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Abstract

We propose the use of a dynamic choice experiment method, which we call Bayesian
Adaptive Choice Experiment (BACE), to elicit preferences efficiently. BACE generates
an adaptive sequence of menus from which subjects will make choices. Each menu is
optimally chosen, according to the mutual information criterion, using the information
provided by the subjects’ previous choices. We provide sufficient conditions under which
BACE achieves convergence and show that its convergence rate significantly improves
upon existing discrete choice methods with randomly generated menus. We show that it
achieves the highest possible rate of convergence whenever preferences are deterministic.
Beyond efficiency gains, BACE addresses a bias in estimating population-level average
preference parameters stemming from using combined data across individuals when
individuals differ in their tendency to be inconsistent in their choices. Given that
BACE requires the calculation of a Bayesian posterior as well as the solution to a
non-trivial optimization problem, several computational challenges arise. We address
such challenges by using Bayesian Monte Carlo techniques and provide a package for
researchers to employ. The separation between a front-end survey interface and a
back-end computational server allows the BACE package to be portable for research
designs in a wide range of settings.
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1 Introduction

Surveys can be a powerful tool to learn about important economic measures not present
in other types of datasets. Old-generation surveys capture many of the quantities that are
now more readily available in administrative datasets, such as measures of wages or public
benefit take-up. But a new generation of surveys—which use customizable, controllable, and
interactive methodologies—promises to do much more in helping us measure the important
inputs for understanding a broad range of economic phenomena.

Perhaps the most central example is individual preferences, a fundamental ingredient for
microeconomic analysis. While revealed preference has been a important tool for economists,
this approach has proven to be limited in some important economic environments. Well-
acknowledged limitations include the strong modeling assumptions and data availability
required to infer individual preferences, the inability to learn about non-use values, and
the unobserved factors, market imperfections, and behavioral biases that can present se-
rious confounds when inferring preferences using observational data. This has led to a
proliferation of research using stated preference approaches such as Discrete Choice Exper-
iments (DCEs) to estimate individual preferences in a broad range of applications. These
include studies in labor economics (Mas and Pallais, 2017), public economics (Neustadt and
Zweifel, 2011), health economics (Ryan, Gerard and Amaya-Amaya, 2007), environmental
economics (Carson and Czajkowski, 2014), development economics (Jeuland et al., 2009),
agricultural economics (Schulz, Breustedt and Latacz-Lohmann, 2014), urban economics
(Bullock, Scott and Gkartzios, 2011), education (Czajkowski et al., 2020), psychology (Ida
and Goto, 2009), criminology (Picasso and Cohen, 2019), real estate (Glumac and Wissink,
2018), transportation (Bliemer and Rose, 2011), and marketing (Green, Krieger and Wind,
2001).

In economics, DCEs have become increasingly popular, with one of the more common uses
in recent years being the measurement of workers’ preferences for job attributes (Eriksson
and Kristensen, 2014; Mas and Pallais, 2017; Wiswall and Zafar, 2018; Maestas et al., 2018;
Mas and Pallais, 2019; Gelblum, 2020; Feld, Nagy and Osman, 2020), which is an application
we revisit in this paper. Discrete choice experiments are also widely used in settings with
incentivized choices. The proliferation of lab experiments also makes use of dynamic features
of surveys to design incentivized experiments to measure important preference parameters
such as risk and time preference or loss aversion (Andersen et al., 2006).1 Beyond the
academic literature, these methods feature prominently in policy analysis, regulation, and

1Multiple price lists are a form of discrete choice experiments. Experimentalists also use sequential binary
lottery choices to estimate preference parameters.
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litigation (Carson, 2012).
In this project we propose the use of dynamic choice experiments, a survey method which

we call the Bayesian Adaptive Choice Experiment (BACE) framework, to replace existing static
choice experiments widely used to elicit preferences. BACE makes it possible to efficiently
obtain individual-level preference estimates while accommodating flexible underlying utility
functions and a broad range of designs of the choice experiments. In addition, the method
significantly improves efficiency and overcomes biases in approaches that rely on aggregating
data across individuals to estimate an average population-level estimate.

A standard Discrete Choice Experiment (DCE) asks respondents to choose among a set of
alternatives that vary along multiple dimensions. Without a dynamic framework, these alter-
natives consist of pre-generated, often randomized bundles of characteristics. The resulting
lack of statistical power to infer preferences at the individual level typically necessitates a focus
on estimating average preferences when using static approaches. This has several notable
shortcomings: (1) it requires making assumptions about the preference distribution in the
population as well as implicit assumptions about homogeneity in respondents’ inconsistency
in making choices; and (2) it can lead to biased estimates of average preferences, related to
the mean-variance confound in estimating limited dependent variable models using maximum
likelihood or minimum chi-square estimators.

BACE provides an efficient dynamic elicitation procedure for conducting choice experi-
ments that overcomes these problems. It does so by generating an efficient sequence of choice
scenarios based on a prior that gets updated with previous answers to obtain individual-level
Bayesian posterior estimates. At each stage of experimentation, the next scenario to be
presented is the one that will yield the greatest information gain about the parameter values,
which can include a choice consistency parameter. The procedure thus allows for an efficient
elicitation of preferences for each individual, taking into account heterogeneity in choice
inconsistency.

The increasing use of hypothetical choice experiments in economics and related fields has
helped provide evidence and support for the reliability of the method. Existing research shows
that estimates from choice experiments are often in reasonable ranges and with expected
signs (Mas and Pallais, 2017; Maestas et al., 2018); consistent across different subject pools
(Mas and Pallais, 2017); consistent with subsequent choices (Wiswall and Zafar, 2018; Aucejo,
French and Zafar, 2021); and superior to estimates from other types of survey questions such
as open-ended questions and multiple price list, which tend to be noisy and inconsistent
with basic economic theory (Feld, Nagy and Osman, 2020). In fact, when comparing four
elicitation methods (discrete choice experiment, open-end questions, pay card / multiple
price list, and double bounded dichotomous choice questions), Feld, Nagy and Osman (2020)
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find that only with the DCE is there no valuation that is inconsistent with economic theory.
BACE then provides a timely and important improvement for a reliable method that has
been proving its usefulness and can be applied broadly by many researchers.

While adaptive designs for choice experiments have been proposed in previous research,
the biggest barrier to implementation outside of university computer laboratories using
student subjects has been computational costs.

The idea of optimal experimental design to estimate parameters efficiently dates back to
Peirce (1967), and Wald (1950) describes the idea of dynamic designs in statistics. While the
concept is widespread in many fields in the physical and biological science, it is not often
discussed and rarely implemented in economics (see Aigner 1979; Moffatt 2007; Chapman
et al. 2018 for further discussion). The most common application in economics and psychology
so far has been the elicitation of time and risk preferences (Cavagnaro et al., 2013; Toubia
et al., 2013; Cavagnaro et al., 2016; Chapman et al., 2018; Imai and Camerer, 2018), though
the implementations there are largely limited to small-scale within-the-lab versions or as
coarse pre-computed approximations to the Bayesian-optimal dynamic elicitation.2

We contribute to this literature in three ways.
First, we formalize the method under a decision-theoretic framework. We show formal

conditions under which preferences can be identified in finite choice data, along the lines of
Chambers, Echenique and Lambert (2021). Their paper focuses on a setting with identically
and independently distributed data in a frequentist framework. Our problem adds an
additional layer of complexity when the menu choice is dynamically generated in a Bayesian
framework. We discuss the convergence rate of our method both theoretically and in
simulations.

Second, our implementation makes a step forward in allowing such procedures to be more
widely adopted to study a wide range of other possible social science applications. We provide
an implementation of BACE that is portable, scalable, and computationally feasible and
provide a more detailed description of the properties of BACE. The code allows a survey
platform (e.g., Qualtrics) to interact with on-the-cloud backend servers that can do large-scale
computation of the next-best scenario simultaneously across survey subjects in real time.
The computation uses Bayesian Monte Carlo methods to ensure that computational speed is
practical when implementing live surveys for thousands of respondents simultaneously. This
resulting package allows for other researchers to easily apply the method to different settings
to address a wide range of questions.

2In the context of a correspondence study, Avivi et al. (2021) consider the efficiency gain from dynamically
adapting the profiles of fictitious applicants sent to employers. A related but distinct literature explores
adaptive procedures with a different objective, namely, to maximize the gain from experimental treatments
while measuring treatment effects; recent papers include Caria et al. (2020) and Kasy and Sautmann (2021).
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Third, we document a systematic bias that arises when attempting to estimate average
preference parameters by pooling data across individuals. Pooling is common in practice when
using less efficient elicitation approaches such as static designs. The bias result highlights the
importance of using methods that provide precise individual-level estimates.

2 The BACE procedure

This section describes the main components that make up a Bayesian Adaptive Choice
Experiment. We begin by introducing notation:

• 𝜃 ∈ ℝ𝑘: Vector of preference parameters that the researcher is interested in estimating.

• 𝐷: Set of designs that can be shown to respondents. Each element 𝑑 ∈ 𝐷 is a vector
that represents a discrete choice question that can be shown to respondents.

• 𝑋: Discrete set of possible answers that can be observed. For example, an individual
may choose between two options in a binary DCE. In that case, 𝑋 = [0, 1] or 𝑋 =
[𝑂𝑝𝑡𝑖𝑜𝑛𝐴, 𝑂𝑝𝑡𝑖𝑜𝑛𝐵].

• 𝑡 ∈ 1, … , 𝑇: 𝑡 represents the time period or the number of questions an individual has
answered.

• The sets of past design scenarios and answers up to time 𝑡 are given by 𝑑(1∶𝑡) ≡
{𝑑1, … , 𝑑𝑡} and 𝑥(1∶𝑡) ≡ {𝑥1, … , 𝑥𝑡}, respectively.

• ℓ(𝑥 | 𝜃, 𝑑): The likelihood of observing the answer 𝑥 to scenario 𝑑 if an agent has
preference parameters 𝜃.

A standard discrete choice experiment involves asking subjects to choose between a series
of hypothetical scenarios. Each scenario presents two (or more) options that vary along a set
of characteristics. Subjects evaluate tradeoffs between the options and select their preferred
option. The researcher’s ultimate goal is to estimate a vector of preference parameters, 𝜃, that
captures how an individual values different characteristics of a good based on how subjects
answer a series of scenarios. In practice, these scenarios are typically randomly generated
across a range of values.3

The adaptive Bayesian approach to the standard discrete choice experiment generates an
efficient sequence of hypothetical scenarios in real-time based on a prior that gets updated

3In many cases, scenarios that involve ex-ante pre-determined dominated choices are eliminated to increase
statistical power, such as in Wiswall and Zafar (2018); Maestas et al. (2018).
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with past answers. At each stage of experimentation, the next scenario to be presented is
the one that will generate the highest amount of information gained about the parameter
values. In a simple search model when subjects evaluate the value of one parameter against
a benchmark one at a time, the most efficient approach is a binary search. The adaptive
Bayesian approach has the same principle as a binary search, but it allows for complex search
problems with multiple dimensions and allows for choices that are made inconsistently due
to inattentiveness.

The researcher’s overarching goal is to accurately estimate individual 𝑖’s preferences, 𝜃𝑖.
To do so, the researcher estimates Pr(𝜃𝑖 ∣ 𝑥(1∶𝑇 )

𝑖 , 𝑑(1∶𝑇 )
𝑖 ) for each individual, which represents

the posterior belief over 𝜃𝑖 conditional on individual 𝑖’s answers to 𝑇 questions and the
researcher’s prior. In practice, the number of questions that each individual sees, 𝑇, is limited
by the subject’s attention and the researcher’s budget. Standard processes may select a
series of scenarios randomly or use a pre-determined sequence of questions that covers the
parameter range of interest, e.g. standard multiple price lists. However, these methods are
inefficient because they fail to incorporate information from previous questions, produce
incorrect estimates when individuals make mistakes, and can only distinguish between a
set of respondent types that are given by the chosen set of designs.4 Intuitively, adaptive
experimental approaches are able to estimate 𝜃 more accurately, and with fewer questions,
than previous methods because future scenarios are chosen using information from how an
individual made choices in the past.

Formally, the BACE procedure is as follows. At each period 𝑡 ∈ {1, 2, … , 𝑇}, a choice
scenario 𝑑𝑡 is presented, and the respondent’s answer 𝑥𝑡 is recorded. At time 𝑡, data consists
of the set of questions that have been shown to respondents (𝑑(1∶𝑡) ≡ {𝑑1, … , 𝑑𝑡}) and the
observed answers (𝑥(1∶𝑡) ≡ {𝑥1, … , 𝑥𝑡}) to those questions. This information acts as data
entering the beginning of period 𝑡+1. Let 𝜃 be the parameter vector that the researcher wants
to estimate. At the beginning of period 𝑡 + 1, our prior for 𝜃 is denoted as Pr(𝜃 ∣ 𝑥(1∶𝑡), 𝑑(1∶𝑡)),
which is calculated using Bayes’ rule.

The problem at time 𝑡 + 1 is to find the optimal 𝑑∗
𝑡+1 among all possible scenarios 𝑑𝑡+1s.

