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I. INTRODUCTION

A key feature of many markets is that financial institutions serve as intermediaries and provide

liquidity by taking the opposite side of a trade. Shocks to the capital of financial institutions

decrease the ability to provide liquidity and increase risk premia (Kondor and Vayanos, 2019).

Consequently, variations in risk premia of various asset classes are related to the ‘health’ of

the financial sector (Adrian, Etula, and Muir, 2014; He, Kelly, and Manela, 2017). Meanwhile,

premia for higher-moment risks such as volatility or crashes are hard to reconcile with asset

pricing models.1 Why are higher-moment risk premia so large? Why do they sometimes vary,

although risks do not? Why does the crash risk premium stay elevated after turbulent market

episodes, although risks revert to normal?

This paper shows that index option intermediaries (OptInt) influence risk and liquidity premia

to manage the risks associated with their option positions. First, I show that the level of risk

and liquidity premia increases when OptInts’ positions become riskier. Second, OptInts manage

to transfer risky short positions to non-intermediaries when expected volatility is high, although

OptInts cannot directly control their positions. OptInts increase sell prices more than buy prices

and charge higher spreads for buyer-initiated trades. The asymmetries induce sell orders, and,

as a result, the risks of extreme losses for OptInts are shallow around market crashes. Third,

tighter constraints in the financial sector affect risk-bearing capacities, and OptInts become

reluctant to hold positions. The reluctance is reflected in the level of the crash risk premium

and induces variation independent of volatility. The results suggest that financial institutions

integrate option markets with other markets.2 Decreasing risk tolerance transmits directly to

option prices and ultimately affects other asset classes through contractions of the balance sheets

of financial institutions (Adrian and Shin, 2010, 2014).

Option markets are well suited to analyze the interplay between financial intermediation and

risk premia. Options come with different strikes and maturities, loading differently on various

sources of risk. Hence, options are uniquely well suited for extracting higher-moment risk expec-

tations and premia. Options are zero-net-supply assets with two counterparties holding offsetting

positions. The market is intermediated by dealers such as Goldman Sachs that provide depth

and liquidity by absorbing order imbalances. When mutual funds buy options but there is no

seller, OptInts execute the trade by writing a new option contract. Therefore, higher demand

results in rising prices (Gârleanu, Pedersen, and Poteshman, 2009). OptInts hold 50% of the

total outstanding value of index options. The positions bear exposure to extreme losses because

options cannot be hedged entirely (Muravyev, 2016). The requirement of OptInts to provide

liquidity has two consequences: First, OptInts accumulate positions and risks over time. Second,

1See Andersen, Fusari, and Todorov (2015b) or Beason and Schreindorfer (2022).
2Zhou (2018) documents that variance risk premium predicts returns of equities, bonds, currencies, and CDS.
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OptInts cannot directly manage the risk of their positions. They absorb order imbalances re-

gardless of their desire to hold specific options. The tool to control the risk of OptInts’ positions

is adjusting option quotes and spreads, encouraging investors to trade in a particular direction.

To measure the risk of OptInts’ positions, I propose an ex-ante option intermediary risk

(OIR) factor that is motivated by the risk-management systems of OptInts (Bergomi, 2016). I

quantify the worst-case profit and loss (P&L) of OptInts’ positions by stress test scenarios. OIR

quantifies the P&L of option positions conditional on a hypothetical market crash defined as

an extreme negative stock market drop accompanied by rising volatility. The measure captures

a crash event’s impact on OptInts’ P&L, not the probability of a crash. Negative levels of

OIR indicate that OptInts are net short and bear the risk of capital losses in case of a crash.

Positive levels indicate that OptInts have hedged net long positions that profit from stock market

crashes. The factor captures the risk of the entire option intermediary sector, incorporates the

total exposure to market risks, is independent of the motive behind investors’ option trades

(economic fundamentals, asymmetric information), and assesses the effect of every transaction

relative to OptInts’ current risk exposure.

For my empirical analysis of the impact of OIR on premia, I use high-frequency option quotes

and calculate hedged option returns. Hedged option returns proxy the risk premia inherent in

options (Bakshi and Kapadia, 2003). Through panel regressions and lag identification, I establish

that a one standard deviation decrease in OIR generates an expected return of 0.5% overnight,

1.34% the next trading day, and 1.74% day-to-day. The effect goes beyond volatility risk, index

returns, and order imbalances. The coefficient of lagged OIR is significantly larger than that of

unlagged order imbalances, suggesting that OptInts assess the impact of option trades not in

isolation but with regard to aggregate positions. I document a similar relationship for liquidity

premia in option markets. I use realized S&P 500 option transactions and show that OptInts

charge higher effective spreads for providing liquidity when OIR is more negative (OptInts have

more short positions). Rising risk premia and widening spreads control aggregate positions and

OptInts’ income.3 If investors start selling options to earn the increased premia, the risk of

extreme losses will subsequently reduce. However, OptInts have to pay a higher premium and,

thus, widen spreads. If investors continue buying, the risk of extreme losses will further increase.

OptInts receive higher premia and spreads as compensation for bearing the risks.

Reduced form correlations do not conclusively establish causality between OIR and premia.

OIR responds to changes in quantities and prices, and so might tomorrow’s option premia. I use

three sets of instrumental variables to overcome the potential endogeneity problem. The first

is past order imbalances. Chordia and Subrahmanyam (2004) show that past order imbalances

predict future variation in order imbalances and, hence, in OptInts’ aggregate positions. The

3See Amihud and Mendelson (1980) and Ho and Stoll (1981).
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second instrument is a dummy for option expiry days (Muravyev, 2016). The third instrument

is a dummy that indicates tighter constraints in the financial sector. I use shocks to the leverage

ratio of primary dealers, the largest financial institutions, and the most relevant option interme-

diaries. Intuitively, a decrease in equity capital impairs the willingness to supply options (Chen,

Joslin, and Ni, 2019). The instrumental variable estimates reinforce a negative causal effect of

OIR on premia. I find that a one standard deviation decrease in instrumented OIR is associated

with a daily hedged option return of 0.51%, with half of the return earned overnight and half

intraday. Strikingly, the coefficient of instrumented OIR is almost unchanged throughout a series

of robustness checks. I test different constructions of the factor, exclude high volatility episodes,

and control for the realized P&L of OptInts. The associated return ranges from 0.48% to 0.56%.

To illustrate the effect of OIR, I show two days with different OIR levels but identical

implied volatility curves in Figure 1. I express option prices in implied volatilities (IV) to ensure

comparability across time and option characteristics. Panel A highlights that option prices boost

after a shock to OIR on July 20th, 2007. The upper left plot shows that OIR decreased by almost

35% from t to t+ 1, suggesting that OptInts would have more extreme capital losses if markets

crashed. IVs increased by almost 10% from t to t + 1, although volatility stayed flat. Options

became substantially more expensive, and investors started selling to receive the premia. This

boosted OIR at t+ 2. Once volatility increased (t+ 2), IVs did not change much because OIR

was already recovering. Panel B shows a day in Dec 2010 with an identical volatility curve. OIR

is near zero, i.e., the risk of extreme losses is low, and volatility decreases. Therefore, OptInts

did not need to incentivize specific trading; hence, option prices remained almost unchanged.

The price increase in Panel A is likely a product of a more severe impact of a hypothetical

crash event, captured by OIR, and distress in the financial sector. Two funds of Bear Stearns

filed for bankruptcy protection on July 25th, 2007. My interpretation of these findings is that

distress in the financial sector impairs risk tolerance and transmits to OptInts. Brunnermeier and

Pedersen (2009) show that financial institutions are reluctant to hold positions during episodes

of tight funding constraints. Adrian and Shin (2010) argue that the risk tolerance of the financial

system is reflected in asset prices because financial institutions expand or shrink balance sheets.

The previous findings motivate my subsequent analysis of the interplay between the risk

tolerance of the financial sector and OIR. I document that high leverage, a bad economic out-

look, tight funding liquidity, and increased market volatility correlate strongly with lower risk

exposure of OptInts. In fact, I find that such episodes are characterized by OIR being close to

zero or positive, indicating that OptInts would only make small losses or profits when markets

crashed. OptInts’ risk-bearing capacities reduce in anticipation of higher market volatility or

when constraints in the financial sector tighten, resulting in a reluctance to hold risky posi-

tions. The results imply that OptInts’ positions turn from net short to net long. The evidence
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Figure 1. Option Intermediary Risk and Volatility Surface
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Panel A: Intermediation is Risky (23-Jul-2007)
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Panel B: Intermediation is Safe (03-Dec-2010)

The figure shows the dynamics of absolute OIR, realized volatility, and option prices (in implied volatilities) for
two days with identical volatility surface. Panel A shows the dynamics when OIR is low (t = Jul 20, 2007) and
Panel B when OIR is high (t = Dec 03, 2010). OIR denotes intermediaries’ additional capital losses per option
contract in case of a market crash, defined in Section III. Volatility is the one-week average of daily 5-min realized
volatilities from the Oxford-Man Realized Library. Put IVs are taken from OptionMetrics Volatility Surface.

complements Chen, Joslin, and Ni (2019), who show that OptInts buy out-of-the-money puts

when constraints are tight. However, OptInts cannot simply buy options because they absorb

the imbalances of other investors’ trading.4

How can OptInts influence investors to sell options when market volatility is high or the

risk tolerance in the financial sector is low? I show that OptInts actively incentivize investors

to take over undesired short positions. The unconditional coefficients of regressing bid and ask

option returns on OIR are identical but diverge when market volatility is high. The difference

equals 60% in the instrumental variable approach. I find a similar asymmetry for various option

return predictors, such as the VIX and index returns. I also document that effective spreads for

buyer-initiated transactions are higher than for seller-initiated. Sell (bid) prices rise more than

buy (ask) prices, and transaction costs for buying are higher than for selling. The asymmetries

induce selling activity and explain how OptInts reduce short positions.

In the last part of the paper, I estimate an option pricing model to study the relationship

between crash risk premia and OptInts’ positions. I parametrize the model such that high pre-

mia coincide with low OIR because these are episodes in which OptInts anticipate high crash

risk or the risk tolerance of the financial sector is low. The model estimation provides important

4An individual OptInt might trade options with another OptInt, but the trade is just a transfer within the
intermediary sector. OptInts require other investors, such as hedge funds or mutual funds, as counterparts.
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implications for option pricing and the puzzling behavior of risk premia. On average, two-thirds

of the crash probability is driven by OIR and only one-third by market volatility. OIR’s contri-

bution is low when financial institutions have a higher risk tolerance, e.g., before the financial

crisis, but sharply increases before markets become volatile. This indicates that OptInts antici-

pate turbulent episodes and increase crash risk premia to incentivize option selling. Hence, OIR

induces variation in crash risk premia independent of volatility (Bollerslev and Todorov, 2011).

I also document that the contribution of OIR to the crash probability remains persistently

elevated after market crashes. OptInts are reluctant to hold option positions because the financial

sector’s risk tolerance is low. The tolerance decreases because of incurred losses in other assets,

higher regulatory constraints, less capital, and fewer intermediation capacities (bankruptcies).

This affects financial institutions and ultimately transmits to OptInts through tighter risk limits.

Option prices reflect the reluctance, which is why crash risk premia stay elevated after crashes

although volatility is low (Bates, 2000; Jackwerth, 2000; Andersen, Fusari, and Todorov, 2020).

The results suggest that financial institutions integrate markets because prices reflect their

risk tolerance. Option-implied risk premia predict returns of various asset classes because all

prices respond to shrinking or expanding balance sheets of financial institutions (Adrian and

Shin, 2010). Hence, crash risk premia are partly self-generated by the financial system and do not

only reflect fundamentals (Brunnermeier and Sannikov, 2014). Stronger regulatory policies are

designed to make the financial sector more resilient. However, they could also tighten constraints,

thereby increasing risk premia and liquidity costs in the option market.

Literature Review: My paper relates to a growing literature studying how intermediaries

impact risk premia (Brunnermeier and Pedersen, 2009; He and Krishnamurthy, 2013; Brunner-

meier and Sannikov, 2014). Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), Muir

(2017), Haddad and Muir (2021), and Du, Hébert, and Huber (2022) provide empirical evidence

that relates intermediaries to returns of several asset classes. Chen, Joslin, and Ni (2019) infer

intermediary constraints from traded out-of-the-money put volumes and show that months in

which other investors net sell puts to intermediaries predict risk premia for several asset classes.

Cheng (2019) shows that the volatility risk premium falls or stays flat when ex-ante measures of

volatility rise and relates the findings to decreasing demand for volatility hedges. Both results

seem unintuitive because they imply that investors buy options when volatility is low but sell

options when volatility is high. My contribution is to show how OptInts incentivize this pattern.

They induce public selling by quoting higher bid prices and charging higher effective spreads for

buyer-initiated trades.

Another strand of literature relates option prices to demand effects. Bollen and Whaley (2004)

show that demand impacts option prices. Gârleanu, Pedersen, and Poteshman (2009) derive

an equilibrium model in which demand pressure enters the pricing kernel. Muravyev (2016)
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establishes that order imbalances have a more substantial effect on equity option prices than

asymmetric information and highlights the predictive power of past order imbalances. In contrast

to these papers, I focus on the dynamics of aggregate index option positions and show that option

intermediary risks impact prices beyond demand pressure. Barras and Aytek (2016) show that

the difference between the variance risk premium inferred from equity and option markets is

related to the financial standing of intermediaries. Almeida and Freire (2022) find that demand

for options helps to explain the puzzling shape of the pricing kernel. Fournier and Jacobs (2020)

derive a structural model in which the variance risk premium is a function of intermediaries’

wealth and volatility risk. In contrast, I find that episodes with low option intermediary risk are

more informative because they reflect intermediaries’ crash risk expectations and risk tolerance.

II. DATA AND INTERMEDIARY POSITIONS

This section describes the original datasets, the processing of the data, and the aggregate inter-

mediary positions. Appendix A provides additional details on the data.

A. Data Description

Volume: S&P 500 index options exclusively trade on the CBOE. The Open-Close Volume Sum-

mary database offers detailed information on trading activity. I work with the end-of-day volume

summary of all options traded on the primary exchange C1. The data is available from January

1, 1990, until November 30, 2020, and aggregates transactions for every traded option by trade

origin (customer/firm), type of transaction (buy/sell), and type of position (opening/closing).

Investor trading via a broker exemplifies customer-originated trades. In contrast, an option

trader who trades for the broker’s account exemplifies a firm-originated trade.5 An open trans-

action opens a new option position, while a close transaction closes an existing position. It is

essential to distinguish between the two types. The former increases the number of outstand-

ing contracts while the latter reduces it. The data does not provide information on the specific

option intermediary. Therefore, OptInts are the aggregate, representative option intermediary.

End-of-Day Option Quotes: The volume data comes without information on prices. I use end-

of-day prices from OptionMetrics for the period from January 1996 until the end of the sample.

For the period before 1996, I obtain quotes from LiveVol. The data reports open interest, volume,

and bid/ask prices. I use the midpoint between bid and ask prices to compute Black-Scholes

greeks. The risk-free rates are maturity adjusted by linearly interpolating the Treasury curve.

