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1 Introduction

Understanding the drivers of interest rates is fundamental for investors, researchers and especially policy makers.
The simplest model of the term structure states that long-term yields are the average of future expected short-term
yields. This is known as the Expectations Hypothesis, which equivalently posits that investors are risk-neutral and
excess bond returns are not predictable. This hypothesis has been empirically rejected using information from the
yield curve to predict bond returns, implying that bond risk premia are time-varying and important for explaining
interest rates (Fama and Bliss, 1987; Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005).

Whether the yield curve alone contains all the relevant information for predicting bond risk premia is a matter
of more debate. Under certain assumptions shared by most macro-finance term structure models, the yield curve
fully spans the information set of investors at time t. The Spanning Hypothesis therefore states that, controlling for
the current yield curve, no other variables should help predict future yields and holding bond returns.1 On the
one hand, a number of papers use predictive regressions to show that macroeconomic variables have incremental
predictive power for bond excess returns (Ludvigson and Ng, 2009; Joslin et al., 2014; Cieslak and Povala, 2015).
On the other hand, Bauer and Hamilton (2018) cast doubt on the validity of the inference from the in-sample
regressions used in these papers, while Bauer and Rudebusch (2017) demonstrate that such regression evidence is
not necessarily inconsistent with the spanning hypothesis.

In this paper, we provide more nuanced evidence showing that the spanning hypothesis is in fact violated, but
asymmetrically across bond maturities. Instead of considering in-sample regressions subject to the criticisms
above, we focus directly on out-of-sample risk premia forecasts and assess whether incorporating macroeconomic
variables on top of yield curve information results in better predictive ability. We show that macro data affords
strong predictive power for future excess returns of bonds with shorter maturities (2 to 5 years), while for longer
maturities the evidence is much weaker and the yield curve benchmark is rarely outperformed. In fact, the pre-
dictive power of macroeconomic data relative to the yield curve decreases monotonically with the bond maturity.

To help explain this pattern of violations, we provide a new decomposition of bond returns. Under the assumption
that yields follow a dynamic Nelson-Siegel model (Nelson and Siegel, 1987; Diebold and Li, 2006), we show that
bond excess returns can be written as a weighted sum of innovations of three factors capturing the short-, medium-
and long-run behavior of the yield curve. The weights, which depend solely on the bond maturities, imply that
the higher (lower) the maturity, the higher the relative importance of the long-run (short-run) factor in the bond
return. This provides a natural framework for understanding asymmetric violations of the spanning hypothesis.
Namely, we can investigate for which of these factors macroeconomic variables contain information not spanned
by the yield curve.

We estimate the Nelson-Siegel factors for the whole sample and examine whether macroeconomic variables con-
tain predictive power beyond the yield curve for each factor. We start by considering different sets of principal
components summarizing the information of the macroeconomic data. We find that the principal components
only help predict the short-run factor, while we cannot reject that the yield curve spans the relevant information
for the medium- and long-run factor. As an alternative way of handling the high-dimensionality of the macroeco-
nomic data, we also consider linear models with regularization. We focus on the Ridge (Hoerl and Kennard, 1970),
Lasso (Tibshirani, 1996) and Elastic Net (Zou and Hastie, 2005). Across these different methods, macroeconomic
variables again only matter for predicting the short-run factor. Importantly, our results are the same if we consider
non-linear methods instead, such as the Random Forest (Breiman, 2001). These results shed light on the asymmet-

1The spanning hypothesis arises naturally in equilibrium models under rational expectations. See, for example, Wachter (2006), Piazzesi
and Schneider (2007) and Rudebusch and Wu (2008). The typical argument is that, in equilibrium, prices should incorporate all possible
information and be consistent with the true data generating process from the model. Since yields are an invertible function of traded bond
prices, the argument follows. See Duffee (2013) for a review that discusses some of these models.
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ric violations of the spanning hypothesis: macro data only contains unspanned predictive information about the
short-run factor that affects disproportionately more short-maturity bonds than long-maturity bonds.

The asymmetric violations of the spanning hypothesis are not only statistically, but also economically significant.
For a mean-variance investor optimizing her portfolio based on bond risk premia forecasts, exploiting information
from macroeconomic variables generates Sharpe ratios around 50% higher relative to the yield curve benchmark
for trading 2-year bonds. These improvements are statistically significant across different predictive models. In
contrast, improvements are usually half as large for trading 10-year bonds and often not statistically different than
zero. Again, the Sharpe ratio improvements decrease monotonically with the bond maturity. Since macroeco-
nomic variables are only useful for predicting the short-run factor that more heavily influences bonds of shorter
maturities, this result is the economic counterpart of the asymmetric statistical violations.

The findings described so far are unconditional in that they test whether there are violations of the spanning hy-
pothesis on average. In order to understand not if but when these violations happen, we leverage the conditional
predictive ability framework from Giacomini and White (2006). We find that the predictability of the short-run fac-
tor varies over time and depends on the inflation level. More specifically, periods of higher inflation are associated
with periods in which the benefits from using macro data on top of the information from the yield curve are larger.
One potential interpretation of this relation is that macroeconomic variables are informative about decisions of the
Federal Reserve, whose instruments generally affect more the short end of the yield curve, and those decisions
mainly occur as a response of periods of high inflation.

The remaining of the paper is organized as follows. After a brief review of the related literature, Section 2 describes
the data we use. Section 3 studies the forecast of bond risk premia over different maturities. Section 4 provides a
novel decomposition of bond excess returns in terms of innovations of Nelson-Siegel factors. Section 5 contains the
main empirical results for the prediction of the short-, medium- and long-run factors using yield curve data and
other macroeconomic state variables. Section 6 analyzes the economic significance of violations of the spanning
hypothesis, while Section 7 discusses the time-varying patterns of those violations. Finally, Section 8 concludes
the paper.

Related Literature

Our paper relates to the vast literature studying the term structure of interest rates. First, we relate to papers
forecasting interest rates and bond risk premia. Fama and Bliss (1987), Campbell and Shiller (1991) and Cochrane
and Piazzesi (2005) show that different variables constructed using the yield curve are able to predict bond excess
returns, which refutes the expectations hypothesis. Providing evidence against the spanning hypothesis instead,
a number of papers document the predictive power of macroeconomic variables for bond returns (Cooper and
Priestley, 2009; Ludvigson and Ng, 2009; Joslin et al., 2014; Greenwood and Vayanos, 2014; Cieslak and Povala,
2015). Duffee (2011) and Bauer and Rudebusch (2017) argue that measurement error can lead to violations of the
spanning hypothesis, while Bauer and Hamilton (2018) show that small-sample distortions weaken the evidence of
violations from in-sample predictive regressions. Cieslak (2018) argues that errors in investors’ expectations about
the short-rate induce ex-post bond return predictability. More recently, Bauer and Rudebusch (2020) show that
deviations of yields from time-varying long-run trends contain predictive power for future bond returns. Bianchi
et al. (2021) demonstrate that non-linearities captured by Machine Learning methods provide stronger evidence
in favor of bond return predictability, while Hoogteijling et al. (2021) put forward factors based on yield changes
that outperform factors based on yield levels for predicting bond excess returns. Borup et al. (2023) document that
violations of the expectations hypothesis are state dependent and can be predicted by economic activity.

Our main contribution is to provide new out-of-sample evidence that violations of the spanning hypothesis are
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asymmetric in the dimension of the bond maturity. In particular, macroeconomic variables are more effective in
predicting returns for bonds with shorter maturities than for those with longer maturities. We stress that our
goal is not to draw a comprehensive comparison across different forecasting methodologies like Gu et al. (2020),
Bianchi et al. (2021) and Medeiros et al. (2021). Instead, we show that our main empirical finding holds regardless
of the forecasting method we use. Additionally, we emphasize that we compare forecasts done with and without
macroeconomic variables, but always including information from the yield curve. In that sense, our benchmark is
different from studies such as Bianchi et al. (2021) and Borup et al. (2023) and we are silent about the expectations
hypothesis. Rather, we are concerned with testing whether the spanning hypothesis holds across bond maturities.

Second, we connect to papers using dynamic versions of the Nelson-Siegel model (Nelson and Siegel, 1987) as in
Diebold and Rudebusch (2013). Diebold and Li (2006) and van Dijk et al. (2013) specify autoregressive models for
Nelson-Siegel factors in order to forecast the yield curve. With a similar goal, Altavilla et al. (2014), Altavilla et al.
(2017) and Fernandes and Vieira (2019) augment the Nelson-Siegel model with forward-looking variables, while
Coroneo et al. (2016), Guidolin and Pedio (2019) and Caldeira et al. (2023) introduce unspanned macroeconomic
factors, regime switching and stochastic volatility in this framework, respectively. Hännikäinen (2017) examines
the predictive power of Nelson-Siegel factors for future industrial production. In contrast to these papers, we
investigate whether macroeconomic variables help predict future realizations of the Nelson-Siegel factors after
controlling for the current yield curve. Our goal is to help explain the asymmetric violations of the spanning
hypothesis based on a new decomposition of bond excess returns implied by the dynamic Nelson-Siegel model.

Third, our paper is related to studies modeling the relation between macroeconomic indicators and the yield curve.
Ang and Piazzesi (2003) model the joint dynamics of bond yields and macroeconomic variables in a Vector Au-
toregression imposing no-arbitrage. Diebold et al. (2006) use a Kalman-Filter coupled with the Nelson-Siegel rep-
resentation for yields to jointly model these factors and macroeconomic variables in a more flexible way than Ang
and Piazzesi (2003) but that is not necessarily arbitrage-free. Dewachter and Lyrio (2006) estimate a reduced-form
model for the joint dynamics of inflation expectations, a few macroeconomic indicators and the term structure.
One important difference of these studies from ours is that they focus on jointly modeling the yield curve and
macroeconomic data, such that they are interested in matching the contemporaneous dynamics observed on the
data and not necessarily a predictive relation.

Finally, we relate to papers investigating the economic content of bond return predictability. Thornton and Valente
(2012) provide evidence that the economic significance of violations of the expectations hypothesis is weak, while
Sarno et al. (2016) show this depends on macroeconomic uncertainty. Gargano et al. (2019) reconcile this evidence
with the statistical rejection of the expectations hypothesis with a model incorporating stochastic volatility and
unspanned macro factors. Tackling a different problem, we show that violations of the spanning hypothesis for
short-maturity bonds translate into economic gains for an investor with mean-variance preferences, while the
same is not necessarily true for long-maturity bonds. Borup et al. (2023) leverage the conditional predictive ability
framework from Giacomini and White (2006) to document that violations of the expectations hypothesis are state
dependent and can be predicted by economic activity. We use a similar conditional framework to show, instead,
that violations of the spanning hypothesis for the short end of the yield curve are state dependent and can be
predicted by inflation.
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2 Data

We rely on two data sets for our empirical exercises. Our yield curve data comes from Liu and Wu (2021) while
our data on macroeconomic variables is taken from FRED-MD, a monthly data set maintained by the St. Louis
Federal Reserve Bank and described in McCracken and Ng (2016).

The yield curve data set we use represents an improvement over other commonly used sources of yield curve data
for the U.S., namely data sets constructed under either the methodology from Fama and Bliss (1987) or Gurkaynak
et al. (2007). With respect to the former, Liu and Wu (2021) provide information about longer maturities since the
Fama and Bliss (1987) data set currently stored on CRSP files covers yields only up to five years. This is crucial for
us since we will contrast the behavior of the short end of the yield curve vis-à-vis the long end.

On the other hand, the yield curve proposed by Gurkaynak et al. (2007) is known to generate relatively high
pricing errors for bonds of short maturity, while completely ignoring the very short end of the yield curve. Liu
and Wu (2021) show that their methodology, which uses a kernel-based smoothing technique, reduces the pricing
errors across different maturities in comparison to Gurkaynak et al. (2007), who work with a reduced-form factor
model for the interpolation of yields.

Although the yield curve from Liu and Wu (2021) is available at daily frequency, we use end-of-month data since
that is the highest frequency we can work with if we want to match it with macroeconomic data. For most of our
analysis, we pick all maturities from one to ten years covering the period 1973-2021, which implies we work with
a balanced panel of zero-coupon yields.2 We start the sample in 1973 since the 10-year bond started being traded
in late 1972.

In terms of macroeconomic indicators, we rely on the FRED-MD data set as described in McCracken and Ng (2016).
This database is maintained by specialists at the St. Louis Fed that take care of data anomalies that might occur
when bundling information from different sources and is freely available online. Our version of this data set con-
sists of 126 monthly macroeconomic series that were classified into eight different groups by the specialists: prices,
labor market, housing, interest and exchange rates, monetary aggregates and credit measures, output measures,
orders and inventories, and stock-market related measures.

These variables are typically in levels and might not be stationary as reported. We apply simple transformations to
make the data stationary following the recommendations from McCracken and Ng (2016).3 Table D.1 in Appendix
D reports the full list of variables used and the transformations applied to them, together with a short description
of what they are and their respective FRED code. Figure B.1, in Appendix B, reports the spectral decomposition
of the sub-sample from the FRED-MD data set we use. The first principal component explains roughly a quarter
of the total variation of the data set, while the first three principal components command around 40% of the total
variation.

This data set has, in different forms, been used in forecasting exercises whenever researchers need a standardized
and freely available “data-rich” environment. An earlier version has been used in seminal work from Stock and
Watson (2002a) and Stock and Watson (2002b), for example. More recently, Ludvigson and Ng (2009) and Bianchi
et al. (2021) use it to forecast excess bond returns, while Medeiros et al. (2021) use it in an inflation forecasting
exercise.4 We follow the standard practice of this literature and use fully revised data.5

2The data set provided by Liu and Wu (2021) includes maturities of up to 30 years (360 months) after the introduction of the 30-year
securities during the 1980s. The liquidity of these longer-term bonds over time has been a disputed topic, however. Hence, we adopt a similar
strategy as Bianchi et al. (2021) in their investigation and focus on maturities up to 120 months.

3Further details are available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
4The St. Louis Fed also maintains a quarterly version of this data set, with even more macroeconomic series, called FRED-QD.
5To guard against the fact that macroeconomic data might be released with some delay, we lag all macroeconomic series by an extra month

in our empirical implementations so we alleviate look-ahead biases. Our (unreported) robustness checks show that this has no material impact
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3 Forecasting Bond Risk Premia

We start by investigating the predictability of holding bond returns in excess to the risk-free rate. Throughout the
paper, we concentrate on a holding period of one year, although our data is at the monthly frequency. Hence, we
work with 12-steps-ahead forecasts, which is the standard framework to analyze bond return predictability, as in,
for instance, Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), Joslin et al. (2014), and Bianchi et al. (2021).6

More specifically, we let y(n)t be the n-year zero-coupon yield at month t. Then, y(1)t represents the 1-year risk-free
rate at time t.7 We denote by xrt+12(n) the excess return over the 1-year risk-free obtained from the purchase of an
n-year bond at time t and its subsequent sale at time t + 12:

xrt+12(n) = n · y(n)t − (n − 1) · y(n−1)
t+12 − y(1)t . (1)

As it is obvious from our notation, this return is only known at time t + 12. The only random term, conditional on
the information up to time t, is the second one. From that point of view, variables that help forecasting xrt+12(n)
should also help forecasting y(n−1)

t+12 .

Under the spanning hypothesis, conditional on the information summarized by the yield curve at time t, no state
variable should be able to enhance the forecast of xrt+12(n) and, equivalently, y(n−1)

t+12 . Importantly, this should hold
regardless of the maturity n. Macroeconomic indicators are natural state variables to test the spanning hypothe-
sis as many models used by macroeconomists and financial economists tie together aggregate variables and the
dynamics of interest rates (see, e.g., the discussion in Bauer and Rudebusch, 2017).

Since the number of macroeconomic variables in our data set is very large, it is not feasible to simply add all of
them to a linear model for xrt+12(n) and estimate it by ordinary least squares (OLS), for example. Using only a
few variables would also force us to pick from a large menu. Under the spanning hypothesis, they should all be
irrelevant for forecasting the excess bond returns, however. In the same spirit as Ludvigson and Ng (2009), we use
principal components of the FRED-MD data set to summarize macroeconomic information.8

Let PCt denote a K × 1 vector of principal components extracted from the FRED-MD data set while Ct is a d × 1
vector that summarizes information from the yield curve. We study the following predictive regression:

xrt+12(n) = αn + θ′nCt + γ′
nPCt + ϵt+12,n. (2)

There are different reasonable choices for Ct. One can adopt a strategy similar to Cochrane and Piazzesi (2005)
and let Ct = (y(1)t , f′t)

′, where ft stacks a sequence of forward rates implied by the yield curve at time t.9 Another
strategy, building on Litterman and Scheinkman (1991), would be considering the first three principal components
of the yield curve itself since much of the total variation can be explained by this low-rank factor structure.