Intuitively, given all the possible answers that one could observe, which design 𝑑∗
𝑡 reveals the

most information about the parameters we are interested in estimating, 𝜃? The criterion
chosen is based on information theory; we maximize the mutual information between the
parameter random value Θ and the outcome random value 𝑋𝑡+1 (the potential answer at
𝑡 + 1) conditional on the scenario 𝑑𝑡+1 (Shannon, 1948). The interpretation is that we select

4For example, a multiple price list with 𝑁 options can separate individuals into 𝑁 + 1 types. A binary
decision tree with 𝑁 questions separates individuals into 2𝑁 types, and estimates will be inaccurate if
individuals make mistakes, particularly during the early stages of an experiment.
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the scenario that yields the largest information gain about the parameters of interest after
observing a new answer.5 Denote the mutual information as 𝑈(𝑑𝑡+1) ≔ 𝐼(Θ; 𝑋𝑡+1|𝑑𝑡+1):6

𝑈(𝑑𝑡+1) = ∫
𝜃

∫
𝑥𝑡+1

[log
Pr(𝜃 ∣ 𝑥(1∶𝑡+1), 𝑑𝑡+1)

Pr(𝜃 ∣ 𝑥(1∶𝑡))
] Pr(𝑥𝑡+1 | 𝜃, 𝑑𝑡+1) Pr(𝜃 ∣ 𝑥(1∶𝑡))𝑑𝑥𝑡+1𝑑𝜃 (1)

In the language of the Bayesian experimental design literature (Chaloner and Verdinelli,
1995), this equation is the utility function of the researcher, and the objective is to find
𝑑∗

𝑡+1 = arg max𝑑𝑡+1
𝑈(𝑑𝑡+1).

Note that Pr(𝑥𝑡+1 | 𝜃, 𝑑𝑡+1) is the likelihood of the answer 𝑥𝑡+1 given the presented scenario
𝑑𝑡+1, at parameter value 𝜃, which can be computed from the utility function. In the case of
testing across utility models, the formula above also needs to summarize over all the candidate
models. The posterior Pr(𝜃 ∣ 𝑥(1∶𝑡+1), 𝑑𝑡+1) can be computed given the likelihood function
and the researcher’s prior using Bayes’ rule. Based on the realized answer, the posterior is
then updated:

Pr(𝜃 ∣ 𝑥(1∶𝑡+1), 𝑑𝑡+1) =
Pr(𝑥𝑡+1 | 𝜃, 𝑑𝑡+1) Pr(𝜃 ∣ 𝑥(1∶𝑡))

∫𝜃′ Pr(𝑥𝑡+1 | 𝜃′, 𝑑𝑡+1) Pr(𝜃′ ∣ 𝑥(1∶𝑡))𝑑𝜃′
(2)

Figure 1 shows the schematic illustration of the steps involved. The procedure starts
with a prior distribution 𝑝(𝜃) that is defined by the researcher. This prior can be based
on estimates from the literature, results from a pilot experiment, or the researcher’s prior
knowledge.7 The posterior at time 𝑡 constitutes the prior at time 𝑡 + 1. The optimal design
is chosen according to this prior and is presented to the respondent. The researcher observes
the individual’s answer and calculates a posterior distribution using the new data. If 𝑡 < 𝑇,
then the process is repeated using the posterior distribution as the new prior.

5Paninski (2005) shows that if the prior is absolutely continuous and has bounded density, the mutual
information criterion can choose designs that lead to consistent and efficient parameter estimates. Alternative
criteria include maximizing the inverse of the asymptotic covariance matrix of the maximum likelihood
estimate as in Toubia et al. (2013) or the Equivalence Class Edge Cutting information criterion as in Imai
and Camerer (2018), among others; see Ryan et al. (2016) for a review.

6The mutual information is the same as the Kullback-Leibler divergence between the joint distribution
and the product of the marginal distributions of Θ and 𝑋𝑡+1|𝑑𝑡+1.

7In practice, both the questions that are selected and the posterior estimates depend on the prior that
the researcher selects, which is typical in Bayesian statistical methods. However, the influence of the prior
distribution on posterior estimates will decrease as more data is accumulated. Nevertheless, the method
can only produce parameter estimates that fall within the support of the prior distribution by design, and
researchers should take care that the prior they specify covers the range of possible values they expect in the
population.

6



3 Decision Theoretic Formulation of BACE

3.1 Primitives

BACE features an experimenter and a subject. The subject has a preference over a set
of alternatives 𝑋, which is assumed to be a compact and connected metric space. The
experimenter would like to learn the subject’s preferences by observing her choose from
menus.

By preference, we mean a binary relation ⪰ over 𝑋. Formally, ⪰ is a subset of 𝑋 × 𝑋.
We write 𝑥 ⪰ 𝑦 whenever (𝑥, 𝑦) ∈ ⪰. Given a preference ⪰, denote its asymmetric part by ≻
(i.e., 𝑥 ≻ 𝑦 if (𝑥, 𝑦) ∈ ⪰ and (𝑦, 𝑥) ∉ ⪰) and its symmetric part by ∼ (i.e., 𝑥 ∼ 𝑦 if (𝑥, 𝑦) ∈ ⪰
and (𝑦, 𝑥) ∈ ⪰). We say 𝑥 is strictly preferred (resp. indifferent) to 𝑦 if 𝑥 ≻ 𝑦 (resp. 𝑥 ∼ 𝑦).
Let 𝒳 denote the set of all preferences over 𝑋. We endow 𝒳 with the Hausdorff hemimetric.

The experimenter believes the subject’s preferences conform to a parametric model. She
considers a set of parameters Θ ⊆ ℝ𝑛 and a function 𝜙∶ Θ → 𝒳′ ⊂ 𝒳. We write ⪰𝜃 to
denote 𝜙(𝜃) and refer to it as the preference of a subject conforming to 𝜃. The experimenter’s
uncertainty over the subjects’ preference is captured by a prior Π over the probability space
(Θ, ℬ(Θ)), where ℬ(Θ) is the Borel 𝜎-algebra.

In this framework, BACE would generate an adaptive sequence of menus from which the
subject would make a choice. We restrict BACE to generate menus that contain no more
than two alternatives but discuss generalizations of our results in Section 5.

When facing a menu, the subject’s behavior is guided by his preferences. However, we
allow the subject to make a mistake and choose an alternative that is not preferred with
some probability. This is captured by the function ℓ ∶ Θ × 𝑋 × 𝑋 → [0, 1]. Assume that for
all 𝑥, 𝑦 ∈ 𝑋, the ℓ(⋅, 𝑥, 𝑦) is measurable on Θ.

When making a choice from a menu {𝑥, 𝑦}, a subject conforming to 𝜃 selects 𝑥 over 𝑦 with
probability ℓ(𝜃, 𝑥, 𝑦), and 𝑦 over 𝑥 with complementary probability. We assume ℓ(𝜃, 𝑥, 𝑦) > 1

2
when 𝑥 ≻𝜃 𝑦, and ℓ(𝜃, 𝑥, 𝑦) = 1

2 when 𝑥 ∼𝜃 𝑦.
Given the primitives—the set of alternatives 𝑋, the set of parameters Θ, the preference

function 𝜙, the prior Π, and the function ℓ—we refer to the tuple (𝑋, Θ, 𝜙, ℓ, Π) as a parametric
model. We make the following assumptions on the model:

• Θ is a compact and convex set.

• 𝜙∶ Θ → 𝒳′ ⊂ 𝒳 is one-to-one and onto, and 𝒳′ is a set of transitive preferences
such that 𝑥 ⪰ 𝑦 implies there exists 𝑥′, 𝑦′ ∈ 𝑋 that are arbitrarily close to 𝑥 and 𝑦,
respectively, such that 𝑥′ ≻ 𝑦′. Preferences that satisfy this property are called strict
preferences.
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• Π has full support and admits a density 𝑓.

3.2 BACE Procedure for Stochastic Choice

In order to apply BACE, the experimenter needs to be able to calculate a posterior after
observing the subject make a choice. By Bayes’ theorem, if the subject chooses 𝑥 from {𝑥, 𝑦},
resulting in the sample (𝑥, 𝑦), then the posterior density is given by

𝑓(𝜃|(𝑥, 𝑦)) =
ℓ(𝜃, 𝑥, 𝑦)𝑓(𝜃)

∫Θ ℓ(𝜃, 𝑥, 𝑦)𝑓(𝜃)𝑑𝜃
,

whenever ∫Θ ℓ(𝜃, 𝑥, 𝑦)𝑓(𝜃)𝑑𝜃 ≠ 0.
Define the function 𝑢∶ 𝑋 × 𝑋 → ℝ by

𝑢(𝑥, 𝑦) = ∫
Θ

[ℓ(𝜃, 𝑥, 𝑦) log(
𝑓(𝜃|(𝑥, 𝑦))

𝑓(𝜃) ) + ℓ(𝜃, 𝑦, 𝑥) log(
𝑓(𝜃|(𝑦, 𝑥))

𝑓(𝜃) )]𝑓(𝜃)𝑑𝜃.

Notice that 𝑢(𝑥, 𝑦) = 𝑢(𝑦, 𝑥). Therefore, if (𝑥, 𝑦) maximizes 𝑢, so does (𝑦, 𝑥). An experi-
menter using BACE would choose the menu {𝑥, 𝑦} such that (𝑥, 𝑦) maximizes 𝑢. Although
elegant, the BACE formula does not shed any light on which menus are generated by the
procedure. Our next result fully characterizes the properties of the menus BACE generates
under the appropriate continuity assumption on ℓ.

Theorem 1. Suppose ℓ is continuous in the product metric and ℓ(𝜃, 𝑥, 𝑦) ∈ (0, 1) for all
𝑥, 𝑦 ∈ 𝑋 and 𝜃 ∈ Θ. Then the following are equivalent:

(𝑥, 𝑦) ∈ arg max
(𝑥′,𝑦′)∈𝑋×𝑋

𝑢(𝑥′, 𝑦′) (3)

(𝑥, 𝑦) ∈ arg max
(𝑥′,𝑦′)∈ℋ

∫
Θ

[ℓ(𝜃, 𝑥′, 𝑦′) log(ℓ(𝜃, 𝑥′, 𝑦′)) + ℓ(𝜃, 𝑦′, 𝑥′) log(ℓ(𝜃, 𝑦′, 𝑥′))]𝑓(𝜃)𝑑𝜃, (4)

where ℋ represents the set of all pairs (𝑥, 𝑦) satisfying

∫
Θ

ℓ(𝜃, 𝑥, 𝑦)𝑓(𝜃)𝑑𝜃 = 1
2.

We say {𝑥, 𝑦} is a half-space-partitioning menu if (𝑥, 𝑦) ∈ ℋ and Π(𝜃|𝑥 ≻𝜃 𝑦) > 0. The
restriction to half-space-partitioning menus establishes that BACE generates a menu {𝑥, 𝑦}
in which the ex-ante probability of observing the subject choose 𝑥 over 𝑦 is equal to 1

2 . This
alone does not characterize which of such menus will be generated. As we demonstrate next,
BACE generates the menu in which the expected choice results in minimal entropy. Because
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entropy is a measure of stochasticity, we can infer that BACE generates the menu with the
lowest expected stochasticity among the half-space-partitioning menus.

Observe that the tuple (𝜃, {𝑥, 𝑦}, ℓ) induces a Bernoulli distribution: Letting 𝜔1 = (𝑥, 𝑦)
and 𝜔2 = (𝑦, 𝑥), we can define 𝑝𝜃(𝜔1) = ℓ(𝜃, 𝑥, 𝑦) and 𝑝𝜃(𝜔2) = ℓ(𝜃, 𝑦, 𝑥). Then 𝑝𝜃 is a
Bernoulli probability measure. The entropy for Bernoulli measures is

𝐻(𝑝𝜃) = −𝑝𝜃 log(𝑝𝜃) − (1 − 𝑝𝜃) log(1 − 𝑝𝜃).

Therefore, the objective function in Equation (4) can be equivalently written as

∫
Θ

−𝐻(𝑝𝜃)𝑓(𝜃)𝑑𝜃,

which implies that BACE generates the menu that minimizes the expected entropy among
the half-space-partitioning menus.

Any procedure that minimizes entropy will never generate a menu that is dominated
in terms of error probabilities. Intuitively, if there are two menus {𝑥, 𝑦} and {𝑧, 𝑤}, and
every possible preference 𝜃 is more likely to make a mistake when facing {𝑧, 𝑤} than when
facing {𝑥, 𝑦}, then the experimenter should not offer {𝑧, 𝑤}. This observation implies that
if the subject’s probability of making a mistake is independent of their preference, then
BACE will generate the menu from which they are less likely to make a mistake among the
half-space-partitioning menus. The following corollary documents that BACE indeed has
this property.

Corollary 1. The following statements are true:

1. Assume (𝑥, 𝑦), (𝑤, 𝑧) ∈ ℋ are such that 𝑥 ≻𝜃 𝑦 ⟹ 𝑤 ≻𝜃 𝑧 and ℓ(𝜃, 𝑥, 𝑦) > ℓ(𝜃, 𝑤, 𝑧).
Then, (𝑤, 𝑧) ∉ arg max

(𝑥′,𝑦′)∈𝑋×𝑋
𝑢(𝑥′, 𝑦′).

2. If ℓ(𝜃, 𝑥, 𝑦) = 𝑞(𝑥, 𝑦) whenever 𝑥 ⪰𝜃 𝑦, then

(𝑥, 𝑦) ∈ arg max
(𝑥′,𝑦′)∈𝑋×𝑋

𝑢(𝑥′, 𝑦′) ⟺ (𝑥, 𝑦) ∈ arg max
(𝑥′,𝑦′)∈ℋ

𝑞(𝑥′, 𝑦′).