5As of 2011, the data is more granular and reports more subgroups for the trade origin. Jacobs, Mai, and Pederzoli
(2021) show that this has little impact on the classification of trades.
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Intraday Option Quotes: I use intraday option quotes from LiveVol to determine delta-hedged

option returns. The data comes at a 1-minute frequency and is available from January 2004 until

the end of 2020. I use filters along the lines of Andersen, Bondarenko, and Gonzalez-Perez (2015)

and Muravyev and Ni (2020).

Option Trades: LiveVol provides intraday option transactions. The data is available from

January 2004 until the end of 2020, and the timestamp is in milliseconds. The data provides

information about the traded volume, the trade price, implied volatility, and bid/ask prices. I

apply the filters from Andersen et al. (2021).

B. Data Processing

Previous studies that have worked with the Open-Close Volume Summary apply specific filters

to the data. I think it is essential to consider all transactions to provide a complete picture.

OptInts have to hold and hedge all types of options, regardless of maturity, moneyness, or

implied volatility. Therefore, I generally do not filter the volume data and keep all maturity and

moneyness categories available. The only exception is the exclusion of so-called FLEX Options

with customized contract terms, such as strike prices in penny increments, for which no price

information is available. The filter kicks out approximately 0.2% of all option transactions.

I experienced two significant sources of error working with the Open-Close Volume Summary

database. First, for the years in which the S&P 500 was around 1000, the data cuts 1000 from

four-digit strikes. For instance, the data reports a strike price of 1025 as 25. Second, some

option chains come with a negative time-to-maturity. Appendix A describes a simple method

for correcting the data and shows how essential the correction is. Up to 90% of the data in

some months would have been dismissed otherwise. For every day in the sample, I match the

volume data with option price information using an identifier that consists of expiry, strike, and

put-call flags. After initially matching each option trade with the quote on the trading day, the

next challenge lies in assigning updated prices (or implied volatilities) over the period in which

OptInts hold the option. All options with outstanding open interest should be updated daily,

but this is not the case. For any day a quote is unavailable, I fill the missing implied volatility

by using interpolated implied volatilities (Jiang and Tian, 2005).

C. Aggregate Intermediary Positions

OptInts try to match buys with sales so that the spread income is largest and transactions

have no impact on aggregate positions. However, the immediacy service also consists of taking

the opposite side of a trade in case buys and sells do not arrive synchronously. OptInts’ new

positions are the residual of the sum of customer- and firm-originated trades. The residual is

7



often referred to as order imbalance. I follow Ni, Pearson, Poteshman, and White (2021) in

calculating the aggregate positions. For each day t and option series j, I determine the buy and

sell open interest OI as

OIbuyj,t = OIbuyj,t−1︸ ︷︷ ︸
Existing

+V olumeOB
j,t − V olumeCS

j,t︸ ︷︷ ︸
Order Imbalance

, (1)

OIsellj,t = OIsellj,t−1 + V olumeOS
j,t − V olumeCB

j,t , (2)

where V olumeOB,y
j,t are opening buy transactions and V olumeOS,y

j,t are opening short transactions.

V olumeCS,y
j,t are transactions that close existing long positions and V olumeCB,y

j,t are transactions

that close existing short positions. Both decrease the number of outstanding contracts because

the buyer/seller now owns an offsetting position. The positions are determined from all non-

market maker trades. OptInts have to take the opposite position so that the aggregate position

in option j is given by

Posj,t = −1 ·
(
OIbuyj,t −OIsellj,t

)
. (3)

OptInts have a long position in option j when accumulated sell order volumes exceed buy order

volumes and vice versa. Figure 2 provides some intuition about OptInts’ positions.6 Panel A

shows the absolute number of contracts intermediaries hold. OptInts have managed up to one

million contracts during the 90s. The market has substantially grown since 2003, and OptInts

manage up to six million option contracts as of 2020. Panel B shows that OptInts are almost

always aggregate net sellers. Put options drive most of the net position (see Figure G.2 in the

Appendix). Panel C plots the total market notional and the share held by OptInts. The notional

has also grown significantly, with more than $100 billion outstanding after the recent retail boom.

Most importantly, the plot shows that OptInts have a large stake in the whole market and are,

on average, invested in more than 50% of the market’s value. That suggests that OptInts have

to accommodate a huge fraction of order imbalances.

III. OPTION INTERMEDIARY RISK

This section introduces option P&Ls, discusses the regulatory framework for option risk man-

agement, and describes the final option intermediation risk measure.

6I use 1990 as the burn-in period.
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Figure 2. Intermediary Positions in Index Options

The figure shows the option intermediaries’ position from 1991 until 2021. Panel A plots the absolute number of
outstanding contracts defined as |OIbuyj,t +OIsellj,t |, Panel B the net position defined as −1 · (OIbuyj,t +OIsellj,t ), and
the notional value defined as the absolute number of outstanding contracts scaled by the option value and the
contract multiplier of 100.

A. P&L Attribution

Even after ignoring issues such as model misspecification, parameter uncertainty, discrete fre-

quencies, and transaction costs, quantifying the risk of OptInts’ positions is a complex endeavor.

Most factors center around raw or risk-weighted order imbalances but ignore the effect of aggre-

gate positions. I propose a factor based on the P&L of all intermediary positions. An option’s

price usually depends on inputs such as the underlying S, the implied volatility IVt, and time t.

Because derivative instruments are ultimately just functions of their inputs, Taylor series expan-

sion can be used to attribute changes in option prices to different risk contributions. A pricing

equation (PDE) must be formulated to disentangle the P&L into different sources of risk. Note

that the PDE merely reflects a tractable accounting tool. The literature and derivative desks

almost always use the BSM pricing equation for the expansion (Sepp, 2012; Bergomi, 2016;

Carr and Wu, 2020). The choice of the pricing equation does not imply that the same model

has been used to price the option. Implied volatilities are an intuitive illustration of this. No
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derivative desk uses the Black and Scholes (1973) model (BSM) for pricing, but every desk uses

the equation to translate the prices into implied volatilities. Using the BSM equation implies

that the implied volatility captures all shocks other than in the underlying.

I follow this practice and use the BSM equation and further assume that dividends are paid

continuously so that the forward value of the underlying is F T
t = Se(r−q)(T−t). The instantaneous

change in a long call Ct(Ft,K, IVt, τ) is given by

dCt =
∂Ct

∂Ft
dFt +

∂Ct

∂t
dt+

∂Ct

∂IVt
dIVt +

1

2

∂2Ct

∂F 2
t

(dFt)
2

+
1

2

∂2Ct

∂IV 2
t

(dIVt)
2 +

∂2Ct

∂St∂IVt
(dFt dIVt).

(4)

The option price is expanded to the first order in price (Delta, ∆), time (Theta, Θ), implied

volatility (Vega, v), and second order in price (Gamma, Γ), implied volatility (V olga, ϑ), and

their product (V anna, ε). The expansion up to the second derivative suffices to bring the ap-

proximation error to an order lower than the investment horizon (Bergomi, 2016; Carr and Wu,

2020). The partial derivatives are well-known option greeks that measure the sensitivity of the

option price with respect to its inputs. ∆ (v) is the directional exposure to the underlying (im-

plied volatility). Γ (ϑ) measures how ∆ (v) changes when the underlying (implied volatility)

moves. ε is the change in ∆ when implied volatility moves. Θ quantifies the time decay of an

option. Θ is negative because, as time passes, the option is less likely to be in the money. Carr

and Wu (2020) use this result and derive that the fair value of an option must be set so that

the other sensitivities balance out the loss in time value. This must hold under no-arbitrage and

risk-neutral expectations.

I use this result but consider realizations. Intermediaries hedge against the directional ex-

posure implies that the dFt term in Equation (4) drops. Expressing all partial derivatives in

percentage units (cash sensitivities) instead of units of the underlying and dividing by the in-

vestment horizon yields

dCt

dt
= Θ+

1

2
ΓF 2

t σ
2
t + vIVtµt +

1

2
ϑIV 2

t ω
2
t + ε Ft IVtγt. (5)

where

σ2t =

(
dFt

Ft

)2

/dt, µt =

(
dIVt
IVt

)
/dt, ω2

t =

(
dIVt
IVt

)2

/dt, γt =

(
dFt dIVt
Ft IVt

)
/dt, (6)

are the realized variance of the underlying, the change in IV, the realized variance of implied

volatility, and the covariance rate of underlying and implied volatility. Conveniently, all greeks
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can be expressed in terms of ΓS2. That is,

Θ = −1

2
ΓF 2

t IV
2
t , v IVt = τIV 2

t ΓF
2
t , ϑ IV 2

t = ΓF 2
t z

−z+, IVtFtε = ΓF 2
t z

+, (7)

where τ is the time-to-maturity and z± = ln
(
K
S

)
± 1

2IV
2τ is a convexity-adjusted measure

of moneyness.7 Plugging in and rearranging gives the final P&L normalized by the investment

horizon:
dCt

dt
=

1

2
ΓF 2

t

(
σ2t − IV 2

t + 2τIV 2
t µt + z−z+ω2

t + 2z+γt
)
. (8)

The decomposition shows that OptInts are prone to several sources of risk that cannot be

delta-hedged. The term is the contribution that comes from the difference between realized and

implied variance. The second is the change in the implied variance scaled by the current level

and maturity of the option. The third term is the variance of implied volatility scaled by the

option’s moneyness. The last term captures the correlation between changes in the underlying

and changes in implied volatility. The respective contributions to the P&L depend on many

factors, such as maturity and moneyness. Short-term ATM calls load primarily on the difference

between implied and realized variance, while OTM/ITM calls load on the variance difference

and the covariance. Long-term calls load strongly on the variance difference and the change in

implied volatility. To gain more intuition, I describe the P&L for two specific cases.

Constant Implied Volatility: To highlight that providing immediacy for the option market

is risky even under the most simplifying circumstances, I assume that implied volatilities are

constant. All option sensitivities concerning implied volatility disappear, and the P&L of a long

option reads
dCt

dt
=

1

2
ΓF 2

t

(
σ2t − IV 2

)
. (9)

The decomposition is visualized in Figure 3 and shows that a delta-hedged short option is a non-

linear bet against high variance. Selling an option pays off when realized variance is lower than

implied, which is attributable to the option payoff’s non-linearity and the delta hedge’s linearity.

The premium for the non-linear feature is the option’s loss in value over time (theta premium).

Higher implied volatilities increase the theta premium and shift the break-even point of the

P&L. Higher implied volatilities are favorable for option sellers. Hence, from the perspective of

an intermediary predominantly selling options, higher implied volatilities increase the probability

of making profits and decrease the probability of making losses.

Stochastic Volatility and Jumps: Models that feature stochastic volatility and jumps are

7See Hull (2009) and Carr and Wu (2020).
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Figure 3. Daily P&L of a Short Delta-Hedged ATM Call

The figure shows the daily P&L at t + 1 of a short delta-hedged call option as a function of the underlying’s
return. The solid black line shows an option with 20% and the dashed black line with 30% implied volatility. The
underlying F at t is 100, strike K is 100, and time-to-maturity τ is 0.5 years. The risk-free rate and dividend
yield are set to zero.

usually specified as

dFt = αFtdt+
√
VtFtdWt + (ex − 1)µ̃(dt, dx),

dVt = κ(V − Vt)dt+ σv
√
VtdBt,

(10)

where α is the drift of the forward underlying, κ is the mean-reversion speed of variance, V is

the mean-reversion level, σv the volatility of volatility, and dB are Brownian motion that has

a correlation of ρ to the Brownian motion of the asset price dW . The measure µ̃ counts the

number of jumps with intensity λt and magnitude x. The model complicates the P&L because

of the autocorrelation of variance, and not all partial derivatives are available in closed form.8

However, both effects do not change the overall interpretation. I assume that OptInts use BSM

sensitivities as ad-hoc choices. The instantaneous P&L can be approximated by

dCt

dt
≈ 1

2
ΓF 2

t

(
σ2t − Σt + 2τΣµt + z−z+ω2

t + 2z+γt
)
. (11)

8Sepp (2013) shows the P&L with the autocorrelation correction. The derivation is slightly less complex because
it underlies the PDE of the BSM that does not account for volatility sensitivities.
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where the model’s implied variance is

Σt = V +
1

κτ

(
1− e−κτ

)
(Vt −V ) + λtµj , (12)

and

µt =
κ(V − Vt)

Σt
, ωt =

σ2vVt
Σt

, γt =
ρσvVtFt

ΣtFt
=
ρσvVt
Σt

. (13)

The approximate P&L gives a clearer picture of each component’s contribution. Consider the re-

sults from the perspective of an intermediary who sells a call option. There is a constant risk that

volatility realizations are higher than expected, e.g., because a jump realizes (
∫ T
0

∫
R x

2µ(ds, dx) >

0) or volatility suddenly shifts. Of course, the implied volatility of options is greater to make the

break-even point of the P&L wider. Intermediaries also make losses when the current variance

level is below its long-term mean V > Vt, which is scaled by κ. Lower values for the mean-

reversion speed mitigate the impact of this risk. This is exactly the effect of the volatility risk

premium in standard option pricing models, which lowers the mean-reversion speed under the

risk-neutral probability measure (Bates, 2003). The contribution of the variance of implied vari-

ances is ambiguous and depends on the option’s moneyness. While ωt is strictly positive, z±

determine if the intermediary profits from fluctuations. Generally speaking, z± are positive for

OTM calls, negative for ITM calls, and have opposite signs for ATM calls. The last contribution

comes from the covariance rate of the underlying and implied volatilities. γt is negative, and z
+

is positive for OTM and ITM calls and negative for ITM calls.

B. Regulatory Requirements

The risks associated with option trading are hard to manage and often result in extreme losses.

In 2017, Catalyst Capital Advisors lost about $700 million in its largest fund due to extreme

short positions.9 In November 2018, OptionSellers.com went bankrupt because it suffered losses

of more than 150 million USD in trading commodity options. The company’s investment strategy

was shorting strangles, which resembles the payoff profile of a delta-hedged short option position.

Of course, OptInts are not comparable with funds. While the latter relies on investment profits,

OptInts’ main income is spread income. Nevertheless, OptInts must take some risks and follow

dynamic strategies (Baird, 1992). OptInts have intense monitoring and risk management systems

to manage the risks associated with making the market. (Bergomi, 2016).

The risk management of options has also been integrated into the regulatory frameworks in

the USA and Europe. Title 12 Part 44 of the Code of Federal Regulations (CFR) establishes the

9See the news release by the SEC: https://www.sec.gov/news/press-release/2020-21. More detailed reports
by the SEC and CFTC mention that the fund relied on selling call options and that the risk management was
inadequate.
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legal framework for the USA. The framework has been amended in response to the Dodd-Frank

Act and is integrated into the Bank Holding Company Act. Among other information, the rules

require reporting a comprehensive P&L attribution that contains the following information: the

actual daily P&L, the P&L from existing and new positions, the P&L attributed to changes in

risk factors, and the market values of the current long and short positions. Most importantly,

the regulator requires to report risk limits that define the amount of risk a trading desk takes.

The limits can be quantified with the 1% Value-at-Risk, positional limits, or stress scenarios.