In this framework, the usual approach in the literature to test the spanning hypothesis is to run regression (2) over
the whole sample and test whether γn = 0. However, inference based on these in-sample predictive regressions
is challenging due to severe small-sample distortions (Bauer and Hamilton, 2018). In contrast, we focus directly
on out-of-sample risk premia forecasts, denoted by x̂rt+12(n), and assess whether allowing for γn ̸= 0 results in
better predictive ability.

We estimate a linear model as in (2) with an expanding window, keeping track of the one-year-ahead forecasts. We
start our out-of-sample period in January, 1990 following Bianchi et al. (2021). For instance, the forecast for January,

in empirical results.
6See recent discussions about this environment of overlapping returns in Bauer and Hamilton (2018) and Feng et al. (2022).
7That implies that the log-price of an n-year bond that has a $1 face-value at time t is pt = −n · y(n)t .
8McCracken and Ng (2016) find that the entire data set is well described by six to eight principal components.
9The forward rate for maturity n at time t is defined as f (n)t = n · y(n)t − (n − 1) · y(n−1)

t .
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1990 is made with all data available up to January, 1989. We take principal components of the macroeconomic
variables available up to January, 1989 and use them as regressors for the forecasting exercise. After fitting the
model with the available data, we use the estimated parameters to generate a forecast for the returns that will be
realized on January, 1990. As we move ahead in time, the amount of data used both in the extraction of principal
components of the FRED-MD data set and the estimation of equation (2) increases. We repeat this exercise under
the validity of the spanning hypothesis (γn = 0) and under alternative specifications when we vary the number
of included principal components. In total, we have 384 out-of-sample forecasts. While we focus on out-of-sample
exercises, we also report in-sample results in Appendix A.1, which are in line with the out-of-sample evidence
presented below.

Each set of predictions generates a time-series of squared prediction errors. Under the spanning hypothesis, a
model with macroeconomic data should display no better performance than a model that imposes γn = 0. To
assess the enhancement provided by the addition of macroeconomic variables to our forecasting scheme, we com-
pute the ratio of the mean squared errors:

MSE Ratio =

T
∑

t=t0

(xrt(n)− x̂rt(n))2

T
∑

t=t0

(xrt(n)− x̂rt|γn=0(n))2
, (3)

where x̂rt(n) is a forecast made at t − 12 from a model that allows γn ̸= 0 while x̂rt|γn=0(n) is the analogous
forecast under the spanning hypothesis.

Figure 1 reports the statistic defined in (3) for different maturities and different numbers of principal components
from our macroeconomic data. Under the spanning hypothesis, the bars from Figure 1 should oscillate around
unity. However, the shorter maturities display MSE ratios generally much lower than one, which implies that
conditioning on macroeconomic variables is helpful to forecast excess bond returns. For instance, for the 24-month
maturity, we document a decrease of about 20% of the mean squared error. In contrast, as the maturity increases,
the ratio approaches unity and goes slightly above in some cases. This suggests that violations of the spanning
hypothesis are stronger at the shorter end of the yield curve. For instance, the reduction in out-of-sample MSE is
never greater than 10% for the 10-year maturity.

For this exercise, our preferred method for spanning the yield curve is using the forward rates, and that is exactly
what we did in Figure 1. The reason is that forward rates are directly available from the zero-coupon yields and
require no estimation. Nonetheless, as a robustness check, we repeat the out-of-sample forecasting exercise letting
Ct stack the first three principal components of the yield curve, extracted in a sequential fashion as done with the
macroeconomic data. Results are reported in Figure B.2 in Appendix B. The same asymmetry arises, where the
absolute decrease in the MSE is even larger for shorter maturities.10

We also test whether the reductions in the MSEs presented in Figure 1 are statistically significant. Under the
spanning hypothesis, differences in predictive ability should be attributed to sampling noise. For each of the
maturities and specifications considered, we use the methodology from Diebold and Mariano (1995) to assess the
significance of our results.11 We let Ct stack the forward rates. The p-values for the test are reported in Table 1.
The null hypothesis is equal predictive ability, which would be implied by the spanning hypothesis.

10This is likely due to imprecise estimation of the principal component of yields. If this extraction is noisy, Ct will not provide enough
information about the yield curve at time t. If information spanned by the true yield curve and not captured by a noisy Ct is present in
the macroeconomic principal components, relaxing the restriction of γn = 0 will have a disproportionately powerful effect in reducing the
MSE. This would make one more likely to reject the spanning hypothesis across maturities just because the econometrician has not all the
information available in yields in the first place. We prefer to err on the side of caution and use the forward rates stacked in Ct since they
require no estimation.

11We allow for autocorrelation in the forecasting errors and deploy the HAC estimator from Newey and West (1987) to compute the variance
required by Diebold and Mariano (1995).
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Figure 1: Relative MSE predicting returns using forward rates as control. For each maturity we show the ratio between the MSE attained with
different numbers of principal components from the macroeconomic data and the baseline model that uses information only from the yield
curve itself. The sample for maturity of less than 120 months ranges from 1973 to 2021, while it starts in 1985 for the other maturities. For any
of the maturities, the out-of-sample period starts in January 1990. We use the linear model in (2) to make the forecasts. Principal components
are extracted in real time and do not introduce any look-ahead bias.
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A few patterns appear from these p-values. First, at the 5% level, we reject the spanning hypothesis for maturities
of up to 7 years using one, two or three principal components from the macroeconomic data. Second, given any
number of principal components from the FRED-MD data set, the p-values generally increase with maturity. This
is consistent with the idea that violations of the spanning hypothesis are stronger at the shorter end of the curve.
In fact, at the 5% level, we can only reject the null for the 10-year maturity once and we can never reject the null for
the 20-year and the 30-year maturities at usual levels. Third, the p-values typically increase when a larger number
of principal components is considered. This is intuitive: adding principal components implies estimating more
coefficients stacked in γn, which increases estimation uncertainty. Since we are using a quadratic loss function
to evaluate our forecasts, there is a bias-variance trade-off. Larger models, understood as models that consider
a larger number of principal components, might overfit in-sample and generate poor out-of-sample forecasts,
making it hard to reject the spanning hypothesis in that case.

4 Decomposing Bond Risk Premia

Taken at face value, the empirical results in the previous section suggest that macroeconomic variables can enhance
the forecast of excess bonds returns, but in an asymmetric way: they are more helpful for the shorter end of the
yield curve than for the longer end. We find evidence of this asymmetry both in-sample and out-of-sample. The
latter approach is the focus of this paper.

We now develop a methodology that will enable us to interpret and quantify this finding more thoroughly. The
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Table 1: p-values (Diebold and Mariano, 1995) for testing whether macro data enhances forecasting using forward rates as
controls. See the discussion in the caption of Figure 1. Variances for the Diebold and Mariano (1995) test are computed using
the HAC estimator of Newey and West (1987).

Maturity in months

24 60 84 120 240 360

1 PC 0.00 0.01 0.02 0.05 0.74 0.92
2 PC 0.00 0.01 0.01 0.04 0.16 0.32
3 PC 0.02 0.01 0.04 0.13 0.81 0.96
4 PC 0.04 0.06 0.13 0.24 0.55 0.65
5 PC 0.18 0.28 0.42 0.48 0.80 0.84
6 PC 0.21 0.25 0.35 0.38 0.69 0.66
7 PC 0.16 0.09 0.13 0.16 0.34 0.28
8 PC 0.24 0.23 0.32 0.37 0.59 0.57
9 PC 0.12 0.11 0.19 0.33 0.75 0.80
10 PC 0.15 0.12 0.19 0.28 0.79 0.51

first step in our approach is modeling the entire yield curve with a parsimonious reduced-form model that fits
the U.S. yield curve well. We adopt a model in the spirit of Nelson and Siegel (1987), Diebold and Li (2006) and
Diebold et al. (2006). For a certain maturity τ measured in months, we assume that the zero-coupon yield at time
t follows:

y(τ)t = β1,t + β2,t

(
1 − e−λtτ

λtτ

)
+ β3,t

(
1 − e−λtτ

λtτ
− e−λtτ

)
, (4)

where (β1,t, β2,t, β3,t, λt) ∈ R4 are random variables. This model is widely used by central banks and practitioners
due to its simplicity and flexibility.12 At any point in time, yields are a linear combination of three factors. The
weights carried by each of these factors, however, depend on the specific maturity τ. The positive scalar λt is
called the decay parameter since it affects how fast the loadings change across maturities.

These factors have been interpreted as the level, the slope and the curvature of the yield curve, respectively. In
fact, Diebold and Li (2006) and more recently Hännikäinen (2017) show that they have very high correlations with
empirical counterparts of the actual level, slope and curvature of the yield curve. Our preferred interpretation is
closely linked to but slightly different from this traditional interpretation.

We interpret β1 as a long-run factor since lim
τ→∞

y(τ)t = β1,t. The interpretation that it represents the level of the
yield curve builds on the idea that changes in β1 move all yields together by the same amount. On the other
hand, we interpret β2 as a short-run factor. The loading on β2, for a fixed positive value of λt, starts at 1 and
monotonically converges towards zero as τ increases. Hence, changes in β2 will affect the shorter end of the yield
curve disproportionately more than the longer end, all else equal. The parameter λt controls how fast this decay
happens. The interpretation of β2 as the slope of the yield curve stems from the fact that:

lim
τ→∞

y(τ)t − lim
τ→0

y(τ)t = −β2,t. (5)

Finally, we take β3 as a medium-run factor. Its loading starts at zero and also converges towards zero as τ increases,
but it attains an interior maximum. Therefore, it will affect neither the very short end of the yield curve nor the
very long end, concentrating its effect in intermediate maturities. The precise location of this maximum is also
affected by λt. The fact that the loading on β3 has a hump-shaped format motivates calling it the curvature factor.

12See the discussion in Almeida and Vicente (2008) for example. We follow the parametrization of Diebold and Li (2006).
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Aside from its flexibility in fitting the yield curve, this reduced-form model offers a convenient way of isolating
the short, medium and long ends of the yield curve, which is crucial for our methodology. It also offers a number
of other advantages when compared to other methods:

1. We have precise interpretations of the factors themselves, by construction.

2. Principal component analysis, when used as a way to identify factors in an approximate factor structure
setting, suffers from an identification problem. Factors and loadings in that case are identified only up to a
rotation. In principle, there is no a priori best possible rotation. The Nelson and Siegel (1987) approach solves
this identification problem by assuming a parametric form of loadings.

3. The implied price at time t of a bond that pays one dollar τ months ahead is given by Pt(τ) = e−τy(τ)t . This
is also called the discount curve when seen as a function of τ. The Nelson and Siegel (1987) method ensures
that the discount curve starts at one and converges to zero, as it is implied by virtually all economic models.
This does not need to be case if we use, for example, splines-based methodologies.

Perhaps more importantly, the parametric form of the loadings in equation (4) allows us to develop a new decom-
position of the excess bond returns. From now on, we assume a constant λt = λ > 0 since that will be part of our
identification strategy, which we discuss later. Our decomposition is given in the proposition below.

Proposition 1. Suppose the yield curve follows (4) and assume that the decay parameter is a positive constant λt = λ > 0.
Define θ ≡ 12λ. Then, the one-year excess bond return for a maturity of n years is given by:

xrt+12(n) = (n − 1)
[

β1,t − β1,t+12

]
+

(
1 − e−θ(n−1)

θ

)[
e−θ β2,t − β2,t+12

]
(6)

+

(
1 − e−θ(n−1)

θ
− ne−θ(n−1) + 1

)[
e−θ β3,t − β3,t+12

]
+
(

1 − e−θ(n−1)
)

β3,t+12.

Proof. See Appendix E.

This proposition shows that, for any maturity, the excess bond returns can be written as combinations of the
innovations on the factors. The terms in the parentheses, for a given λ > 0, are not random and depend only on
the maturity n. For long maturities, the term preceding innovations in the long-run factor β1 is dominant since
it increases linearly with the maturity. Conversely, the term preceding innovations in the short-term factor β2 is
bounded above by 1/θ and becomes relatively less important as the maturity increases. A similar phenomenon
happens with the loading multiplying the innovations in the medium-run factor since it is bounded above by
1 + 1/θ. Finally, the very last term displays the future level of the medium-run factor multiplied by a nonrandom
loading which is close to zero for shorter maturities and bounded above by 1 as the maturity increases.

The decomposition from Proposition 1 indicates that the predictability of the excess bond returns must be tied to
the predictability of the factors on the right-hand-side. Since the contribution of each component of the decomposi-
tion above depends on the maturity, being able to perfectly predict, for example, the long-run factor should impact
the predictability of excess bond returns at longer maturities but should not be as relevant for the shorter ones. By
the same token, improved predictability of the short-run factor should be translated to improved predictability of
excess bond returns of shorter maturities without too much impact for the longer maturities. This fact is useful
for us since it suggests a natural way to test the asymmetry in the violations of the spanning hypothesis across
different regions of the yield curve.
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4.1 Estimation

We now turn to the estimation of the model in (4). Different estimation procedures have been used in the literature.
We adopt the OLS approach from Diebold and Li (2006) due to its numerical stability and simplicity. This method
has also been more recently advocated by van Dijk et al. (2013), Diebold and Rudebusch (2013) and Hännikäinen
(2017).

Given any constant value λ > 0 for the decay parameter, a simple OLS regression of the cross-section of zero-
coupon yields on the loadings is able to identify the factors. One cross-sectional regression is required for each
time t. This effectively implies that we impose no restriction on the dynamics of the factors between date t and any
other date t′ since separate linear regressions are estimated for different dates. This provides great flexibility to fit
the yield curve month by month. It is also computationally simple and stable since the estimators for the factors
are known in closed form. We analyze the period 1973-2021 and use all yields available from 1 to 120 months in
the data set provided by Liu and Wu (2021).13

Formally, our estimator for the factors at time t is given by:

β1,t

β2,t

β3,t

 =
(
X′

tXt
)−1 X′

tYt, Xt =


1

(
1−e−λτ1

λτ1

) (
1−e−λτ1

λτ1
− e−λτ1

)
...

...
...

1
(

1−e−λτN
λτN

) (
1−e−λτN

λτN
− e−λτN

)
 , Yt =


y(τ1)

t
...

y(τN)
t

 , (7)

where N = 120 is the cross-sectional size. We pick λ = 0.0609 as in Diebold and Li (2006) as the decay parameter.
This value implies that the maximum effect of the medium-run factor is attained at 30-month horizon. Addition-
ally, it facilitates comparisons with other studies that followed the same methodology.

Table 2: Summary statistics for the estimated Nelson-Siegel factors. For each date, factors are estimated running a linear regression of
observed yields on the loadings. We use all yields from 12 to 120 months that are available from the data set provided by Liu and Wu (2021).
The sample ranges from January 1990 to December 2021. “ADF” stands for an Augmented Dickey-Fuller test. We report the p-values for each
factors and two different versions of the test.

