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Abstract

What are the cross-sectional correlates and/or causes of traffic safety? Here I docu-

ment a negative association between traffic fatality rates and population density across

U.S. counties and European regions. This is robust to various controls and state/country

fixed effects. For the U.S., it also holds when replacing, or instrumenting, modern pop-

ulation density with density in 1900, prior to the spread of cars, possibly suggesting

a causal link. Traffic fatality rates also show a negative correlation with per-capita

incomes, but less robustly than with population density. I also find a positive associa-

tion between homicides and traffic deaths, suggesting a connection to other forms of

violence. A simple model is presented to help interpret some of these results.

†Department of Economics, York University. E-mail: lagerlof@yorku.ca.

1

mailto:lagerlof@yorku.ca


1 Introduction

Which are the major correlates, and possible causes, of traffic deaths? Economists have
studied how traffic safety responds to specific events, technologies, and policies, such as
the COVID-19 pandemic, changes in vehicle sizes, and congestion charges. (See Section
2 below.) However, no one has yet systematically explored how locations with high rates
of traffic fatalities differ from other locations.

In this paper, I document a robust negative correlation between population density and
traffic fatality rates across both U.S. counties and European regions. At one level, this may
seem unsurprising, since higher population density is linked to lower dependence on cars.
However, it is still useful to have documented, not least because cities are known to be
more adversely affected by other traffic externalities, such as congestion and air pollution.
Traffic fatality rates show the opposite pattern: they are lower in more densely populated
places.

It is also arguably surprising how robust this result is. The negative association be-
tween population density and traffic fatality rates holds when controlling for per-capita
incomes and life expectancy. It holds with fixed effects for U.S. states, and European
countries, respectively, and within the largest U.S. states and European countries when
examined on their own. It also holds when using urbanization rates instead of population
density.

Although the U.S. and European data are not completely comparable (e.g., referring to
different years), comparisons suggest that differences in population density between the
U.S. and Europe can partly, but not fully, explain differences in traffic fatalities.

Meanwhile, there is no equally robust correlation between per-capita incomes and traf-
fic fatalities, although the association is mostly negative when significant: richer locations
tend to have lower traffic fatality rates.

Controlling for homicides does not change the estimated correlations between traffic
deaths and density, so these findings do not reflect any general tendency for urban loca-
tions to be less violent than rural ones. (Indeed, the opposite is true for Europe.) However,
higher homicide rates tend to be associated with higher traffic fatality rates, conditional
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on density and other factors. This finding suggests that traffic deaths may be partly linked
to more general forms of violence.

The results for the U.S. hold when replacing, or instrumenting, current population
density with the same measure in 1900, prior to the spread of cars. This may suggest a
causal relationship running from population density to traffic fatalities.

I also explore some alternative outcome variables, sometimes used in the existing lit-
erature, in particular vehicles per capita and the fraction commuters using public transit.
These show similar patterns but not as clearly as traffic fatality rates do. The explana-
tory power of population density and the other controls tend to be lower. My suggested
interpretation is that traffic deaths better capture variation in the extent of overall car de-
pendence.

Informed by these empirical patterns, I propose a simple model that may help us think
about the political-economy mechanisms driving them. Agents choose mode of trans-
portation, and vote on taxes for public transit. Once a location’s population density be-
comes high enough, it switches from a regime with no taxes and only driving to one with
some taxation and some agents using public transit, although drivers are still in majority.
Further increases in density at some point cause a switch to a regime where non-drivers
become a majority, making taxes and public transit provision increase further.

The model is able to reproduce the empirical pattern that higher population density is
associated with a larger total number of drivers (i.e., more congestion), but a lower fraction
of the population driving, and thus lower traffic fatality rates.

By contrast, higher per-capita incomes may in this model be associated with higher
or lower traffic fatality rates, which matches the finding that population density is more
robustly correlated with traffic fatality rates than per-capita incomes are.