The procedures are often only vaguely defined and refer to the internal risk management

techniques of the intermediary. More details are provided in the Basel III framework (Bank for

International Settlements, 2019). The framework considers only three sources of risks: directional

risk (∆), convexity risk (Γ), and volatility risk (v). For the quantification of convexity, the Basel

committee requires using stress scenarios (MAR 10.16). The approach is based on stressing the

current option positions by assuming a ±8% move in the underlying that is accompanied by a

±25% shift in implied volatility (MAR 40.83). The capital requirements are determined based on

the highest loss along the grid of scenarios. The framework does not explicitly define calculation

methods for the sensitivities. However, MAR 21.28 mentions that the volatility sensitivity of

equity options can be calculated using a log-normal assumption, which is in line with Black

and Scholes (1973). The maximum losses of the scenarios are taken to determine the capital

requirements. Interestingly, the capital requirements for Γ are only for net short positions (MAR

40.80).

C. Quantifying Unhedgeable Risks via Stress Scenario

I use stress scenarios to determine the OptInts’ P&L in case of a shock. The approach recognizes

that OptInts are mostly concerned about actual capital losses and unifies most unhedgeable

risks into one quantity. More specifically, I define the intermediary risk as the potential loss for

different moves in the underlying and implied volatility. The delta-neutral P&L for each scenario

i for the next trading day is simply given by

E
[
P&Li

t+1

]
=

∑
j

Posj,t ×

(Oj,i
t+1(S

i,K, IV i, τ − δt)−Oj
t︸ ︷︷ ︸

Scenario Shock

)−∆j
t (S

i − St)︸ ︷︷ ︸
Hedge

 . (14)

Hence, I use the current positions in option j, shock the option value Oj
t by assuming scenarios

for the underlying Si and the implied volatility IV i, and determine the delta-hedge P&L for

each scenario. To implement the method, I require a grid of scenarios and a pricing model to

determine the option values along the grid.
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I use a range of ±10% for changes in the underlying, slightly extending the Basel III sugges-

tions. The reason is that nine daily returns have been outside the suggested range of ±8% over

the last 15 years. I use three different implied volatility scenarios. First, I follow a simple but

common practice of trading desks and use the ‘sticky-strike’ rule. The rule assumes that implied

volatilities will be unaffected by changes in the underlying, preserving the current volatility sur-

face (Daglish, Hull, and Suo, 2007). Second, I assume that a change in the underlying shifts the

implied volatility by -3.65, matching the unconditional relationship between S&P 500 and VIX

returns. The Basel Committee suggests a similar scenario. Conveniently, the magnitude of the

volatility shifts will depend on the direction in which the underlying moves. Negative underlying

changes will increase the implied volatility and vice versa. Lastly, I extend the approach and

use a 120-day rolling window regression coefficient between returns in S&P 500 and VIX. This

accounts for the time-varying relationship and the current state of the economy. The last step

to determining the scenario P&L is the choice of the pricing model. For the underlying purpose,

it is essential to note that the model does not need to be designed to create a single reference

distribution that matches the observable volatility surface. Instead, the model takes current sur-

face characteristics (volatility skew, term structure) and reprices options given a change in the

underlying or implied volatility. Hence, the model does not need to be as complex as modern

option pricing models. I choose the simple BSM model. Figure G.3 confirms that the model is

a reasonable choice. The mean pricing error over the whole sample period is 1%. Hence, only a

tiny fraction of the observable option prices cannot be explained using the BSM model and the

current volatility surface.

Figure 4 plots the scenario P&L for two random days. As is evident, the scenario P&L is just

a weighted average of individual options delta-hedged P&L. Panel A shows the scenario P&L

for April 10th, 1991, for which the OptInts’ position was net long. OptInts make a slight loss

when the market does not move too much (loss in time value) but profit in case volatility is

high. The portfolio is not fully balanced across strike prices, resulting in an asymmetric P&L.

The potential gain is slightly more when markets go down, as indicated by the steeper slope for

negative underlying changes. Panel B shows the P&L for January 13th, 1995. The positions are

net short such that OptInts make a loss when volatility is high in exchange for the gain in time

decay. Although option markets are considerably smaller, the losses amount to over $100 million

for some scenarios. The profit is approx. $10 million when the S&P 500 increases by 2-3%.

The figure also indicates that losses are potentially unlimited, exposing OptInts to the risk

of bankruptcy and affecting the whole system. Brunnermeier and Sannikov (2014) show that

option markets may have led to more frequent crises. Intermediaries (and other participants)

could attain risky positions with high leverage but did not have to maintain large capital buffers.

I visualize the evolution of the scenario P&L for the two most extreme scenarios in Figure 5.
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Figure 4. Market Maker Scenario P&L

Panel A: April 10
th

, 1991

Panel B: January 13
th

, 1995

The figure exemplifies Scenario P&Ls for two randomly selected dates. The P&L is determined via Equation (14)
and by assuming changes in the underlying along the grid of ±10% and shifts in implied volatilities of 3.65 times
the change in the underlying.

Upward shocks often result in capital losses for intermediaries, but downward shocks are always

more painful. The magnitude of losses is extreme, and intermediaries are exposed to daily losses

of more than $2 billion.

D. Option Intermediary Risk Factor - Scenario P&L Slope

Regulators require to use the maximum loss based on a two-shock stress scenario to determine

the regulatory capital. While this makes sense from a regulator’s point of view, I suggest using

the scenario P&L’s negative slope. Slopes have the appealing property that unlimited losses are

taken into account. A slope describes the direction of a function at a particular point. If the

slope is negative, OptInts will make losses relative to the previous scenario. Given that the usual

shape of a scenario P&L is convex or concave, it indicates the functional form. Additionally, the

slope quantifies the steepness of the P&L at a given point. Larger absolute values indicate that

the rate of change of the P&L in the stress scenario is high. Therefore, the slope provides an
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Figure 5. Time-Series of Extreme Scenario P&L
in

 B
il

li
o

n

-10%

 10%

The figure shows 30-day moving averages of two scenario P&Ls. The scenarios are ±10% changes in the underlying
and fixed shifts in implied volatilities of 3.65 times the change in the underlying.

intuitive description of the exposure to very large adverse shocks. A potential disadvantage is

that a slope does not consider the current level of the P&L. That is, the factor can be downward

sloping, although OptInts currently make a profit and vice versa. Below, I show that this is not

of concern.

To determine the slope, I need a meaningful reference point. I quantify how risky OptInts’

P&L is when the stock market crashes. There is abundant evidence that economic turmoils

and downside states are of primary interest to the economy, policymakers, and asset markets.10

Such episodes are also of first-order importance for OptInts because they present a shock to

intermediary constraints and have higher loss potential. I follow the Basel III framework and

use the scenario with the highest loss. It turns out that the downward shock of −10% is always

the minimum of Equation (14).

The size of option markets has increased drastically over the last few years. I standardize the

slope factor by the absolute number of positions to counteract the severe time trend. With the

10See, among many others, Gabaix (2012) for a model with rare disaster, Kelly and Jiang (2014) for stock returns,
and Andersen, Fusari, and Todorov (2015b) for option markets.
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standardize, I account for the growth in the market and the fact that more intermediaries make

the option market.11 Consequently, the negative slope factor is given by

OIRt =
P&L−10%

t+1 − P&L−10%+z
t+1

|
∑

j Posj,t|
, (15)

where z = 0.01%. Hence, the option intermediary risk OIR is the difference between two adjacent

scenario P&Ls standardized by the absolute number of positions. The factor can be regarded as

the additional profit or loss per unit of option contract held in case a crash occurs.

Table I provides summary statistics for the unstandardized factor OIRraw, OIR, and the

scenario P&L the different implied volatility scenarios. All factors are scaled. The mean and

median (Q50) factors are negative for all specifications. For example, the mean OIRraw the

fixed IV shift scenario equals an additional $8.2 million. The numbers shift downward for the

sticky-strike scenario and upward for the dynamic-IV scenario. The factors show considerable

time-series variation. The estimated standard deviation is almost one and a half the mean. The

difference between the mean and median indicates a severe left skew. The minimum OIRraw

for the fixed IV shift scenario is more than $62 million. Sometimes, OptInts would profit if the

underlying crashed, as indicated by the maximum values. Panel B shows that the summary

statics are similar for OIR. Two notable exceptions are the significant decrease in standard

deviation and skewness. Panel C highlights that the summary statistics for P&L−10%
t+1 align

well with the slope factors. The mean loss for the fixed IV shift scenario is $430 million, and

the maximum potential loss equals $3.6 billion. As documented by Gârleanu, Pedersen, and

Poteshman (2009), daily realized losses of more than $100 million occurred between 1996 and

2001, although the market was smaller than nowadays. The signs of the slope factor and the

P&L are equal for more than 95% of the sample. The correlation is about 93%. While cases with

opposite signs do not often occur, they are informative for the OptInts because they indicate

whether losses or profits are limited. A profit will turn into a loss when markets crash even more

severe in ≈ 4% of observed days, and a loss turns into a profit in ≈ 1% of observed days.

Figure 6 plots one-week moving averages for OIR for all three implied volatility scenarios.

Indeed, OIR is primarily negative, implying that OptInts almost always have a negative P&L

when markets crash. This suggests that OptInts are averse to big market crashes. Interestingly,

the plot reveals that OptInts often build up more exposure against stock market jumps before

crises but are relatively unaffected once the market actually crashes. This was the case before

the financial crisis in 2008 and the Corona crisis in 2020. The highest maximum loss for the

dynamic scenario (and for all three raw measures) occurred at the beginning of 2018, right before

11There is no readily available information about the evolution of the number of OptInts. However, Gârleanu,
Pedersen, and Poteshman (2009) report about 100 OptInts, while the OCC currently lists 140.
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Table I. Summary Statistics

Mean SD Min 0.1 0.25 0.50 0.75 0.90 Max

Panel A: OIRraw

Sticky IV -53.68 79.05 -457.25 -168.25 -78.20 -25.44 -8.67 6.14 188.35
Fixed IV -82.29 106.39 -625.54 -250.80 -120.72 -37.68 -15.80 -2.16 143.92
Dynamic IV -118.57 176.56 -1261.09 -391.03 -158.69 -38.76 -15.54 -2.05 118.23

Panel B: OIR

Sticky IV -0.027 0.026 -0.130 -0.063 -0.042 -0.022 -0.007 0.002 0.038
Fixed IV -0.039 0.033 -0.158 -0.087 -0.061 -0.032 -0.013 -0.001 0.029
Dynamic IV -0.049 0.046 -0.245 -0.121 -0.073 -0.036 -0.015 -0.001 0.025

Panel C: P&L

Sticky IV -19.53 39.77 -226.38 -68.62 -32.08 -12.29 -2.76 12.95 219.12
Fixed IV -42.78 56.29 -366.84 -129.04 -63.03 -23.63 -9.53 1.87 215.36
Dynamic IV -70.38 104.30 -1018.87 -231.58 -94.13 -26.11 -10.05 0.05 214.87

This table provides summary statistics for unstandardized option intermediary risk OIRraw defined as
(P&L−10%

t+1 −P&L−9.99%
t+1 ) and scaled by 10−5 (in Panel A), OIR defined in Equation (15) and scaled by 10−2 (in

Panel B), and the scenario P&L−10%
t+1 defined in Equation (14) and scaled by 10−7 (in Panel C). The IV scenarios

are sticky-strike (Sticky IV), fixed IV shift of -3.65 multiplied with the stock price change of 10% (Fixed IV), and
a dynamic shift estimated from a 120-day rolling window of VIX returns on S&P 500 returns (Dynamic IV).

a volatility fund’s bust amid a sharp volatility increase (‘Volmageddon’). I observe no material

difference in the time-series dynamics across OIR across the different scenarios. Regardless

of the construction, the dynamics are very similar. The most notable exception is the severe

decrease in the dynamic implied volatility time series at the end of 2017. Pairwise correlations

are 95% between the sticky and fixed scenario, 85% for sticky and dynamic, and 94% for fixed

and dynamic. The raw versions have slightly higher correlations. Throughout the paper, I will

focus on the fixed IV shift scenario. This is in line with the Basel Committee’s suggestion.

Additionally, the factor has the highest correlation with the other two factors. I show below that

the results do not depend on the exact specification of the intermediary risk factor (P&L level

or slope), the reference point, or the implied volatility scenario.

IV. RISK AND LIQUIDITY PREMIA

In this section, I study the information content of intermediaries’ positional risk. I start by

discussing my empirical identification and my instrumental variable approach. I show that past

order imbalances, option expiry days, and intermediary constraint as instruments can be instru-

mented for my option intermediary risk factor. The next two section relate OptInts to liquidity

premia calculated from realized S&P 500 option transactions and delta-hedged option returns.
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Figure 6. Time-Series of OIR for different IV Scenarios

Sticky

Fixed

Dynamic

The figure shows the OIR from Equation (15) from 1991 to 2021. The factor is determined for the sticky-strike
IV scenario (black line), fixed IV shift scenario (blue line), and dynamic IV shift scenario (gray line). The stock
price scenario is set at −10%.

A. Identification: Lags and Instrumental Variable

At any given point in time, the information in my risk factor OIR consist of three sources: the

aggregate net positions Post, the current option surface, and the scenarios that approximate

tomorrow’s option surface in case of a shock. I use this measure to establish a link between

the risk of intermediating the option market and its premia. The dependent variables are delta-

hedged option returns and effective option spreads. Delta-hedged option returns load on risks

that are not spanned by trading the underlying, such as variance and jump risk (Bakshi and

Kapadia, 2003). Spreads are a proxy for the compensation for providing liquidity (Christoffersen,

Goyenko, Jacobs, and Karoui, 2018). The exact definition of both variables is given in the

respective section.

Fixing the dependent and independent on the same timeline will likely result in biased esti-

mates. Changes in Post and option prices are endogenous due to simultaneity and concurrent

factors such as news about fundamentals affect both. Are prices increasing because investors buy

or vice versa? Are spreads decreasing because investors sell? I will address this issue in two ways.

First, I use lagged dependent variables because it is unlikely that demand in t will cause further

price pressure the next day. Among others, Muravyev (2016) analyzes the effect of demand on

option prices and uses an identification based on instantaneous price changes. Hendershott and

Seasholes (2007) use lags to identify the effect of stock market makers’ positions on future price

changes. The underlying assumption is that the simultaneity between quantities in prices is in-

stantaneous. A simple test is to check for time dependencies in the dependent variables. I find
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that the average 1-day autocorrelation across the panel of delta-hedged option returns is 0.02

and statistically insignificant. The model I run for the lag identification is

Yi,t = α+ βOIRt−1 + γX + ϕt + φi + ϵi,t, (16)

where Yi,t are option returns (spreads) for different portfolios, X are a set of controls, ϕt are year-

month fixed effects, and φi are entity fixed effects. Hence, the model controls for heterogeneity.

Standard errors are double-clustered at entity and time levels.

Second, I apply an instrumental variable approach by instrumenting past order imbalances,

option expiries, and intermediary constraints. Order imbalances are the residual between buy and

sell transactions. More buy activity results in a positive order imbalance which intermediaries

must absorb. The model of Chordia and Subrahmanyam (2004) shows that past order imbalances

predict future changes in the aggregate position of intermediaries. Past order imbalances predict

variation in Post and, thus, in OIR. Similarly, expired options create exogenous variation as

the expired options are not further in the intermediary’s positions. Muravyev (2016) uses both

variables to instrument current order imbalances. I use rapid increases in the leverage ratio

measure of He, Kelly, and Manela (2017) as a third instrument. Increases in the leverage ratio

indicate tighter intermediary constraints. This should lead to variation in OIR through changing

option prices as OptInts are less willing to supply options. The leverage ratio is determined from

all NY Fed primary dealers’ average market equity and book debt. The largest primary dealers

are also OptInts.12 I use a dummy that equals one if changes in the leverage ratio are larger

than 2.5% to proxy for tighter constraints of intermediaries. Because concurrent factors might

drive changes in the leverage ratio and option prices, I lag the dummy variable by one week.