Statistic β1 β2 β3

Mean 6.466 -1.932 -1.257
Standard Deviation 2.912 1.865 2.598
Minimum 0.731 -5.579 -8.326
25% Percentile 4.595 -3.292 -2.570
50% Percentile 6.280 -2.017 -0.857
75% Percentile 8.235 -0.661 0.494
Maximum 14.023 5.677 6.274

ADF (constant only) 0.846 0.005 0.030
ADF (constant + linear time-trend) 0.091 0.029 0.022

Figure 2 displays the estimated time-series for each factor. It is immediate to see that they are persistent time-
series, which is not surprising as the the cross-section of zero-coupon yields is persistent as well. The scale of the
long-run factor is also slightly greater than the realizations of the other two. The long-run factor is always positive
while the other two oscillate around zero. Table 2 shows summary statistics for these factors and the p-values of
an augmented Dickey and Fuller (1979) test in two versions: conditioning on only a constant and conditioning

13We have conducted (unreported) robustness checks regarding using even longer yields up to 360 months whenever available and also
using only a few fixed maturities as in Diebold and Li (2006). We found that the time-series for the factors were essentially indistinguishable
from the ones based in our approach. Given λ, there are only three parameters to estimate and the behavior of these factors is diverse enough
that a few yields in the cross-section are enough to identify them. Extra results are available upon request.
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Figure 2: Estimated factors using the OLS approach of Diebold and Li (2006), with λ = 0.0609. For each date, factors are estimated running a
linear regression of observed yields on the loadings. We use all yields from 12 to 120 months that are available from the data set provided by
Liu and Wu (2021). The sample ranges from January 1990 to December 2021.
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also on a linear time-trend. At the 5% level, we reject the hypothesis of an unit root both for β2 and β3, for both
versions of the test. For the long-run factor, however, we only reject the null at the 10% level when we also control
for a linear time trend. In general, the long-run factor is much more persistent than the other ones.

We have highlighted the advantages of the Nelson-Siegel approach, but the question of whether the model is
indeed able to fit the yield curve data is purely empirical. Importantly, given Proposition 1, a natural question
is how well the excess bond returns implied by the dynamics of the Nelson-Siegel factors track the returns we
observe from the realized zero-coupon yields.

Figure 3 answers this question. The blue solid line represents the one-year excess bond returns computed using the
observed zero-coupon yields, as defined in (1). The panel on the left shows returns for n = 2 years while the panel
on the right shows returns for n = 10 years. The red dashed line shows the one-year excess bond returns implied
by our factor estimates, i.e., we plug our factor estimates into the right-hand-side of (6). Hence, the dashed line
represents the excess bond returns we would have observed if, in fact, the zero-coupon yields perfectly followed
the estimated Nelson-Siegel model. We deem our Nelson-Siegel approach successful in fitting the yield curve
since both lines are practically the same in both panels, which is a manifestation of the flexibility provided by the
approach from Nelson and Siegel (1987) coupled with the parametrization from Diebold and Li (2006).

It is worth noting that we do not impose the no-arbitrage restrictions that appear in some affine term-structure
models, like Ang and Piazzesi (2003). On the one hand, these restrictions might increase the efficiency in the
estimation of factors. On the other hand, it is unclear how useful they are in a context of forecasting. Our goal when
using the model in (4) is to fit the yield curve as well as we can at a given point in time and then analyze forecasts
of these factors, which are ultimately tied to the predictability of excess bond returns as shown by Proposition 1.
It is not straightforward that extra restrictions would improve the fit. Additionally, Diebold and Li (2006) note
that if the no-arbitrage condition is approximately verified in the data, a flexible model would also generate fitted
monthly yield curves that approximately respect no-arbitrage restrictions.
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Figure 3: Realized vs implied excess bond returns. The blue solid line shows the one-year excess bond returns measured from data, following
(1). The red dashed line displays the returns that would have been observed if yields followed (4) and the realization of the factors were the
ones we estimated, as in Figure 2.
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In any case, the evidence on how useful those restrictions are in a forecasting context is mixed, at best. Ang
and Piazzesi (2003) and Almeida and Vicente (2008) argue that they are helpful but the effects are small, while
Duffee (2002) finds no gains. Carriero and Giacomini (2011) developed a formal test to analyze the usefulness
of no-arbitrage restrictions. They find that the answer is largely dependent on the loss function adopted by the
econometrician. For the case of a quadratic loss function as in our approach, they do not find large gains by
imposing no-arbitrage restrictions.

In Appendix C, we further discuss alternative estimation procedures for the Nelson-Siegel factors and compare
them. We also show how our choice for λ is very close to the optimal constant λ throughout the sample. Addi-
tionally, we show how the proposed reduced-form model beats a benchmark polynomial model in our sample in
terms of fitting errors.

5 Dissecting Violations of the Spanning Hypothesis

The model in (4), together with Proposition 1, offers a natural way to test whether there are asymmetries in the vi-
olation of the spanning hypothesis across maturities and where they are coming from. The shorter end of the yield
curve is more heavily influenced by β2, while the intermediate and long ends are more influenced by β3 and β1,
respectively. Under the spanning hypothesis, all information needed to forecast these factors should be spanned
by the zero-coupon yields themselves. One way to test the spanning hypothesis is asking whether macroeconomic
data can enhance the forecast of these factors. A positive answer represents evidence against such hypothesis.
Additionally, the asymmetry shown in Figure 1, coupled with Proposition 1, suggests that macroeconomic data
should enhance the forecast of the shorter end of the curve more than the longer end. As we did with bond risk
premia, we focus on out-of-sample predictive exercises.

5.1 Regressions with Principal Components

Our first analysis considers the following linear forecasting model:

βi,t+12 = αi + θ′i Ct + γ′
i PCt + ϵi,t+12, i ∈ {1, 2, 3}. (8)
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We deploy an expanding window forecasting exercise, as we did in Section 3. Our first forecast is made for January
1990 and the last one for December 2021, for a total of 384 out-of-sample forecasts. For example, for the January
1990 forecast, we only use data available up to January 1989. This data is used both for the extraction of the
principal components from the FRED-MD data set and for the estimation of the linear model in (8). After the
model is estimated, we compute the 12-month-ahead forecast for each of the factors.

We emphasize two aspects of this forecasting design. First, for each new forecast for the realizations taking place
at t + 12, we perform the principal components extraction with data only up to time t. An econometrician in
1989, for instance, furnished only with a truncated version of our data, would have extracted the same principal
components as we did. Similar expanding window designs have been recently used by Gu et al. (2020) and Bianchi
et al. (2021). Second, the expanding window design is useful because the amount of data for estimation increases
at each step, but the forecasts will have “long-memory”: the dynamics of the beginning of the sample will affect
forecasts at the end of the sample. We will later investigate a rolling window design and show that our conclusions
do not depend on an expanding window.

We follow the tradition in the forecasting and Machine Learning literature and focus on the out-of-sample R2 of
our predictions:

R2
oos = 1 −

T
∑

t=t0

(
βi,t − β̂i,t

)2

T
∑

t=t0

(
βi,t − βi,t

)2
, (9)

where β̂i,t is a particular forecast and βi,t is a benchmark. Note that this measure is equal to one minus the MSE
ratio, such that it can be negative if the forecast created by a given method is worse than the benchmark itself in
terms of mean squared error.

A natural benchmark for us is the random walk since the factors are fairly persistent time-series.14 It is also an
important benchmark because it is available under the spanning hypothesis. After all, the econometrician can
always guess that the future yield curve will be the same as today’s yield curve (and hence that the factors, which
are linear combinations of yields, will be the same).

Additionally, since the factors are persistent series, we also target their innovations directly. This seeks to alleviate
the concern that forecasting persistent time-series with less persistent ones might generate poor performance for
reasons unrelated to the spanning hypothesis. Instead of directly predicting their levels, we also perform the
predictions of their one-year innovations:

∆βi,t+12 ≡ βi,t+12 − βi,t = αi + θ′i Ct + γ′
i PCt + ϵi,t+12, i ∈ {1, 2, 3}. (10)

We then infer the predicted level by:
β̂i,t+12 = βi,t + ∆̂βi,t+12. (11)

Finally, we also stress that, under the random walk benchmark, Proposition (1) still implies a time-varying risk
premium. This is a richer baseline than just assuming it is a constant value, possibly depending on the maturity -
the so-called expectation hypothesis.15 Our baseline case assumes that risk premium can vary over time since the
factors themselves are allowed to change over time.

14We have also estimated AR(1) models for the Nelson-Siegel factors and verified that a random walk is a harder benchmark to beat out-of-
sample at the one year horizon. Results are available upon request.

15See Bianchi et al. (2021) and Borup et al. (2023) for recent studies regarding the expectations hypothesis.
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As before, we have at least two natural choices for Ct: the forward rates or the lagged factors. We focus on results
that control for the forward rates and leave most of the results controlling for lagged Nelson-Siegel factors for the
appendix. The main conclusions do not rely on that choice. We prefer the results using the forward rates because
their linear span is potentially richer than using the Nelson-Siegel factors even though the 3-factor representation
fits the U.S. yield curve remarkably well.

Table 3 displays results targeting the level of the factors in Panel A and their innovations in panel B, in both cases
controlling for the forward rates. In both panels we use the random walk as the benchmark. We also provide the
p-values of a Diebold and Mariano (1995) test in which the null hypothesis is that addition of macroeconomic in-
formation through the principal components does not enhance the forecasting of the factors (or their innovations).
In both panels, the column labeled “No Macro” is our baseline specification, when we impose γi = 0. Under the
spanning hypothesis, as we further condition our forecasts on macroeconomic data, improvements in the forecast-
ing of factors should only be due to sampling noise. We sequentially add principal components taken from the
FRED-MD data set and keep track of the respective out-of-sample R2 and associated p-values.

Table 3: We report the out-of-sample R2 attained from the model in (8) for the baseline with no macroeconomic data included
and with different numbers of principal components. Negative values imply we couldn’t beat a random walk. We also show
p-values to compare whether any improvement was statistically significant, comparing the “No Macro” baseline and the the
different forecasts. The first panel targets the level of the factors while the second panel targets their innovations.

Panel A: Predicting Level

Number of Macro PCs p-values

Target No Macro 1 2 3 4 5 8 1 2 3 4 5 8

β1 -0.21 -0.17 -0.19 -0.15 -0.11 -0.09 0.03 0.18 0.33 0.13 0.11 0.10 0.01
β2 -0.08 -0.08 0.17 0.22 0.21 0.23 0.22 0.49 0.01 0.02 0.02 0.02 0.05
β3 -0.12 -0.15 -0.06 -0.07 -0.07 -0.07 -0.10 0.92 0.07 0.19 0.20 0.21 0.43

Panel B: Predicting Innovations

∆β1 -0.19 -0.15 -0.17 -0.14 -0.10 -0.08 0.05 0.19 0.32 0.17 0.12 0.10 0.01
∆β2 -0.11 -0.12 0.14 0.18 0.17 0.19 0.18 0.52 0.00 0.02 0.02 0.02 0.05
∆β3 -0.10 -0.12 -0.06 -0.05 -0.05 -0.06 -0.08 0.93 0.17 0.25 0.26 0.31 0.41

We start focusing on Panel A. The out-of-sample R2 under the baseline is negative for all the three factors. As
we increase the numbers of principal components taken from our macroeconomic data, we observe two differ-
ent patterns. For both β1 and β3, the inclusion of macro data almost never makes the forecasting model better
than a random walk out-of-sample, which was indeed a better model virtually across every possible scenario for
β1 and β3. That is easy to see because almost all values for R2 are negative. For β2, in contrast, we observe a
strong improvement in forecasting power, reaching an out-of-sample R2 of more than 20% in some cases, which is
statistically different than both our “No Macro” baseline and the random walk benchmark.

Panel B tells a similar story. The improvements in forecasting ability for β2 when incorporating information from
macro variables are much stronger than any improvements in β1 or β3. Interestingly, R2 values attained are similar
across both panels, showing that our results cannot be explained by the simple fact that yields are persistent.

The finding that macroeconomic data is helpful in forecasting β2, but not the other factors, helps us understand the
asymmetry documented in Figure 1. Since innovations in β2 are disproportionately more important for bonds of
shorter maturities, this pattern of predictability of the factors translates to stronger predictability of risk premium
at the shorter end of the yield curve, in light of Proposition 1.
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In Appendix A, Table A.5 shows the analogous results when controlling for the lagged Nelson-Siegel factors in-
stead of the forward rates. The out-of-sample R2 is almost never positive for either β1 or β3. In contrast, we get a
positive R2 of around 20% for β2 across different specifications with macro macro data. Alternatively, Tables A.3
and A.4 show a similar pattern if we consider an in-sample exercise instead of an out-of-sample scheme. When we
include principal components of the FRED-MD data set, the R2 of the in-sample regressions increases relatively
more for β2 than for the other factors. The improvements for β1, for example, are negligible.

Taken together, our evidence using principal components points to a pattern that is largely consistent with and
sheds light on the asymmetry from Figure 1. The macroeconomic information spanned by the principal compo-
nents of the FRED-MD data set is more helpful to forecast β2 than the other factors, i.e., the violations of spanning
hypothesis are stronger at the shorter end of the yield curve.

5.2 Regularized Linear Models

Our evidence so far uses principal components of the macroeconomic variables to summarize the information
spanned therein. Although simple to use and to communicate, principal component analysis has at least two
drawbacks in our context. First, they fall into the “unsupervised” category of techniques for large data sets, as
described by Hastie et al. (2009). This means that the dimensionality reduction they provide is not necessarily
designed to improve forecasting. It might be the case that a certain linear combination of the different variables
can explain a large amount of the total variation of the data but does not enhance the forecast for a given target.
The choice of the target is irrelevant to the extraction of the principal components.

The second drawback is the lack of interpretability. By definition, principal components will use information
from all variables in the data set. Ludvigson and Ng (2009) analyze how these principal components load on
different variables and argue that some of them are related to real activity measures and inflation. However, that
interpretation is only tentative and there is no reason for this result to hold over time or in different sub-samples.
Moreover, our out-of-sample design requires sequential extraction of principal components. If we were to follow
the same path, we would have to analyze the rotations implied by different principal components for each out-of-
sample forecast we make, which is not feasible.

To avoid both drawbacks and further inspect the asymmetry in the violations of the spanning hypothesis, we
stay in the realm of linear forecasting models but leverage regularization techniques. These methods are common
in the Machine Learning literature and tend to be used in forecasting exercises when there is a large number of
covariates. We focus on the Ridge (Hoerl and Kennard, 1970), Lasso (Tibshirani, 1996) and Elastic Net (Zou and
Hastie, 2005) methods.16 These methods have recently been used in forecasting exercises as in Gu et al. (2020),
Medeiros et al. (2021), Bianchi et al. (2021) and Feng et al. (2022). They have also been coupled with standard
inferential theory in the context of factor models for equity returns by Feng et al. (2020) and Giglio et al. (2021).

We let Xt = [C′
t; F′

t ]
′ denote a vector containing variables that span the yield curve (Ct) and all the columns from

the FRED-MD data set (Ft). We will still predict any target with a linear combination of variables in Xt. However,
we will estimate this linear combination by minimizing a loss function that penalizes both in-sample forecasting
errors and the “size” of the vector providing the optimal linear combination. Assuming we are targeting βi, for
given non-negative scalars ψ1, ψ2 ≥ 0, we minimize:

min
αi ,γi

{
1

T − 12 − t0

T−12

∑
t=t0

(
βi,t+12 − αi − γ′

i Xt
)2

+ ψ1||γi||1 + ψ2||γi||2

}
, (12)

where ||.||j denotes the Lj-norm of a vector for j = 1, 2 and time runs from t0 to T in a generic sample. We then

16See Hastie et al. (2009) for an in-depth treatment of these methods.
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predict:
β̂i,t+12 = α̂i + γ̂′

i Xt. (13)

We will also target the innovations as we did before. In that case, analogously, we predict the innovations out of
sample and define the forecast for the level as the lagged level plus the predicted innovation, exactly as in (11).

This notation encompasses the three regularized models we consider:

1. ψ1 = 0, ψ2 > 0 =⇒ Ridge

2. ψ1 > 0, ψ2 = 0 =⇒ Lasso

3. ψ1, ψ2 > 0 =⇒ Elastic Net

Even though these models might look similar, they behave differently. The Ridge model is the simplest of the
three. The L2-penalization will force coefficients of very correlated variables to be close to each other. It will not,
however, make these coefficients be exactly zero. In that sense, Ridge is the only model that will not perform
model selection from the three options above.17 It will try to use all the information available, attaching similar
weight to variables that are correlated and might span similar information. All estimates will be shrunk towards
zero - or “regularized”. The degree of shrinkage is controlled by the scalar ψ2.

Lasso, on the other hand, will set several coefficients to exactly zero. That is due to the lack of smoothness implied
by the L1-norm. In general, it will work well in environments where a few signals from Xt can generate a good
forecast for the given target but they are hidden among several irrelevant ones. The penalty incurred by setting a
given coefficient to a value different from zero is controlled by ψ1. The greater this value, the more zeros γ̂i will
contain - the more “sparse” γ̂i will be.