Theorem 1 relies on the fact that ℓ is continuous; however, this is not always an appropriate
assumption. For example, if subjects do not make mistakes (ℓ(𝜃, 𝑥, 𝑦) = 1 ⟺ 𝑥 ≻𝜃 𝑦 )
or the probability of making a mistake is constant (ℓ(𝜃, 𝑥, 𝑦) = 𝑞 ⟺ 𝑥 ≻𝜃 𝑦), then ℓ will
not be continuous. Without continuity of ℓ, we cannot ensure the existence of a maximizer
for the BACE objective function and thus cannot provide a corresponding characterization.
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Nevertheless, we can provide a characterization for the case in which the experimenter only
considers a finite set of alternatives for the experiment.

Proposition 1. Let �̂� ⊂ 𝑋 be a finite set of alternatives such that for all 𝑥, 𝑦 ∈ �̂�, there is
no open 𝐶 ⊂ Θ for which 𝑥 ∼𝜃 𝑦 for all 𝜃 ∈ 𝐶 whenever 𝑥 ≠ 𝑦. If ℓ(𝜃, 𝑥, 𝑦) = 𝑞 ⟺ 𝑥 ≻𝜃 𝑦
for some 𝑞 ∈ (1

2 , 1], then

(𝑥, 𝑦) ∈ arg max
(𝑥′,𝑦′)∈�̂�×�̂�

𝑢(𝑥′, 𝑦′) ⟺ (𝑥, 𝑦) ∈ arg min
(𝑥′,𝑦′)∈�̂�×�̂�

|Π(𝜃|𝑥′ ≻𝜃 𝑦′) − 1
2|.

Proposition 1 not only characterizes BACE when the experimenter can only consider
finitely many alternatives but also provides a formal relationship between BACE and the
binary search literature. Specifically, it illustrates that when the probability of mistakes is
constant, BACE operates as a binary search algorithm: it first partitions the space into two
sets and then tests them against each other. It also suggests a simplified way to implement
BACE under specific assumptions.

Under a relatively mild additional assumption, we can restore the conclusion of Theorem 1.
To give intuition, suppose the subject does not make any mistakes, and the experimenter’s
goal is to rule out “50%” of all the parameters Θ. The assumption amounts to stating that
there exists a menu {𝑥, 𝑦} from which no matter what the subject chooses, it would only
be consistent with “50%” of the parameters. Formally, let 𝜆 be the Lebesgue measure and
assume that

1. For any 𝛼 ∈ (0, 𝜆(Θ)), there exists a menu {𝑥, 𝑦} such that 𝜆({𝜃|𝑥 ≻𝜃 𝑦}) = 𝛼.

2. 𝛼𝑛 → 𝛼 implies 𝑥𝛼𝑛
→ 𝑥𝛼 and 𝑦𝛼𝑛

→ 𝑦𝛼.

We refer to this assumption as our testing assumption.

Proposition 2. Assume ℓ(𝜃, 𝑥, 𝑦) = 𝑞 ⟺ 𝑥 ≻𝜃 𝑦 for some 𝑞 ∈ (1
2 , 1]. Then, under the

testing assumption,

(𝑥, 𝑦) ∈ arg max
(𝑥′,𝑦′)∈𝑋×𝑋

𝑢(𝑥′, 𝑦′) ⟺ Π(𝜃|𝑥 ≻𝜃 𝑦) = Π(𝜃|𝑦 ≻𝜃 𝑥) = 1
2.

4 Convergence Results

In this section, we show that an experimenter who uses BACE will eventually learn the
true preference of the subject. We separate the results into two cases: one when the subject
does not make mistakes and another when the subject does. We begin by introducing the
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necessary notation and concepts needed to formalize what we mean by “learning the true
preference” in the case that the experimenter uses randomization to generate the menu to
offer the subject.

4.1 Definition of “learning the true preference”

Chambers, Echenique and Lambert (2021) model the random menu-generating framework
using a full-support probability measure 𝜈 over (𝑋, ℬ(𝑋)), where ℬ(𝑋) is the Borel 𝜎-algebra
on 𝑋, which they also use to denote the product measure on (𝑋 ×𝑋, ℬ(𝑋)×ℬ(𝑋)). Loosely
speaking, 𝜈(𝑥, 𝑦) = 𝜈(𝑥)𝜈(𝑦) represents the probability that the experimenter offers a menu
consisting of 𝑥 and 𝑦. They define

𝑃𝜃,𝜈(𝐵) = ∫
𝐵

ℓ(𝜃, 𝑥, 𝑦)𝑑𝜈(𝑥, 𝑦) for 𝐵 ∈ ℬ(𝑋) × ℬ(𝑋)

and interpret 𝑃𝜃((𝑥, 𝑦)) as the probability that the experimenter observes the subject choosing
𝑥 over 𝑦 when she uses 𝜈 to generate the menus. Equivalently, the experimenter faces
a random variable (𝑋, 𝑌 ) ∼ 𝑃𝜃,𝜈, and thus using 𝜈 infinitely many times to generate
menus results in a sequence of independently and identically distributed random variables
(𝑋1, 𝑌1), (𝑋2, 𝑌2), (𝑋3, 𝑌3), … ∼ 𝑃𝜃,𝜈.

Within this framework, as Chambers, Echenique and Lambert (2021) show, a frequentist
experimenter can estimate 𝜃. However, given the novelty of the preference identification
problem, there are no existing results for its Bayesian counterpart.

We take a distinct approach by considering a Bayesian experimenter, characterized by the
prior Π. The experimenter’s beliefs are captured by a distribution 𝜇 on ((𝑋1, 𝑌1), (𝑋2, 𝑌2), … , ),
defined by letting

∼ Π, and

(𝑋1, 𝑌1), (𝑋2, 𝑌2), (𝑋3, 𝑌3), … |𝜃 i.i.d.∼ 𝑃𝜃,𝜈.

Intuitively, the experimenter knows the sequence of random variables is conditionally i.i.d.
according to some distribution 𝑃𝜃,𝜈. However, she does not know which 𝑃𝜃,𝜈 is the true
distribution. This uncertainty is captured by Π.

Within this setting, we formalize the concept of “learning the truth” by adopting the notion
of Bayesian consistency. The experimenter is consistent at 𝜃 ∈ Θ if for every neighborhood 𝑈
of 𝜃, we have

Π(𝑈|(𝑋𝑡, 𝑌𝑡)𝑇
𝑡=1) → 1 almost surely under 𝑃𝜃,𝜈,
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where Π(𝑈|(𝑋𝑡, 𝑌𝑡)𝑇
𝑡=1) is calculated using Bayes’ rule. For the case in which the subject

does not make mistakes, leading to deterministic data, we need a definition of Bayesian
consistency that does not rely on probability. We say that a sequence (𝑥𝑡, 𝑦𝑡)∞

𝑡=1 is identified
at 𝜃 if for every neighborhood 𝑈 of 𝜃∗, the following convergence holds:

Π(𝑈|(𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1) → 1.

These notions allow us to provide a preference identification result for the Bayesian
experimenter in the i.i.d. setting under the same assumption as in Chambers, Echenique and
Lambert (2021):

Theorem 2. Suppose the measure 𝜈 on 𝑋 × 𝑋 satisfies 𝜈({{𝑥, 𝑦}|𝑥 ∼𝜃 𝑦}) = 0 for all 𝜃 ∈ Θ.
Then there exists ΘΠ ⊆ Θ with Π(ΘΠ) = 1 such that the experimenter is consistent at all
𝜃 ∈ ΘΠ.

4.2 Deterministic Choice

Assume throughout this section that the subject does not make any mistakes—ℓ(𝜃, 𝑥, 𝑦) = 1
whenever 𝑥 ≻𝜃 𝑦—and that our testing condition holds. Proposition 2 implies that BACE
will only generate sequences that satisfy

Π({𝜃|𝑥𝑇 ≻𝜃 𝑦𝑇}|(𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1) = Π({𝜃|𝑦𝑇 ≻𝜃 𝑥𝑇}|(𝑥𝑡, 𝑦𝑡)𝑇

𝑡=1) = 1
2. (5)

Therefore, we say that a sequence (𝑥𝑡, 𝑦𝑡)∞
𝑡=1 is BACE-compatible if it satisfies Equation (5).

Because preferences are deterministic, each choice from a BACE-generated menu sys-
tematically eliminates half of the remaining possible preferences based on the current belief.
This process results in the prior probability of the support of the posterior being exactly
one-half. Therefore, the experimenter’s posterior narrows down to the true parameter as fast
as 1

2𝑇 → 0. The following proposition formalizes this idea.

Proposition 3. If (𝑥𝑡, 𝑦𝑡)∞
𝑡=1 is BACE-compatible, given a subject conforming to 𝜃, then

(𝑥𝑡, 𝑦𝑡)∞
𝑡=1 is identified at 𝜃. Moreover, for any 𝑇,

Π(supp(Π(⋅|(𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1))) = 1

2𝑇 .

To understand how much faster this rate is compared to that from random menu generation,
consider the case of a uniform prior Π over Θ = [0, 1], with 𝑥 ⪰𝜃 𝑦 ⟹ 𝑥 ⪰𝜃′ 𝑦 for all 𝜃′ ≥ 𝜃.
This assumes the experimenter is dealing with one-dimensional, ordered preferences. For
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example, 𝑋 could represent the set of all lotteries over some monetary interval, with 𝜃 ∈ Θ
indexing utility functions that exhibit constant relative risk aversion:

𝑢(𝑥) =
⎧{
⎨{⎩

𝑥1−𝜃

1−𝜃 if 𝜃 ≠ 1

log(𝑥) if 𝜃 = 1.

Further assuming the true preference is 𝜃∗ = 1, we can calculate experimenter’s posterior dis-
tribution from generating menus uniformly at random. Specifically, assume the experimenter
uses the following menu generating procedure: {𝑝, 𝛿𝑥} where 𝑥 ∼ 𝒰(ce(0), ce(1)) and ce(𝜃)
is the certainty equivalent of lottery 𝑝 for preferences 𝜃. Then the posterior would be [𝑢, 1],
where 𝑢 ∼ 𝒰(0, 1). Moreover, if the experimenter uses the uniform random menu generator
𝑇 times, then the posterior becomes uniformly distributed over [𝑢, 1], where

𝑢 = max{𝑢1, … , 𝑢𝑇}, 𝑢𝑖
i.i.d.∼ 𝒰(0, 1).

Given that 𝔼(𝑢) = 𝑇
𝑇 +1 , the expected size of the support reduces to 1

𝑇 +1 . This demonstrates a
linear convergence for the experimenter’s posterior, in contrast to the exponential convergence
achievable through BACE.8

The above example illustrates a substantial improvement from using BACE relative to
random menu generation. However, it leaves open the question of whether BACE achieves
the best convergence rate possible.

We proceed to establish that no other menu-generating procedure can lead to faster
convergence. Given a full support prior Π0, define 𝒮𝑇 as the set of all sequences (𝑥𝑡, 𝑦𝑡)𝑇

𝑡=1

such that each sequence conforms to some preference 𝜃. Let 𝒫𝑇(Π) denote the set of all
posteriors an experimenter might have after making the subject choose from 𝑡 ≤ 𝑇 menus.
Formally,

𝒮𝑇 = {(𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1|𝑥𝑡 ⪰𝜃 𝑦𝑡 for all 𝑡 = 1, … , 𝑇 , 𝜃 ∈ Θ}

𝒫𝑇(Π0) = ⋃
𝑡≤𝑇

{Π(⋅|(𝑥𝑡′, 𝑦𝑡′)𝑡
𝑡′=1)|(𝑥𝑡′, 𝑦𝑡′)𝑡

𝑡′=1 ∈ 𝒮𝑡}.

A menu-generating procedure maps beliefs into lotteries over binary menus using the current
information, captured by the posterior, to determine the next menu, possibly at random.
More specifically, define ℳ2 as the set of all binary menus and Δ∗(ℳ2) as the set of finite-

8One might worry that 𝜃∗ = 1 represents the worst-case scenario for the uniform random menu generator,
casting doubt on the rate’s applicability to other values of 𝜃∗. However, this concern is unwarranted; the
same rate indeed applies across all 𝜃∗ ∈ [0, 1]. The argument for this is less straightforward and thus omitted
here for brevity.
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support probability measures over these menus. A menu-generating procedure is a function
𝐹∶ 𝒫𝑇(Π) → Δ∗(ℳ2), with the output denoted by 𝐹Π. Let ℱ represent the set of all such
procedures.

As highlighted in previous sections, prevailing procedures generate menus at random,
without accounting for subjects’ choices. Regardless of the experimenter’s beliefs, such
procedures would produce the same distribution over menus:

𝐹Π = 𝐹Π′ for all Π, Π′ ∈ 𝒫𝑇(Π0).

In contrast, BACE only generates half-space-partitioning menus that directly reflect the
experimenter’s current belief. As the half-space-partitioning menu need not be unique, BACE
defines a family of menu-generating procedures. Formally, let 𝐹 ℋ be the set of procedures
such that

{𝑥, 𝑦} ∈ supp(𝐹Π) ⟹ Π(𝜃|𝑥 ≻𝜃 𝑦) = Π(𝜃|𝑦 ≻𝜃 𝑥) = 1
2 for all Π ∈ 𝒫𝑇(Π0).