The variables must satisfy three conditions to be valid instruments. First, the instruments

cannot be correlated with the dependent variable other than through the variation in interme-

diaries’ positions. I apply the Wu-Hausman test, and find no evidence for endogeneity between

the instruments and the outcome variables. I conclude that the condition is satisfied. Second,

the instruments should not correlate to an omitted variable that determines option returns. It is

unclear whether past order imbalances predict only future changes in intermediaries’ positions or

contain information about future volatility (informed trading). Muravyev (2016) addresses this

concern and shows that past order imbalances primarily drive future positions rather than future

volatility. Third, the instrument must be strongly correlated with the endogenous explanatory

variable. I apply the following first-stage regression to test this condition:

OIRt = α0+α1OIt−7+α2OIt−6+α3OIt−5+α4OIt−4+α5OIt−3+α6Expt+α7Constraintt−7+ϵt. (17)

OIt−n is the residual between buying and selling orders, Expt is a dummy that equals one

12See the list of NY Fed Primary Dealers and the Option Clearing Corporation member directory.
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when t is an option expiry day, and Constraintt−7 is a lagged dummy that indicates if NY

fed primary dealer’s leverage increased by more than 2.5%. I do not use the most recent order

imbalances and constraint dummy because both could be driven by the same variable that

drives option qua. The results are reported in Table II. The table shows that all coefficients

in the first stage are highly significant and correlated to OIR. The results highlight that each

instrument adds isolated explanatory power, confirming that each instrument is correlated to

OIR. Hence, the instruments are a good choice. The coefficients for OI are negative because

positive order imbalance results in new short positions for OptInts, thereby decreasing OIR

(higher potential losses). The coefficient for the expiry dummy is positive. On average, the

expired options reduce the short positions of OptInts and the overall loss potential. The lagged

dummy for intermediary constraints is positive, indicating that higher constraints are associated

with lower values of intermediary risk. The most likely channel is that intermediaries have to

reduce risky short positions when they are more constrained.

Table II. First Stage Regression of Instrumental Approach

OIRt OIRt OIRt

OIt−7 =0.30∗∗∗ =0.32∗∗∗ =0.28∗∗∗

(0.05) (0.05) (0.05)

OIt−6 =0.29∗∗∗ =0.32∗∗∗ =0.29∗∗∗

(0.05) (0.05) (0.05)

OIt−5 =0.30∗∗∗ =0.34∗∗∗ =0.32∗∗∗

(0.05) (0.05) (0.05)

OIt−4 =0.32∗∗∗ =0.31∗∗∗ =0.31∗∗∗

(0.05) (0.05) (0.05)

OIt−3 =0.32∗∗∗ =0.32∗∗∗ =0.32∗∗∗

(0.05) (0.05) (0.05)

Expt 1.30∗∗∗ 1.30∗∗∗

(0.30) (0.29)

Constraintt−7 2.37∗∗∗

(0.33)

adj. R2 8.19 10.46 12.36

F-Stat 75 81 84

The table reports results of the first stage regression from Equation (17). OI is the order imbalance defined as
the residual between buy and sell transactions. Exp is a dummy that indicates option expiry days. Constraint
is a dummy that equals one when the leverage ratio of financial intermediaries increased by more than 2.5%.
Standard errors (in parentheses) are computed based on the method of Newey and West (1987) with 30 lags.
∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%, and 10%. The sample period is from Jan 2004 until Dec 2020. The
dependent variables are standardized by their sample standard deviation and multiplied by 100. The regression
constant is not reported.
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B. Impact on Liquidity Premia

I first focus on liquidity costs in option markets. OptInts’ compensation for providing immediacy

is the so-called spread which is the difference between the transaction and fair price. For every

buy (sell), OptInts offers a price above (below) the option’s fair price. Higher spreads indicate less

market liquidity because OptInts require more compensation to provide immediacy. I construct

liquidity measures from traded S&P 500 options at the CBOE. The data reports relevant trade

conditions, such as the exact time stamp, trade size, price, best bid/ask, and trade IV. The data

is available from 2004 until the end of 2020. The liquidity measure I focus on is along the lines of

Christoffersen, Goyenko, Jacobs, and Karoui (2018), who use the effective relative dollar spread

of an option trade. However, I deviate from the proposed measure by using implied volatility

spreads. Implied volatilities are more comparable than dollar values. A $0.01 spread for a $0.05

option is relatively higher than a $5 spread for a $50 option. Implied volatility spreads ensure

comparability across different contracts. The measure is defined as

ESk =
2|IV P

k − IVM
k |

IVM
k

, (18)

where IV P
k is the implied volatility of option trade k calculated with the trade price P , and

IVM
k is the implied volatility of the same option calculated with the mid-price M . I construct

five different moneyness buckets b for calls and puts separately.13 Each trade’s contribution to

the bucket spread is weighted by its volume. The median absolute effective IV spread across the

panel is 0.018. Table III reports the results of the panel regressions.

Intermediary risk and option liquidity are strongly related. The coefficient is consistently

negative and statistically meaningful. Intermediaries’ positional risk well captures the variation

of spreads over time. The relationship is more important (and less spurious) than the VIX and

stock market illiquidity. Funding illiquidity is also an important contributor to explaining option

market liquidity. Adding the previous days’ effective relative spreads and the traded option

volume as controls reduces the magnitude of OIR, but the statistical importance is unaffected.

In contrast, the VIX and stock market illiquidity become insignificant, and the coefficient of

FI reduces by almost 80%. Using the instrument for intermediary risk shows that the effect is

indeed negative and causal. On average, the relationship between intermediary risk and liquidity

cost is negative, suggesting that OptInts require higher compensation for providing liquidity on

days on which the P&L is risky. The findings are in line with Ho and Stoll (1981), who show

theoretically that (stock) market makers’ positions are negatively correlated with spreads. The

intuition is that spreads are adjusted so that positions are less likely to become even more

13The five buckets are deep out-of-the-money b < 0.90, out-of-the-money 0.90 ≤ b < 0.975, at-the-money 0.975 ≤
b < 1.025, in-the-money 1.025 ≤ b < 1.10 , and deep-in-the-money b > 1.10.
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Table III. Liquidity Compensation

ESi,t ESi,t ESi,t ESi,t

OIR =0.282∗∗∗ =0.245∗∗∗ =0.108∗∗∗ =0.019∗∗∗

(0.065) (0.064) (0.034) (0.005)

V IXt =0.278∗∗∗ =0.019 =0.091∗∗

(0.105) (0.037) (0.044)

SIt 0.098∗∗ 0.002 =0.007
(0.046) (0.022) (0.021)

FIt 0.739∗∗∗ 0.162∗∗∗ 0.205∗∗∗

(0.116) (0.051) (0.061)

ESi,t−1 0.457∗∗∗ 0.467∗∗∗

(0.053) (0.055)

ESi,t−2 0.403∗∗∗ 0.412∗∗∗

(0.047) (0.050)

V olumet =0.259∗∗∗ =0.260∗∗∗

(0.085) (0.086)

adj. R2 9.10 14.68 31.04 30.81

adj. R2 w/o 2.09 7.59 17.31 16.81

Identification Lag Lag Lag Inst

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

N 41,000 41,000 41,000 41,000

The table reports results of panel regressions of IV spreads from Equation (18) on the option intermediary risk
factor OIR and several controls. V IX is the CBOE’s volatility index, SI is the Amihud (2002) market illiquidity
measure, FI is funding illiquidity of Hu, Pan, and Wang (2013), ESt−n are lagged spreads, and V olume is the
traded option volume. Lag indicates that mP&L is lagged by one day. Inst is the instrument from Equation (17).
R2 w/o is the explained variation without fixed effects. Standard errors (in parentheses) are clustered by entity
and month. ∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%, and 10%. The sample is from Jan 2004 until Dec 2020.
Independent variables are standardized and multiplied by 100. The regression constant is not reported.

negative (or positive). Similar evidence for a small sample of equity options is provided by Ho

and Macris (1984).

C. Impact on Risk Premia

OptInts across assets strongly desire to exit markets with no position (Hendershott and Seasholes,

2007). One way to control the positions is to adjust spreads around the fair price determined

by the fundamental forces affecting supply and demand. A fundamental force may be the risk

of OptInts which are usually net suppliers. OptInts may account for the risk by adjusting both

spreads and prices. Because option prices are not comparable over time, I use delta-hedged op-

tion returns as a price measure. I follow the insights of Muravyev and Ni (2020) and Goyenko

and Zhang (2020), who show that overnight option returns are strikingly different from intraday
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returns. I construct three sets of option returns for different investment horizons: end-of-day re-

turns (4:00 pm to 4:00 pm), overnight returns (4:00 pm to 9:40 am), and intraday returns (9:40

am to 4:00 pm). I use 4:00 pm because asynchronous and stale underlying prices are otherwise

an issue.14 Similarly, option quotes are relatively stale at the beginning of trading at 9:30 am

(Muravyev and Ni, 2020). I define the respective delta-hedged return of option O as

rt+1 =
Ot+1 −Ot −∆t(Ft+1 − Ft)

Ot
, (19)

where F denotes the underlying’s future price and ∆ is the option’s delta. The option returns

are constructed for close-to-expiry options (less than 13 days TTM), short-maturity options

(30 days), medium-term options (150 days), and long-term options (>150 days). Moreover,

I categorize option returns by option type and five moneyness buckets defined in Section B.

Results of regressions are given in Table IV.

Tomorrow’s option returns strongly depend on potential capital losses. OIR is statistically

highly significant in predicting end-of-day, intraday, and overnight option returns. A one stan-

dard deviation increase is associated with returns of −1.78% day-to-day, −1.40% intraday, and

−0.53% overnight using the lag identification. The coefficient’s magnitude reduces for the in-

strumental variable approach, but all coefficients are still economically large and statistically

meaningful. The causal effect is an option return of more than −0.50%. OIR impacts returns

through a different channel than volatility-risk weighted positions Vega. An increase in Vega (pri-

marily negative) predicts a positive option return, while an increase in OIR predicts a negative

option return. The market-wide order imbalance across all option transactions is also statisti-

cally highly significant. This is in line with previous research on option returns and demand

(Muravyev, 2016; Muravyev and Ni, 2020). However, although the variable is not lagged, the

magnitude of OIR is four to six times larger (up to three for the instrumental variable ap-

proach). The economic significance of aggregate positional risk exceeds order imbalances by far.

However, the coefficient of OI is likely biased due to endogeneity. In unreported results, I find

that the predictability lasts up to 3 days, suggesting that intermediaries adjust prices gradually

when positional risk is high. The results highlight that OptInts want to induce public sell orders

by charging higher prices and spreads.

14Equity markets usually stop trading at 4:00 pm while options stop trading at 4:15 pm. The consequences and
importance are discussed in the Appendix of Battalio and Schultz (2006). Note that the results do not depend on
the exact time.
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Table IV. Option Returns

rend−of−day
t rintraday

t rovernight
t

(1) (2) (3) (4) (5) (6)

OIR =1.777∗∗∗ =0.511∗∗ =1.395∗∗∗ =0.277∗∗∗ =0.525∗∗ =0.275∗∗∗

(0.549) (0.215) (0.423) (0.102) (0.209) (0.099)

V IX =1.744∗∗ =1.668∗∗ =0.209 =0.216 =1.076∗∗∗ =0.990∗∗∗

(0.821) (0.785) (0.550) (0.507) (0.411) (0.376)

V ega 1.152∗∗ 0.642 0.796∗∗ 0.372 0.690∗∗ 0.594∗∗

(0.582) (0.508) (0.383) (0.308) (0.271) (0.241)

V RP =0.120 =0.174 =0.053 =0.048 =0.027 =0.077
(0.451) (0.459) (0.314) (0.304) (0.115) (0.125)

Skew 0.010 0.006 =0.042 =0.090 0.163 0.180
(0.601) (0.585) (0.371) (0.371) (0.232) (0.228)

rSP500
t =3.253∗∗ =3.266∗∗ =2.421∗∗∗ =2.421∗∗∗ =2.211∗∗∗ =2.219∗∗∗

(1.296) (1.298) (0.859) (0.859) (0.830) (0.832)

adj. R2 8.99 8.97 4.72 4.68 14.79 14.82

adj. R2 w/o 3.48 3.46 3.36 3.34 4.84 4.84

Identification Lag Inst Lag Inst Lag Inst

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

N 132,259 132,259 132,259 132,259 132,259 132,259

The table reports results of panel regression of end-of-day, intraday, and overnight option returns on option in-
termediary risk OIR and several other predictors/controls. V IX is the CBOE’s volatility index, V ega are the
volatility risk-weighted positions, V RP is the variance risk premium, and Skew is the risk-neutral skewness,
rSP500 is the return of the S&P 500 calculated over the same period as the option returns, and OI is the market-
wide order imbalance defined as the sum over all buy and sell volumes. Identification Lag indicates that mP&L

and the other variables without a time-index are lagged by one day. Identification Inst use the instrument from
Equation (17). R2 w/o is the explained variation without fixed effects. Standard errors (in parentheses) are clus-
tered by entity and time. ∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%, and 10%. The sample period is from Jan
2004 until Sep 2020. All independent variables are standardized and multiplied by 100. The top and bottom 0.5%
outliers of all sets of returns are removed. The regression constant is not reported.

D. Robustness Checks

I report various robustness checks for end-of-day option returns in Table G.3 and effective spreads

Table G.4. I use the lag and the instrumental variable identification for all robustness checks. I

note that the coefficient estimated via instrumental variables is almost unchanged throughout

all option return robustness checks.

Reference Point: The first two columns report results when OIR is determined at the sce-

nario −5% instead of −10%. The coefficient for the lag identification decreases slightly so that a

one standard-deviation shock in intermediary risk OIR is associated with a delta-hedged option

return of 1.20% the next day (instead of 1.77% in the main results). However, the instrumental
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approach reports a slightly more negative coefficient – the coefficient decreases from −0.51 to

−0.53. The results for effective spreads improve significantly for both identification approaches.

For instance, the instrumental variable coefficient decreases from −0.02 to −0.05. I also test

further reference points and find that every scenario < −2% produces the same results. Inter-

estingly, the coefficient’s sign changes for positive scenarios.

P&L Level: The next two columns report results when I use the level E
[
P&Li

t+1

]
from Equa-

tion (14) determined at scenario −10% instead of the slope factor. The results are unchanged.

Implied Volatility Scenario: The next robustness shows that the results are robust to the

implied volatility scenario. I determine OIR using the dynamic IV scenario. I estimate the rela-

tion between underlying and implied volatility changes via a 120-day rolling window regression

of S&P 500 returns on VIX returns. The results slightly improve.

Volatility States: I remove all days with high volatility from the sample to check whether the

main results only hold during volatile periods. High volatility days are defined as V IX > 20%.