The rest of this paper is organized as follows. Next, Section 2 relates this paper to
some of the existing literature. Section 3 provides a background by showing 20th-century
traffic fatality trends for the United States as a whole. Section 4 sets up the model. The
compilation of the datasets used in the empirical analysis is explained in Section 5. Section
6 presents the empirical results. Section 7 concludes.
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2 Existing Literature

This paper touches on a vast literature on density/urbanization, congestion, and trans-
portation (see, e.g., Duranton et al., 2011; Anderson, 2014; Duranton and Turner, 2018;
Seidel and Wickerath, 2020; Basso et al., 2021; Akbar et al., 2023). These papers mostly cen-
ter on questions about congestion externalities, and ways to address these, e.g., through
public transit investment. The focus is less on traffic deaths.

Some papers document negative effects on urban population density from exogenous
factors related to cars, such as highways and car manufacturing (Baum-Snow, 2007, 2010;
Ostermeijer et al., 2022). My interpretation of the correlations that I document is that they
rather (at least in part) reflect a causal link from density to car dependence, specifically
traffic fatalities, since they hold also when measuring density in 1900. More generally,
there is a strong and well documented spatial persistence of urban agglomeration. How-
ever, this does not rule out effects running in the opposite direction as well, at least in
some contexts.

The observation that higher population density is associated with lower car depen-
dence is well known and has been documented and discussed by, e.g., Newman and Ken-
worthy (1989), Kenworthy and Laube (1999), and McIntosh et al. (2014). This body of
research typically compares different large cities worldwide, rather than rural and urban
locations in the same country. Also, they do not study traffic deaths.

There are a few papers on how road safety depends on congestion and/or population
density. The introduction of congestion charges in London, and the associated decline in
congestion, seems to have reduced collisions overall, with more mixed results for fatalities
(Green et al., 2016; Tang and Van Ommeren, 2022). Others study the decline in congestion
following the COVID-19 pandemic, also with mixed results on fatalities (Yasin et al., 2021;
Hughes et al., 2023).1 However, none of these contributions systematically explores the
relationship between traffic fatalities and population density in cross-sectional data.

The positive correlations that I find between homicides and traffic fatalities relate indi-
1See also Retallack and Ostendorf (2019) and Albalate and Fageda (2021) for other studies finding mixed

and/or non-monotonic relationships between congestion and fatalities.
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rectly to research by Beland and Brent (2018) about the effects on domestic violence from
stress due to congestion. That type of link does not seem likely to drive the results I find,
since more congestion (or higher density) is associated with lower traffic fatality rates in
my data.

Research on traffic fatalities often take an interest in vehicle sizes (Anderson, 2008;
Jacobsen, 2013; Anderson and Auffhammer, 2014; Tyndall, 2021). This may be one factor
driving the urban-rural relationship between density and traffic fatalities: as pointed out
by Jacobsen (2013, p. 20), “drivers who currently choose large vehicles tend to live in rural
areas.” Many papers in this literature are interested in safety conditional on the amount
of driving, or being involved in a crash, which leaves out car dependence itself as a causal
factor. (Tyndall, 2021, is an exception.)

Other recent work on traffic safety explores racial disparities (Chalfin and Massenkoff,
2022), safety in informal public transit networks (Schönholzer et al., 2022), and the effects
of cell phone bans (Wright and Dorilas, 2022) and speed-limit campaigns (Bauernschuster
and Rekers, 2022).

The correlations that I document between per-capita incomes (or per-capita GDP) and
traffic fatalities relate to research on the links between income shocks and traffic fatalities
(Ruhm, 1995, 2000; Maheshri and Winston, 2016; French and Gumus, 2021). This research
tends to find a decline in traffic fatalities during recessions, implying that lower incomes
are associated with safer roads. This contrasts with my findings in cross-sectional data
of a negative relationship between traffic fatalities and per-capita incomes. However, as
noted, those correlations tend to be less robust than the ones referring to density.

There is also a large theoretical literature on public transit subsidies and how these are
determined, politically and/or optimally (see, e.g., Vickrey, 1980; Parry and Small, 2005,
2009; De Borger and Proost, 2012, 2015). The model presented here differs in its direct
focus on the effects of changes to population densities and incomes.
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3 Background: Aggregate Time Trends in the United States

The focus of this paper is on the spatial variation in traffic fatalities, population density,
and other variables. However, it is useful to first look at changes over time since cars
started to spread in the early 20th century.