A tuple (𝜃, 𝐹 , Π0) induces a probability distribution 𝑃𝜃(⋅, 𝐹 , Π0) over 𝑋 × 𝑋:

𝑃𝜃((𝑥, 𝑦), 𝐹 , Π0) = 𝐹Π({𝑥, 𝑦})ℓ(𝜃, 𝑥, 𝑦).

By definition, 𝑃𝜃((𝑥, 𝑦), 𝐹 , Π0) represents the probability of the experimenter observing the
subject choose 𝑥 over 𝑦, given that menus are generated via 𝐹 under the prior Π0. Therefore,
𝑃𝜃(⋅, 𝐹 , Π0) represents the distribution of possible data an experimenter with prior Π0 may
collect after applying the menu-generating procedure 𝐹 a single time.

Consider a scenario in which the experimenter applies 𝐹 once and observes (𝑥1, 𝑦1).
If the subject’s true preference is 𝜃, then applying 𝐹 again would result in the distribu-
tion 𝑃𝜃(⋅, 𝐹 , Π0(⋅|(𝑥1, 𝑦1))). Notice that both 𝑃𝜃(⋅, 𝐹 , Π) and 𝑃𝜃(⋅, 𝐹 , Π0(⋅|(𝑋1, 𝑌1))), where
(𝑋1, 𝑌1) ∼ 𝑃𝜃(⋅, 𝐹 , Π0), jointly define a distribution over (𝑋 ×𝑋)2. This probability measure
represents the distribution over possible choices an experimenter with prior Π0 may observe
after applying 𝐹 twice. Iterating the reasoning above to apply 𝐹 successively 𝑇 times, we let
𝑃 𝑇

𝜃 (⋅, 𝐹 , Π) denote the induced probability measure over (𝑋 × 𝑋)𝑇.
Given the context provided above, we can now define “fastest rate possible”. Our definition

is relevant to the current setting, characterized by deterministic choices. An observation
(𝑥, 𝑦) only affects the experimenter’s posterior by assigning probability zero to the set of
parameters 𝜃 for which 𝑦 ≻𝜃 𝑥. A menu-generating procedure 𝐹 can thus be deemed “better”
than 𝐺 if 𝐹 rules out a greater mass of preferences compared to 𝐺. However, the expected
mass reduction may depend on the true preference. A menu-generating procedure 𝐹 may
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rule out a larger mass compared to 𝐺 if 𝜃∗ is the true preference, but it may rule out a
smaller mass if 𝜃∗∗ is the true preference. Since the experimenter does not know the true 𝜃,
we posit that 𝐹 performs better than 𝐺 if 𝐹 rules out a higher expected mass of the prior in
the worst-case scenario.

Formally, for a given prior Π0, we say that 𝐹 achieves the fastest rate possible after 𝑇
choices if

inf
𝜃∈Θ

𝔼𝑃 𝑇
𝜃 (⋅,𝐹,Π0)[Π(Θ ∖ supp(Π𝑇))] = sup

𝐺∈ℱ
inf
𝜃∈Θ

𝔼𝑃 𝑇
𝜃 (⋅,𝐺,Π0)[Π(Θ ∖ supp(Π𝑇))]

where Π𝑇 = Π0(⋅|(𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1), and the expectation is taken with respect to the probability

measure induced by the preference and the procedure.

Proposition 4. For any full support prior Π0, any procedure 𝐹 ∈ 𝐹 ℋ achieves the fastest
rate possible.

To understand why there cannot exist a procedure that outperforms BACE, consider
deterministic procedures that are implemented only once. Suppose that, for a given parameter
value 𝜃, a procedure generates a menu {𝑥, 𝑦} that eliminates more than half of the possible
preferences based on the prior. This implies that either Π({𝜃|𝑥 ⪰𝜃 𝑦}) > 1

2 or Π({𝜃|𝑦 ⪰𝜃

𝑥}) > 1
2 . In both cases, there is a possible choice that leads the experimenter to rule out less

than half of the preference space. Thus, in the worst-case scenario, the evaluation of such a
procedure is determined by the choice that does not rule out more than half of the preference
space.

4.3 Stochastic Choice

Suppose now that ℓ is continuous in the product metric, with ℓ(𝜃, 𝑥, 𝑦) ∈ (0, 1) for all
𝑥, 𝑦 ∈ 𝑋 and 𝜃 ∈ Θ. In the previous section, we presented convergence results that rely on
the primary implication of BACE for deterministic preferences, which is that it generates
half-space-partitioning menus. In this section, we extend the results to stochastic choice
settings. As before, the results apply not only to BACE but to any procedure that generates
half-space-partitioning menus.

Let Δ(Θ) denote the set of all full support probabilities on (Θ, ℬ(Θ)). Define a half-
space-generating procedure as a correspondence Γ∶ Δ(Θ) → 𝑋 × 𝑋 such that |Γ(Π)| = 2, and
(𝑥, 𝑦) ∈ Γ(Π) implies

1. ∫Θ ℓ(𝜃, 𝑥, 𝑦)𝑑Π = 1
2

2. (𝑦, 𝑥) ∈ Γ(Π)
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3. Π({𝜃 ∈ Θ ∶ 𝑥 ≻𝜃 𝑦}) > 0.

A procedure Γ maps beliefs Δ(Θ) into sets of potential observations (i.e., {(𝑥, 𝑦), (𝑦, 𝑥)})
that have the primary characteristic of BACE: they partition the belief space into two halves.
Given such a procedure, we can construct the set of all possible sequences (𝑥𝑡, 𝑦𝑡)∞

𝑡=1, denoted
Ω, that the experimenter could potentially observe. Moreover, each 𝜃 induces a probability
measure 𝑃𝜃 over Ω (see Appendix D for details regarding this construction). As a result, the
beliefs of an experimenter who plans to employ an augmented parametric model (Θ, 𝜙, ℓ, Γ, Π)
are defined by

𝜇(𝐸) = ∫
Θ

𝑃𝜃(𝐸|Θ)𝑑Π, 𝐸 ∈ 𝒮 × ℬ,

where Ω ⊂ (𝑋 × 𝑋)∞, 𝒮 is a 𝜎-algebra on Ω, 𝐸|Θ = {(𝑥𝑡, 𝑦𝑡)∞
𝑡=1 ∶ ((𝑥𝑡, 𝑦𝑡)∞

𝑡=1, 𝜃) ∈ 𝐸}. For
any finite sequence (𝑥𝑡, 𝑦𝑡)𝑇

𝑡=1 with 𝜇-positive probability, two key conditions hold:

1. 𝑃𝜃((𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1) = ∏𝑇

𝑡=1 ℓ(𝜃, 𝑥𝑡, 𝑦𝑡)

2. For any 𝑡 ≤ 𝑇,

∫
Θ

ℓ(𝜃, 𝑥𝑡, 𝑦𝑡)𝑑Π(⋅|(𝑥𝑡′, 𝑦𝑡′)𝑡−1
𝑡′=1) = 1

2

∫
𝐵𝑡

ℓ(𝜃, 𝑥𝑡, 𝑦𝑡)𝑑Π(⋅|(𝑥𝑡′, 𝑦𝑡′)𝑡−1
𝑡′=1) > 1

2

for some 𝐵1, … , 𝐵𝑡 ∈ ℬ.

Furthermore, for any sequence of data (𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1, the marginal of 𝜇(⋅|(𝑥𝑡, 𝑦𝑡)𝑇

𝑡=1) over Θ is
equivalent to the Bayesian posterior of the experimenter Π(⋅|(𝑥𝑡, 𝑦𝑡)𝑇

𝑡=1).

Theorem 3. There exists a set ΘΠ with Π(ΘΠ) = 1 such that the experimenter is consistent
at all 𝜃 ∈ ΘΠ.

The proof strategy of Theorem 3 relies on the Martingale Convergence Theorem. That
result guarantees that beliefs will converge to a random variable that may exhibit “path
dependency”. It suffices to show that this variable is degenerate in the true parameter. To
prove this, we leverage the property that BACE only generates half-space-partitioning menus.
Roughly speaking, this property ensures that, in the limit, the posterior distribution cannot
assign positive weight to more than one parameter. Finally, the fact that the beliefs are
well-specified guarantees that the experimenter never rules out the true preference, and thus
her beliefs concentrate around the true parameter.

While Theorem 3 guarantees consistency outside of a probability zero event, it remains
silent on the rate of convergence. Unfortunately, providing a rate under the above generality
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remains elusive because of the known difficulties in identifying the rate of convergence for
non-i.i.d. Bayesian inference problems. Very few results are known (see Ghosal and Van
Der Vaart, 2007).

We can establish a convergence rate under additional assumptions on Θ and ℓ. First, we
need Θ to be “ordered” in the sense that if a subject conforming to 𝜃 would choose 𝑥 over 𝑦,
then so should every 𝜃′ “greater than or equal to” 𝜃. An example of a context where such an
assumption holds is that of risk preferences. Second, we need the error to be independent
of preferences and objects of choice. This implies that every 𝜃 is equally likely to make a
mistake, regardless of the menu. Under these assumptions, we can derive a bound for the
rate at which the experimenter’s posterior concentrates on the true parameter.

Theorem 4. Assume

• For all 𝜃 ∈ Θ and 𝑥, 𝑦 ∈ 𝑋, ℓ(𝜃, 𝑥, 𝑦) = 𝑞 > 1
2 whenever 𝑥 ≻𝜃 𝑦.

• There exists a weak order ≥ over Θ such that 𝜃′ > 𝜃 implies 𝑥 ≻𝜃 𝑦 ⟹ 𝑥 ≻𝜃′ 𝑦.

Then there exists a set ΘΠ with Π(ΘΠ) = 1 such that for any 𝜃 ∈ ΘΠ and open 𝐶 with 𝜃 ∈ 𝐶,

Π𝑇(𝐶𝑐) ≤ [2𝑞(1 − 𝑞)]𝑇

almost surely under 𝑃𝜃 for large enough 𝑇.

5 Discussion

Above we restricted the set of preferences that can be part of a parametric model. We
assumed Θ is compact and convex and each 𝜃 maps into a unique locally strict preference.
All of these assumptions are with loss of generality. Specifically, without convexity of Θ
and local strictness, we cannot guarantee that our characterization results hold. Moreover,
without the compactness of Θ, we cannot guarantee our consistency results hold.

Compactness and convexity of Θ are quite common in empirical settings. Specifically,
compactness cannot be avoided as computers can only deal with finite sets. Moreover, priors
over Θ are usually assumed to admit a density which requires convexity of Θ. The locally
strict preference assumption does merit some discussion. As noted by Chambers, Echenique
and Lambert (2021), it generalizes the notion of local non-satiation. Its key implication is
that it guarantees that if choice is deterministic, then there exists a countable set of binary
menus from which observing the subject make choices would provide enough information
to identify the preference. This is a necessary condition for our consistency results to hold.
Without it, there is no hope a Bayesian experimenter will learn the true parameter.
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We also assumed the experimenter could only offer binary menus. Allowing the experi-
menter to offer more can help her in learning the preference faster. Suppose the subject’s
choice is deterministic and the experimenter is allowed to offer menus of three alternatives.
Then, the BACE optimization problem would be:

max
(𝑥,𝑦,𝑧)∈𝑋×𝑋×𝑋

Π({𝜃|𝑥 ≻𝜃 𝑦, 𝑧}) log( 1
Π(𝜃|𝑥 ≻𝜃 𝑦, 𝑧)) + Π({𝜃|𝑦 ≻𝜃 𝑥, 𝑧}) log( 1

Π({𝜃|𝑦 ≻𝜃 𝑥, 𝑧}))

+Π({𝜃|𝑧 ≻𝜃 𝑥, 𝑦}) log( 1
Π({𝜃|𝑧 ≻𝜃 𝑥, 𝑦}))

Proposition 5. Suppose there exists 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that

Π(𝜃|𝑥 ≻𝜃 𝑦, 𝑧) = Π(𝜃|𝑦 ≻𝜃 𝑥, 𝑧) = Π(𝜃|𝑧 ≻𝜃 𝑥, 𝑦) = 1
3.

Then (𝑥, 𝑦, 𝑧) solves the BACE optimization problem.

The proof of Proposition 5 is analogous to the proof of Proposition 2 and therefore
omitted. The above proposition is straightforwardly generalized to menus with finitely many
alternatives and has an important implication: Whenever 𝑛-space-partitioning menus exist,
the experimenter can achieve a rate of 1

𝑛𝑇 . The existence of such menus is not as rare as
one would think. For instance, in the risk aversion setting one can always find 𝑛 lotteries
𝑝1, ..., 𝑝𝑛 such that they are ordered according to second-order stochastic dominance and

Π(𝜃|𝑝1 ≻𝜃 𝑝2, ..., 𝑝𝑛) = … = Π(𝜃|𝑝𝑛 ≻𝜃 𝑝1, ..., 𝑝𝑛−1) = 1
𝑛.

Finally, we conclude this section by discussing how BACE would behave under a different
type of data. Experiments such as ?Wiswall and Zafar (2018) present subjects with binary
menus {𝑥, 𝑦} and ask them with what probability 𝑝𝑥,𝑦 they would choose 𝑥 over 𝑦. Allowing
for such data means that a subject now is identified as a pair (𝜃, ℓ) where ℓ(𝜃, 𝑥, 𝑦) is
interpreted as the probability of choosing 𝑥 the subject would report if she were to be offered
a menu {𝑥, 𝑦}.