Finally, the Elastic Net is a joint estimation procedure that will impose both sparsity and shrinkage since the penalty
function is a linear combination of norms. The price to pay for such flexibility is that two different hyperparameters
need to be estimated. This is a non-trivial task since, a priori, there is no recommended number to which we can
set these values. And, importantly, forecasting performance crucially depends on them.

One can also adopt a Bayesian interpretation of these estimators, as Giannone et al. (2021) highlight. They nu-
merically coincide with the mode of the posterior distribution of parameters if we assume that the targets are
conditionally Gaussian and we set specific priors for the coefficients. For example, the Ridge method coincides
with the case of a Gaussian prior on γi, while Lasso is equivalent to imposing a Laplacian prior in this setting. The
Elastic Net corresponds to a prior that mixes both distributions. The tightness of these priors is controlled by the
penalty parameters ψ1 and ψ2, respectively.18

As we did in our out-of-sample exercise with principal components, we adopt an expanding window framework.
Our first forecast is made for January 1990 and our last one is made for December 2021, such that we compute 384
out-of-sample forecasts in total. For any point in time, we divide the available data into two consecutive parts:
the estimation (or “training”) sample and the validation set. The estimation sample is used to numerically solve
the optimization in (12) for a given pair (ψ1, ψ2). With those estimates, we use (13) to forecast the observations
contained in the validation set. We can then compute forecast errors and compute the mean squared error within
the validation set. This measure is of course associated to the specific pair (ψ1, ψ2) then used. We minimize the mean
squared-error in the validation set picking the best possible candidate combination (ψ1, ψ2) from an user-specified
grid using a simple grid-search method. We let the validation set represent 20% of the data available at a given

17We use the term “model selection” to denote the ability of a method to automatically pick a subset of variables out of a larger set of options
and predict based on the chosen set.

18For a deeper discussion of this interpretation, see Hastie et al. (2009) and Giannone et al. (2021).
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point in time, using 80% for estimation. Since we adopt an expanding window, both the estimation sample and
the validation set increase in size as we move ahead in time.19

5.2.1 Forecasting Ability

We compare the out-of-sample R2 with and without the macroeconomic variables across the three different models
and different targets, displayed in Table 4. In Panel A, we let Ct stack the forward rates and in panel we B use the
lagged Nelson-Siegel factors as a way to span the information from the yield curve. For each panel, the first three
columns display the performance for each method when Xt = Ct, which is our baseline case. The second set of
three columns shows the performance when we use all the available variables in the FRED-MD data set. The last
set of columns reports the p-value of a Diebold and Mariano (1995) test in which the null hypothesis is that the
forecasting ability is the same with and without macroeconomic data.

Table 4: R2
OOS from different models and for different targets, using the random walk. We target both the level of the factors and their

innovations, which are then added to the lagged values to compute the implied forecast. The first three columns displays results for our
baseline case where we use no information from the macroeconomic variables. The out-of-sample period starts in January 1990 and ends in
December 2021. We use the regularized models as in (12) to make the forecasts. The penalization constants ψ1, ψ2 are chosen using a validation
set that contains 20% of the available data at each point in time. Panel A controls for the forward rates while Panel B lets Ct store the three
lagged Nelson-Siegel factors. The last columns report the p-value for a test (Diebold and Mariano (1995)) whose null is equal predictive ability
between the baseline models and the models with macroeconomic data.

Panel A: Conditioning on Forward Rates

Target
No Macro Data All Macro Data p-value

Ridge Lasso Elastic Net Ridge Lasso Elastic Net Ridge Lasso Elastic Net
β1 -4.84 -4.82 -4.69 -4.06 -4.30 -4.18 0.00 0.00 0.00
β2 -0.08 -0.13 -0.19 0.07 0.07 0.06 0.05 0.00 0.01
β3 -0.41 -0.59 -0.59 -0.47 -0.46 -0.45 0.78 0.04 0.03

∆β1 0.12 0.12 0.09 0.01 0.12 0.12 0.96 0.50 0.27
∆β2 0.01 -0.02 -0.01 0.15 0.22 0.19 0.02 0.00 0.00
∆β3 0.04 -0.02 -0.03 -0.13 -0.09 -0.08 1.00 0.95 0.95

Panel B: Conditioning on Lagged Nelson-Siegel Factors

Target
No Macro Data All Macro Data p-value

Ridge Lasso Elastic Net Ridge Lasso Elastic Net Ridge Lasso Elastic Net
β1 -4.91 -4.73 -4.81 -3.76 -5.08 -4.53 0.00 0.97 0.10
β2 0.00 -0.12 -0.12 0.08 0.07 0.02 0.16 0.00 0.08
β3 -0.41 -0.47 -0.49 -0.45 -0.35 -0.39 0.71 0.04 0.09

∆β1 0.12 -0.00 0.11 -0.29 0.04 0.08 1.00 0.30 0.84
∆β2 0.10 0.08 0.12 0.18 0.25 0.24 0.11 0.00 0.01
∆β3 0.08 0.04 0.02 0.00 0.03 0.07 0.95 0.70 0.02

We start by analyzing predictions of innovations of the factors in Panel A. Across the three factors, we see that the
forecasting ability is similar across the three methods. For β1, the baseline R2 is around 12%, which implies that the

19This validation procedure is different from standard cross-validation typically employed in the Machine Learning literature (see Hastie
et al., 2009). The temporal dimension of our setting makes us unable to use methods assuming observations to be independent. It is, however,
very similar to the approach of Bianchi et al. (2021). See Arlot and Celisse (2010) for an in-depth discussion of different validation methods.
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baseline model outperforms a random walk. However, the best one can do by allowing for macroeconomic data to
enter the forecasting model is also 12%, such that there is no sign of improvement in out-of-sample forecasting. The
situation is even worse for β3, where the inclusion of macroeconomic variables decreases forecasting performance
for all three methods.

The results for β2 are in sharp contrast to those for β1 and β3. Under the “No Macro Data” baseline, we have
essentially the same performance as a random walk. In contrast, the addition of macroeconomic variables brings
the out-of-sample R2 to around 20%, which is statistically higher than the baseline results at all usual confidence
levels. This is the “supervised” version of the previous result using principal components: macro data can only
improve the forecast for the short-run factor β2.

The bottom three rows of Panel B repeat this exercise but controlling for the lagged Nelson-Siegel factors. Again,
the spanning hypothesis is only violated through β2. Another interesting pattern is that the Ridge method seems
less efficient than the other two when faced with the high-dimensional panel of macroeconomic variables. Lasso
and Elastic Net performed similarly but could beat Ridge, even though by a small margin. We believe this is
intuitive since some of the FRED-MD predictors might be irrelevant for yield curve forecasting and the L1-norm
penalization makes the associated coefficients exactly zero.20

Table 4 also shows a similar qualitative story when we focus on the results targeting the levels of factors. The only
case in which we can beat a random walk is when we allow the methodology to use all macroeconomic variables
and we target β2. However, the absolute forecasting performance is worse than the cases in which we predict
innovations. In particular, it is much worse for β1. This has to do with the fact that these factors are persistent and
regularized models are known to work empirically worse in such scenarios.21 It is, nonetheless, reassuring that
our main finding also arises in this more challenging case.

Overall, the evidence from the regularized models agrees with the evidence from our approach using principal
components. No matter how we span the yield curve or how we target β2, we detect violations of the spanning
hypothesis. On the other hand, violations through β1 and β3 are much smaller and often inexistent. In general,
forecasting the innovations, i.e., the first differences proved to be better in terms of pure predictive performance.
We also find that results were similar across the regularized models, with the Ridge method slightly underper-
forming Lasso and Elastic Net when macroeconomic data is added.

5.2.2 Model Selection

As mentioned above, Lasso and Elastic Net impose sparsity in γ̂i, i.e., some (or most) coefficients will be set to
zero. In that sense, the loss function we chose will effectively select a forecasting model. While the analysis
using principal components was virtually silent regarding what variables were more important for forecasting,
the regularized models are more explicit in that front. Since we have to numerically solve (12) each time we
perform an out-of-sample forecast, we can keep track of the choices made by these methods. Then, we can use the
official classification of these variables from the St. Louis Fed to aggregate this information at the group level.22

We compute how frequently variables from each group were chosen and show results in Figure 4 for the three
Nelson-Siegel factors. We count how many choices were made in total over time and what percentage of those
choices can be attributed to each group. For example, if a given model were to pick only labor market indicators
and price measures in equal proportion, the pie charts would show these two groups with 50%-sized slices in the

20Our (unreported) results show that, on average for both Lasso and Elastic Net, the typical chosen model here uses around 15-25 variables
from the FRED-MD data set, completely ignoring the other ones.

21Figure B.3 in Appendix B further illustrates this point.
22See our Appendix D for a full list of variables and their classification.
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Figure 4: Most frequently chosen groups. For each group of variables, we keep track of how many times variables of that group were chosen
either by Lasso or by the Elastic Net. Then we compute this number as a fraction of total choices. The top row shows results for the Lasso while
the bottom row shows results for the Elastic Net. We let Ct store the lagged value of the forward rates. The out-of-sample period is January
1990 to December 2021.
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pie charts. The pie charts on the first row show results for the Lasso and the ones on the second row for the Elastic
Net. For β1, we show results for the innovations due to the poor performance when targeting its level, as shown
in Figure B.3. For the other two factors we focus on choices made when we target the levels. We focus only on
results when we control by forward rates.23

A first evident pattern is that indicators related to price levels were the most chosen variables for β1 both by the
Lasso and by the Elastic Net. These are different CPI measures, consumption expenditure indexes and commodity
prices. We see these variables as all linked to the current state of inflation. This result seems intuitive for us.
Higher inflation typically means that the monetary authority will have to increase the short-term interest rates.
Since inflation is relatively persistent and monetary policy acts with a lag, agents might infer that short-term
interest rates will have to remain higher for some time, impacting also the longer-term interest rates as well.

The dominance of these price indicators is less extreme when we use the Elastic Net in contrast to the Lasso,
although these indicators are the prevalent ones in both cases. This is also expected. Heuristically, the L2-norm

23Controlling by the Nelson-Siegel factors leads to very similar pie charts which we omit for the sake of space but are available upon request.
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penalty from the Elastic Net acts shrinking all coefficients towards zero while the L1-norm penalty forces some of
them exactly to zero. Since the coefficients have already been shrunk, the cost of allowing them to be non-zero is
relatively smaller. Therefore, Elastic Net will tend to pick more variables than the Lasso.

For β2, on the contrary, we find that no group is particularly dominant, with almost identical results for Lasso and
Elastic Net. This suggests that the methodology is mixing signals from different groups. We don’t take this result
as a surprise, though. The shorter end of the yield curve, summarized by the short-run factor β2, is more likely
to be directly affected by monetary policy decisions. Since these decisions are taken conditionally on the business
cycle, it seems natural that a wide array of signals which are informative about the current state of the economy
helps forecasting this factor. The more puzzling fact is why this information is not already contained in the current
yield curve itself, spanned either by the lagged factors or the forward rates, i.e., why the spanning hypothesis fails
for the shorter end of the curve. Giannone et al. (2021) analyze how these regularization methods perform when
making forecasts in different contexts in Economics and find that the best forecasts are generally made by mixing
signals and not picking just a few ones. This is a phenomenon they call the “illusion of sparsity”. In our view, the
evidence that the forecast for β2 is mixing information from the different groups is a manifestation of this lack of
sparsity. A similar pattern arises for β3, for which our methodology ends up mixing the different signals available
in the data set.

5.3 Non-Linear Methods

The different forecasting methods used so far are fundamentally linear. The empirical evidence from Gu et al.
(2020), Medeiros et al. (2021), and Bianchi et al. (2021), for example, highlights that non-linear methods can, in
the context of financial forecasting, significantly improve on linear methods. Although our main concern is not on
what type of methodology is the best for pure forecasting, we also want to rule out the possibility that the results
so far are due to the linear nature of the methodologies we used. With that goal in mind, we allow for non-linearity
in two ways. The first one uses higher powers of principal components while the second one employs a Random
Forest method.

5.3.1 Powers of Principal Components

Our first attempt to study whether non-linearities are important for forecasting in this environment revisits the
forecasting equation (8) allowing for higher-order powers of principal components. Given a number K of principal
components to use, we define PC(r)

t as a K · r × 1 stacked vector of principal components and their respective
powers up to the maximal exponent r:

PC(r)
t ≡

[
PC1,t · · · PCK,t PC2

1,t · · · PC2
K,t · · · PCr

1,t · · · PCr
K,t

]′
.

We use this richer version of the principal components in the following forecasting regression:

βi,t+12 = αi + θ′i Ct + γ′
i PC(r)

t + ϵi,t+12, i ∈ {1, 2, 3}. (14)

We report results for r = 2 on Table 5 and leave results for r = 3 for Table A.6 in Appendix A. We proceed as before,
using the period 1990-2021 as our out-of-sample sample, and extracting principal components as we increase the
sample following the expanding window strategy. For the sake of space, we focus on results using K ∈ {3, 5, 8}.

Panel A in Table 5 displays results controlling for the information contained in the forward rates. The same story
from previous exercises remains, where we can only both improve on “No Macro” baseline and beat the random
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Table 5: We report the out-of-sample R2 from the forecasting model in (14). The out-of-sample period is 1990-2021. We set
r = 2 and target both levels and innovations, controlling either for the forward rates or the lagged Nelson-Siegel factors. The
p-values assess whether improvements over “No Macro” were statistically significant.

Panel A: Controlling for Forward Rates, r = 2

Number of Macro PCs p-values

Target No Macro 3 5 8 3 5 8

β1 -0.21 -0.16 -0.17 -0.02 0.25 0.36 0.03
β2 -0.08 0.20 0.19 0.28 0.02 0.03 0.02
β3 -0.12 -0.08 -0.10 -0.15 0.27 0.37 0.62

∆β1 -0.19 -0.13 -0.14 -0.01 0.20 0.32 0.03
∆β2 -0.11 0.18 0.18 0.26 0.02 0.02 0.02
∆β3 -0.10 -0.06 -0.09 -0.11 0.29 0.44 0.55

Panel B: Controlling for Lagged Betas, r = 2

Number of Macro PCs p-values

Target No Macro 3 5 8 3 5 8

β1 -0.10 -0.12 -0.13 0.00 0.67 0.65 0.11
β2 0.06 0.20 0.20 0.25 0.07 0.07 0.08
β3 -0.11 -0.06 -0.09 -0.12 0.16 0.37 0.57

∆β1 -0.10 -0.12 -0.13 0.00 0.67 0.65 0.11
∆β2 0.06 0.20 0.20 0.25 0.07 0.07 0.08
∆β3 -0.11 -0.06 -0.09 -0.12 0.16 0.37 0.57

walk for β2. This is true when we directly target the level of the factors and when we target the innovations.
Interestingly, the absolute forecasting accuracy is similar to the previous r = 1 case.

Panel B repeats this exercise controlling for the lagged Nelson-Siegel factors. Once more, we can only outperform
the benchmark for β2. In this case, the “No Macro” baseline already beats a random walk, but the model using
the principal components from the macroeconomic data set increases the out-of-sample R2 threefold, which once
more represents a strong violation of the spanning hypothesis.

The results for r = 3 in the Appendix also display the same pattern. However, with r = 3 and K = 5, for example,
we have 15 extra parameters to estimate with the same amount of data, aside from the 10 parameters from the
baseline model when we control for forward rates. This is translated to lower statistical power, as can be seen
from the larger p-values.

5.3.2 Random Forest

Although equation (14) allows for non-linear transformations of principal components, the forecasting equation
is still linear. We take it further and implement a fully non-linear method: the Random Forest. Aside from being
computationally simpler than a Neural Network, Medeiros et al. (2021) find that it performs the best when forecast-
ing inflation (which is also a persistent target, as the Nelson-Siegel factors). In similar fashion, Goulet-Coulombe
(2023) does an in-depth analysis of their use (and success) when predicting macroeconomic variables.24

24We refer the reader to Bianchi et al. (2021) for a detailed study on the optimal design of neural networks to predict bond risk premia, which
we do not tackle here.
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Table 6: We report the out-of-sample R2 from the Random Forest technique using the random walk as the benchmark. The
out-of-sample period is 1990-2021. We used 500 trees at each point in time. We target both factor levels and their innovations.
The p-values assess whether statistical improvements over the “No Macro” baseline are significant. Implementation followed
Breiman (2001).