The results for option returns do not change. The instrumented coefficient decreases from −0.51

to −0.56. For spreads, the coefficients within the lag identification are similar to the main

results. The coefficient within the instrumental identification is insignificant. It appears that

intermediaries predominantly increase spreads in times of high volatility.

Realized Profit&Loss: A natural concern is whether results are robust to realized profits or

losses of intermediaries. I construct a time series of realized profits or losses, assuming that

intermediaries delta-hedge their positions at the end of each trading day. The coefficient of the

realized P&L is large and statistically highly significant. A one-standard deviation decrease is

associated with returns of about 2.5% but is probably inflated due to endogeneity. Nevertheless,

the inclusion does not affect my intermediary risk factor. The coefficient in the instrumental

approach is virtually unchanged. With regard to realized spreads, the realized P&L has no

significant explanatory power.

V. TIME-VARIATION IN OPTION INTERMEDIARY RISK

In this section, I show that option intermediary risk varies with the health and constraints of

financial institutions, the economic outlook, volatility. Then, I analyze how OptInts manage OIR

and document asymmetrically adjusted option quotes and spreads that induce public sell orders.

A. Intermediary Health and Volatility

My measure is constructed to capture the risk of intermediating in the option market. Many

OptInts are large financial institutions also active in other markets. Brunnermeier and Pedersen

(2009) show that the funding of intermediaries and market liquidity are mutually reinforcing,
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and traders’ ability to provide liquidity depends on funding availability and vice versa. I compare

my risk measure to a variety of factors. The first is the funding illiquidity measure of Hu, Pan,

and Wang (2013), which exploits deviations of observable bond yields to model-implied bond

yields. The second measure is the value-weighted leverage ratio of NY Fed Primary Dealers

from He, Kelly, and Manela (2017). Primary dealers are the largest financial institutions that

are trading counterparties for the Fed in its implementation of monetary policy. The largest

primary dealers are also OptInts. The leverage ratio is defined as total assets divided by equity

and is a well-known proxy for the health of the intermediary sector (He and Krishnamurthy,

2013). The third measure is the difference between the 3-month LIBOR and Treasury rate (TED

spread), a proxy for the credit risk of financial intermediaries. The fourth measure I use is the

difference between the yield of the AAA and BBB BofA Corporate Index. The yield spread

proxies the aggregate default risk and is a strong predictor of economic activity (Culp, Nozawa,

and Veronesi, 2018). All measures are publicly available at a daily frequency. Table V depicts

the relationship to my option intermediary risk factor.

Table V. Relation to Intermediary Health

(1) (2) (3) (4) (5) (6) (7)

α =1.56∗∗∗ =2.10∗∗∗ =1.32∗∗∗ =2.08∗∗∗ =2.37∗∗∗ =2.36∗∗∗ =2.40∗∗∗

(0.10) (0.14) (0.08) (0.14) (0.17) (0.17) (0.17)

FIt 0.28∗∗∗ =0.08 =0.11
(0.05) (0.06) (0.07)

LRt 0.49∗∗∗ 0.26∗∗∗ 0.26∗∗∗ 0.25∗∗∗

(0.06) (0.05) (0.06) (0.05)

TEDt 0.11∗∗∗ =0.02 0.04
(0.04) (0.05) (0.06)

DSt 0.47∗∗∗ 0.40∗∗∗ 0.35∗∗∗ 0.41∗∗∗

(0.06) (0.08) (0.07) (0.08)

adj. R2 7.8 23.7 1.2 21.8 30.9 30.6 31.1

N 7467 5430 7337 6018 5386 5291 5287

The table reports results of daily OLS regression of option intermediary risk OIR on measures of financial stabil-
ity. FI is the funding illiquidity measure of Hu, Pan, and Wang (2013), LR is the value-weighted debt-to-equity
ratio of NY Fed Primary Dealers of He, Kelly, and Manela (2017), TED is the difference between the 3-month
LIBOR rate and treasury yield, and DS is the difference between the AAA and BBB BofA Corporate Bond
Index. Standard errors (in parentheses) are computed based on the method of Newey and West (1987) with 30
lags. ∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%, and 10%. The sample period is from Jan 1991 until Dec 2020,
except for all regressions including LR (May 1999) and DS (Jan 1997). All variables are standardized by their
sample standard deviation.

The first regression shows that the option intermediary risk positively relates to the illiquidity

proxy. More funding illiquidity, indicating a lack of arbitrage capital, is associated with less severe

losses / a profit of OptInts in case of an extreme adverse shock. Potential losses from the option

28



position are also positively related to the leverage ratio of NY Fed Primary Dealers. A one

standard deviation increase in LR translates into a 0.49 standard deviations increase in OIR. A

high leverage ratio suggests that operational risk is high and intermediary constraints are likely to

be binding. The results indicate that this translates to the option trading desks because OptInts

reduce potential losses. The large explained variation suggests a strong relationship between

both variables. Option intermediation risk is also related to the TED spread, but the R2 is low

compared to the other variables. The fourth regression shows that OIR is strongly associated

with the default spread. A higher spread, indicating a bad economic outlook, is associated

with lower worst-case losses for OptInts. The regressions with multiple independent variables

highlight that the leverage ratio and the yield spread are essential for OIR. Both measures are

statistically significant throughout all regressions and create a sizable R2 of more than 30%. Both

variables provide unique information. OptInts reduce their exposure when financial constraints

are binding and when the economic outlook is pessimistic. The risk of option intermediation

depends not only on option-specific factors but also on the overall health of the financial sector

and the economic outlook. Both translate directly to the option market. Tighter constraints are

associated with lower potential losses resulting from OptInts’ reducing short positions. Traders

become averse to taking positions.

Brunnermeier and Pedersen (2009) and Adrian and Shin (2014) document that tight funding

of the intermediary sector leads to market illiquidity which, in turn, results in higher volatility.

I follow these insights and plot the relationship between option intermediary risk, volatility,

and leverage in Figure 7. The scatter plots between OIR and the volatility proxies document a

striking pattern. OptInts reduce their loss potential (increase in OIR) linearly with expected and

realized volatility.15 In fact, OIR is often positive when volatility is extremely high, indicating

that OptInts sometimes profit from crashes. This is because OIR is positive only when the

weighted positions of OptInts are net long. Recall that a byproduct of managing an option

trading book is that OptInts are either net short or net long options. When OptInts are net

short, they gain the options’ time value but make a loss when volatility is high. When OptInts

are net long, they pay the option’s time value but profit from high volatility. Astonishingly, the

P&L is often net short when volatility is very low and net long when volatility is peaking. In

fact, the realized P&L is more often positive than negative for volatility levels above 50%.

B. Risk Transfer to Public

MMs manage positional risk smart and efficiently, and their market expectations are often very

accurate. The question is how OptInts induce a risk transfer back to other market participants

15Table G.2 shows that the results are highly significant, do not change with a variety of controls, and also hold for
the variance risk premium and left-tail volatility.
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Figure 7. Option Intermediary Risk, Volatility, and Intermediary Constraints

The figure plots the option intermediary risk OIR against the CBOE’s volatility index V IX, realized volatility
RV calculated from high-frequency returns, and the leverage ratio from He, Kelly, and Manela (2017).

whenever volatility is high. OptInts cannot simply close positions due to their role as market

makers. Instead, they have to incentivize other investors to sell options so that intermediaries

can reduce their short positions.

The mechanisms in order are visualized in Figure 8. The plot shows intermediary risk, net

positions, the average option return, and the ratio between buy and sell spreads from Sep

5th until Sep 23rd, 2008. The spreads are determined as the total spread income of OptInts

divided by delta of the option. Hence, the spread is the paid spread per unit of exposure to the

underlying. The period is characterized by extreme uncertainty because financial institutions

suffered severe damage and Lehman Brothers filed for bankruptcy. Intermediaries do not want

to hold short positions, and options prices increase significantly. The cumulated returns are 120%

over two weeks. Buy spreads were up to 27% higher than sell spreads. The spike in the spread

ratio coincides with buy activity from investors (positions of OptInts become more net short).

Intermediaries want to prevent to hold more short positions. Higher prices and buy spreads

incentivize other market participants to sell options, respectively, close existing long positions

to lock in the profit. This is reflected in the positions of intermediaries as they turn from net

short to net long on Sep 17th. The intermediary risk factor follows two days later and turns from

potential loss to profit in case of high volatility.

I provide two pieces of evidence showing that OptInts actively incentivizes other market

participants to sell options. First, I regress option returns calculated from ask (buy) and bid

(sell) prices on OIR for three different samples. The first is the full sample. The second is a

low intermediation risk sample. As Figure 7 shows, times with low intermediary risk are when

intermediaries likely want to reduce risky short positions. I condition the sample on −0.05 <
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Figure 8. Event Study: September 2008

The figure shows the evolution of option intermediary risk (OIR), net intermediary positions (Pos), cumulated
average option returns (rO), and the ratio between effective buy and sell spreads per unit of exposure to the
underlying (B/S) for the period Sep 5th to Sep 23rd, 2008. The red line marks the day on which the scenario
P&L of intermediaries in case of a −10% crash turned from loss to profit.

mP&L
t . The third is when OIR is near zero and volatility is above average because it is even

more likely that intermediaries do not want to hold risky short positions when volatility is high.

I use VIX levels above 20%. The results are given in Table VI.

Panel A reports results for the lag identification. The unconditional coefficient for bid (ask)

option returns is -1.701% (-1.685%). Both coefficients are very similar, and the difference is less

than 1%. Once I repeat the regression for states where OptInts most likely want to balance their

positions towards zero, both coefficients diverge more. The bid coefficient equals 1.353% while

the ask coefficient equals -1.290%, reflecting a difference of almost 5%. Next, I condition not

only on OIR but also on VIX levels above its sample average of 20%. Besides the sharp increase

in economic significance for the coefficients of OIR, the difference between the bid and ask

coefficient is now larger than 13%. Panel B shows that the differences are even more pronounced

using instrumental variable identification. While the unconditional coefficients differ by 6%, the

conditional coefficients diverge significantly. The difference in the high volatility sample equals

more than 65%. This supports the conclusion that OptInts increase bid quotes more to induce

public sell orders. I report the coefficients for the controls in Table G.5. The results show that
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Table VI. Ask and Bid Option Returns

Full Sample Low Intermediation Risk VIX > 20%

rbidt raskt rbidt raskt rbidt raskt

Panel A: Lag Identification

OIR =1.701∗∗∗ =1.685∗∗∗ =1.353∗∗∗ =1.290∗∗∗ =4.677∗∗∗ =4.129∗∗∗

(0.496) (0.432) (0.404) (0.319) (1.197) (1.204)

adj. R2 w/o 2.91 3.73 3.17 4.09 4.90 6.35

Panel B: Instrumental Variables

OIR =0.363∗∗∗ =0.342∗∗∗ =0.332∗∗ =0.242∗∗∗ =0.388∗∗∗ =0.232∗∗∗

(0.116) (0.097) (0.137) (0.060) (0.124) (0.074)

adj. R2 w/o 1.78 2.74 2.28 3.54 4.21 5.95

Controls Yes Yes Yes Yes Yes Yes

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

N 132,460 132,460 67,727 67,736 27,858 27,820

The table reports results of panel regression of end-of-day bid and ask option returns on option intermediary
risk OIR and several control variables defined in Table IV. Standard errors (in parentheses) are clustered by
entity. ∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%, and 10%. The sample period is from Jan 2004 until Sep
2020. All independent variables are standardized and multiplied by 100. The top and bottom 0.5% outliers the
returns are removed. The regression constant is not reported.

the volatility index VIX, the variance risk premium, and market returns also asymmetrically

influence bid and ask quotes. Turbulent periods are characterized by intermediaries increasing

sell prices more than buy prices such that other participants are encouraged to sell options so

that intermediaries can reduce short positions. The higher explained variations also support the

claim that the path of option premia is more predictable in such periods.

I find a similar pattern for effective spreads. I use the effective IV spread from Equation (18)

but distinguish between buyer- or seller-initiated trades. I analyze the spreads for the same sub-

samples. Results are presented in Table G.6. The difference between the coefficients for OIR is

significantly larger for the second subsample. The relationship between buy-initiated trades and

OIR is −0.44 while the relationship is −0.33 for sell-initiated trades. Hence, when OIR is nega-

tive, volatility is high, and OptInts most likely want to balance positions, they charge one-third

higher spreads when OIR decreases by one standard deviation. The difference between buyer-

and seller-initiated spread income per unit of exposure to the underlying points in the same

direction. The difference is 2.0% when OptInts most likely want to balance positions and 0.8%

otherwise. Hence, buying becomes more expensive than it usually is. Interestingly, the widening

gap is driven by call options. The results for spreads imply that OptInts require significantly

higher premia for providing liquidity for buy transactions. The asymmetric bid quoting suggests
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that intermediaries actively want to induce public sell orders. OptInts are willing to pay higher

prices so that public investors become insurers (short). The intensification transfers risk from

intermediaries to other market participants because it helps OptInts to balance their positions.

The risk transfer has been successful in the past (Figure 7), and intermediaries’ option trading

units have gained from past crashes.

VI. OPTION PRICING MODEL

In this section, I study if option intermediary risk drives crash risk premia. I design a continuous-

time no-arbitrage model that characterizes the dynamics of the option surface, stock market

volatility, and the OIR through a low-dimensional state vector. In contrast to most existing

option pricing models, which put little restriction on the dynamics of the state vector, I use

option intermediary risk as an observable state variable for the model estimation. This approach

is very restrictive, however, sheds light on the importance of OIR for risk premia dynamics.

A. Motivation

The previous findings document that intermediaries reduce positions rapidly when volatility is

high but are not averse otherwise. This speaks in favor of a time-varying appetite to intermediate

the market and that the variation is related to high volatility states. Bates (2008) emphasizes

the importance of heterogeneous agents with different attitudes toward crash risk for option

markets. Chen, Joslin, and Ni (2019) extend the framework and consider a standard economy

with intermediaries. The intermediaries have CRRA utility with a time-varying part:

U = E0 =

[∫ ∞

0
e−δtC

1−γ

1− γ
e−

∑Nt
0 (ατ(n)−ᾱ)dt

]
, (20)

where δ are time preferences, C the consumption share, γ the risk aversion, and αt a time-

varying variable that represents the ability to intermediate crash risk. The time variation can

be interpreted as a VaR constraint that depends on the current state of the economy. Adrian

and Shin (2010, 2014) show that intermediaries manage their leverage to keep the VaR to equity

ratio constant. The effective risk aversion of intermediaries is

γt = γ −
ατ(n) − ᾱ

ln(Cτ(n))
. (21)

If the intermediating capacity is a function of crash risk ατ(n) = −act, the effective risk aversion

of the intermediary will rise when the probability of jumps increases. This implies that with

increased crash risk, intermediaries supply fewer options and instead demand options. This is
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only possible if the premium for crash risk increases. The effect should be most substantial for

out-of-the-money put options because they have the highest loading on crash risk.