Let ℒ = {ℓ ∶ Θ × 𝑋 × 𝑋 → [0, 1]|ℓ(𝜃, 𝑥, 𝑦) > 1
2 ⟺ 𝑥 ≻𝜃 𝑦 and ℓ(𝜃, 𝑥, 𝑦) = 1

2 ⟺ 𝑥 ∼𝜃

𝑦}. The parameter space is now Θ × ℒ.
Specifying a prior over Θ × ℒ is no easy task and involves several technicalities that do

not provide further insight. To avoid this we make four assumptions:

1. There exists a compact and convex set of parameters Ψ ⊂ ℝ𝑚 and a one-to-one
continuous function 𝛾 ∶ Ψ → ℒ′ ⊂ ℒ. We write ℓ𝜓 to denote 𝛾(𝜓).

2. The agents prior Π is over Θ × Ψ admits a product density 𝑓 = 𝑓Θ ⋅ 𝑓Ψ.
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3. For each 𝜃, 𝜃′ ∈ Θ and 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≻𝜃 𝑦 and 𝑥 ≻𝜃′ 𝑦,

∫
Ψ

1{𝜓 ∈ Ψ|ℓ𝜓(𝜃, 𝑥, 𝑦) = 𝑝}𝑓Ψ(𝜓)𝑑𝜓 = ∫
Ψ

1{𝜓 ∈ Ψ|ℓ𝜓(𝜃′, 𝑥, 𝑦) = 𝑝}𝑓Ψ(𝜓)𝑑𝜓.

for all 𝑝 ∈ (1
2 , 1].

4. For each 𝜃, 𝜃′ ∈ Θ and 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≻𝜃 𝑦 and 𝑦 ≻𝜃′ 𝑥,

∫
1

0
∫

Ψ
1{ℓ𝜓(𝜃, 𝑥, 𝑦) = 𝑝}𝑓Ψ(𝜓)𝑑𝜓𝑑𝑝 = ∫

1

0
∫

Ψ
1{ℓ𝜓(𝜃′, 𝑦, 𝑥) = 𝑝}𝑓Ψ(𝜓)𝑑𝜓𝑑𝑝

The first assumption effectively implies that the experimenter can express her uncertainty over
how the subject makes mistakes over a parameter space. The second rules out the possibility
that the experimenter has a theory that relates the agent’s preference over alternatives to how
she commits mistakes. Indeed, it implies that her uncertainty about mistakes and preferences
are “independent”. The third and fourth are meant to capture the richness of ℒ. The third
assumption states that, in terms of the prior, the “size” of the set of error functions for two
different preferences is the same that agree on a single menu, is the same. The fourth posits
the same conclusion but for two preference that disagree on the menu.

Notice that for a given menu {𝑥, 𝑦}, the agent can report any number between [0, 1].
Thus, if the subject reports 𝑝𝑥,𝑦 when facing menu {𝑥, 𝑦} the experimenters posterior density
is given by

𝑓(𝜃, 𝜓|𝑝𝑥,𝑦) =
1{ℓ𝜓(𝜃, 𝑥, 𝑦) = 𝑝𝑥,𝑦}𝑓Ψ(𝜓)𝑓Θ(𝜃)

∫Θ ∫Ψ 1{ℓ𝜓(𝜃, 𝑥, 𝑦) = 𝑝𝑥,𝑦}𝑓Ψ(𝜓)𝑓Θ(𝜃)𝑑𝜓𝑑𝜃
.

Then, the BACE objective function can be written as

𝑢(𝑥, 𝑦) = ∫
Θ

∫
Ψ

[∫
1

0
1{ℓ𝜓(𝜃, 𝑥, 𝑦) = 𝑝} log( 1

∫Θ ∫Ψ 1{ℓ𝜓(𝜃, 𝑥, 𝑦) = 𝑝}𝑓Ψ(𝜓)𝑓Θ(𝜃)𝑑𝜓𝑑𝜃
)𝑑𝑝]𝑓Θ(𝜃)𝑓Ψ(𝜓)𝑑𝜓𝜃

Theorem 5. Assume there exists (𝑥, 𝑦) such that

∫
Θ

1{𝜃|𝑥 ≻𝜃 𝑦}𝑓Θ(𝜃)𝑑𝜃 = ∫
Θ

1{𝜃|𝑦 ≻𝜃 𝑥}𝑓Θ(𝜃)𝑑𝜃 = 1
2.

Then, (𝑥, 𝑦) ∈ arg max
𝑥,𝑦∈𝑋

𝑢(𝑥, 𝑦).

This theorem implies that the convergence rate of an experimenter that allows subjects to
report probability distributions over alternatives will be the same as one that only observes
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deterministic choices when subjects do not make mistakes. Intuitively, for each 𝑝𝑥,𝑦 > 1
2

there is a “large” number of ℓ’s for which ℓ(⋅, 𝑥, 𝑦) = 𝑝𝑥,𝑦. Hence, this extra information
cannot be used to rule out any 𝜃’s that could be ruled out if the experimenter were to only
learn 𝑥 is strictly better than 𝑦. Therefore, applying BACE in this setting yields converge to
the true parameter as fast as 1

2𝑇 → 0.
The previous result relies heavily on assumptions 3 and 4 which reflect an experimenter

that considers all possible ℓ’s. If instead, we consider an experimenter who restricts her
attention to a subset ℒ′ ⊂ ℒ, then she could indeed get a faster convergence rate. For instance,
suppose she only considers ℒ′ = {ℓ} where ℓ is such that there exists a menu {𝑥, 𝑦} in which
any two different preferences 𝜃, 𝜃′ will report different probabilities: ℓ(𝜃, 𝑥, 𝑦) ≠ ℓ(𝜃′, 𝑥, 𝑦).
Then, from a single report one can perfectly identify the preference, and the convergence
rate would be infinity.

6 Other Procedures

In recent years, some papers in economics have adopted adaptive experimental methods that
employ concepts different from mutual information to estimate time and risk preferences.
Specifically, Imai and Camerer (2018) employs the Equivalence Class Edge Cutting (𝐸𝐶2)
and Toubia et al. (2013) a method based on maximizing the Fisher Matrix. Neither of these
papers provides a characterization of how the methods work. Indeed, to the best of our
knowledge, Theorem 1 is the first characterizing theorem for adaptive experimental methods.
Therefore, a theoretical comparison between these methods and BACE is not readily available.
Ideally, if characterization of these methods existed we would use them to run a “horse” race
between them. Since providing such results is outside of the scope of this paper, we only
check if they are half-space-partitioning methods. Details for the claims in this section can
be found in Appendix H.

We begin by studying the 𝐸𝐶2 method. Adapting the Δ𝐸𝐶2 formula from Imai and
Camerer (2018) to our setting yields

Δ𝐸𝐶2(𝑥, 𝑦) = (∫
Θ

ℓ(𝜃, 𝑥, 𝑦)𝑓(𝜃)𝑑𝜃) (∫
Θ

[ℓ(𝜃, 𝑥, 𝑦)𝑓(𝜃|(𝑥, 𝑦))]2 𝑑𝜃)

+ (∫
Θ

ℓ(𝜃, 𝑦, 𝑥)𝑓(𝜃)𝑑𝜃) (∫
Θ

[ℓ(𝜃, 𝑦, 𝑥)𝑓(𝜃|(𝑦, 𝑥))]2 𝑑𝜃)

As with BACE, inspection of the objective function does reveal it is a half-space-
partitioning method. However, as opposed to BACE, the 𝐸𝐶2 method turns out to not be

20



one in general. To illustrate, assume the subject does not make mistakes and consider the
case in which Θ = [0, 1] and Π ∼ 𝑈[0, 1]. Assume further that Θ is ordered in the sense that
𝑥 ≻𝜃 𝑦 ⟹ 𝑥 ≻𝜃′ 𝑦 for all 𝜃′ ≥ 𝜃. It turns out that under these assumptions, any pair
(𝑥, 𝑦) such that 𝑥 ≻𝜃 𝑦 for some 𝜃 ∈ (0, 1) maximizes Δ𝐸𝐶2. This means that the rate of
convergence entirely depends on the tie-breaking rule the experimenter adopts. Moreover, it
shows it is not a half-space-partitiong method.

A similar observation can be made for the Fisher matrix method. Adapting the objective
function of Toubia et al. (2013) to our setting yields

𝐹(𝑥, 𝑦) = (∫
Θ

ℓ(𝜃, 𝑥, 𝑦)𝑓(𝜃)𝑑𝜃) ‖𝐻(𝑓(⋅|(𝑥,𝑦))( ̂𝜃)‖ + (∫
Θ

ℓ(𝜃, 𝑦, 𝑥)𝑓(𝜃)𝑑𝜃) ‖𝐻(𝑓(⋅|(𝑦,𝑥))( ̂𝜃)‖

where 𝐻𝑓 denotes the Hessian of 𝑓, ̂𝜃 is the mode of 𝑓, and ‖ ⋅ ‖ is a norm (absolute value of
the determinant).

Roughly, their method suggests to generate the menu that maximizes the expected value
of the norm of the Hessian evaluated at the mode. Toubia et al. (2013) justify this by noting
that it has been shown that under general conditions, the asymptotic covariance matrix of
the Maximum Likelihood Estimator (MLE) is equal to the inverse of the Hessian of the
log-likelihood function evaluated at the MLE. Therefore, reducing the asymptotic covariance
matrix of the MLE is achieved by maximizing some norm of the Hessian of the likelihood
function. Toubia et al. (2013) “apply” this insight to the Bayesian setting and use the Hessian
of the posterior distribution at its mode instead of the MLE. They justfy this by noting that
mode of the posterior distribution becomes the standard MLE in the case of a uniform prior
or if data goes to infinity.

It is easy to see that maximizing 𝐹 need not yield a half-space-partitioning menu. Consider
the same example as with the 𝐸𝐶2 criteria. Under uniform prior and no mistakes, the Hessian
of the posterior is zero. Hence, 𝐹(𝑥, 𝑦) is constant. This observation generalizes to the case
in which mistakes are twice continuously differentiable. The reason is that under uniform
prior, every parameter is the mode.

7 Incentive Compatibility

Overall we have shown that BACE works and has desirable properties. However, we have
implicitly assumed that the subject always behaves truthfully in the sense that she is not
strategic. In this section, we discuss to what degree this assumption is without loss.

Consider a subject who understands the inner workings of BACE. This effectively means
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that she knows all the sequences (𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1 that are BACE-compatible in the sense that

(𝑥𝑡, 𝑦𝑡) ∈ arg min
(𝑥𝑡,𝑦𝑡)∈ℋ𝑡

∫
Θ

(ℓ(𝜃, 𝑥𝑡, 𝑦𝑡) log(ℓ(𝜃, 𝑥𝑡, 𝑦𝑡)) + ℓ(𝜃, 𝑦𝑡, 𝑥𝑡) log(ℓ(𝜃, 𝑦𝑡, 𝑥𝑡))) 𝑑Π𝑡

ℋ𝑡 = {(𝑥, 𝑦)| ∫
Θ

ℓ(𝜃, 𝑥, 𝑦)𝑑Π𝑡 = 1
2}

for all 𝑡.
If the experimenter were to tell the subject that she would get the last choice (𝑥𝑇) as

a reward for participating in the experiment, then the subject would have an incentive to
lie. To illustrate, consider our risk aversion example without mistakes: Θ = [0, 1], 𝜃∗ = 1,
Π ∼ 𝒰[0, 1], and

𝑢(𝑥) =
⎧{
⎨{⎩

𝑥1−𝜃

1−𝜃 if 𝜃 ≠ 1

log(𝑥) if 𝜃 = 1
.

Assume the experimenter uses BACE to choose the certainty equivalent of a lottery 𝑝 from
(ce(1), ce(0)). Then, if the subject chooses 𝑇 − 1 times the lottery, the last menu she would
be offered would be

{𝑝, ce( 1
2𝑇 )}.

However, if instead she answered truthfully the last menu she would be offered would be

{𝑝, ce(1 − 1
2𝑇 )}.

Because ce(⋅) is decreasing, the subject would strictly prefer ce( 1
2𝑇 ) over ce(1 − 1

2𝑇 ) and
therefore has an incentive to lie.

Although one may view this example as a criticism of BACE, it relies entirely on the fact
that the experimenter is offering the last choice as the reward for participation. We suggest
the experimenter employs a random reward system based on BACE. To describe the system,
we need a few preliminaries.

Given a BACE-compatible sample (𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1, let Π𝑇 be the corresponding posterior.

Define ̂𝜃 as the expectation of Π𝑇 restricted to the set of 𝜃’s such that

∫
Θ

ℓ(𝜃, 𝑥𝑇, 𝑦𝑇)𝑑Π𝑇 = 1
2.

Notice that if Θ is one-dimensional, then the experimenter does not need to take an expectation.
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Moreover, if Π(⋅|(𝑥𝑡, 𝑦𝑡)𝑇
𝑡=1) → 𝛿𝜃∗ weakly, then ̂𝜃 → 𝜃∗.