Lagged Factors Forward Rates

Target No Macro All Macro p-value No Macro All Macro p-value

β1 -1.48 -1.93 0.87 -0.76 -0.72 0.39
β2 -0.08 0.27 0.01 -0.34 0.23 0.00
β3 -0.41 -0.16 0.02 -0.58 -0.22 0.01

∆β1 -0.17 0.00 0.05 -0.53 -0.04 0.00
∆β2 -0.08 0.32 0.00 -0.42 0.32 0.00
∆β3 -0.37 -0.01 0.02 -0.33 -0.25 0.25

To implement this model, we adopt the standard CART algorithm from Breiman (2001).25 A random forest is
composed of several regression trees, in our case. A tree is a collection of split points chosen to minimize the
in-sample mean-squared error in prediction. The CART algorithm is greedy in the sense that it searches for the best
variable and split point at each step that will minimize the prediction error up to that stage. That leads to regression
trees that are estimators of the conditional mean of a given targeted variable that have low bias but high variance.
We can construct several different trees at each prediction step and average their individual predictions. The trees
differ because the subset of variables used in their construction is random, although of fixed size. This implies that
the predictions of different trees typically display low correlation, which is useful since the final averaging delivers
an estimator with lower overall variance.26 At each time t, we reestimate the forest and predict both factors and
their innovations one year ahead.

Table 6 displays the out-of-sample R2 with and without macroeconomic variables, with the respective p-values.
The columns from the left use the lagged Nelson-Siegel factors as controls and the columns from the right use the
forward rates as controls. The pattern is clear no matter how we control for the information already in the yield
curve: adding macroeconomic variables only significantly improves forecasting power for the short-run factor β2.
In contrast, we can never beat a simple random walk for β1 and β3.

Across the board, we find that predicting the innovations provides better forecasting performance. In fact, across
all our estimation strategies so far, coupling macroeconomic data and targeting ∆β2 was the only strategy that
delivered an R2 greater than 30%. This echoes the results in Medeiros et al. (2021) regarding the efficiency of
Random Forests in using the small amount of data provided to it while still allowing for non-linearities.

The most important message from Table 6 is, however, that the asymmetric violations of the spanning hypoth-
esis we previously documented are not due to our previous choice of linear forecasting methods. We only find
violations through β2 no matter how we approach the problem.

5.3.3 Feature Importance

What is the relative importance of information from the yield curve versus information from the macroeconomic
variables in the Random Forest? When building an individual regression tree, the CART algorithm readily delivers

25We use the standard implementation available in scikit-learn in Python.
26For a full treatment of the Random Forest, see Hastie et al. (2009). At each time t, we build 500 trees to construct our forest. The number of

variables that are selected for each tree is always a third of the total amount. This is the recommended choice by Hastie et al. (2009).
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a statistic called feature importance for each of the variables used in the prediction exercise. This is a measure of
how important each of the available variables was for the reduction of the in-sample MSE, starting from a baseline
value that just guesses the sample mean of the targeted variable.

If we denote by fi,j,t the feature importance for variable i when building tree j at time t, we can define the impor-
tance of variable i, denoted by Fi, as the average across trees and time:

Fi ≡
1

384
·

Dec, 2021

∑
t=Jan, 1990

1
Ni

·
Ni

∑
j=1

fi,j,t,

where Ni is the total number of trees in which variable i was used. Given a collection of feature importances Fi,
we can normalize everything so ΣiFi = 1. Hence, the normalized feature importance represents, on average, how
much each variable contributed for the in-sample MSE reduction, i.e., how helpful each variable was in predicting
the Nelson-Siegel factors.

We classify the variables in two classes: the ones that come directly from the yield curve data and the ones that
come the FRED-MD data set. Figure 5 displays, for each factor, the aggregate feature importance. We focus on
results that control for the forward rates and target the factors directly, but the same conclusion holds for other
specifications. For each factor, the blue and red bars sum up to one.

For β1, roughly 80% of the in-sample MSE is attributed to variables that come from the yield curve (the ten forward
rates). This behavior is consistent with the spanning hypothesis, under which no information provided by the
extra state variables should help with forecasting. On the other hand, the behavior for β2 is exactly the opposite.
More than 90% of the MSE reduction is attributed to the macro variables, as indicated by the dominance of the
blue bar over the red one. This is at odds with the spanning hypothesis. The medium-run factor β3 displays an
intermediate behavior. However, as seen from Table 6, any improvement brought by the addition of macro data to
the forecasting model was not enough to beat a random walk, which is available under the spanning hypothesis.

Figure B.4 in Appendix B displays the average feature importance Fi for each variable and each factor, keeping the
same color coding. In line with the aggregation reported in Figure 5, the red bars dominate the plot for β1, while
they are very small for β2. Additionally, one can see that there is no single variable from the macroeconomic data
set that brings most of the forecasting improvement alone. The methodology picks a mix across signals that are,
individually, weak but that generate sizeable forecasting gains when combined.

The results for the Random Forest are, again, in line with our previous evidence. Adding macroeconomic variables
to the predictive model only significantly improves the forecasting power for β2. The information contained in the
yield curve is, in relative terms, much less important for the forecast of the short-run factor than for the long-run
factor. We see this as another manifestation of the asymmetry in violations of the spanning hypothesis.

6 Economic Significance of Violations

So far, we have established that violations of the spanning hypothesis are stronger and, in fact, only seem to occur
at the shorter end of the yield curve. Now, we assess whether these violations are economically meaningful.
We present a setup in which a consumer that builds portfolios of bonds based on our methodology is able to
achieve a higher Sharpe ratio using macroeconomic data. This improvement, however, is stronger when trading
shorter maturity bonds than when trading bonds with longer maturities, exactly as one would expect in face of
our previous statistical results. Our environment is similar to the one in Thornton and Valente (2012).
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Figure 5: The figure displays the average normalized feature importance of each group of variables when predicting the
Nelson-Siegel factors. The red bars aggregate information from the yield curve (forward rates here). The blue bars aggregate
importances from the FRED-MD dataset. The out-of-sample period is 1990-2021.
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6.1 Setup

We study the problem of a consumer that takes monthly trading decisions and holds for a full year whatever bond
portfolio she has assembled at time t. The consumer has mean-variance utility over gross returns of her portfolio
Rp,t(wt−12) = 1 + y(1)t−12 +w′

t−12xrt, where wt−12 is a vector of portfolio weights chosen at t − 12 and xrt is a
vector of risk premia known at time t, which collects the excess returns for bonds with different maturities. At
each point in time, the consumer solves the following optimization problem:

max
wt

{
Et
[
Rp,t+12(wt)

]
− A

2
· Vart

[
Rp,t+12(wt)

]}
,

for some aversion coefficient A > 0.

We further define µt+12|t ≡ Et [xrt+12] and Σt+12|t ≡ Et

[(
xrt+12 −µt+12|t

) (
xrt+12 −µt+12|t

)′]
as the condi-

tional risk premia and the conditional covariance matrix of these risk premia, respectively. Given these two objects,
we know the solution for the problem above in closed form:

w∗
t =

1
A

· Σ−1
t+12|tµt+12|t.

Our methodology readily delivers estimates of µt+12|t with and without macroeconomic data through different
methods. We do not have, however, a full model for the covariance matrix, which is not the focus of this paper.
We follow Thornton and Valente (2012) and Bianchi et al. (2021) and use a non-parametric estimator:

Σ̂t+12|t ≡
∞

∑
i=0

ϵ̂t−iϵ̂
′
t−i ⊙ Ωt−i, Ωt−i = α · e−α·i11′,

where ϵ̂t−i is an observed forecast error realized at t − i, α > 0 is a scalar, 1 is a vector of ones, and ⊙ is the
element-by-element multiplication operator. This estimator exponentially downweights the past and gives more
importance for recent forecast errors. The decay speed is controlled by α. We choose α = 0.05 as in Bianchi
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et al. (2021). We can compute this estimator using forecast errors obtained with and without macroeconomic data.
Under the spanning hypothesis, these forecast errors should be the same in population and the mean-variance
investor should get no benefit by conditioning her decisions on state variables that are not the yield curve itself.

Since we are interested in the economic significance of violations of the spanning hypothesis for each maturity, we
focus on a univariate allocation exercise where the mean-variance investor can trade only the risk-free rate and
one risky bond at a time. More specifically, for each maturity n, we have that the optimal allocation on the risky
bond is w(n)

t = µ
(n)
t+12|t/A · σ

(n)
t+12|t, where µ

(n)
t+12|t is the bond risk premia forecast for a given model and σ

(n)
t+12|t is the

diagonal element of Σ̂t+12|t corresponding to the bond of maturity n. For the forecasts incorporating information
from macroeconomic variables, we focus on our baseline linear specification with principal components.

6.2 Sharpe Ratio Improvements

We keep track of the investors decisions and keep track of the realizations of Rp,t. The metric we use to assess
the performance of this trading strategy is the Sharpe ratio, defined as the ratio between the average realized risk
premium of the bond portfolio and its standard deviation. We keep the out-of-sample period the same (1990-2021)
and use A = 3.

The Nelson-Siegel factors were useful, when coupled with Proposition 1, to perform a formal assessment of the
asymmetry displayed in Figure 1. But when trading, we are obviously concerned with the total risk premia earned
by the consumer. Hence, we revisit the empirical exercise summarized by equation (2) and use both the time-series
of forecasts with and without macro data to construct the conditional risk premia and the conditional covariance
matrix of risk premia.

Our simple setup abstracts away from trading costs related to leveraged positions or even short positions in some
of these bonds. In order to bring the setup closer to what a practitioner would do in practice, we study the problem
under two different realistic scenarios. The first one is a strict scenario where we further constrain 0 ≤ wt ≤ 1,
i.e., when the consumer cannot short any bond and cannot take on any leverage. Taking long positions with no
borrowing in these assets should be as close to costless as possible since it is a large, liquid market.

The second scenario is less restrictive and allows the consumer both to short bonds and to take on leverage.
However, we still want to rule out extreme positions. We follow Welch and Goyal (2007) and Ferreira and Santa-
Clara (2011) and impose −1 ≤ wt ≤ 2. We compute the Sharpe ratio of this trading strategy, with and without
macro data, and focus on the Sharpe ratio improvement:

Improvement ≡ SR(Macro) − SR(SH).

The baseline Sharpe ratio achieved by the consumer is between 0.2 and 0.3 using only information from the yield
curve, no matter how we control for it. Figure 6, which uses the forward rates as controls for the yield curve,
displays the improvement across different maturities (2, 5, 7, and 10 years) of using different numbers of principal
components of macroeconomic variables for the more strict case constraining portfolio weights.

The solid dots represent the difference between achieved out-of-sample Sharpe ratios. The grey dotted bars are
95% confidence bands computed using the asymptotic approximation from Ledoit and Wolf (2008). The profile
of these Sharpe Ratio improvements is decreasing as a function of maturity, regardless of the included number of
principal components. In fact, when we inspect the improvement for the 10-year bond, for example, it is frequently
not statistically different than zero. On the other hand, the confidence bands never include zero for the 2-year bond.

Taking the point estimates at face value, the improvements for the shortest maturity considered range from 0.10 to
0.21. We consider these improvements as far from being trivial. The decreasing shapes from Figure 6 should not be
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Figure 6: This figure reports the Sharpe ratio improvement the mean-variance consumer can achieve when using principal
components of the FRED-MD data set to trade bonds of different maturities. The out-of-sample period is 1990-2021. The dots
represent point estimates while the gray bars represent 95% confidence intervals using the asymptotic framework from Ledoit
and Wolf (2008). This plot focuses on the strict case, i.e., assuming no leverage and a short selling constraint.
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taken as a surprise in light of our previous results and in light of Proposition (1). Since macroeconomic variables
are useful only for forecasting the short-run factor β2 and the shorter maturities are more heavily influenced by
movements in β2, this result is the manifestation of the asymmetric violations in the context of trading.

Figure B.5 in Appendix B repeats the trading exercise, now without shorting and leverage constraints. The same
decreasing shapes and overall qualitative results stand, showing that these asymmetric improvements in Sharpe
ratios are not due to our strict constraints. The absolute value of the improvements is also larger since the consumer
has greater freedom when trading. Nonetheless, one should take these point estimates more as upper bounds of
the increase in Sharpe ratios one can achieve, taking into account that we do not model trading costs, margin calls,
and other practical details.

7 When Are Violations Happening?

After providing robust evidence that violations of the spanning hypothesis occur asymmetrically across the yield
curve and that this phenomenon is economically meaningful, we explore these violations over time. Concretely,
the tests we have employed in Section 5 are designed to test whether, on average, a model with more state variables
is able to forecast better out of sample than a model that only uses information from the yield curve. Now we are
interested in investigating when these violations are happening.

Let us define the loss-function when forecasting as Li,t ≡
(

βi,t − β̂i,t

)2
, where β̂i,t is the forecast value for a factor

i. Moreover, we define Di,t as the following difference of loss-functions:

Di,t ≡ L(SH)
i,t − L(Macro)

i,t , (15)
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where the first term is the loss function attained under the spanning hypothesis and the second term is the loss
function attained when we use extra state variables. A positive value for Di,t implies that macro data was helpful for
forecasting. The analysis so far tested the following hypothesis:

H0 : E[Di,t] = 0,

which is a moment condition implied by the spanning hypothesis.

We now seek to test another null hypothesis, that is a conditional version of the moment condition above. Given a
certain filtration {Gt}, we are interested in testing

H0 : E [Di,t+12|Gt] = 0. (16)

We notice that this conditional expectation encompasses the previous case since one can always take the trivial
sigma-algebra for Gt. Under this more general null hypothesis, however, the violations of the spanning hypothesis
cannot be predicted by any process xt that is Gt-adapted. In other words, under the null, an econometrician with
information up to time t would not be able to tell whether that is a good or a bad moment to use either model.

The theory developed in Giacomini and White (2006) fits our needs. They develop a test statistic and an asymptotic
approximation that can deal with conditional moments like in equation (16). It consists of a Wald-type test that is
easy to implement. We specialize their notation to our setup. Let xt be a q× 1 random vector with variables chosen
by the econometrician and let {Gt}T−h

t=t0
be the natural filtration of xt, where h is a generic forecasting horizon. Let

zt+h ≡ xtDt+h and let:

zT ≡ 1
T − h − t0

T−h

∑
t=t0

zt+h,

Ω̂T ≡ 1
T − h − t0

T−h

∑
t=t0

zt+hz′t+h +
1

T − h − t0

h−1

∑
j=1

wj,T

T−h

∑
t=t0+j

(
zt+h−jz

′
t+h + zt+hz′t+h−j

)
.

The first definition is just the average of zt over time while Ω̂T is a HAC-type long-run variance estimator, in which
it is assumed that wj,T → 1 as T → ∞ for each j ∈ {1, ..., h − 1}. Under some regularity conditions, they show that:

W ≡ T · z′t+hΩ̂−1
T zt+h

d−→ χ2
q. (17)

In our setup, we take h = 12. If h = 1, this is equivalent to testing whether Dt is a martingale difference sequence,
for instance. In case one rejects the null hypothesis, it is natural to inspect the projection of Dt+12 on xt, which we
do below.

7.1 Evidence from Rolling Windows

One drawback from this methodology, as emphasized by Giacomini and White (2006), is that it can only be applied
to rolling window estimation schemes. Hence, we cannot directly apply their test to our current forecasting setup
since we were using expanding windows. Instead, we design a fixed, rolling window forecasting exercise. This
serves two purposes. First, it ensures that our previous findings are not due to the choice of the estimation window.
Second, it generates time-series for Di,t, i = 1, 2, 3 that will be further used in a conditional predictive ability test.

The fact that we now use fixed windows poses numerical challenges for all our methods. Regressions using
principal components will suffer both because there is less data to estimate a linear regression but also because
there is less data to extract principal components from the panel of macroeconomic variables. Similarly, the cross-
validation technique used on the estimation of the regularized models would be rather imprecise with just a few
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data points to pick suitable values for (ψ1, ψ2). Then, we focus on results using the Random Forest method. Aside
from being the one with the best forecasting power in Section 5, it is known to behave well with limited amounts
of data.27

There is also a trade-off when picking the window size. Given the same amount of data, a small window allows
for forecasts with lower correlation over time, but also implies that each forecast is done with less data and, hence,
with less precision. A larger window implies that each individual forecast is done using more data but forecasts
will have higher autocorrelation. We focus on results using a 180-month window, but also show results with a
120-month window as robustness.

