10.569
Boot HC2 398.2 0.001 0.003 0.001 0.002
Boot HCU 582.6 0.001 0.003 0.001 0.002
KSS 595.9 0.001 0.003 0.001 0.002
Notes: We simulate a labor market with a connected set similar to the one we use in the application with more than 5 million ob-
servations. Plug-in is the naive plug-in estimator, Boot HC2 refers to our method with HC2 covariance matrix estimator, Boot HCU
implements it with HCU , and KSS is the Kline et al. (2020) method. True moments are computed at the leave-one-out connected set.
In all the exercises the number of movers per firm is 3 and the average firm has 12 employees. Time is the computing time in seconds.
σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors of the corrected estimates of the variance of the worker fixed effects,

variance of the firm fixed effects and the covariance between worker and firm effects. All the MSE are multiplied by 1000 due to high
accuracy of the corrections. Average is the average MSE (also scaled).

with element k equal to sk. Then,

cov
(
(v∗′i Rv∗j , 2v∗′i S|X, u

)
= E

((
n

∑
i=1

n

∑
j=1

ri,jv∗i v∗j

)(
n

∑
k=1

skv∗k

) ∣∣∣∣∣ X, u

)
,

where we use the fact that E
(
v∗i
∣∣ X, u

)
= 0. Then,

E

((
n

∑
i=1

n

∑
j=1

ri,jv∗i v∗j

)(
n

∑
k=1

skv∗k

) ∣∣∣∣∣ X, u

)
=

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ri,jskE
(

v∗i v∗j v∗k
∣∣∣ X, u

))
= 0,

where we use that the bootstrap errors are independent across observations and the fact that

E
(
(v∗i )

3
∣∣ X, u

)
= 0.

OA-9 Additional Tables and Figures

Table OA-6 does the same exercise as the Low Mobility part of Table 2 in the main text in a more

realistic sample size of roughly 5 million observations. Table OA-7 compares the MSE for the

different moments when using different assumptions on the covariance matrix estimators applicable

with our bootstrap method. The original error terms in the simulation were heteroscedastic. As

expected, all the corrections effectively reduce the MSE compared to the baseline regardless of the

covariance matrix estimator. However, HC2 outperforms the rest.

Table OA-8 present the Monte Carlo simulation results for serially correlated error terms when

the true innovation is heteroscedastic. Figure OA-4 complements Table 2 from the main text and

shows the distribution of the corrections in Monte Carlo simulations when the error terms are

heteroscedastic. Table OA-3 compares the bootstrap correction to the KSS correction in the French

application. Finally, Table OA-9 shows a correction of the variance decomposition similar when

using a Wild block bootstrap. Different to Table 4 in the main text, the estimated correlation with

the plugin estimates is −0.24 (as opposed to −0.06 estimated with the plugin in the leave-one-out

connected set) and the correlation after the correction is estimated to be −0.06.
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Table OA-7: Comparison of variance estimators. Heteroscedastic errors

Mean Squared Error (MSE×102)

Model σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 25.199 2.922 9.674 12.598
Boot HC0 3.397 0.740 2.334 2.157
Boot HC1 0.801 1.300 1.104 1.068
Boot HC2 0.220 0.681 0.211 0.371
Boot HCU 0.278 0.733 0.262 0.424
Notes: The original errors in the simulation exhibit heteroscedastic errors. Plug-in is the naive plug-in estimator, Boot refers to
our method. True moments are computed at the largest leave-one-out connected set to make results comparable. Model is the
model and type of variance estimator. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors of the estimates of the vari-

ance of the worker fixed effects, variance of the firm fixed effects and the covariance between worker and firm effects. All the
MSE are multiplied by 100. Average is the average MSE (also scaled). Simulated data exhibits low mobility like in the top panel
of Table 2 and all the estimations are done using the leave-one-out sample.

Table OA-8: Monte Carlo simulations. Serial correlation with heteroscedasticity.

Mean Squared Error (MSE×102)

Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 93.900 1.658 0.603 32.053
Boot 0.5 9.528 0.259 0.047 3.278
KSS 1.1 21.350 0.251 0.045 7.215
Notes: Plug-in is the naive plug-in estimator, Boot refers to our method with a wild block bootstrap where each match defines a
block and we skip the pruning of the data. KSS is the Kline et al. (2020) method leaving a match out. The average firm has 10
movers and 12 employees. Time is the computing time in seconds. True moments are computed at the largest connected set for
Boot and at the largest leave-one-out connected set for KSS. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors (MSE)

multiplied by 100 of the corrected estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the
covariance between worker and firm effects. Average is the average MSE (also scaled).

Figure OA-4: Model Comparison: Heteroscedastic Errors. Bias of σ̂2
ψ and σ̂θ,ψ

Notes: These figures present the distributions of the bias for the naive plug-in estimate and the bias of corrected moments for KSS and
our method. Simulated errors are heteroscedastic and labor mobility is low.
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Table OA-9: Application. Plug-in vs corrected decomposition.

Plug-in Boot Serial Plug-in Boot Serial

Var(y) 0.3003 0.3003 2Cov(θ̂i, ψ̂j) -0.0622 -0.0096
Var(θ̂i) 0.1880 0.1298 2Cov(θ̂i, qγ̂) -0.0095 -0.0095
Var(ψ̂j) 0.0856 0.0477 2Cov(ψ̂j, qγ̂) -0.0000 -0.0000
Var(qγ̂) 0.0171 0.0171 Corr(θ̂i, ψ̂j) -0.2453 -0.0609
Var(ϵ̂) 0.0814 0.1248 Obs. 8075514 8075514

Notes: Plug-in refers to the uncorrected estimates of each of the variance components at the largest connected set and Boot Serial refers
to the estimates after our bootstrapped correction using a wild block bootstrap. Var(y) is the variance of log wages, Var(θ̂i) the vari-
ance of worker fixed effects (naive σ̂2

θ or corrected σ̃2
θ ), Var(ψ̂j) is the variance of firm fixed effects, Var(qγ̂) is the variance of other

covariates and Var(ϵ̂) is the variance of the error term. The other terms of the decomposition are twice the covariances between the
fixed effects and the covariates (2Cov(θ̂i , ψ̂j), 2Cov(θ̂i , qγ̂) and 2Cov(ψ̂j, qγ̂)). Finally, Corr(θ̂i , ψ̂j) is the estimated correlation between
worker and firm fixed effects and Obs. is the number of observations.
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