The reward system we propose works as follows: The experimenter tells the subject that
after answering 𝑇 questions, she will estimate her preferences using ̂𝜃 and then generate a
menu randomly and offer the reward that ⪰ ̂𝜃𝑇

would choose from the menu. Moreover, if the
experimenter wants to offer 𝑇 rewards, then she can generate randomly 𝑇 menus and then
offer the choices that ⪰ ̂𝜃𝑇

would make.
To show why our method is incentive-compatible consider a probability measure 𝜈 on

𝑋 × 𝑋. Then,

𝜌𝜈(≻ ̂𝜃 \ ≻𝜃∗) = ∫
𝑋×𝑋

1{(𝑥, 𝑦) ∈≻ ̂𝜃𝑇
\ ≻𝜃∗}𝑑𝜈(𝑥, 𝑦)

can be interpreted as the probability that a subject will get an alternative she would have
not chosen from a random menu. Because the experimenter does not know 𝜃∗, then she needs
to choose 𝜈 in such a way that

𝜌𝜈(≻𝜃′ \ ≻𝜃) = ∫
𝑋×𝑋

1{(𝑥, 𝑦) ∈≻𝜃′ \ ≻𝜃}𝑑𝜈(𝑥, 𝑦)

is increasing in 𝑑(𝜃, 𝜃′) for all 𝜃, 𝜃′ ∈ Θ. If she can do so, then the subject has the incentive
to report accurately her preferences as it will make ̂𝜃 the closest to 𝜃∗.

How to construct 𝜈 depends on the specific setting. For instance, in our risk aversion
example it is trivial. Indeed, one can just use a uniform random menu generator: {𝑝, 𝛿𝑥}
where 𝑥 ∼ 𝒰(ce(0), ce(1)). To see why it would work, fix 𝜃, 𝜃′, 𝜃″ ∈ (0, 1) such that
|𝜃 − 𝜃′| < |𝜃 − 𝜃″|. Assume WLOG that 𝜃′ > 𝜃. Let 𝜈(𝑥, 𝑦) = 1

2(𝑝, 𝛿𝑥) + 1
2(𝛿𝑥, 𝑝) where

𝑥 ∼ 𝒰(ce(0), ce(1)). There are two cases: (1) 𝜃″ > 𝜃′ and 𝜃″ < 𝜃. In case 1,

𝑃𝜈(≻𝜃′ \ ≻𝜃) = 𝜃′ − 𝜃 < 𝜃″ − 𝜃 = 𝑃𝜈(≻𝜃″ \ ≻𝜃).

In case 2,

𝑃𝜈(≻𝜃″ \ ≻𝜃) = 𝜃 − 𝜃″ > 𝜃′ − 𝜃 = 𝑃𝜈(≻𝜃′ \ ≻𝜃).

More generally the following strategy can be applied: Fix an increasing sequence (𝜖𝑖)𝑛
𝑖=1

such that Θ ⊂ 𝐵𝜖𝑛
(𝜃) for all 𝜃 ∈ Θ. Given ̂𝜃, find a sequence (𝑥𝑖, 𝑦𝑖)𝑛

𝑖=1 such that 𝜃 ∈ 𝐵𝜖𝑖
( ̂𝜃)

then (𝑥𝑖, 𝑦𝑖) ∈⪰𝜃 and (𝑥𝑖, 𝑦𝑖) ∉≻𝜃′ for all 𝜃′ ∈ Θ\𝐵𝜖𝑖
( ̂𝜃). Take 𝜈 such that it samples

uniformly from (𝑥𝑖, 𝑦𝑖)𝑛
𝑖=1. This procedure would then imply 𝑃𝜈(≻𝜃′ \ ≻𝜃) is increasing

in 𝑑( ̂𝜃, 𝜃). Hence, it would incentivize the agent to report truthfully as it would minimize
𝑑( ̂𝜃, 𝜃∗).
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8 Extension to Uncertain Error

So far we have assumed the experimenter knows exactly how the subject makes mistakes
given her preferences and is only uncertain about the subeject’s preference. In this section,
we discuss to what extend our results generalize to the case in which she is also uncertain
about the error distribution.

We consider a setting similar to the one with probabilistic data. Specifically, we assume:

1. There exists a compact and convex set of parameters Ψ ⊂ ℝ𝑚 and a one-to-one
continuous function 𝛾 ∶ Ψ → ℒ′ ⊂ ℒ. We write ℓ𝜓 to denote 𝛾(𝜓).

2. The agents prior Π is over Θ × Ψ admits a product density 𝑓 = 𝑓Θ ⋅ 𝑓Ψ.

As in the probabilistic data setting, assumption one is made for tractability. Assumption
two is made to rule out the possibility that the experimenter has a theory that relates the
preferences to the errors.

Under these assumptions, the experimenter’s posterior marginal density over preferences
is given by

𝑓Θ(𝜃|(𝑥, 𝑦)) =
∫Ψ ℓ𝜓(𝜃, 𝑥, 𝑦)𝑓Ψ(𝜓)𝑑𝜓𝑓Θ(𝜃)

∫Θ ∫Ψ ℓ𝜓(𝜃, 𝑥, 𝑦)𝑓Ψ(𝜓)𝑓Θ(𝜃)𝑑𝜓𝑑𝜃

whereas the marginal over errors is

𝑓Ψ(𝜓|(𝑥, 𝑦)) =
∫Θ ℓ𝜓(𝜃, 𝑥, 𝑦)𝑓Θ(𝜃)𝑑𝜃𝑓Ψ(𝜓)

∫Ψ ∫Θ ℓ𝜓(𝜃, 𝑥, 𝑦)𝑓Θ(𝜃)𝑑𝜃𝑓Ψ(𝜓)𝑑𝜓

Therefore, a half-space partitioning-menu after (𝑥, 𝑦) would satisfy

1
2 = ∫

Θ
∫

Ψ
ℓ𝜓(𝜃, 𝑥, 𝑦)𝑓Ψ(𝜓|(𝑥, 𝑦))𝑓Θ(𝜃|(𝑥, 𝑦))𝑑𝜓𝑑𝜃

= ∫
Θ

ℓ𝜓|(𝑥,𝑦)(𝜃, 𝑥, 𝑦)𝑓Θ(𝜃|(𝑥, 𝑦))𝑑𝜃

where

ℓ𝜓|(𝑥,𝑦)(𝜃, 𝑥, 𝑦) = ∫
Ψ

ℓ𝜓(𝜃, 𝑥, 𝑦)𝑓Ψ(𝜓|(𝑥, 𝑦))𝑑𝜓.

This means that an experimenter that uses such a procedure will still be generating menus
in which “half” of the preferences prefer one alternative to the other, the only difference is in
the ℓ function. Indeed, with uncertain errors, it is as if the ℓ function were path-dependent.
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However, as in many applied settings, if ℓ𝜓 is assumed to not depend on (𝑥, 𝑦), then such
path-dependence partially disappears. Indeed, the fact that half-space-partitioning menus
are being employed would not affect the experimenter’s posterior over errors. Hence, as long
as the error parameter is identified and ℓ is continuous in the product metric, we can obtain
as a Corollary to Theorem 3 that the experimenter will learn the true preference.

9 BACE Implementation

There are a series of computational challenges that come with implementing adaptive online
survey experiments at scale. It is compuationally intensive to solve the complex optimization
problem that determines the optimal next-best scenario. This problem is compounded when
the adaptive procedure is conducted flexibly for a wide range of subjects beyond the lab who
may have poor Internet speeds or devices with limited computational power. We overcome
these challenges and implement the method with thousands of survey respondents.

The computational difficulties can be seen from the formula in Equation (1). We are
faced with a multi-dimensional integration problem that does not have a straightforward
analytical solution. The general framework allows for complete flexibility over the space of
scenarios, answers, and preference parameters, but the main challenge remains computational.
In practice, the design and answer spaces can be discretized; for example, DCEs typically
employ two answer choices given the simplicity of that framework for respondents, but our
implementation of BACE can accommodate any number of discrete answer choices. The
number of parameters that you want to estimate and the size of the design space then
determine the complexity of the numerical integration problem.

When determining how to design software to deliver BACE, two main decisions must be
made. We must select an optimization method for selecting designs and a method for calcu-
lating the posterior distribution over preference parameters. With four or fewer preference
parameters, which can accommodate many standard applications, a grid-based optimiza-
tion approach can work well. However, the size of the grid (and resulting computational
burden) increases exponentially with the number of design paramers. We employ Bayesian
Optimization, a userful tool for optimizing expensive objective functions, to select optimal
designs.

Oftentimes, when calculating posterior estimates of an individual’s preferences, the
posterior is estimated using a predefined grid that covers the support of the prior. However,
the required size of this grid grows exponentially as you estimate more preference parameters;
moreover, resulting parameter estimates must be a convex combination of points on the
initial grid, and the researcher cannot reliably estimate parameters outside of the initial grid.
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Monte Carlo methods, therefore, can offer better solutions for parameter spaces with higher
dimensions and can produce estimates outside of the initial grid (Press et al., 2007). In our
current implementation, we use Population Monte Carlo (PMC), an adaptive importance
sampling algorithm, to estimate the posterior distribution (Cappé et al., 2004); PMC combines
ideas from importance sampling and sequential Monte Carlo methods to estimate a stationary
target distribution (Smith, 2013).

Computing the next-best scenario and displaying it to the respondent quickly is particularly
important within the context of online survey experiments, where researchers have limited
control over participants’ behavior and attention. Moreover, attrition caused by slow loading
times presents a major concern. There are two approaches that make it possible to serve the
next-best scenario to respondents within a reasonable time frame. On one hand, the researcher
can precompute a decision tree that maps out the full range of questions that can be shown
to a participant. This process requires computational resources upfront and communication
between the survey interface and the look-up tree. Once the tree is computed, questions can
quickly be delivered to respondents based on their previous answers. Practically, precomputing
the decision tree is feasible for small 𝑇 as the tree will have 2𝑇 branches. However, even small
changes to the decision environment would require the researcher to recompute the entire
tree, which makes this method less flexible to changes. An alternative method computes the
next-best scenario in real-time, which is feasible as long as such computation can be carried
out within seconds. This method is more flexible as it can quickly accommodate changes
to the design or parameter spaces and can handle experiments with many questions. Our
current implementation uses the latter method but can be easily modified to accommodate
the former.

An important innovation our package provides is the ability to perform all computations
using backend servers and databases with simultaneous communication between the survey
platform and the servers. This allows any user with reliable access to the Internet, regardless
of the computing power of their device, to participate in one of our experiments. Furthermore,
we use modern global optimization techniques to facilitate computation speeds. We develop
code that allows a survey platform (e.g., Qualtrics) to interact with cloud-based backend
servers that can compute the next-best scenario simultaneously for multiple subjects; Figure 2
provides a schematic summarizing the interactions between the survey platform, backend
server, and database in our implementation. This enables a fully dynamic elicitation that can
be administered outside of university laboratory settings. Our method can also be adapted to
work with alternative platforms; for example, surveys could be delivered using text messages,
which would remove the requirement that users be connected to the Internet. This would
expand the reach of our framework to run experiments in other important contexts, such as
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developing countries or remote regions.

9.1 Design Optimization

The primary difficulty in performing adaptive experimentation in real-time is that computing
the optimal design is computationally intensive. In each round, we must calculate the design
that maximizes the mutual information: 𝑑∗

𝑡+1 = arg max 𝑈(𝑑𝑡+1). Optimizing this function
requires estimating a multi-dimensional integral that can be non-convex and rarely has
an analytical solution. Typically, researchers select the optimal question by performing
a brute force estimation over a grid of possible designs. However, a brute force search is
computationally slow and inefficient, particularly when the researcher is considering a large
design space that covers multiple parameters. Other approaches assume a functional form over
the distribution of 𝜃, which leads to an analytical solution (Paninski, 2005) or precompute the
entire decision tree, which delivers designs quickly but requires computing 2𝑇 branches and
is infeasible for a large number of questions(Chapman et al., 2018). Vincent and Rainforth
(2017) use an algorithm that allocates computational resources towards designs that are
expected to perform better; the algorithm resembles a Thompson sampling or multi-armed
bandit optimization.

Our approach to optimizing design selection is to use Bayesian Optimization—a sample
efficient, sequential approach for optimizing expensive objective functions. Bayesian Opti-
mization is a useful tool for optimizing black box functions, and it is frequently used for
selecting hyperparameters in machine learning models or designing expensive experiments.
It scales better than grid-based search, with standard Bayesian Optimization algorithms
performing well for up to 15-20 parameters. Moreover, Bayesian Optimization provides the
flexible optimization approach required to handle an objective function that depends on
likelihood functions that we allow to take on any functional form. This feature is particularly
important when designing a package that can be used flexibly by researchers asking a variety
of questions. We provide an overview of the intuition behind Bayesian Optimization here. 9

Bayesian Optimization works by constructing and optimizing a surrogate model of the
true objective function using Gaussian process regression.10 To start, a Gaussian process
prior is assumed over the objective function. Initial data is constructed by evaluating the
objective function at a small number of designs. A Gaussian process is fit to this data, and a
well-behaved acquisition function is optimized to select the next design at which to evaluate

9See Shahriari et al. (2016) for a recent review of common applications of Bayesian Optimization and
the theory, history, and intuition underlying this method. Frazier (2018) provides a helpful tutorial for
understanding how Bayesian Optimization works.

10In our context, the objective function corresponds to the mutual information function defined in
Equation (1).
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the objective function. The objective function is evaluated at this design, and a new model is
fit to the updated data. This process is repeated for a number of iterations, and the design
that maximizes the objective function is returned.