B. Model Dynamics

I use this motivation for a reduced-form option pricing model. If intermediaries have a time-

varying aversion towards crash risk, OIR will be informative about priced crash risk implied

option prices. Therefore, I use a model in which the jump intensity is conditioned on option

intermediary risk. I fix a probability space (Ω, F , Q) and an information filtration (Ft). The

filtration is assumed to satisfy the usual conditions. I specify the model under the equivalent

martingale measure Q associated with risk-neutral probabilities. I let St denote the price of the

stock index at time t and assume the following data-generating process:

dSt
St−

= (rf − d)dt+
√
V1,tdW

Q
1,t +

√
V2,tdW

Q
2,t +

∫
R×R+

(ex − 1)µ̃Q(dt, dx),

dV1,t = κ1(V1− V1,t)dt+ σ1
√
V1,tdB

Q
1,t,

dV2,t = κ2(V2− V2,t)dt+ σ2
√
V2,tdB

Q
2,t,

dmt = −κmmtdt+ σm
√
mtdB

Q
m,t + ϱ

∫
R×R+

1{x<0} xµ(dt, dx),

where V1,t is the first volatility factor, V2,t the second volatility factor, and m the option inter-

mediary risk factor. For the five-dimensional Brownian motion (dWQ
1,t, dW

Q
2,tdB

Q
1,t, dB

Q
2,t, dB

Q
m,t), I

impose that shocks between the index price and volatility factors are correlated with corr(dWQ
1,t, dB

Q
1,t)

= ρ1 and corr(dWQ
2,t, dB

Q
2,t) = ρ2. The drift of S under the risk-neutral measure is the difference

between the risk-free rate rf and dividends d.

The integer-valued jump measure µ(dt, dx) counts the number of jumps. The jump compen-

sator is given by vQt , and the difference µ̃Q = µ(dt, dx)− vQt dt constitutes the martingale jump

measure. That is, it adjusts the drift of the stock price by the expected jump contribution to

satisfy the martingale property. For the jump-compensator, I assume a double exponential dis-

tribution for jumps in St. Andersen, Fusari, and Todorov (2015b) and Bardgett, Gourier, and

Leippold (2019) use a similar specification and show that exponential jump distributions are

superior to Gaussian jumps. The jump compensator reads as

µ̃Q(dx)

dx
= cdt · 1{x<0}λ

d e−λd|x| + cut · 1{x>0}λ
u e−λux.

λd,u are the tail rate parameters so that the expected jump sizes equal 1/λd,u. The tails of the

distribution decay faster for higher values of the parameters. That is, higher values are associated

with less thick tails. The jumps in mt are conditioned on negative jumps in the underlying. The
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jump size is scaled by the parameter ϱ. The jump sizes are time-invariant so that the model

is within the affine framework of Duffie, Pan, and Singleton (2000). The time variations are

induced by the jump arrival intensities cd,ut . My specification allows differentiating between the

arrival of negative and positive jumps. I specify the jump intensities as

cd,ut = cd,um mt + cd,u1 V1,t + cd,u2 V2,t.

The model falls under the class of self-exciting jump models because jumps in m make future

jumps inm and S more likely, allowing for direct feedback between realized jumps, future jumps,

and the positional risk of option intermediaries.

I model the dynamics of intermediary risk as a CIR process which implies that the variable

is strictly positive. This requires a transformation of my empirical factor. I use this approach

because times of increased jump activity are associated with OIR being close to zero, implying

that intermediaries have little risk exposure in such states. It is hard for a model to pick up this

particular feature. Therefore, I simplify my estimation process by projecting OIR on the real

positive line R+. I add one to the empirical factor and further standardize the variable. The

correlation between the empirical factor and the transformed factor equals one. The model’s

characteristic function is discussed in Appendix C and the pricing method in Appendix D.

C. Model Discussion

Option pricing models characterize the dynamics of the equity-index option surface through

factors determining the volatility of the underlying stock market. The proposed model assumes

a three-factor structure. Single volatility factor models provide a good fit to the option surface

(Eraker, 2004; Broadie, Chernov, and Johannes, 2007) but exhibit some fundamental problems.

The models do not allow for independent fluctuations between volatility levels, the slope (volatil-

ity smile), and the term structure of volatility. Christoffersen, Heston, and Jacobs (2009), among

others, show that at least two factors are necessary to provide an adequate description of volatil-

ity. More recently, Andersen, Fusari, and Todorov (2015b) show that regular volatility factors

cannot span the dynamics of priced downside risk and highlight that a third factor that accounts

for fluctuations in the left tail is necessary.

The most notable feature of my model is the self-exciting jump process m, which is con-

ditioned on the observable intermediary risk factor OIR. I assume that periods of increased

jump activity are reflected by how option intermediaries manage their positions. A reduction of

intermediaries’ short positions (higher m) is associated with a higher crash risk premium. More

specifically, a rise in m increases the probability of observing jumps, boosting all option prices.

The choice implies that I do not account for the unconditional relationship between intermediary
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risk and option premia. Instead, I use the fact that intermediaries are concerned about risky

positions in turbulent times, mirroring the finding that short positions and risks are transferred

to the public. The dependency on OIR substantially restricts the model’s degrees of freedom.

Most option pricing models extract the latent state variables in a joint optimization over the

parameter space and state realizations.16 Because parameters are usually fixed, time variation in

the option surface only depends on the state vector. I force mt to exactly match the observable

dynamics of OIR and the other two factors V1,t and V2,t to be in line with the dynamics of a

nonparametric spot volatility estimator. None of the state variables can vary freely, and all have

an empirical counterpart that is economically tractable. Therefore, the model’s performance pro-

vides information about the imposed channel. A good performance indicates that intermediary

risk is vital for option premia and that intermediaries’ risk aversion varies in crash risk. I provide

details on the estimation procedure in Appendix E.

D. Parameter Estimates

The annualized posterior means and standard deviations of the model parameters are reported

in Table VII.

Table VII. Parameter Estimates

Estimate SD Estimate SD Estimate SD

V1 0.0334 0.0042 ρ2 -0.8342 0.0099 cd1 23.8932 3.1792
κ1 4.5284 0.1830 κm 26.7462 2.7543 cd2 35.2580 5.2703
σ1 0.8572 0.0538 σm 0.7665 0.3634 cum 0.2263 0.0113
ρ1 -0.7097 0.0671 ϱ 17.7769 4.9029 cu1 16.2027 0.4934

V2 0.0089 0.0139 λd 16.9469 0.6109 cu2 14.6722 1.0722
κ2 0.1048 0.0765 λu 41.2723 1.5017
σ2 0.8968 0.0403 cdm 0.4023 0.0197

The table reports results for the estimated parameters using S&P 500 options. The data is sampled every Wednes-
day and spans the in-sample period from January 1998 until December 2017. All parameters are reported in an-
nualized return units. The standard deviation is calculated from the accepted solutions of the MCMC sampler.

The first volatility factor corresponds to a short-term factor that mean-reverts relatively

quickly. The long-term mean of the factor in terms of volatility equals 18.28%, and the variance

of the factor is 0.86. Both estimates are relatively high because the model does not allow for

jumps in volatility (Duffie, Pan, and Singleton, 2000). The second volatility factor corresponds

to long-term volatility with a lower mean-reversion level. The mean-reversion speed is prolonged,

indicating that the factor is persistent. The factor is also erratic. Noteworthy, the correlations

16Corsi, Fusari, and Vecchia (2013) and Christoffersen, Feunou, Jacobs, and Meddahi (2014) use realized variance
constructed from high-frequency data as a direct input for option pricing models.
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between the Brownian motions are significantly smaller than other models in which the estima-

tion only relies on option data. The estimated jump size in case of a negative (positive) jump

1/λu equals 5.90% (2.42%) but are highly asymmetrically distributed. The impact of negative

jumps is significantly more severe than that of positive jumps. The most interesting parameter

corresponds to m. The information implied in option prices combined with the intermediary risk

factor suggests a strong desire to balance positions towards zero, as implied by the high-mean

reversion speed. The factor fluctuates a lot and has a high variance. If negative jumps occur,

the jump size is scaled by ϱ = 17.80. This indicates that jumps are very likely to cluster, and

the probability of subsequent jumps stays high after observing a jump. This translates to higher

option premia over more extended periods. The loading on the jump intensity reveals interesting

details. The jumps load is consistently stronger on intermediary risk than on volatility taking

the level of the state variables into account. This is also true for positive jumps and seems rea-

sonable from an intermediary risk perspective. Any volatility can be harmful to delta-hedged

intermediaries.

E. Crash Risk Premia

The parameter estimates imply that the jump premium rises when intermediaries are reluctant

to hold option positions. This boosts option prices and intends to induce public sell orders so

that intermediaries can reduce short positions. The importance of the channel is visualized in

Figure 9, which shows the negative jump arrival intensity split by contributions of OIR and

volatility.

The plot highlights that priced crash risk depends on intermediary risk. The contribution

equals almost two-thirds on average. Both volatility factors only contribute when markets are

very turbulent such as during the financial or the Corona crisis. Interestingly, the contribution

of the intermediary risk factor often rises before the contribution of volatility increases. This

explains why jump premia move independently from volatility (Bollerslev and Todorov, 2011).

The plot also highlights that the intermediary risk factor takes longer to recover after crises. The

contribution stayed elevated after the financial crisis and the bust of a volatility fund in early

2018. This is in line with the evidence of Jackwerth (2000) and Andersen, Fusari, and Todorov

(2020). Priced crash risk stays elevated much longer than volatility after a crisis. I exemplify

how a shock to intermediary risk affects option prices in Figure 10. The plot shows short-

term put prices and implied volatility after a one standard deviation shock in intermediary risk

keeping everything else equal. The shock increases the prices of all options but has the highest

absolute effect on deep out-of-the-money puts. IVs increase by approx. 10%, translating to a two

percentage points increase for ATM IVs and seven percentage points for OTM IVs. In terms of

prices, the shock increases the deepest OTM put by more than 100% and the ATM contract
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Figure 9. Time Variation in Negative Crash Risk
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The figure shows the negative jump intensity cdt = cdmmt + cd1V1 + cd2V2 using the estimated parameters and state
variables. The jump intensity reflects the expected number of jumps per year. The grey area is the contribution
from the intermediary risk factor, while the black area is the contribution from both volatility factors.

by 10%. A shock to intermediary constraints has more impact on out-of-the-money puts. The

options are hard to hedge because of their little directional exposure. However, once the market

jumps downwards, the value increases rapidly, and the option seller must make payments that

exceed the initial premium. If intermediaries are more constrained because the probability of

crashes increases, they will supply fewer OTM puts. By increasing the prices relative to other

options, intermediaries incentivize other market participants to become option sellers or close

existing short positions to lock in profits.

F. Pricing Performance

Figure G.4 plots the estimated trajectories of the latent state variable and the total RMSE. Panel

A shows that the model-implied variance fits the high-frequency estimate well. Some deviations

occur around the dot-com bubble and financial crisis. The model-implied values seem to have

higher levels after turbulent times, but the dynamics are very similar. The fit in quiet times

such as 2004-2008 or 2013-2017 is almost perfect. Panel B shows that the RMSE is low. The

average is 0.5%, and the max equals 3%. The peaks in the RMSE coincide with the periods in

which the volatility fit is also worse. Figure 11 visualizes the fit to the option surface over time.

The fit to short-term characteristics, such as the 30-day ATM IV level and IV skewness, is quite

satisfactory. The model underestimates skewness in turbulent times. However, the problem of

higher errors during turbulent times is a feature that almost all option pricing models share.
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Figure 10. Impact of OIR Shock on Put Options
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The figure shows changes in implied volatilities and log prices for short-term put options before and after a one-
standard deviation shock in option intermediary risk OIR. The instantaneous volatility for both days is set at
20% and maturity is 7 days.

Turning to the term structure, I observe that the model has problems fitting the level of the

term structure after turbulent times. The model-implied option prices underestimate long-term

options in the aftermath of the 1998 Russian crisis and after the 2008 financial crisis. The most

challenging feature to fit is the IV skew term structure. The fit is relatively well in turbulent

times. The dynamics are well captured at the beginning of the sample and during the financial

crisis. However, there are some significant outliers after the financial crisis. Surprisingly, the fit

seems poorer at calmer periods where the skew term structure seems consistently higher than

the model-implied.

The out-of-sample pricing performance is described in Appendix F and Table F.1. The results

show that the pricing performance is generally outstanding. The RMSE is very low across the

whole option surface. The fit to the deep-OTM options is quite remarkable, with an error below

2%, both for short-term and long-term options. The fit is also very good for short-term OTM

calls. The intermediary factor seems to provide information for the pricing of both sides of

the return distribution. The pricing performance is also superior for every region of the option
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Figure 11. Fit to Option Surface Characteristics

Panel A: IV Level Panel B: IV Term Structure

Panel C: IV Skew Panel D: IV Skew Term Structure

The figure shows the model-implied (black line) and actual (grey line) option surface characteristics. Panel A
shows the IV level of a short-term ATM contract. Panel B plots the IV skewness defined as the IV difference of
a short-term OTM put and OTM call. Panel C displays the IV term structure defined as the ATM IV difference
of a long- and short-term options. Panel D shows the IV skew term structure defined as the skewness difference
of long-term and short-term options. OTM puts have moneyness b = −2, OTM calls have moneyness b = 2.
Short-term options have 30 days maturity and long-term options 300 days to maturity.

surface. The intermediary factor provides a performance improvement of at least 10%, except

for long-term ATM options. For instance, the short-term fit for the one-factor model is approx.

40% worse across all options. Nevertheless, both benchmark models perform relatively well.

VII. CONCLUSION

This paper shows that liquidity and risk premia in the index option market vary with option

intermediaries’ positions. I show that higher option intermediary risk – larger losses conditional

on a market crash – causes higher risk premia and wider option spreads. Intermediaries require

more compensation for bearing risks and simultaneously want to reduce subsequent option de-

mand. I document that option intermediary risk is low when crash risk is high. Intermediaries

asymmetrically adjust option quotes and spreads to incentivize sell orders. The risks associated

with their option positions are transferred to other investors. I estimate an option pricing model
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and find that intermediaries’ reluctance to hold risky option positions drives variation in crash

risk premia independent of volatility.