We keep the same out-of-sample period from before (1990-2021) and forecast the level of the factors as we did
before, with the important difference that each forecast is done with a fixed number of data points, both under the
spanning hypothesis and when conditioning on the full set of extra state variables.

Figure 7 reports the realizations of Di,t when controlling for the forward rates. We scale Di,t by their respective
standard deviation such that scales are comparable. Positive realizations imply that using macroeconomic vari-
ables for forecasting was useful, while negative realizations imply otherwise.

Figure 7: The figure shows time-series for Di,t estimated using a Random Forest with 500 trees. The out-of-sample period is
1990-2021. Here we control for forward rates and use a 180-month rolling window for estimation. All three series are scaled
by their respective standard deviation so the scales are comparable. A positive value means that macro data was useful when
forecasting the Nelson-Siegel factors.
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We see that D1 lives mostly on the negative plane, while D2 is situated mostly in the positive plane. This is
consistent with our previous evidence that macroeconomic data was helpful for forecasting β2, but not β1. Once
more, the behavior for β3 is more mixed. Interestingly, we also see that the extra predictive power brought by
the macroeconomic variables is concentrated in a small time frame. For example, macro data seemed especially
helpful during the 1990s and early 2000s for β2. Figure B.6 in Appendix B displays the analogous time-series
controlling for the lagged Nelson-Siegel factors, displaying the same qualitative behavior.

We first test whether we can reject that E[Di,t] = 0, i.e., we use the trivial sigma-algebra. Table 7 reports the
out-of-sample R2 for a 180-month window, controlling for the lagged Nelson-Siegel factors on the left and by the
forward rates on the right. The inclusion of macroeconomic data did not improve the forecast for β1 in neither
case. However, there is a large improvement for β2, which makes us beat both the “No Macro” baseline and the
random walk. There is also an improvement for β3, but the model is never better than a random walk.

The results in Table 7 reassure us that our previous evidence is not due to the expanding window nature of our
forecasts. Table A.7 in Appendix A reports results for this exercise with a 120-month window and tells the same

27For a discussion of the flexibility associated to regression trees and Random Forests, see Hastie et al. (2009) and Goulet-Coulombe (2023).
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Table 7: This table reports out-of-sample R2 using the Random Forest method with 500 trees estimated at each point in time.
The out-of-sample period is 1990-2021. Negative values mean we couldn’t beat a random walk. We use 180 months for the
rolling window. The p-values assess whether any improvement over the “No Macro” baseline is significant.

Lagged Factors Forward Rates

Target No Macro All Macro p-value No Macro All Macro p-value

β1 -1.20 -1.32 0.72 -0.63 -0.98 0.98
β2 -0.07 0.20 0.02 -0.30 0.19 0.00
β3 -0.47 -0.24 0.04 -0.67 -0.23 0.00

story. The overall predictability is a bit lower, which is expected since the Random Forest is estimated with less
data at each point in time. In summary, the evidence from the rolling window forecast agrees with our previous
findings. We can only spot violations of spanning hypothesis through the prediction of the short-run factor β2.

7.2 Conditional Predictive Ability

We now turn to a full-fledged conditional predictive ability test. An important choice upon the econometrician is
the choice of Gt. In fact, the standard setup from dynamic term structure models provides no guidance here. After
all, violations of the spanning hypothesis should not be there anyway, let alone be predicted by other variables.

We pick five variables for Gt with the following motivation in mind:

1. The Economic Policy Uncertainty index (EPU) from Baker et al. (2016): this is a news-based index that mea-
sures the frequency of coverage regarding economic policy by the major US newspapers. Borup et al. (2023)
does a similar analysis to ours, although in the context of the expectation hypothesis, and finds stronger pre-
dictability using macroeconomic variables when there is less economic policy uncertainty. We use a 3-month
rolling window mean of the raw EPU index.

2. The Chicago Fed National Activity Index (CFNAI): this is a monthly measure computed by the Chicago Fed
that tries to summarize the business cycle for the U.S. economy. Borup et al. (2023) find that bond excess
returns are better predicted in times of higher economic activity. We also use a 3-month rolling window
mean.

3. The unemployment gap (UGAP): it is defined as the difference between unemployment rate for the U.S. and
its natural unemployment rate, both reported by the St. Louis Fed. The fact that the predictability we find
stems from the short-term factor β2 suggests that phenomena related to predictability might be associated
to monetary policy decisions taken by the Federal Reserve. Its dual mandate takes unemployment into
consideration so we add it here as well.

4. Year-over-Year inflation (PCE): it is the 12-month inflation measured by the Personal Consumption Expendi-
ture excluding energy and food prices, also taken from the St Louis Fed. Our motivation here is the same as
UGAP since inflation control is one of the targets of the Federal Reserve and the current state of inflation is
relevant for monetary policy decisions. Additionally, as emphasized by Bauer and Rudebusch (2017), UGAP
and PCE are usually included as risk factors in some traditional dynamic term structure models.

5. Slope: we define this as the difference between the 10-year rate and the Fedfunds rate at the end of each
month, both taken from the St Louis Fed as well. This is a measure of the slope of the U.S. yield curve and
an empirical proxy for β2. We use this to asses whether the slope of the yield curve has any predictive power
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for the violations of the spanning hypothesis since there is a long literature showing how the slope of the
yield curve can predict business cycle movements. See Hännikäinen (2017) and the references therein, for
example.

The variables used in this analysis are plotted in Figure B.7 in Appendix B. Since we found no violation of the
spanning hypothesis neither through β1 nor through β3 on average, we only study the conditional predictive
ability test for β2.

Table 8 reports at its last row the p-values for the conditional predictive ability test based on (17). The different
columns study different combinations of the variables above to create Gt. Small p-values imply that we can reject
the null hypothesis, i.e., we can predict when macroeconomic variables will be the most useful and violate the
spanning hypothesis.

Table 8: The last row reports the p-value associated to the test from Giacomini and White (2006) for D2, computed controlling
for the forward rates and displayed in Figure 7. Each column also reports the estimate for b from (18). Stars denote significance
at 10%, 5%, and 1% respectively. Standard errors for b are computed using Newey and West (1987). The out-of-sample period
is 1990-2021.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

EPU -0.08 -0.11 -0.19*
(0.10) (0.10) (0.10)

CFNAI -0.06 -0.10 -0.09 -0.14
(0.08) (0.07) (0.09) (0.08)

UGAP -0.02 0.04 0.01 -0.03 0.05
(0.10) (0.09) (0.09) (0.08) (0.13)

PCE 0.30** 0.31** 0.31** 0.30** 0.33***
(0.12) (0.12) (0.12) (0.12) (0.11)

Slope 0.09 0.12 0.10
(0.12) (0.11) (0.12)

N 384 384 384 384 384 384 384 384 384 384
R2 0.01 0.00 0.00 0.09 0.01 0.02 0.09 0.10 0.10 0.13

GW p-values 0.51 0.38 0.84 0.00 0.45 0.50 0.00 0.00 0.01 0.01

The only specifications for which we can reject the null are the ones that include PCE. This suggests that, across
the variables we focused on, only the 12-month inflation has predictive power for Dt. In order to closely inspect
this correlation, we also report coefficient estimates for b from the following linear regression:

D2,t+12 = a + b′xt + ut+12, (18)

in which we standardize both the dependent and independent variables so we can interpret b in terms of standard
deviations. For each specification of Gt (which is always the natural filtration of xt), we compute the standard
errors associated to the estimation of b using the HAC estimator from Newey and West (1987).

Columns 1 through 5 analyze the variables individually. We can only reject the null when we consider the 12-
month inflation, and the estimated coefficient in the linear projection is statistically significant at the 95% confi-
dence value. It suggests that when inflation, at time t, was one standard deviation above its mean, the difference in
loss functions denoted by D2,t+12 was 0.3 standard deviations above its mean. This implies that periods of higher
inflation are associated to moments where the gain in using macroeconomic variables to forecast ahead was higher.
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Column 6 uses the variables used in Borup et al. (2023). But with a p-value of 0.50 we cannot reject the null
hypothesis at usual levels. We stress that our results are not necessarily in disagreement with theirs since we study
deviations from a baseline model that allows risk premia to change over time, unlike their setup that assumes a
constant risk premia. Here, following Proposition (1), we are interested in understanding whether movements in
the Nelson-Siegel factors can be better anticipated by macroeconomic state variables, and not whether they move
at all.

Column 7 studies a specification with PCE and UGAP. Controlling for the unemployment rate did not change our
evidence regarding PCE, both qualitatively and quantitatively. Columns 8 and 9 add CFNAI and Slope, respec-
tively. The coefficient on PCE remains unchanged, although no other variable displays a significant coefficient.

The final column uses all five variables. In that regression, the coefficient on PCE is now significant even at the 99%
confidence level, with virtually the same magnitude as before. The coefficient on EPU is negative and significant,
now in line with the findings in Borup et al. (2023).

The general evidence from Table 8 is simple: our augmented model with macroeconomic variables is useful for
forecasting β2 not only on average but especially when inflation at time t is higher. The estimated coefficient of 0.3
is stable across specifications. No other variable studied here has the same success in predicting D2,t+12.

Although Table 8 spans the information from the yield curve using the forward rates, our result regarding the PCE
does not depend on that. Table A.8 in Appendix A tells a similar story, although the estimated coefficient is around
0.25. No matter how we control for the yield curve, periods of higher inflation seem to be moments in which our
machinery for predicting β2 is the most useful. In other words, violations of the spanning hypothesis in the short
end of the yield curve tend to occur when inflation is high.

7.3 Non-Parametric Evidence

Although the theory developed in Giacomini and White (2006) fits elegantly in our framework, we also provide
evidence regarding the correlation between the 12-month inflation and Dt using a simple non-parametric approx-
imation. We define the different months of our out-of-sample period into inflation terciles: low inflation, medium
inflation, and high inflation. The average 12-month inflation within each inflation tercile was 1.3%, 1.8% and 2.8%,
respectively.

For each tercile, we compute the average value for Di,t, i = 1, 2, 3. The results are reported in Table 9. This is a
non-parametric estimator for the conditional expectation of Di,t+12 given the inflation tercile at time t. The top
three rows show results controlling for the forward rates, while the bottom three rows show results controlling for
the lagged Nelson-Siegel factors. In both cases, we use a 180-month rolling window for estimation.

The average value for D2 is increasing with the inflation terciles, no matter how we control for the yield curve.
It is noticeably higher at the highest tercile. However, we see no apparent pattern for D1 and D3. The message
suggested by Table 9 is the same as the one we took from the more formal analysis of Table 8: moments of higher
inflation at time t are associated with more likely violations of the spanning hypothesis through β2 in our sample.
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Table 9: We create inflation terciles based on the PCE measure. For each tercile, we take the average of the difference in loss
functions Di, computed using a Random Forest with a 180-month rolling window and 500 trees. The top three rows control
for the forward rates while the bottom three rows control for the lagged Nelson-Siegel factors. The out-of-sample period is
1990-2021.

Inflation Tercile PCE D1 D2 D3 Control

Low 0.013 -0.152 0.496 2.386 Forward Rates
Medium 0.018 -0.754 0.788 1.923 Forward Rates
High 0.028 0.039 2.430 1.526 Forward Rates

Low 0.013 -0.204 -0.023 0.803 Lagged Factors
Medium 0.018 -0.114 0.120 0.850 Lagged Factors
High 0.028 0.048 1.963 1.492 Lagged Factors

8 Conclusion

We document violations of the spanning hypothesis that are asymmetric across bond maturities: macroeconomic
variables contain unspanned predictive information about the shorter end of the yield curve. Using a Nelson-
Siegel representation for yields and an implied decomposition of bond risk premia, we show that this pattern
arises because macro data is useful for predicting a short-run factor related to the slope of the yield curve, but not
for predicting its level or curvature.

We introduce information from macroeconomic variables to our forecasting designs using regressions with princi-
pal components, regularization methods crafted to handle large-dimensional data sets, and fully non-linear meth-
ods like the Random Forest. All methodologies lead to the same conclusion. We also show that a mean-variance
consumer would benefit from using macroeconomic variables when trading bonds in an asymmetric way. The
benefits from extra predictability are larger, for example, when trading the 2-year rate than when trading the
10-year one.

Using a conditional predictive ability test, we provide evidence that periods of higher inflation are associated
with periods in which the benefits from using macro data is larger, no matter how we control for the information
already contained in bond prices. This correlation makes us conjecture whether the effect we document is related
to monetary policy. Moments of high inflation are moments in which the Federal Reserve will be more prone to
act, all else equal. Their monetary policy instruments affect, in general, the shorter end of the yield curve more
than the long end. If macroeconomic data helps forecasting the decisions of the monetary authority, it should also
help forecasting yield movements for shorter maturities. This effect is ruled out by standard term structure models
that typically assume a known mapping between risk factors and the short rate, which is equivalent to assuming
that the policymaker’s reaction function is known.

In summary, we argue that the answer to the question of whether the spanning hypothesis is true or not is far
from being simple and binary. Instead, we document a more nuanced landscape, with large asymmetries in its
violations across maturities. From a theoretical perspective, an important challenge is finding micro-foundations
for the asymmetries we document and their subsequent predictability. That is a non-trivial task since the typical
equilibrium models we use in macro-finance imply the spanning hypothesis across the entire yield curve. We
believe that models that step out of the FIRE (full-information rational expectations) framework represent a fruitful
line of future research.
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Supplementary Appendix

A Additional Tables

A.1 In-sample Evidence - Bond Risk Premia

Table A.1 presents results for the predictive regression in (2) estimated over the whole sample (i.e., in-sample)
when we choose d = 3 and let Ct control the first three principal components of the yield curve. Different groups
of columns let the maturity n increase from left to right while different regressions for the same maturity allow
for a greater number of principal components extracted from the FRED-MD data set. The sample size for both the
30-year and the 20-year maturities is reduced since these longer maturities started being traded later than 1973,
when we start our analysis. In that case, we use the period 1985-2021. We also append at the last row the adjusted
R2 from a regression that imposes γn = 0, so the same value is repeated for each maturity. We omit estimates for
θn for the sake of space.

The relative gain from the addition of macroeconomic data measured as the increase in the adjusted R2 from the
baseline case to the most complete specification is stronger for the 2-year maturity than for the other ones. In
that case, it increases more than threefold (from 12% to 40%). However, its increase is less expressive for longer
maturities. For example, for the 20-year maturity, it increases from 14% to 23%. We confirm that the same type of
pattern arises when Ct contains the risk-free rate and forward rates, as displayed in Table A.2 in the same appendix.
When controlling for the forward rates, we actually find less evidence of the statistical significance of γn for the
longer maturities. For example, the coefficient on the first principal component is not significant anymore.

Table A.1: In-sample predictive regression (2) of excess bond returns on principal components of macro data controlling for
the first three principal components of the yield curve. Only estimates of γn are reported. Standard errors are computed using
Newey and West (1987). The sample for the first two columns goes from 1973 to 2021 while it starts in 1985 for the two last
ones which is when the 30-year yield data becomes available in the data set provided by Liu and Wu (2021). Stars denote
significance at 10%, 5% and 1% respectively.

2-year 10-year 20-year 30-year

PC 1 0.09*** 0.12*** 0.13*** 0.04** 0.06*** 0.08*** -0.05*** -0.04** -0.04** -0.06*** -0.06** -0.06**
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

PC 2 -0.06** -0.08** -0.05 -0.07* 0.04 0.04 0.02 0.01
(0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.03) (0.04)

PC 3 0.10*** 0.11*** 0.06** 0.08*** 0.02 0.02 0.01 -0.00
(0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.04) (0.03)

PC 4 -0.04 -0.08*** -0.05** -0.07**
(0.03) (0.02) (0.02) (0.03)

PC 5 -0.07** -0.11*** -0.04 -0.10***
(0.03) (0.03) (0.03) (0.04)

PC 6 0.05 0.09*** 0.07** 0.06
(0.03) (0.03) (0.03) (0.05)

PC 7 0.06* 0.02 -0.03 -0.03
(0.03) (0.02) (0.03) (0.03)

PC 8 -0.09** -0.09*** -0.03 -0.06
(0.03) (0.03) (0.03) (0.04)

N 588 588 588 588 588 588 422 422 422 422 422 422
R2 Adj. 0.25 0.33 0.40 0.20 0.23 0.36 0.18 0.20 0.23 0.16 0.16 0.24
R2 Adj. (No Macro Data) 0.12 0.12 0.12 0.17 0.17 0.17 0.14 0.14 0.14 0.12 0.12 0.12
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Table A.2: In-sample predictive regression of excess bond returns on principal components of macro data controlling by the
forward rates, as in equation (2). We only report estimates of γn. See the discussion about Table A.1 in the main text. Standard
errors are computed using Newey and West (1987). The sample for the first two columns goes from 1973 to 2021 while it starts
in 1985 for the two last ones which is when the 30-year yield data becomes available in the data set provided by Liu and Wu
(2021).