Our current software implementation uses the Python package Mango to perform Bayesian
Optimization within our application (Sandha et al., 2020, 2021). The user simply needs to
specify values for each design parameter; which can be continuous distributions, a range of
integers, or a discrete set of categories. Bayesian Optimization presents a flexible design
optimization strategy that can handle the variety questions researchers hope to answer using
BACE.

9.2 Computing the Posterior Distribution

This section describes our method for performing Bayesian Inference to estimate the posterior
distribution based on an individual’s history of responses. The researcher starts by defining a
prior over the parameters of interest, 𝑝(𝜃). This prior can be informed by previous results
from the literature, pilot experiments, or it can cover a generous range of possible estimates.11

In round 𝑡, a question is selected and shown to the respondent. Based on the observed answer
to 𝑑𝑡, we calculate the posterior estimate using Bayes’ rule, which is given by Equation (2).
At each stage of the experiment, we are not interested in a point estimate of the posterior;
instead, we want to carry forward a population of samples that represents the full posterior
distribution.

Typical adaptive experimental approaches use a grid search method or make functional
form assumptions over the distribution of 𝜃. However, grid search methods scale poorly with
the number of parameters to be estimated and can produce biased estimates. In particular,
standard grid search methods can only assign positive weight to parameter values that are
a convex combination of points in the initial grid and suffer from particle degeneracy. To
overcome some of the issues with grid search, we use a method called population Monte Carlo
(PMC) to estimate the posterior distribution based on each question and answer. PMC is a
sequential Monte Carlo method that uses adaptive importance sampling (AIS) to estimate a
target distribution (Cappé et al., 2004).12 Importantly, PMC is unbiased at each iteration
and does not require the burn-in period or stopping rules typical for many Markov Chain
Monte Carlo methods (Robert and Casella, 2004).

Let 𝑁 be the number of particles sampled from the posterior distribution. We start by
11Importantly, the support of the prior distribution determines the range of possible posterior estimates,

so researchers should ensure that the prior they specify covers the range of interest.
12Vincent and Rainforth (2017) develop an adaptive experimental framework for estimating time and risk

preferences and also use PMC to estimate the posterior distribution. For a recent review of PMC and other
AIS techniques, see Bugallo et al. (2017).
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sampling 𝜃 = {𝜃1, … , 𝜃𝑁} where each 𝜃𝑖 is drawn from the prior distribution 𝑝(⋅). A design is
shown to the respondent, and the preferred option is chosen and recorded. Thus, (𝑑1∶𝑡, 𝑥1∶𝑡)
make up our data after period 𝑡. Our goal is to produce a population of particles that is
sampled from the posterior distribution Pr(𝜃 ∣ 𝑑(1∶𝑡), 𝑥(1∶𝑡)). Since we cannot sample directly
from this posterior distribution, we sample from a set of proposal functions, 𝑞𝑖(⋅) and use
importance sampling techniques to correct for the fact that we are sampling from an alternate
distribution.

The basic algorithm for PMC, which converges at a rate of 𝑂(𝑁−1/2), is described below.13

The goal is to form an estimate of the posterior beliefs about an individual’s preference
parameters given their previous answers and a prior distribution over preferences: Pr(𝜃 | 𝑑𝑡, 𝑥𝑡).
At time t, we have data 𝑥(1∶𝑡) and 𝑑(1∶𝑡), which constitute the observed responses for an
individual. To estimate the posterior distribution, begin by sampling 𝑁 initial points from the
prior distribution over 𝜃. For each point 𝜃𝑖,1, sample from a multivariate normal distribution

centered at 𝜃𝑖,1 to get 𝜃′
𝑖,1. Importance weights are calculated as 𝑤𝑖,𝑗 =

𝑙(𝑥(1∶𝑡)|𝑑(1∶𝑡),𝜃′
𝑖,𝑗)×𝑝(𝜃′

𝑖,𝑗)

𝑞(𝜃′
𝑖,𝑗|𝜃𝑖,𝑗)

.

Weights are normalized to sum to one, and points 𝜃′
𝑖,𝑗 are resampled with replacement using

the normalized weights 𝑤𝑖,𝑗. This process is repeated for 𝐽 iterations.
While PMC produces an unbiased estimate of the posterior distribution at each iteration,

the posterior estimates will be more precise as 𝐽 and 𝑁 increase. After each question and
answer, the procedure produces a sample that is as if it was sampled from the posterior
distribution Pr(𝜃 | 𝑑1∶𝑡, 𝑥1∶𝑡). The proposal function governs the importance sampling process;
we use a multivariate normal distribution centered at each existing point in the distribution.
Importance sampling techniques require that the proposal distribution has fatter tails than
the posterior distribution of interest.

In our application, PMC offers advantages over grid search, traditional Monte Carlo, and
Markov Chain Monte Carlo (MCMC) methods. Under grid search, an initial grid is chosen,
and the posterior is calculated by updating the weights on each point in the grid using Bayes’
rule. This method offers no exploration; only points that are found in the initial grid are
propagated forward. Thus, if the prior distribution is poorly specified and the individual’s
preferences are extreme, then only a limited number of grid points are used to calculate the
resulting posterior.

In contrast, PMC uses importance sampling to explore points around the initial grid,
which is particularly important if the prior distribution is poorly specified.14 Under PMC, the

13This description captures the basic PMC algorithm from Cappé et al. (2004). For a comprehensive
discussion of the key properties of PMC and recent adaptations of PMC algorithms, see Bugallo et al. (2017).

14When designing a software framework that is user-friendly across a variety of settings, exploration is
particularly important as it makes the calculation of the posterior more robust to poorly specified priors.
Nevertheless, researchers should be careful when defining the prior distribution to ensure that the support of
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population of points will adapt to be located around regions of the posterior with high posterior
likelihoods. By resampling with replacement, PMC also helps avoid particle degeneracy,
which occurs when only a handful of points in the grid have non-negligible importance weights.
Many MCMC methods also require a specified stopping rule or a burn-in period. In contrast,
PMC is unbiased at each iteration and is, thus, preferred for our application, where we have
a small number of effective iterations and are limited by computation time.

9.3 Monte Carlo Estimation of the Mutual Information

In this section, we describe how we estimate the mutual information using nested Monte
Carlo. Recall the objective function in our Bayesian Optimization algorithm is given by
Equation (1).

We want to estimate the mutual information for the next question:

𝑈(𝑑𝑡+1) = ∫
𝜃

∫
𝑥𝑡+1

{log
Pr(𝜃; 𝑥𝑡+1 ∣ 𝑥(1∶𝑡), 𝑑𝑡+1)

Pr(𝜃 ∣ 𝑥(1∶𝑡), 𝑑𝑡+1) Pr(𝑥1∶(𝑡+1) ∣ 𝑑𝑡+1)
} Pr(𝜃; 𝑥𝑡+1 ∣ 𝑥(1∶𝑡), 𝑑𝑡+1)𝑑𝑥𝑡+1𝑑𝜃 (6)

This can be rearranged into the form:

𝑈(𝑑𝑡+1) = ∫
𝑥𝑡+1

∫
𝜃

Pr(𝑥𝑡+1 | 𝜃; 𝑑𝑡+1) Pr(𝜃 ∣ 𝑥(1∶𝑡)) log(Pr(𝑥𝑡+1 | 𝜃; 𝑑𝑡+1))𝑑𝑥𝑡+1𝑑𝜃

− ∫
𝑥𝑡+1

Pr(𝑥𝑡+1 | 𝑑𝑡+1) log(Pr(𝑥𝑡+1 | 𝑑𝑡+1))𝑑𝑥𝑡+1 (7)

We estimate the integral above using nested Monte Carlo estimations. Let 𝜃𝑖 = 𝜃1, … , 𝜃𝑁

be sampled from the posterior distribution Pr(𝜃 ∣ 𝑥(1∶𝑡), 𝑑(1∶𝑡)) after 𝑡 questions. We use 𝜃𝑖 to
estimate the integral above as follows:15

𝑈(𝑑𝑡+1) ≈ 1
𝑁 ∑

𝑥𝑗

∑
𝜃𝑖

Pr(𝑥𝑗 ∣ 𝜃𝑖, 𝑑𝑡+1) log(Pr(𝑥𝑗 ∣ 𝜃𝑖, 𝑑𝑡+1))

− ∑
𝑥𝑗

( 1
𝑁 ∑

𝜃𝑖

Pr(𝑥𝑗 ∣ 𝜃𝑖, 𝑑𝑡+1)) log( 1
𝑁 ∑

𝜃𝑖

Pr(𝑥𝑗 ∣ 𝜃𝑖, 𝑑𝑡+1)) (8)

where 𝑁 = |𝜃| and Pr(𝑥𝑗 ∣ 𝜃𝑖, 𝑑𝑡+1) is the likelihood of observing answer 𝑥𝑗 to question 𝑑𝑡+1

the prior covers the range of the parameters of interest.
15Since we consider a discrete set of answer choices, we leverage the fact that probabilities sum to one

to facilitate computation. If we have 𝐽 discrete answer choices, then we need only compute the likelihood
function for the first 𝐽 − 1 options. Thus, Pr(𝑥𝑗 ∣ 𝜃𝑖, 𝑑) = 1 − ∑𝑥𝑘≠𝑗

Pr(𝑥𝑘 | 𝜃𝑖, 𝑑), and a similar result
follows for the term inside of the log.
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given the estimate of the individual’s preferences at time 𝑡. For a discrete number of answer
choices, the convergence rate of this estimator is 𝑂(𝑁−1), the standard error rate for Monte
Carlo methods (Rainforth et al., 2018). Our package currently hands any number of discrete
answer choices; however, we note that this can be extended to accommodate a continuous
answer space.

9.4 Backend Framework

Ultimately, we want to create an experimental framework that can flexibly accommodate a
large number of users in real-time. To make performance independent of the user’s device, we
use a backend server to handle all major computation. The current version of our software
package creates a web application that is hosted remotely by Amazon Web Services (AWS).16

A Python-based Flask application is hosted on AWS Lambda; a backend Amazon DynamoDB
database stores profile-specific information that includes respondents’ survey responses and
treatment characteristics. The application can be set up to communicate with any standard
survey framework (e.g. Qualtrics or Survey Monkey), deliver questions directly to respondents,
or be adapted to work with any device that has an Internet or cellular connection.17 By
moving computation off of the user’s device, the time that users face between questions
depends minimally on the quality of the device they are using to take the survey, which
may be correlated with income or other socio-demographic characteristics. Moreover, cloud
services can be easily scaled, and the researcher can increase server-side resources to account
for high numbers of users at launch.

The package architecture and process for selecting new questions is described in Figure 2.
When a user starts the survey, a profile is created in the database that will store relevant
information for that user. On the server, we compute the optimal design based on the
history of designs that the user has seen. We store this in the database and transmit the
selected design to the survey platform. The respondent views the question and chooses their
preferred option. The respondent’s ID and answer are sent back to the server application,
which updates the posterior estimate using PMC. Based on the new posterior estimate, the
next optimal design is chosen and sent to the respondent. This process is repeated for the
duration of the experiment. At the end of the experiment, we have data that constitutes the
full design history 𝑑(1∶𝑇 ), answer history 𝑥(1∶𝑇 ), and an estimate of the posterior distribution
Pr(𝜃 ∣ 𝑥(1∶𝑇 ), 𝑑(1∶𝑇 )). This distribution can be used to directly produce posterior estimates
when the survey is complete. More generally, however, estimates can be recomputed after

16While we host the application using AWS, fhe framework can be adapted to alternative cloud providers.
17The framework can also be used to run experiments directly on a computer in a laboratory setting as

well.
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the experiment using alternative techniques, such as maximum likelihood estimation, on the
data generated during the experiment.

10 Simulation validation

Our current simulations highlight two notable econometric advantages of the BACE method
to elicit preferences. First, BACE allows for a much higher precision of the parameter
estimates with fewer scenarios presented to each subject. Second, the standard approach
of estimating the average preference parameter by pooling together scenarios and answers
across subjects may result in biased estimates, which can be avoided when taking the average
of the individual-level preferences from a BACE procedure.

We compare across two methods to generate the sequence of scenarios: the adaptive
Bayesian approach (BACE), and a procedure where sequences are randomly generated
(RAND). We also interact each method to generate the scenarios with one of two evaluation
approaches: using Bayesian updating, and using a maximum likelihood estimator (MLE).
Given the answer choices and the set of scenarios, one can Bayesian update the parameter
distribution using Equation (2), or one can pool together the data and find the estimate that
maximizes the likelihood of the data obtained based on Equation (9).

10.1 Efficiency

We start with the case when the two job scenarios only differ by one amenity. We first specify
the utility function that determines choice. In each hypothetical scenario, two jobs 𝑗 ∈ {0, 1}
are presented that the subject can choose from. The jobs consist of earnings 𝑦𝑗, and whether
amenity 𝑎𝑗 is at the base value (𝑎𝑗 = 0) or the alternative value (𝑎𝑗 = 1). Utility from job 𝑗
is 𝑢𝑗 = log(𝑦𝑗) + 𝛽𝑖𝑎𝑖𝑗. Willingness to pay for the alternative over the base value of amenity
𝑎𝑖 as a fraction of 𝑦0 can be easily derived to be exp(𝛽𝑖) − 1.