My results suggest that many puzzles about option-implied risk premia relate to interme-

diaries’ management of option positions. Models that target risk premia require heterogeneous

agents and should allow for interactions between prices and positions. My results imply that

intermediaries’ risk tolerance is low around market turmoils, resulting in a reluctance to hold

option positions. Less funding, fewer intermediation capacities, updated risk models, or tighter

regulatory requirements likely affect intermediaries’ ability to trade options. However, my anal-

ysis suggests that the option intermediary sector does not necessarily need stricter regulatory

requirements. Intermediaries rapidly reduce positions before market turmoils, suggesting they

are proficient at predicting crashes and adjusting their risks and positions accordingly. Higher

capital requirements may artificially decrease the liquidity provision of intermediaries and affect

the risk-sharing function of the option market.
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APPENDIX

A DATA

The volume data sometimes reports negative maturities and cuts of the first three digits of

strikes exceeding 1000. To overcome the issues, I implement a simple yet effective correction for

all options for which the matching with the quote data was unsuccessful. I create list with option

chains that report a negative time-to-maturity and obtain the correct expiry date from option

quotes. The correct expiry is often two weeks after the reported expiry and is found by comparing

option characteristics such as strike, flag, and traded volume across the two data banks. The

correction concerns 195 option chains and 86 unique expiry dates. Second, all unmatched options

for which the strike price was more than 40% away from the current S&P 500 level, I add 1000

to the reported strike and compare characteristics of the adjusted option contract with options

quote. The moneyness range for SPX options was relatively narrow during 1990 and early 2000,

with options rarely trading below 75% moneyness. For July 1998, for instance, only 20% of

all option contracts could be matched. The majority of the unmatched option contracts report

strikes from 5 to 250, although the level of the S&P 500 was moving around 1150. It is extremely

unlikely that 80% of all options trade in a moneyness region of 0.5% to 20%. Indeed, 99.32%

of the data in July 1998 was matched after adjusting the strike prices. Figure G.1 shows that

up 90% of the data would have been dismissed in certain months without applying a correction

algorithm. Panel A highlights that errors in the expiry date occurred in the early 1990 and

during the financial crisis. Adjusting the incorrect expiry date was especially important in the

beginning of the samples because not many different time-to-maturities were available and the

option chain would have been dismissed over the full life cycle of option. Panel B highlights that

the mismatch induced by the incorrect strike prices is as high as 95% of all option contracts

traded. The problem occurs during 1998 until 2005. After correcting both data reporting errors,

the ratio of of volume data that was matched with option quotes was almost perfect except for

certain months in 2000/2001 and 2003. Only 1.24% of the total traded volume could not be

matched.
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B SENSITIVITIES

The PDE of the Black and Scholes (1973) model allows to express all partial derivatives in terms

of the second-order partial derivative with respect to the underlying Γ (Hull, 2009; Carr and

Wu, 2020). The sensitivity of a call price with respect to time is given by

Θ = −1

2
ΓF 2

t IV
2
t . (22)

I express the remaining sensitivities not in terms of units but in terms of percentage changes

(’cash’ greeks). The cash vega is given by

v IVt = IV 2
t τΓF

2
t , (23)

where τ is the time-to-maturity. The second-order derivative with respect to IV is given by

ϑ IV 2
t = ΓF 2

t z
−z+, (24)

where z± = ln
(

K
St

)
± 1

2IV
2
t τ is a convexity-adjusted measure of moneyness. Finally, the ’cross-

sensitivity’ w.r.t. changes in Ft and IVt can be expressed as

ε IVt Ft = ΓF 2z+. (25)
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C CHARACTERISTIC FUNCTION

Options give the right to buy (sell) the underlying in exchange for the strike price of an option.

Options only pay off when the terminal value of the underlying is above (beyond) the strike

price. Therefore, prices are expected, discounted payoffs. The conditional probability density

function of the underlying’s log-return y must be known to price an option. A call option is

formally given by

CK,τ = erf τEQ [max(ST −K, 0)] = erf τSt

∫
R
max(eyT − eK , 0)fyT (y)dy. (26)

The option price depends on the risk-free rate rf , the strike price K, time-to-maturity τ = T −t,
the current value of the underlying St, and the conditional probability density function fyT of

the return between t and T conditional on all available information at t.

Most option pricing models do not have a known moment-generating function that determines

the form of the probability density function. However, as introduced by Heston (1993) and

formally developed by Duffie, Pan, and Singleton (2000), the probability density function of

affine jump diffusion processes can be determined by its generalized characteristic function.

ϕ(τ, yt, Vt, ωt,Γt, u) = Et[e
yτu] =

∫ ∞

−∞
euyfY (y)dy, (27)

where u ∈ C is the characteristic exponent. The model I analyze is given by

dSt
St−

= (rf − d)dt+
√
V1,tdW

Q
1,t +

√
V2,tdW

Q
2,t +

∫
R×R+

(ex − 1)µ̃Q(dt, dx),

dV1,t = κ1(V1− V1,t)dt+ σ1
√
V1,tdB

Q
1,t,

dV2,t = κ2(V2− V2,t)dt+ σ2
√
V2,tdB

Q
2,t,

dmt = −κmmtdt+ σm
√
mtdB

Q
m,t + ϱ

∫
R×R+

1{x<0} xµ(dt, dx).

For easier notation, I define dNt as the Poisson process counting the jumps and Z as the jump

sizes. The model is affine (Duffie, Pan, and Singleton, 2000) and the form of the generalized

characteristic function can be expressed as

ϕ(τ, yt, Vt, ωt,Γt, u) = Et[e
yτu] := eα(τ,u)+β1(τ,u)V1,t+β2(τ,u)V2,t+βm(τ,u)mt+uyt , (28)

where τ = T − t is used for simplicity. The characteristic function is a stochastic process and a

51



martingale. Therefore, we can apply Ito’s Lemma and solve

∂ϕ

∂τ
+
∂ϕ

∂y
µyc,t +

∂ϕ

∂V1
µ1,t +

∂ϕ

∂V2
µ2,t +

∂ϕ

∂m
µm,t +

1

2

∂2ϕ

∂y2
σ2yc,t +

1

2

∂2ϕ

∂V 2
1

σ2V1,t +
1

2

∂2ϕ

∂V 2
2

σ2V2,t

+
1

2

∂2ϕ

∂m2
σ2m,t +

∂2ϕ

∂y∂V1
σyc,tσV1,t +

∂2ϕ

∂y∂V2
σyc,tσV2,t + E[euZ − 1]dNt = 0.

(29)

Note that µ and σ denote the drift and variance of the respective process, yc denotes the

continuous part of y, and E[euZ − 1]dNt is the discontinuous part ot the characteristic function.

The respective partial derivatives are given by

∂ϕ

∂τ
= ϕ

(
−∂α
∂τ

− ∂β1
∂τ

V1,t −
∂β2
∂τ

V2,t −
∂βm
∂τ

m

)
,

∂ϕ

∂y
= ϕu,

∂2ϕ

∂y2
= ϕu2,

∂ϕ

∂V1
= ϕβ1,

∂2ϕ

∂V 2
1

= ϕβ21 ,

(30)

∂ϕ

∂V2
= ϕβ2,

∂2ϕ

∂V 2
2

= ϕβ22 ,

∂ϕ

∂m
= ϕβm,

∂2ϕ

∂m2
= ϕβ2m,

∂2ϕ

∂y∂V1
= ϕβ1u,

∂2ϕ

∂y∂V2
= ϕβ2u

(31)

Plugging the partial derivatives into Equation (29), dividing by ϕ, and substituting dXt with

the drift and dX2
t with the variance of the respective process gives

− ∂α

∂τ
− ∂β1

∂τ
V1,t −

∂β2
∂τ

V2,t −
∂βm
∂τ

mt + u(r − 1

2
V1,t −

1

2
V2,t − E

[
eZ − 1

]
λt)

+ β1κ1(θ1 − V1,t) + β2κ2(θ2 − V2,t) + βm[κm(θm −mt)] +
1

2
u2(V1,t + V2,t)

+
1

2
β21σ

2
1V1,t +

1

2
β22σ

2
2V2,t +

1

2
β2mσ

2
mmt + β1uρ1σ1V1,t + β2uρ2σ2V2,t

+ E[euZ − 1]λt = 0.

(32)

Equation (32) is equal to zero when the all terms multiplying the state variables equal zero and

the constant term equals 0. Plugging in the jump intensity as well as sizes, and collecting the

terms gives the system of ODEs. The boundary conditions are α(0) = β1(0) = β2(0) = βm(0) = 0

so that
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∂α

∂τ
=u(r − d) + β1κ1θ1 + β2κ2θ2 + βmκmθm

∂β1
∂τ

=− 1

2
(u− u2)− β1κ1 +

1

2
β21σ

2
1 + β1uρ1σ1 − u

(
cu1Ju + cd1Jd

)
+ cu1Ju,m + cd1Jd,m,

∂β2
∂τ

=− 1

2
(u− u2)− β2κ2 +

1

2
β22σ

2
2 + β2uρ2σ2 − u

(
cu2Ju + cd2Jd

)
+ cu2Ju,m + cd2Jd,m,

∂βm
∂τ

=− βmκm +
1

2
β2mσ

2
m − u

(
cumJu + cdmJd

)
+ cumJu,m + cdmJd,m.

where

Ju =
λu

λu − 1
− 1, Jd =

λd

λd + 1
− 1,

Ju,m =
λu

u− λu
− 1, Jd,m =

λd

u+ λd − βmϱ
− 1.

The self-exciting jump feature circumvents a closed-form solution, but the ODEs can be solved

numerically.
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D PRICING METHOD

I use the Fourier Cosine transform of Fang and Oosterlee (2009) to calculate European option

prices. The method is computational faster and more accurate than other methods such as the

Quadrature approach of Heston (1993) or the Fast Fourier Transform of Carr and Madan (1999).

The price of a put option for state vector Xt, strike price K, and y = ln(ST
K ) is given by

PK,τ ≈ erf τ
M∑
j=0

aj(Xt)
2

b− a
K(−χj(a, 0) + ψj(a, 0)), (33)

with

aj(Xt) =
2

b− a
R
[
ϕ

(
jπ

b− a
,Xt

)
eijπ

a
b−a

]
, (34)

χj(c, d) =

∫ d

c
eycos(jπ

y − a

b− a
)dy, (35)

ψj(c, d) =

∫ d

c
cos(jπ

y − a

b− a
)dy. (36)

The method approximates the integrals over the put’s payoff and density functions by using the

Euler formula. Because cosine series coefficients χj and ψj have analytical solutions, the method

is computationally inexpensive.17 The errors induced by truncating the integration domain from

[−∞,∞] to [a, b] and by using a finite number of expansion terms M can be made very small. I

follow Fang and Oosterlee (2009) in calculating a and b and use M = 400. I only determine put

prices and use put-call parity to obtain the respective call prices.

17See Result 3.1 in Fang and Oosterlee (2009).
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E ESTIMATION PROCEDURE

Implementing option pricing models requires jointly estimating the structural parameter vector

θ and the latent state vector Xt. A common approach is to extract the state variables from

index returns and option data using various filtering techniques. For example, Pan (2002) uses

Generalized Method of Moments, Andersen, Benzoni, and Lund (2002) use Efficient Method

of Moments, and Johannes, Polson, and Stroud (2009) use particle filters. I use an iterative

approach proposed by Huang and Wu (2004) or Christoffersen, Heston, and Jacobs (2009) and

combine it with Markov chain Monte Carlo (MCMC) sampling methods. More specifically, I

first extract the latent state vector Xt = [V1,t, V2,t] given an initial set of parameters θ and a loss

function L(Xt, θ). Second, I treat the extracted state vector as given and extract the optimal

parameters. I iterate between the two steps until no further improvement in the optimization

problem is archived. As noted in Christoffersen, Heston, and Jacobs (2009), the procedure re-

quires relatively few iterations to converge but potentially suffers from inconsistencies between

the estimated state vector and parameters. I account for inconsistency by using MCMC sampling

as a final optimization step. I use the quasi-optimal solution and sample over the parameters

using a chain length of 10, 000. Hogg and Foreman-Mackey (2018) propose to use an optimizer

in advance of sampling to ensure that the walker is not initialized at a completely irrelevant

point. Conveniently, the sampling allows for obtaining a distribution of optimal parameters.

The choice of the loss function is well known to be critical for model estimation. Many studies

use likelihood functions for parameter estimation and evaluate the model with its pricing error.

Christoffersen and Jacobs (2004) show that inconsistencies in the loss function between model

estimation and evaluation lead to suboptimal parameter estimates. Therefore, I follow Andersen,

Fusari, and Todorov (2015a,b) and define the loss function in terms of pricing performance, that

is

L
(
{ ˆV1,t, ˆV2,t}t=1,...,T , θ̂

)
= argmin

{Xt}t=1,...,T ,θ∈Ω

T∑
t=1

{
Option Fitt + δ ×Vol Fitt

V ATM
t

}
, (37)

Option Fitt =
1

Nt

Nt∑
j=1

(IVt(K, τ)− IV (K, τ,Xt, θ))
2 ,

Vol Fitt =

(√
V̂t −

√
V(Xt, θ)

)2

,

where V ATM
t is the squared at-the-money Black-Scholes IV obtained from the shortest available

maturity, IVt is an option’s observable BSM implied volatility, IV (K, τ,Xt, δ) is the model-

implied BSM implied volatility, V̂t is a nonparametric diffusive spot variance estimator con-

structed from high-frequency returns, V(Xt, θ) = V1,t + V2,t the model-implied diffusive spot
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variance, and δ a penalty term. Andersen, Fusari, and Todorov (2015a) formally develop the

loss function and show that it ensures consistent estimation of the parameter and state vector.

The estimator is a penalized nonlinear least square method consisting of two parts. Option Fitt

is the MSE in fitting observable and model-implied option prices. Vol Fitt penalizes deviation of

the model-implied variance from a nonparametric estimator, not only ensuring the no-arbitrage

constraint between physical and risk-neutral variance but also regularizing the latent state vari-

ables. Without the penalization, V1,t and V2,t may in principle take any value. I use a penalty

of δ = 0.2.18 Lastly, the standardization by V ATM
t ensures that volatility states are weighted

differently because the volatility of option pricing errors increases with the volatility.

I use the same data filters as in Andersen, Fusari, and Todorov (2015b) for the estimation.

The filters are mild and remove illiquid in-the-money options, options with a time-to-maturity

of fewer than seven days, options with zero bid price, and extreme out-of-the-money options.

To obtain the parameter vector, I sample the data every Wednesday. This is standard in the

literature (Bates, 2000; Christoffersen, Heston, and Jacobs, 2009; Andersen, Fusari, and Todorov,

2015b) and reduces the computational burden of my high-dimensional optimization problem.

Note that I can still extract the state vector for every day once I obtain the optimal solution for

the parameters.

Gârleanu, Pedersen, and Poteshman (2009) argue that the index option market most likely

faced a structural break between 1996 and October 1997, going back to the introduction of

S&P e-mini futures, futures options on the CME, Dow Jones options, and changes in margin

requirements. Therefore, I set the start of my sample to January 7th, 1998. I divide the sample

into an in-sample period (until 2017) and an out-of-sample period (from 2017 to 2021). The in-

sample period contains 992 days, and the out-of-sample period 205. Finally, I use the Bipower

variation from the Oxford-Man Realized Library as my nonparametric diffusive spot variance

estimator. The data is available as of January 3rd, 2000. I fill the period prior to 2000 with the

volatility estimates from the Risk Lab of Dacheng Xiu.19

18Andersen, Fusari, and Todorov (2015b) show that the estimation results do not depend on δ.
19See https://dachxiu.chicagobooth.edu/.
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F OUT-OF-SAMPLE PERFORMANCE

I compare the performance of my model to two other models. The first model 1FGJ is the one-

factor volatility model of Pan (2002) that features Gaussian jumps in S and a jump intensity

λt = λ0 + λvVt. The second model 2FGJ is a two-factor model with Gaussian jumps and jump

arrivals that evolve with λt = λ0+λ1V1,t+λ2V2,t. Both models are more parsimonious than my

model but are not restricted to fit an observable variable. A three-factor model will most likely

always outperform my model because the third variable can, in principle, take any value. The

out-of-sample period is from 2017 until 2021 and contains more than 785,187 option quotes. The

period also spans two major events for the option markets. The first is the “Volmageddon”, the

bust of a volatility fund in early 2018. The second is the Corona pandemic in 2020. The results

are reported in Table F.1, which shows the RMSE =
√

1
Nt

∑Nt
j=1 (IVt(K, τ)− IV (K, τ,Xt, θ))

2

for the self-exciting intermediary jump model and the relative performance of the other two

models.