2-year 10-year 20-year 30-year

PC 1 0.09*** 0.12*** 0.13*** 0.04** 0.07*** 0.07*** -0.01 -0.00 0.00 -0.03 -0.02 -0.03
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.04)

PC 2 -0.07** -0.07** -0.07*** -0.06** -0.01 0.00 0.00 0.02
(0.03) (0.03) (0.02) (0.02) (0.04) (0.05) (0.05) (0.06)

PC 3 0.11*** 0.11*** 0.08*** 0.08*** 0.05** 0.05* 0.04 0.03
(0.03) (0.02) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

PC 4 -0.02 -0.02 -0.05*** -0.06*** -0.06*** -0.06*** -0.09*** -0.08***
(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

PC 5 -0.04 -0.04 -0.09*** -0.08*** -0.08** -0.08* -0.09** -0.09*
(0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.05) (0.05)

PC 6 0.03 0.07*** 0.04 0.06
(0.03) (0.03) (0.04) (0.05)

PC 7 0.06* 0.04 0.01 0.01
(0.03) (0.03) (0.03) (0.03)

PC 8 -0.08*** -0.08*** -0.04 -0.04
(0.03) (0.03) (0.04) (0.05)

N 588 588 588 588 588 588 422 422 422 422 422 422
R2 Adj. 0.28 0.36 0.40 0.28 0.36 0.40 0.16 0.23 0.24 0.15 0.22 0.23
R2 Adj. (No Macro Data) 0.15 0.15 0.15 0.25 0.25 0.25 0.16 0.16 0.16 0.14 0.14 0.14
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A.2 In-sample Evidence - Nelson-Siegel Factors

Table A.3: In-sample predictive regressions targeting the level of the factors as in (8). The baseline model uses the lagged
Nelson-Siegel factors as controls for the yield curve. We only show estimates for γi. Ct stores the lagged values of the Nelson-
Siegel factors. Standard errors are compute using Newey and West (1987). The two last rows report the adjust R2 when we set
γi = 0 (“No Macro”). We use data from 1973 until 2021. Stars denote significance at 10%, 5% and 1% respectively.

β1 (1) β1 (2) β1 (3) β1 (4) β2 (1) β2 (2) β2 (3) β2 (4) β3 (1) β3 (2) β3 (3) β3 (4)

PC 1 -0.04 -0.06** -0.09*** -0.06** -0.21*** -0.19*** -0.16*** -0.17*** -0.17*** -0.17*** -0.21*** -0.25***
(0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.05) (0.05) (0.04) (0.05) (0.05) (0.05)

PC 2 0.02 0.04 0.01 -0.11** -0.11** -0.12** -0.09* -0.07 -0.05
(0.03) (0.03) (0.02) (0.05) (0.05) (0.06) (0.05) (0.04) (0.04)

PC 3 0.05* 0.07** 0.06** 0.03 0.02 0.03 0.13*** 0.15*** 0.17***
(0.03) (0.03) (0.03) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

PC 4 -0.06*** -0.09*** -0.01 -0.01 0.04 0.07*
(0.02) (0.02) (0.04) (0.04) (0.04) (0.04)

PC 5 0.15*** 0.14*** -0.08 -0.08 0.12** 0.13***
(0.03) (0.02) (0.05) (0.05) (0.05) (0.05)

PC 6 -0.17*** 0.03 0.13*
(0.03) (0.07) (0.07)

PC 7 0.01 -0.03 -0.14***
(0.03) (0.06) (0.05)

PC 8 -0.02 -0.21*** -0.12
(0.04) (0.07) (0.09)

N 588 588 588 588 588 588 588 588 588 588 588 588
R-squared Adj. 0.89 0.89 0.90 0.91 0.42 0.45 0.45 0.48 0.50 0.53 0.53 0.55
R-squared Adj. (No Macro) 0.89 0.89 0.89 0.89 0.33 0.33 0.33 0.33 0.47 0.47 0.47 0.47
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Table A.4: In-sample predictive regressions targeting the level of the factors as in (8). The baseline model uses the forward
rates as controls for the yield curve. We only show estimates for γi. Ct stores the lagged values of the Nelson-Siegel factors.
Standard errors are compute using Newey and West (1987). The two last rows report the adjust R2 when we set γi = 0 (“No
Macro”). We use data from 1973 until 2021. Stars denote significance at 10%, 5% and 1% respectively.

β1 (1) β1 (2) β1 (3) β1 (4) β2 (1) β2 (2) β2 (3) β2 (4) β3 (1) β3 (2) β3 (3) β3 (4)

PC 1 -0.06** -0.09*** -0.13*** -0.10*** -0.23*** -0.21*** -0.19*** -0.21*** -0.15*** -0.15*** -0.17*** -0.19***
(0.02) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.05) (0.04) (0.05) (0.05) (0.06)

PC 2 0.05** 0.07*** 0.05** -0.12*** -0.13*** -0.12** -0.10*** -0.09** -0.09**
(0.02) (0.02) (0.02) (0.05) (0.05) (0.05) (0.04) (0.04) (0.04)

PC 3 0.07** 0.10*** 0.09*** 0.07 0.06 0.06 0.10** 0.12** 0.12**
(0.03) (0.03) (0.03) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

PC 4 -0.06*** -0.09*** 0.02 0.03 0.05 0.06
(0.02) (0.02) (0.05) (0.05) (0.04) (0.04)

PC 5 0.18*** 0.17*** -0.07 -0.06 0.05 0.05
(0.02) (0.02) (0.05) (0.05) (0.06) (0.05)

PC 6 -0.13*** 0.07 0.05
(0.03) (0.07) (0.06)

PC 7 -0.01 -0.06 -0.06
(0.03) (0.05) (0.05)

PC 8 -0.02 -0.16*** -0.18**
(0.03) (0.06) (0.09)

N 588 588 588 588 588 588 588 588 588 588 588 588
R-squared Adj. 0.90 0.91 0.92 0.93 0.47 0.51 0.51 0.53 0.54 0.56 0.56 0.57
R-squared Adj. (No Macro) 0.90 0.90 0.90 0.90 0.36 0.36 0.36 0.36 0.52 0.52 0.52 0.52

A.3 Additional Out-of-sample Evidence

Table A.5: We report the out-of-sample R2 attained from the model in (8) for the baseline with no macroeconomic data included
and with different numbers of principal components. Negative values imply we couldn’t beat a random walk. We also show
p-values to compare whether any improvement was statistically significant, comparing the “No Macro” baseline and the the
different forecasts. Here we control for the lagged Nelson-Siegel factors, while we controlled for the forward rates in the main
text.

Number of Macro PCs p-values

Target No Macro 1 2 3 4 5 8 1 2 3 4 5 8

β1 -0.10 -0.10 -0.11 -0.14 -0.11 -0.07 0.06 0.51 0.67 0.83 0.56 0.36 0.04
β2 0.06 0.07 0.21 0.20 0.20 0.20 0.17 0.31 0.01 0.15 0.16 0.18 0.28
β3 -0.11 -0.14 -0.06 -0.05 -0.05 -0.06 -0.08 0.89 0.16 0.19 0.20 0.23 0.39
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Table A.6: We report the out-of-sample R2 from the forecasting model in (14). The out-of-sample period is 1990-2021. We set
r = 3 and target both levels and innovations, controlling either for the forward rates or the lagged Nelson-Siegel factors. The
p-values assess whether improvements over “No Macro” were statistically significant.

Panel A: Controlling for Forward Rates, r = 3

Number of Macro PCs p-values

Target No Macro 3 5 8 3 5 8

Beta 1 -0.21 -0.15 -0.13 -0.04 0.19 0.20 0.04
Beta 2 -0.08 0.13 0.09 0.03 0.09 0.15 0.30
Beta 3 -0.12 -0.10 -0.13 -0.19 0.35 0.56 0.81
Innovation 1 -0.19 -0.12 -0.11 -0.02 0.15 0.17 0.03
Innovation 2 -0.11 0.12 0.08 0.03 0.08 0.13 0.25
Innovation 3 -0.10 -0.08 -0.12 -0.20 0.41 0.66 0.86

Panel B: Controlling for Lagged Betas r = 3

Number of Macro PCs p-values

Target No Macro 3 5 8 3 5 8

Beta 1 -0.10 -0.12 -0.09 -0.02 0.67 0.47 0.14
Beta 2 0.06 0.13 0.11 0.05 0.33 0.37 0.53
Beta 3 -0.11 -0.09 -0.14 -0.20 0.40 0.70 0.83
Innovation 1 -0.10 -0.12 -0.09 -0.02 0.67 0.47 0.14
Innovation 2 0.06 0.13 0.11 0.05 0.33 0.37 0.53
Innovation 3 -0.11 -0.09 -0.14 -0.20 0.40 0.70 0.83

Table A.7: We report out-of-sample R2 using the Random Forest method with 500 trees estimated at each point in time. The
out-of-sample period is 1990-2021. Negative values mean we couldn’t beat a random walk. We use 120 months for the rolling
window. The p-values assess whether any improvement over the “No Macro” baseline is significant.

Lagged Betas Forward Rates

Target No Macro All Macro p-value No Macro All Macro p-value

β1 -0.87 -1.01 0.74 -0.63 -0.66 0.58
β2 -0.07 0.15 0.03 -0.20 0.08 0.01
β3 -0.55 -0.19 0.01 -0.70 -0.23 0.00
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Table A.8: The last row reports the p-value associated to the test from Giacomini and White (2006) for D2, computed controlling
for the forward rates and displayed in Figure B.6. Each column also reports the estimate for b from (18). Stars denote signifi-
cance at 10%, 5%, and 1% respectively. Standard errors for b are computed using Newey and West (1987). The out-of-sample
period is 1990-2021.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

EPU 0.05 0.03 -0.16
(0.11) (0.11) (0.10)

CFNAI -0.09 -0.08 -0.04 -0.09
(0.08) (0.08) (0.07) (0.07)

UGAP 0.23* 0.27** 0.26** 0.17 0.25*
(0.13) (0.12) (0.12) (0.12) (0.15)

PCE 0.19 0.24* 0.24* 0.23* 0.26**
(0.14) (0.13) (0.13) (0.12) (0.12)

spread 0.26** 0.18 0.15
(0.13) (0.12) (0.12)

N 384 384 384 384 384 384 384 384 384 384
R2 0.00 0.01 0.05 0.04 0.07 0.01 0.11 0.11 0.13 0.15

GW p-values 0.56 0.22 0.07 0.19 0.05 0.39 0.01 0.02 0.04 0.04
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B Additional Figures

Figure B.1: Spectral decomposition of the FRED-MD data set. We normalize each of the variables and compute the eigenvalues
of the correlation matrix. We show how much of the total variation is commanded by each eigenvector, denoted by the relative
size of the corresponding eigenvalue.
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Figure B.2: Relative MSE predicting returns using three principal components of the yield curve as controls. For each maturity
we show the ratio between the MSE attained with different numbers of principal components from the macroeconomic data
and the baseline model that uses information only from the yield curve itself. The sample for maturity of less than 120 months
ranges from 1973 to 2021, while it starts in 1985 for the other maturities. For any of the maturities, the out-of-sample period
starts in January 1990. We use the linear model in (2) to make the forecasts. Principal components are extracted in real time and
do not introduce any look-ahead bias.
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Figure B.3: Forecasts for β1 both targeting its level (left) and its innovation (right) created by the ElasticNet. The out-of-sample
period is January 1990 to December 2021. The black dashed line represents the realizations we estimated as shown in Figure 2.
The forecasts for the level show a large gap with respect to the black dashed line, indicating that these forecasts are consistently
overestimating the target, leading to poor out-of-sample performance - both with and without macroeconomic data. This
happens because the realizations of β1 in the in-sample period were generally higher than in the out-of-sample one (see Figure
2). If the estimator could set a coefficient close to 1 for the lagged value of β1 for example, the forecasts would slowly adjust to
lower realizations of the long-run factor. But the penalization terms make this a costly choice. When we predict the innovations,
on the other hand, we have a very different picture. Since the target we have is stationary, we have no problem forecasting it
with information from the yield curve plus stationary variables from the FRED-MD data set. Crucially, both solid lines in the
panels on the left are on top of each other, indicating that the addition of macroeconomic variables did not enhance the forecast
for the given target.
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Figure B.5: This figure reports the Sharpe ratio improvement the mean-variance consumer can achieve when using principal
components of the FRED-MD dataset to trade bonds of different maturities. The out-of-sample period is 1990-2021. The dots
represent point estimates while the gray bars represent 95% confidence intervals using the asymptotic framework from Ledoit
and Wolf (2008). This plot focuses on the more general case when we assume that −1 ≤ wt ≤ 2.
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Figure B.6: This figure shows time-series for Di,t estimated using a Random Forest with 500 trees. The out-of-sample period is
1990-2021. Here we control for the lagged Nelson-Siegel factors and use a 180-month rolling window for estimation. All three
series are scaled by their respective standard deviation so the scales are comparable. A positive value means that macro data
was useful when forecasting the Nelson-Siegel factors.
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Figure B.8: Spectral decomposition of forward rates. The sample ranges from January 1973 to December 2021. We normalize
the panel of forward rates and then compute the spectral decomposition of the associated correlation matrix. We display the
cumulative variance explained by the eigenvalues.
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Figure B.9: Forward rates and the first principal component. The sample period ranges from January 1973 to December 2021.

1979 1989 1999 2009 2019
Date

0

2

4

6

8

10

12

14

16

Monthly Forward Rates
y1
f2
f3
f4
f5
f6
f7
f8
f9
f10

1970 1980 1990 2000 2010 2020
Date

6

4

2

0

2

4

6

8

First Principal Component of Forward Rates

50



C Alternative Estimation Procedures

Now, we briefly discuss different estimation procedures. Another natural way of estimating (4) is using non-
linear least squares (NLS) allowing λt to be estimated period by period. This alternative approach, in principle,
can do no worse fitting the yield curve than our method since it has one extra parameter to be estimated. In
practice, however, we have to setup one numerical optimization scheme for each date and there is no guarantee of
convergence towards a global solution at a given point in time. We experimented with this approach and found
that, whenever the numerical optimization converged, estimated factors were very close to the ones found by OLS.
Nevertheless, the numerical optimization would not converge for roughly 8% of the dates considered. In these
cases, the values attained by the factors were extreme. Since we ultimately seek to forecast these factors, these
extreme realizations would generate artificially large forecast errors that could invalidate our posterior analyses
due to numerical instabilities.

A second possible way to estimate factors and the decay parameter λ is using a two-step approach. For each given
value of λ, we can estimate factors for all dates using the estimator in (7) and compute, for example, a time-series
of the sum of squared residuals in the cross-section of yields. The average of this time-series can be understood as
a measure of goodness-of-fit for the particular constant value of λ considered. An optimal value of λ in this sense
is the one that minimizes this average error measure and the factors estimates are the ones associated with this
optimal decay.

We implemented this approach and report the estimated error measure in Figure C.1. The optimal decay parameter
is 0.0435. The value attained by the loss function at λ = 0.0609 is similar, however. One major disadvantage of this
two-step approach is that it introduces look-ahead bias: the final estimator of the factors at time t will depend on
the dynamics of yields at dates after t since the loss function incorporates information from the whole sample by
construction. Hence, an econometrician who follows this method and is furnished with only a truncated version of
our data could find different results. Again, due to our focus on forecasting, we prefer to pay the cost of a slightly
worse in-sample fit to get factor estimates that do not contain any look-ahead bias.