Without choice inconsistency, the individual always chooses the bundle with the higher
utility. Since inconsistency may arise in practice, we consider two cases for modeling choices.
In case 1, the probability of making a “mistake” is higher when the two bundles are closer in
total utility; in this case, “mistake” is represented by an error term in the utility function that
has a Gumbel distribution with scale parameter 𝛽 (lower 𝛽 represents higher consistency). In
case 2, with a fixed probability 𝑝, the individual chooses randomly instead of choosing the
higher-utility bundle (lower 𝑝 represents higher consistency). In this case, subjects choose the
job with the higher utility, but with 𝑝 ∈ [0, 1] chance of being inattentive, which we define as
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the probability of picking a choice at random instead.18 The probability of choosing 𝑥 = 𝑗 is
then

Pr(𝑥 = 𝑗 | 𝜃 ≡ {𝛽𝑖}, 𝑑 ≡ {𝑗, 1 − 𝑗}) = (1 − 𝑝)𝟙{log(𝑦𝑗/𝑦1−𝑗)+(𝛽𝑖(𝑎𝑖𝑗−𝑎𝑖(1−𝑗)))>0} + 𝑝/2 (9)

The formulas above can be easily extended to incorporate multiple amenities or interaction
terms between amenity values.

Figure 3 shows that regardless of the evaluation method, the adaptive Bayesian approach
yields more information about the utility function parameter faster. When the likelihood of
being inattentive is below 50 percent, the procedure can lead to relatively precise estimates
with 5 to 10 questions. Figure 4 shows that the correlation between the true parameters and
the estimated ones approaches 1 much faster with the adaptive method. Between Bayesian
updating and MLE, Bayesian updating has the edge, and it performs significantly faster.

In the next set of simulations, we consider a binary choice experiment under two different
utility models, each with four parameters. The two utility models consist of the same
preference parameters but differ based on how choice inconsistency operates. In both cases,
the preference parameters are of the form 𝑢𝑗 = log(𝑦𝑗) + 𝛽1𝑎1𝑗 + 𝛽2𝑎2𝑗 + 𝛾𝑎1𝑗𝑎2𝑗 where 𝑗
is the index of a chosen bundle of attributes described by (𝑦𝑗, 𝑎1𝑗, 𝑎2𝑗), 𝑦 ∈ ℝ, 𝑎 ∈ {0, 1}.
Without choice inconsistency, the individual always chooses the bundle with the higher utility.
Since inconsistency may arise in practice, we consider two cases for modeling choices as
before.

In the two-amenity case, the story is much similar qualitatively, with the adaptive
Bayesian approach gaining ground even more relative to the random approach. Figures 5
to 8 show that the amenity value coefficients continue to perform well with 10 questions
or fewer. Figure 5 also shows that the Bayesian estimation procedure gives more precise
estimates compared to using a standard maximum likelihood estimator, in which a numerical
optimization procedure is required to compute the estimates. We also note that BACE yields
a substantial improvement in mean squared error for estimating the interaction term when
more scenarios are asked when there is a higher degree of choice consistency, but this is not
the case for RAND (see Figures 6 and 8). The interaction coefficient also shows significant
gains from using BACE relative to RAND. Figures 9 and 10 show that one would need
about 15 to 20 questions to achieve high precision with the adaptive Bayesian approach, and
would need at least 3 times more questions with the random approach for the same level
of precision. According to the simulations, presenting 10 scenarios using BACE gives more
precise estimates than presenting 50 or more scenarios in a randomly generated sequence.

18This formation mirrors Mas and Pallais (2017) who model an across-subject inattentive rate in a similar
way.

33



Given that one can trade off between the interaction term and either of the two amenity
coefficients, it is clear that the interaction term is harder to identify. The simulation results
also show that Bayesian updating performs more consistently than MLE.

The online Appendix further shows that the method is robust to different ways to model
inattentiveness. For example, even if the individual makes more mistakes when utility
difference is smaller, for example, we are still able to recover the utility parameters well.

10.2 Bias

In Figure 11, we evaluate the importance of obtaining individual-level preferences even when
the object of interest is the average preference in the population. We find that the standard
approach of pooling together responses across individuals to estimate the average preference
results in possible bias, even with large samples when the sample mean follows a normal
distribution. This is true regardless of whether one uses scenarios and answers from BACE
or RAND.

This is reminiscent of the mean-variance confound described in Yatchew and Griliches
(1985). Intuitively, individuals may have heterogeneous tendencies to make inconsistent
choices, and it is difficult to account for individual heterogeneity in choice inconsistency when
combining all individual data in the estimation with a combined error term, leading to bias.

To elaborate, consider the simple case when each individual 𝑛 make choices based on the
following data generating process. The latent variable for choice 𝑖 is 𝑢𝑖 = 𝛼𝑛𝑤𝑖 + 𝛽𝑛𝑧𝑖 + 𝜖𝑖,
with 𝑤𝑖 and 𝑧𝑖 randomly drawn and 𝜖𝑖 being independent and identically distributed according
to a logistic distribution. The outcome variable is 𝑦𝑖 = 𝟙{𝑢𝑖>0}. Because of the normalization
involved (either of the variance of the error term, or one of the coefficients), we are interested
in 𝛽𝑛/𝛼𝑛 for each individual 𝑛. An alternative normalization is 𝑢𝑖 = 𝑤𝑖 + 𝛽𝑛

𝛼𝑛
𝑧𝑖 + 1

𝛼𝑛
𝜖𝑖. Now

𝑢𝑖 is measured in units of 𝑤𝑖 and 1
𝛼𝑛

is the scale of the error term (inconsistency in choices).
Assume that 𝑖 = 1, … , 𝐼 data points are collected for each individual 𝑛. Running a logit

regression of 𝑦𝑖 on 𝑤𝑖 and 𝑧𝑖 for each individual 𝑛 should result in consistent estimates of
𝛼𝑛 and 𝛽𝑛. However, when 𝐼 is small, we sometimes pool together all data points across
individuals and estimate 𝑦𝑖 on 𝑤𝑖 and 𝑧𝑖 to obtain estimates 𝛼 and 𝛽. When 𝛼𝑛 and 𝛽𝑛 vary
across individuals: 𝛼 and 𝛽 do not recover the average of 𝛼𝑛s and average of 𝛽𝑛s, nor can
we recover the average 𝛽𝑛/𝛼𝑛. In some cases, the pooled estimate may even be outside the
range of individual-level parameters. Of course, if 𝛼𝑛 is the same across individuals, then we
do recover the average of the 𝛽𝑛s
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Figure 1: BACE selection procedure of discrete choice scenarios

Prior
Pr(𝜃 | 𝑥(1∶𝑡))

Optimal question design
𝑑∗

𝑡+1 = arg max𝑑𝑡+1
𝐼(𝑑𝑡+1)

Observe answer choice
𝑥(𝑡+1)

Posterior
Pr(𝜃 | 𝑥(1∶𝑡+1))

𝜃—parameter vector of interest
𝑑𝑡—the question design presented at time 𝑡

𝑥𝑡—answer input at time 𝑡

𝑡 + 1 ← 𝑡

Note: See Section 2 for the notation. The initial prior for the parameter vector 𝜃, initialized at 𝑡 = 0, can be
a uniform prior over the parameter space or chosen according to a pilot experiment. The Bayesian adaptive
procedure chooses the question design that maximizes the mutual information between the parameter random
value Θ and the outcome random value 𝑋(𝑡+1), i.e., 𝐼(𝑑𝑡+1) ≔ 𝐼(Θ; 𝑋𝑡+1|𝑑𝑡+1), and then updates with the
respondent’s answer choice to the chosen question. The new data are used to update the posterior of 𝜃 using
Bayes’ rule, Pr(𝜃 ∣ 𝑥(1∶𝑡+1), 𝑑𝑡+1) = Pr(𝑥𝑡+1 | 𝜃,𝑑𝑡+1) Pr(𝜃 ∣ 𝑥(1∶𝑡))

∫𝜃′ Pr(𝑥𝑡+1 | 𝜃′,𝑑𝑡+1) Pr(𝜃′ ∣ 𝑥(1∶𝑡))𝑑𝜃′ , and the updated posterior is used as the
prior in the next round.
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Figure 2: Implementation schematic
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Note: A simplified schematic of the interactions between the survey platform and the backend computation
and database servers.
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Figure 3: Recovering amenity value coefficient when one amenity is presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along two dimensions: earnings and the presence or absence of one amenity.
The y-axis is the true parameter value on the amenity coefficient.
The x-axis is the estimated parameter value on the amenity coefficient using four methods: when the sequence
of questions are generated by the Bayesian Adaptive Choice Experiment (BACE) or randomly (RAND), and
when the coefficients are recovered using the Bayesian approach or using a maximum likelihood estimator
(MLE).
The lighter color corresponds to higher value of true 𝑝, the parameter that corresponds to the probability of
choosing randomly rather than choosing the choice with higher utility.
Rows are the four methods (see above).
Columns are the estimates after the number of questions asked.
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Figure 4: Average mean squared error between true and estimated amenity value coefficients
when one amenity is presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along two dimensions: earnings and the presence or absence of one amenity.
The x-axis is the number of questions used to obtain amenity coefficient estimates.
The y-axis is the average mean squared error between the estimates and the true values from the simulations.
The colors map to four methods: when the sequence of questions are generated by the Bayesian Adaptive
Choice Experiment (BACE) or randomly (RAND), and when the coefficients are recovered using the Bayesian
approach or using a maximum likelihood estimator (MLE).
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Figure 5: Recovering first amenity value coefficient when two amenities are presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along three dimensions: earnings and the presence or absence of each of two amenities.
The y-axis is the true parameter value on the first amenity coefficient.
The x-axis is the estimated parameter value on the first amenity coefficient using four methods: when the
sequence of questions are generated by the Bayesian Adaptive Choice Experiment (BACE) or randomly
(RAND), and when the coefficients are recovered using the Bayesian approach or using a maximum likelihood
estimator (MLE).
The lighter color corresponds to higher value of true 𝑝, the parameter that corresponds to the probability of
choosing randomly rather than choosing the choice with higher utility.
Rows are the four methods (see above).
Columns are the estimates after the number of questions asked.
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Figure 6: Average mean squared error between true and estimated first amenity value
coefficients when two amenities are presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along three dimensions: earnings and the presence or absence of each of two amenities.
The x-axis is the number of questions used to obtain amenity coefficient estimates.
The y-axis is the average mean squared error between the estimates and the true values from the simulations.
The panels map to two methods: when the sequence of questions are generated by the Bayesian Adaptive
Choice Experiment (BACE) or randomly (RAND). The colors correspond to different values of the choice
inconsistency parameter.
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Figure 7: Recovering second amenity value coefficient when two amenities are presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along three dimensions: earnings and the presence or absence of each of two amenities.
The y-axis is the true parameter value on the second amenity coefficient.
The x-axis is the estimated parameter value on the second amenity coefficient using four methods: when
the sequence of questions are generated by the Bayesian Adaptive Choice Experiment (BACE) or randomly
(RAND), and when the coefficients are recovered using the Bayesian approach or using a maximum likelihood
estimator (MLE).
The lighter color corresponds to higher value of true 𝑝, the parameter that corresponds to the probability of
choosing randomly rather than choosing the choice with higher utility.
Rows are the four methods (see above).
Columns are the estimates after the number of questions asked.
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Figure 8: Average mean squared error between true and estimated second amenity value
coefficients when two amenities are presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along three dimensions: earnings and the presence or absence of each of two amenities.
The x-axis is the number of questions used to obtain amenity coefficient estimates.
The y-axis is the average mean squared error between the estimates and the true values from the simulations.
The panels map to two methods: when the sequence of questions are generated by the Bayesian Adaptive
Choice Experiment (BACE) or randomly (RAND). The colors correspond to different values of the choice
inconsistency parameter.

46



Figure 9: Recovering the interaction coefficient when two amenities are presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along three dimensions: earnings and the presence or absence of each of two amenities.
The y-axis is the true parameter value on the interaction term between the two amenities.
The x-axis is the estimated interaction coefficient using four methods: when the sequence of questions
are generated by the Bayesian Adaptive Choice Experiment (BACE) or randomly (RAND), and when the
coefficients are recovered using the Bayesian approach or using a maximum likelihood estimator (MLE).
The lighter color corresponds to higher value of true 𝑝, the parameter that corresponds to the probability of
choosing randomly rather than choosing the choice with higher utility.
Rows are the four methods (see above).
Columns are the estimates after the number of questions asked.
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Figure 10: Average mean squared error between true and estimated interaction coefficient
when two amenities are presented

Note: The figure depicts the simulation results in the case when a binary choice is presented between two
jobs which differ along three dimensions: earnings and the presence or absence of each of two amenities.
The x-axis is the number of questions used to obtain amenity coefficient estimates.
The y-axis is the average mean squared error between the estimates and the true values from the simulations.
The colors map to two methods: when the sequence of questions are generated by the Bayesian Adaptive
Choice Experiment (BACE) or randomly (RAND).
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Figure 11: Estimating population mean of 𝛾 from individual estimates vs. by pooling all
answers

(a) Case 1

(b) Case 2

Note: Simulation result comparisons for estimating the mean 𝛾 in the generated data (blue) by averaging the
BACE individual estimates (green) or by estimating the pooled data across all individual answers (orange).
The number of scenarios per individual is held fixed at 20.
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Figure 12: Mean parameter comparison to the standard pooling approach

Note: This figure compares the mean of the individual-level WTP estimates to estimating the mean WTP
when pooling together responses across all individuals. Individual estimates and bootstrapped confidence
intervals are in the shaded regions. Pooled estimates are represented as points with error bars as confidence
intervals.
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