Table F.1. Out-of-Sample Pricing Performance

RMSE in % RRMSE 1FGJ RRMSE 2FGJ

τ ≤ 60 τ > 60 τ ≤ 60 τ > 60 τ ≤ 60 τ > 60

money ≤ −3 1.97 1.22 0.78 0.66 0.14 0.21
−3 < money ≤ −1 0.90 0.64 0.54 0.41 0.12 0.34
−1 < money ≤ 1 0.91 1.61 0.38 0.05 0.16 0.03

money > 1 0.65 1.78 0.41 0.38 0.28 0.15

The table reports median out-of-sample option RMSE for the self-exciting jump model and the
ratio of a given model minus one (RRMSE). τ is the maturity and money is volatility- and
maturity-adjusted moneyness defined as log(K/S)/IVATM

√
τ . The first bucket ≤ −3 are deep

out-of-the-money puts, the second are out-of-the-money puts, the third are at-the-money options,
and the fourth are out-of-money calls.
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G ADDITIONAL FIGURES AND TABLES

Figure G.1. Recovery Ratio of Volume Data

Panel A: Matching Ratio with/without Maturity Adjustment

Without Adjustment

Gain Maturity Adjustment

Panel B: Matching Ratio with/without Strike Adjustment

Without Adjustment

Gain Strike Adjustment

The figure shows the recovery ratio for the inventory data for 1990 until 2021. Panel A shows the ratio with/without
maturity adjustment and Panel B depicts the ratio with/without strike adjustment.
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Figure G.2. Time-Series of Put and Call Positions
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Panel A: Call Inventory
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Panel B: Put Inventory

The figure shows net call (Panel A) and put (Panel B) positions of intermediaries from 1990 to 2021.
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Figure G.3. Time-Series of BSM Hedge Error
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The figure shows 30-day moving averages of relative pricing errors using the Black and Scholes (1973) given the
current volatility surface. The error is calculated as the median of the relative difference between observable option
prices and the price implied by the model.
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Figure G.4. In-Sample Model Fit

Panel A: Estimated Volatility

Model-Implied

Actual

Panel B: Option and Volatility RMSE

The figure shows the estimated volatility defined as
√

V1,t + V2,t compared to realized volatility estimated from
high-frequency data in Panel A. The total RMSE from loss function (37) is plotted in Panel B.
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Table G.2. Option Intermediary Risk and Volatility

CVt+1 V IXt+1 V RPt+1 LTVt+1

(1) (2) (3) (4) (5) (6) (7) (8)

α 2.81∗∗∗ 2.54∗∗∗ 2.85∗∗∗ 2.78∗∗∗ 1.28∗∗∗ 0.94 1.20∗∗∗ 1.01∗∗

(0.11) (0.61) (0.11) (0.64) (0.10) (0.58) (0.11) (0.49)

OIR 0.35∗∗∗ 0.34∗∗∗ 0.42∗∗∗ 0.41∗∗∗ 0.36∗∗∗ 0.34∗∗∗ 0.32∗∗∗ 0.31∗∗∗

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

V egat+1 0.03 0.01 0.03 0.02
(0.06) (0.06) (0.06) (0.05)

rSP500
t+1 =0.04∗∗ =0.14∗∗∗ =0.13∗∗∗ =0.09∗∗

(0.02) (0.02) (0.02) (0.03)

∆Yt+1 0.09∗∗∗ 0.00 0.17∗∗∗ 0.15∗∗∗

(0.01) (0.01) (0.02) (0.02)

adj. R2 12.3 13.6 17.3 19.2 12.8 19.9 10.2 13.5

N 7511 7511 7532 7532 7511 7511 5820 5820

The table reports results of daily predictive OLS regression of risk proxies on option intermediary risk OIR. The
30-day conditional volatility expectation CV is from Bekaert and Hoerova (2014), V IX is the CBOE’s volatility
index, V RP is the difference between both, and LTV is left-tail variation measure from Bollerslev, Todorov, and
Xu (2015). The control variables are vega-weighted inventory risk (Fournier and Jacobs, 2020), the log-return
of the S&P 500, and the change of the respective dependent variable ∆Y . Standard errors (in parentheses) are
computed based on the method of Newey and West (1987) with 30 lags. ∗∗∗, ∗∗, and ∗ denote significance at
1%, 5%, and 10%. The sample period is from Jan 1991 until Dec 2020, except for all regressions including LTV
(May 1996). All variables are standardized by their sample standard deviation.
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Table G.3. Robustnesss: End-of-Day Option Returns

Ref. Point Level IV Scenario Low Vola Realized P&L

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OIR =1.20∗∗∗ =0.53∗∗ =1.61∗∗∗ =0.48∗∗ =2.60∗∗∗ =0.53∗∗ =1.38∗∗∗ =0.56∗∗∗ =1.38∗∗∗ =0.50∗∗

(0.44) (0.23) (0.53) (0.21) (0.81) (0.23) (0.50) (0.22) (0.50) (0.22)

V IX =1.96∗∗ 3.63∗∗∗ =1.91∗∗ 3.59∗∗∗ =1.67∗ 3.63∗∗∗ =5.59∗∗∗ 3.25∗∗ =1.11 3.35∗∗∗

(0.94) (1.00) (0.93) (0.99) (0.89) (1.00) (2.11) (1.56) (0.81) (0.93)

V ega 1.04∗ =2.03∗∗∗ 1.23∗ =2.09∗∗∗ 1.38∗ =2.02∗∗∗ 1.10∗∗ =1.21∗∗ 1.10∗ =1.56∗∗∗

(0.61) (0.59) (0.65) (0.60) (0.70) (0.59) (0.53) (0.51) (0.65) (0.51)

V RP =0.05 =1.58∗∗ =0.07 =1.56∗∗ =0.12 =1.59∗∗ 0.75 1.10 =0.40 =1.44∗∗

(0.61) (0.69) (0.61) (0.68) (0.60) (0.69) (1.69) (1.82) (0.56) (0.66)

Skew =0.05 0.17 =0.06 0.14 0.05 0.20 0.71 0.02 =0.26 0.45
(0.58) (0.57) (0.58) (0.56) (0.58) (0.57) (0.47) (0.47) (0.58) (0.57)

rSP500
t =3.25∗∗ =3.37∗∗ =3.25∗∗ =3.37∗∗ =3.25∗∗ =3.37∗∗ =4.01 =4.00 =3.11∗∗ =3.22∗∗

(1.28) (1.31) (1.28) (1.31) (1.28) (1.31) (2.74) (2.78) (1.26) (1.30)

OIt 0.27∗∗ 0.27∗∗ 0.30∗∗∗ 0.40∗∗∗ 0.24∗∗

(0.10) (0.11) (0.11) (0.11) (0.10)

P&Lt =2.61∗∗∗ =2.48∗∗∗

(0.56) (0.54)

adj. R2 9.12 9.27 8.96 9.27 9.02 9.26 10.18 10.08 9.62 9.85

adj. R2 w/o 3.47 3.74 3.48 3.74 3.47 3.74 2.49 2.31 4.23 4.42

Identification Lag Inst Lag Inst Lag Inst Lag Inst Lag Inst

Entity FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 132,460 132,460 132,460 132,460 132,460 132,460 92,610 92,610 132,259 132,259

The table reports results of panel regression of end-of-day option returns on option intermediary risk OIR. The robustness Ref.
Point uses OIR determined at the scenario of −5%, Level uses the P&L level instead of slope, IV Scenario uses OIR determined
with the dynamic IV scenario, Low Vola excludes VIX days above 20%, and Realized P&L controls for the realized profit and loss
of intermediaries’ delta-hedged option positions. Identification Lag indicates that OIR and the other variables without a time-
index are lagged by one day. Identification Inst use the instrument from Equation (17). R2 w/o is the explained variation without
fixed effects. Standard errors (in parentheses) are clustered by entity and time. ∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%, and
10%. The sample period is from Jan 2004 until Sep 2020. All independent variables are standardized and multiplied by 100. The
top and bottom 0.5% outliers of all sets of returns are removed. The regression constant is not reported.
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Table G.4. Robustness: Liquidity Compensation

Ref. Point Level IV Scenario Low Vola Realized P&L

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OIR =0.16∗∗∗ =0.05∗∗∗ =0.15∗∗∗ =0.02∗∗ =0.07∗∗∗ =0.03∗∗∗ =0.12∗∗∗ 0.02 =0.11∗∗∗ =0.02∗∗

(0.05) (0.01) (0.05) (0.01) (0.03) (0.01) (0.04) (0.01) (0.04) (0.01)

V IXt =0.03 =0.08∗∗ =0.02 =0.09∗∗ =0.05∗ =0.09∗∗ 0.21∗ =0.07 =0.02 =0.09∗∗

(0.03) (0.04) (0.02) (0.04) (0.03) (0.04) (0.12) (0.11) (0.02) (0.04)

SIt 0.02∗ =0.01 0.02∗ =0.01 0.00 =0.01 =0.13 =0.11 0.00 =0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.09) (0.08) (0.01) (0.01)

FIt 0.14∗∗∗ 0.20∗∗∗ 0.14∗∗∗ 0.20∗∗∗ 0.18∗∗∗ 0.20∗∗∗ 0.37∗∗∗ 0.42∗∗∗ 0.16∗∗∗ 0.20∗∗∗

(0.05) (0.06) (0.05) (0.06) (0.06) (0.06) (0.10) (0.12) (0.05) (0.06)

ESi,t−1 0.44∗∗∗ 0.47∗∗∗ 0.44∗∗∗ 0.47∗∗∗ 0.46∗∗∗ 0.47∗∗∗ 0.36∗∗∗ 0.38∗∗∗ 0.45∗∗∗ 0.47∗∗∗

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.08) (0.08) (0.06) (0.06)

ESi,t−2 0.39∗∗∗ 0.41∗∗∗ 0.39∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.34∗∗∗ 0.35∗∗∗ 0.40∗∗∗ 0.41∗∗∗

(0.04) (0.05) (0.04) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

V olumet =0.24∗∗∗ =0.25∗∗∗ =0.25∗∗∗ =0.26∗∗∗ =0.27∗∗∗ =0.26∗∗∗ =0.37∗∗∗ =0.37∗∗∗ =0.26∗∗∗ =0.26∗∗∗

(0.08) (0.09) (0.08) (0.09) (0.09) (0.09) (0.11) (0.12) (0.09) (0.09)

P&Lt 0.01 0.01
(0.03) (0.03)

adj. R2 31.28 30.81 31.24 30.77 30.92 30.78 32.05 32.05 31.06 30.77

adj. R2 w/o 18.02 16.86 17.90 16.77 17.09 16.78 20.07 16.77 17.43 16.77

Identification Lag Inst Lag Inst Lag Inst Lag Inst Lag Inst

Entity FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 40,070 40,070 40,070 40,070 40,070 40,070 27,744 27,744 40,070 40,070

The table reports results of panel regressions of IV spreads on option intermediary risk OIR. The robustness Ref. Point uses OIR
determined at the scenario of −5%, Level uses the P&L level instead of slope, IV Scenario uses OIR determined with the dynamic
IV scenario, Low Vola excludes VIX days above 20%, and Realized P&L controls for the realized profit and loss of intermediaries’
delta-hedged option positions. Lag indicates that OIR is lagged by one day. Inst is the instrument from Equation (17). R2 w/o
is the explained variation without fixed effects. Standard errors (in parentheses) are clustered by entity and month. ∗∗∗, ∗∗, and
∗ denote significance at 1%, 5%, and 10%. The sample is from Jan 2004 until Dec 2020. Independent variables are standardized
and multiplied by 100. The regression constant is not reported.
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Table G.5. Ask and Bid Option Returns

Full Sample Low Intermediation Risk VIX > 20%

rbidt raskt rbidt raskt rbidt raskt

OIRt−1 =1.701∗∗∗ =1.685∗∗∗ =1.353∗∗∗ =1.290∗∗∗ =4.677∗∗∗ =4.129∗∗∗

(0.496) (0.432) (0.404) (0.319) (1.197) (1.204)

V IXt−1 =1.503∗∗ =1.817∗∗∗ =2.398∗∗∗ =2.832∗∗∗ 55.115∗∗∗ 45.627∗∗∗

(0.606) (0.531) (0.871) (0.769) (10.242) (8.209)

V egat−1 1.440∗∗ 1.168∗∗∗ 1.763∗∗∗ 1.771∗∗∗ 1.457 1.599∗∗

(0.643) (0.443) (0.669) (0.534) (1.032) (0.797)

V RPt−1 =0.380 0.097 =0.019 0.575 =2.243∗∗∗ =1.543∗∗∗

(0.266) (0.169) (0.562) (0.400) (0.534) (0.362)

Skewt−1 0.049 0.010 =0.216 =0.209 =5.374∗∗∗ =5.425∗∗∗

(0.619) (0.408) (0.892) (0.589) (1.849) (1.407)

rSP500
t =3.638∗∗ =2.950∗∗∗ =4.151∗∗ =3.409∗∗∗ =3.123∗∗ =2.554∗∗∗

(1.718) (0.976) (1.969) (1.094) (1.493) (0.795)

adj. R2 7.79 9.61 8.72 10.92 8.84 11.74

adj. R2 w/o 2.91 3.73 3.17 4.09 4.90 6.35

Identification Lag Lag Lag Lag Lag Lag

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

N 132,460 132,460 67,727 67,736 27,858 27,820

The table reports results of panel regression of end-of-day bid and ask option returns on option inter-
mediary risk OIR and several control variables defined in Table IV. Standard errors (in parentheses)
are clustered by entity and time. ∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%, and 10%. The sample
period is from Jan 2004 until Sep 2020. All independent variables are standardized and multiplied
by 100. The top and bottom 0.5% outliers the returns are removed. The regression constant is not
reported.
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Table G.6. Compensation for Buy and Sell-Initiated Trades

Low Intermediation Risk VIX > 20%

ESsell
i,t ESbuy

i,t ESsell
i,t ESbuy

i,t

OIRt−1 =0.272∗∗ =0.279∗∗ =0.332∗∗∗ =0.438∗∗

(0.125) (0.120) (0.125) (0.174)

V IXt 0.186 0.142∗∗∗ 1.578 1.467∗∗

(0.139) (0.053) (1.179) (0.590)

SIt =0.108∗∗ =0.038 =0.086∗ =0.032∗∗∗

(0.043) (0.032) (0.052) (0.004)

FIt =0.105∗ =0.045 =0.132∗ 0.006
(0.054) (0.048) (0.071) (0.030)

ESmid
i,t−1 =0.017 =0.019 =0.019 =0.045

(0.089) (0.079) (0.060) (0.114)

ESmid
i,t−2 =0.017 =0.072 =0.030 =0.043

(0.057) (0.079) (0.081) (0.090)

V olumet 0.362∗∗∗ 0.229∗∗∗ 0.450∗∗ 0.348∗∗∗

(0.139) (0.075) (0.178) (0.134)

adj. R2 25.36 21.97 26.53 25.32

Identification Lag Lag Lag Lag

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

N 6,243 6,243 2,664 2,664

The table reports results of panel regression of the effective relative implied volatility spread on
option intermediary risk OIR and several control variables defined in Table III. Standard errors
(in parentheses) are clustered by entity and time. ∗∗∗, ∗∗, and ∗ denote significance at 1%, 5%,
and 10%. The sample period is from Jan 2004 until Dec 2020. All independent variables are stan-
dardized and multiplied by 100.
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