Figure C.2 assesses how big is the price in terms of in-sample fit that we are paying when using the same strategy
as Diebold and Li (2006). It is not a high price. For each date, we compute the average squared residual in the
cross-section of yields after fitting the model, take the square root, and plot it as a function of time. This time-
series is a direct measure of how much information from the yield curve we lose by using a reduced-form model
to summarize it. Until 2009, the three time-series are indistinguishable. Between 2010 and 2014 the performance
of the Diebold and Li (2006) approach deteriorates with respect to the other methods but not by a large amount.
After 2014 all methods seem to generate equally reasonable fits.

A third alternative approach is the one in Diebold et al. (2006). They leverage the linearity of (4) to estimate
factors with a Kalman-filter in which the state equation also has macroeconomic variables. Their factor estimates
are the Kalman-smoothed series based on parameters estimated by maximum likelihood. Their focus is on the
joint dynamics of yields and macroeconomic variables and they do not emphasize forecasting. It is not obvious
to us that a state-space representation would improve in-sample fit, however.28 Moreover, their system, although
small, has 36 parameters to be estimated. Using Kalman-smoothing at every point in time would imply a new
36-dimensional numerical optimization for each date, which would likely create the same type of problems as the
NLS approach. Alternatively, Kalman-filtered estimates of the factors in the beginning of the sample would likely
be too dependent on the imposed priors due to the low number of data points, going against our goal of fitting the
yield curve in the best way we can.

Finally, Figure C.3 shows how our parametrization of the Nelson-Siegel model fares against a polynomial model

28See the discussion on Chapter 1 of Diebold and Rudebusch (2013).
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Figure C.1: Profiling of the decay parameter. For each value of λ, we fit the Nelson-Siegel model by OLS date by date. Then we compute a
monthly measure of the average squared fitting error in the cross-section. We finally average over time and plot this information denoted by
“Fit Error” as a function of λ. The black dashed line represents the overall argmin while the red dashed line is the value used by Diebold and
Li (2006). The sample size ranges from January 1973 to December 2021. We use information of all yields from up to 120 months.
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of the form:

y(τ)t = c0 + c1 × τ + c2 × τ2, (C.1)

where c0, c1, and c2 are constants. Although these models have the same number of free parameters, the Nelson-
Siegel representation achieves a better fit for the vast majority of dates. It is only surpassed by the polynomial
model during the heights of the Global Financial crisis in 2008 and a brief period between 2012 and 2014.
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Figure C.2: Time-series of the average squared residual when fitting the cross-section of yields using different methods. “Diebold-Li” corre-
sponds to OLS with λ = 0.609. “NLS” represents the error attained when we estimated models using non-linear least squares date by date.
“Optimal OLS” uses the OLS approach with λ = 0.0435. The sample ranges from 1973 to 2021.

1980 1990 2000 2010 2020
0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r i
n 

%

type
Diebold-Li
NLS
Optimal OLS

Figure C.3: This figure reports the same measure as Figure C.2 but comparing our Nelson-Siegel approach with the reduced-
form model from equation (C.1). Both estimation procedures use all available yield from 1 to 120 months for each date.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
date

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

(C
ro

ss
-S

ec
tio

na
l) 

Ro
ot

-M
SE

Polynomial Model
Nelson-Siegel

53



D FRED-MD Variables

In this appendix we report the full set of variables from the FRED-MD data set we use. Table D.1 has four columns.
The first represents the FRED code for each respective series. The second one lists the category of each variable as
described in McCracken and Ng (2016). The third is a simple description of each series. The fourth encodes what
transformation we used to make each series stationary. For each series xt, we denote the transformed series as zt.
We follow the convention:

• Code 1: zt = xt

• Code 2: zt = xt − xt−1

• Code 3: zt = xt − xt−2

• Code 4: zt = log(xt)

• Code 5: zt = log(xt/xt−1)

• Code 6: zt = log(xt/xt−2)

• Code 7: zt =
xt−xt−1

xt−1

Table D.1: Full list of our macroeconomic variables

FRED Code Category Description Transformation Code

HOUST Housing Housing Starts: Total New Privately Owned 4
HOUSTMW Housing Housing Starts, Midwest 4
HOUSTNE Housing Housing Starts, Northeast 4
HOUSTS Housing Housing Starts, South 4
HOUSTW Housing Housing Starts, West 4
PERMIT Housing New Private Housing Permits (SAAR) 4

PERMITMW Housing New Private Housing Permits, Midwest (SAAR) 4
PERMITNE Housing New Private Housing Permits, Northeast (SAAR) 4
PERMITS Housing New Private Housing Permits, South (SAAR) 4
PERMITW Housing New Private Housing Permits, West (SAAR) 4

AAA Interest and Exchange Rates Moody’s Seasoned Aaa Corporate Bond Yield 2
AAAFFM Interest and Exchange Rates Moody’s Aaa Corporate Bond Minus FEDFUNDS 1

BAA Interest and Exchange Rates Moody’s Seasoned Baa Corporate Bond Yield 2
BAAFFM Interest and Exchange Rates Moody’s Baa Corporate Bond Minus FEDFUNDS 1

COMPAPFFx Interest and Exchange Rates 3-Month Commercial Paper Minus FEDFUNDS 1
CP3Mx Interest and Exchange Rates 3-Month AA Financial Commercial Paper Rate 2

EXCAUSx Interest and Exchange Rates Canada / U.S. Foreign Exchange Rate 5
EXJPUSx Interest and Exchange Rates Japan / U.S. Foreign Exchange Rate 5
EXSZUSx Interest and Exchange Rates Switzerland / U.S. Foreign Exchange Rate 5
EXUSUKx Interest and Exchange Rates U.S. / U.K. Foreign Exchange Rate 5

FEDFUNDS Interest and Exchange Rates Effective Federal Funds Rate 2
GS1 Interest and Exchange Rates 1-Year Treasury Rate 2

GS10 Interest and Exchange Rates 10-Year Treasury Rate 2
GS5 Interest and Exchange Rates 5-Year Treasury Rate 2

T10YFFM Interest and Exchange Rates 10-Year Treasury C Minus FEDFUNDS 1
T1YFFM Interest and Exchange Rates 1-Year Treasury C Minus FEDFUNDS 1
T5YFFM Interest and Exchange Rates 5-Year Treasury C Minus FEDFUNDS 1
TB3MS Interest and Exchange Rates 3-Month Treasury Bill: 2

TB3SMFFM Interest and Exchange Rates 3-Month Treasury C Minus FEDFUNDS 1
TB6MS Interest and Exchange Rates 6-Month Treasury Bill: 2

TB6SMFFM Interest and Exchange Rates 6-Month Treasury C Minus FEDFUNDS 1
TWEXAFEGSMTHx Interest and Exchange Rates Trade Weighted U.S. Dollar Index 5

AWHMAN Labor Market Avg Weekly Hours : Manufacturing 1
AWOTMAN Labor Market Avg Weekly Overtime Hours : Manufacturing 2

Continued on next page
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FRED Code Category Description Transformation Code

CE16OV Labor Market Civilian Employment 5
CES0600000007 Labor Market Avg Weekly Hours : Goods-Producing 1
CES0600000008 Labor Market Avg Hourly Earnings : Goods-Producing 6
CES1021000001 Labor Market All Employees: Mining and Logging: Mining 5
CES2000000008 Labor Market Avg Hourly Earnings : Construction 6
CES3000000008 Labor Market Avg Hourly Earnings : Manufacturing 6

CLAIMSx Labor Market Initial Claims 5
CLF16OV Labor Market Civilian Labor Force 5

DMANEMP Labor Market All Employees: Durable goods 5
HWI Labor Market Help-Wanted Index for United States 2

HWIURATIO Labor Market Ratio of Help Wanted/No. Unemployed 2
MANEMP Labor Market All Employees: Manufacturing 5

NDMANEMP Labor Market All Employees: Nondurable goods 5
PAYEMS Labor Market All Employees: Total nonfarm 5
SRVPRD Labor Market All Employees: Service-Providing Industries 5

UEMP15OV Labor Market Civilians Unemployed - 15 Weeks \& Over 5
UEMP15T26 Labor Market Civilians Unemployed for 15-26 Weeks 5
UEMP27OV Labor Market Civilians Unemployed for 27 Weeks and Over 5
UEMP5TO14 Labor Market Civilians Unemployed for 5-14 Weeks 5

UEMPLT5 Labor Market Civilians Unemployed - Less Than 5 Weeks 5
UEMPMEAN Labor Market Average Duration of Unemployment (Weeks) 2

UNRATE Labor Market Civilian Unemployment Rate 2
USCONS Labor Market All Employees: Construction 5
USFIRE Labor Market All Employees: Financial Activities 5

USGOOD Labor Market All Employees: Goods-Producing Industries 5
USGOVT Labor Market All Employees: Government 5
USTPU Labor Market All Employees: Trade, Transportation \& Utilities 5

USTRADE Labor Market All Employees: Retail Trade 5
USWTRADE Labor Market All Employees: Wholesale Trade 5
BOGMBASE Money and Credit Monetary Base 6
BUSLOANS Money and Credit Commercial and Industrial Loans 6

CONSPI Money and Credit Nonrevolving consumer credit to Personal Income 2
DTCOLNVHFNM Money and Credit Consumer Motor Vehicle Loans Outstanding 6

DTCTHFNM Money and Credit Total Consumer Loans and Leases Outstanding 6
INVEST Money and Credit Securities in Bank Credit at All Commercial Banks 6

M1SL Money and Credit M1 Money Stock 6
M2REAL Money and Credit Real M2 Money Stock 5

M2SL Money and Credit M2 Money Stock 6
NONBORRES Money and Credit Reserves Of Depository Institutions 7
NONREVSL Money and Credit Total Nonrevolving Credit 6

REALLN Money and Credit Real Estate Loans at All Commercial Banks 6
TOTRESNS Money and Credit Total Reserves of Depository Institutions 6
ACOGNO Orders and Inventories New Orders for Consumer Goods 5

AMDMNOx Orders and Inventories New Orders for Durable Goods 5
AMDMUOx Orders and Inventories Unfilled Orders for Durable Goods 5
ANDENOx Orders and Inventories New Orders for Nondefense Capital Goods 5
BUSINVx Orders and Inventories Total Business Inventories 5

CMRMTSPLx Orders and Inventories Real Manu. and Trade Industries Sales 5
DPCERA3M086SBEA Orders and Inventories Real personal consumption expenditures 5

ISRATIOx Orders and Inventories Total Business: Inventories to Sales Ratio 2
RETAILx Orders and Inventories Retail and Food Services Sales 5

UMCSENTx Orders and Inventories Consumer Sentiment Index 2
CUMFNS Output and Income Capacity Utilization: Manufacturing 2
INDPRO Output and Income IP Index 5
IPBUSEQ Output and Income IP: Business Equipment 5

IPCONGD Output and Income IP: Consumer Goods 5
IPDCONGD Output and Income IP: Durable Consumer Goods 5

IPDMAT Output and Income IP: Durable Materials 5
IPFINAL Output and Income IP: Final Products (Market Group) 5
IPFPNSS Output and Income IP: Final Products and Nonindustrial Supplies 5
IPFUELS Output and Income IP: Fuels 5

IPMANSICS Output and Income IP: Manufacturing (SIC) 5
IPMAT Output and Income IP: Materials 5

IPNCONGD Output and Income IP: Nondurable Consumer Goods 5
IPNMAT Output and Income IP: Nondurable Materials 5

RPI Output and Income Real Personal Income 5
W875RX1 Output and Income Real personal income ex transfer receipts 5

Continued on next page
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FRED Code Category Description Transformation Code

CPIAPPSL Prices CPI : Apparel 6
CPIAUCSL Prices CPI : All Items 6
CPIMEDSL Prices CPI : Medical Care 6
CPITRNSL Prices CPI : Transportation 6
CPIULFSL Prices CPI : All Items Less Food 6

CUSR0000SA0L2 Prices CPI : All items less shelter 6
CUSR0000SA0L5 Prices CPI : All items less medical care 6
CUSR0000SAC Prices CPI : Commodities 6
CUSR0000SAD Prices CPI : Durables 6
CUSR0000SAS Prices CPI : Services 6

DDURRG3M086SBEA Prices Personal Cons. Exp: Durable goods 6
DNDGRG3M086SBEA Prices Personal Cons. Exp: Nondurable goods 6
DSERRG3M086SBEA Prices Personal Cons. Exp: Services 6

OILPRICEx Prices Crude Oil, spliced WTI and Cushing 6
PCEPI Prices Personal Cons. Expend.: Chain Index 6

PPICMM Prices PPI: Metals and metal products: 6
WPSFD49207 Prices PPI: Finished Goods 6
WPSFD49502 Prices PPI: Finished Consumer Goods 6

WPSID61 Prices PPI: Intermediate Materials 6
WPSID62 Prices PPI: Crude Materials 6
S&P 500 Stock Market S\&P’s Common Stock Price Index: Composite 5

S&P PE ratio Stock Market S\&P’s Composite Common Stock: Price-Earnings Ratio 5
S&P div yield Stock Market S\&P’s Composite Common Stock: Dividend Yield 2
S&P: indust Stock Market S\&P’s Common Stock Price Index: Industrials 5

VIXCLSx Stock Market VIX 1
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E Proof of Proposition 1

We start repeating the equation for yields as in (4) with a constant positive decay parameter:

y(τ)t = β1,t + β2,t

(
1 − e−λτ

λτ

)
+ β3,t

(
1 − e−λτ

λτ
− e−λτ

)
(E.1)

It’s crucial to notice that τ is measured in months. To avoid abusing notation, denote by ξt(n) the zero-coupon
yield at time t for a maturity of n years. For a fixed n, there pick τ = 12 · n. Naturally, it follows that:

ξt(n) = y(12·n)
t = β1,t + β2,t

(
1 − e−12λτ

12λτ

)
+ β3,t

(
1 − e−12λτ

λ12τ
− e−12λτ

)
⇓

ξt(n) = β1,t + β2,t

(
1 − e−θn

θn

)
+ β3,t

(
1 − e−θn

θn
− e−θn

)
where θ = 12λ > 0. Multiplying both sides by n yields

n · ξt(n) = nβ1,t +

(
1 − e−θn

θ

)
[β2,t + β3,t]− nβ3,te−θn (E.2)

(n − 1) · ξt+12(n − 1) = (n − 1)β1,t+12 +

(
1 − e−θ(n−1)

θ

)
[β2,t+12 + β3,t+12]− (n − 1)β3,t+12e−θ(n−1) (E.3)

ξt(1) = β1,t +

(
1 − e−θ

θ

)
[β2,t + β3,t]− β3,te−θ (E.4)

To compute the excess bond returns as in (1), we need to subtract the last two equations from the first one. We
keep track of the three terms that appear in each of the equations above.

First term. Collecting the terms in β1 yields

nβ1,t − (n − 1)β1,t+12 − β1,t = (n − 1) [β1,t − β1,t+12] (E.5)

Second term. We now collect the terms in [β2,t + β3,t]

(
1 − e−θn

θ
− 1 − e−θ

θ

)
[β2,t + β3,t] =

(
1 − e−θ(n−1)

θ

)
e−θ [β2,t + β3,t]

The constant inside the parenthesis above is the same that appears in the analogous term for the expression of
(n − 1) · ξt+12(n − 1). Hence, we have(

1 − e−θn

θ
− 1 − e−θ

θ

)
[β2,t + β3,t]−

(
1 − e−θ(n−1)

θ

)
[β2,t+12 + β3,t+12] =(

1 − e−θ(n−1)

θ

) [(
e−θ β2,t − β2,t+12

)
+
(

e−θ β3,t − β3,t+12

)]
(E.6)

Third term. Here we have

−nβ3,te−θn + (n − 1)β3,t+12e−θ(n−1) + β3,te−θ = −nβ3,te−θn + (n − 1)β3,t+12e−θ(n−1) + β3,te−θ + β3,t+12 − β3,t+12

=
(

ne−θ(n−1) − 1
) (

β3,t+12 − e−θ β3,t

)
+ β3,t+12

(
1 − eθ(n−1)

)
=
(

1 − ne−θ(n−1)
) (

e−θ β3,t − β3,t+12

)
+ β3,t+12

(
1 − eθ(n−1)

)
Then the proposition follows from summing the expressions derived for the first, second and third terms.
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