Figure 1 shows aggregate data on car (or vehicle) ownership and traffic fatalities for
the United States since 1913. In the early 20th century there were very few cars and low
traffic fatality rates. With the spread of the car deaths rose rapidly, peaking before WWII.
Starting in the 1950s a number of policies were introduced to address deaths and injuries
on U.S. roads, e.g., speed limits and restrictions on driving while intoxicated. Since the
1960s traffic fatality rates have declined sharply. Meanwhile, car ownership has continued
to increase, but at a slower pace.

Fatalities have plateaued from around the 2010s, and started to rise again in recent
years. This has been partly attributed to an increase in the size of vehicles (Tyndall, 2021).

We may discern some short-run co-movements in car ownership and traffic fatalities
in Figure 1 (cf. the discussion in Section 2). For example, both seem to contract slightly
around the 2008-2009 recession. This is easier to see when looking from 1990; see Figure
A.1 in the Online Appendix.

To get a quantitative gauge, I regressed log per-capita traffic fatalities on log per-capita
car ownership across these 109 years, including a squared time trend as control to help
account for some of the confounding factors (such as long-term changes in technology
and incomes). The point estimate of the coefficient on log car ownership comes to around
.73 (and is significant at the 1% level with robust standard errors). That is, a 1% increase in
per-capita car ownership is associated with a .73% increase in per-capita traffic fatalities.
If we restrict the data set to the period from 1966 (a local peak in traffic fatalities), using
the same specification, the same elasticity comes to almost .90%.

Although aggregate data can only tell us so much, this may help motivate the inter-
pretation of traffic fatalities as a broad indicator of how much a society relies and depends
on cars.
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4 A Model

This section presents a framework for thinking about spatial variation in per-capita in-
comes, population density, and driving. Although the empirical analysis will mostly use
data on traffic fatality rates, I do not model crashes between vehicles explicitly, but rather
postulate a relationship between total traffic fatalities and the total number of agents who
drive (see Section 4.3.3 below).

Let an agent j living in location i care about consumption (Cij) and a good that I call
just transportation (Tij). Preferences are described by

Vij = α ln Cij + (1 − α) ln Tij, (1)

where α ∈ (0, 1). Thus, rather than modelling transportation as, e.g., time spent commut-
ing to work I simply put it into the utility function.

The agent’s transportation consumption can take one of two binary forms: driving or
using public transit. Driving generates a transportation consumption of Tij = ηjX/(ziLi),
where X is an exogenous amount of space (or roads) on which agents can drive, which
is the same across locations, Li is the population in location i, zi is the fraction of that
population who drives, and ηj ≥ 1 is agent j’s preference parameter for driving.

We may interpret driving as incorporating life-style and housing choices (e.g., subur-
ban vs. downtown living), such that ηj is a life-style preference parameter. An agent with
ηj = 1 is the most keen to stop driving; an agent with a high ηj is very averse to a non-car
lifestyle. Alternatively, a low ηj could mean that the agent is worse affected by congestion
when driving (cf. Anderson, 2014).

I assume that ηj is Pareto distributed, with a cumulative distribution function given by

F(ηj) = 1 − η
− 1

δ
j , (2)

where δ ∈ (0, 1). As δ → 0 heterogeneity goes away, and all agents become idential with
ηj = 1 for all j. Assuming δ < 1 ensures that a mean exists for ηj.

Public transportation is a tax-funded non-rivalrous public good, which generates trans-
portation consumption equal to Tij = Pi for all agents in location i who choose not to drive.
I return below to how Pi is determined.

7



More compactly, transportation consumption can now be written:

Tij =


ηjX
zi Li

if agent j drives,
Pi if agent j does not drive.

(3)

Here it may be helpful to take stock and reflect on some of the braver model assump-
tions so far. Letting public transit be a non-rivalrous public good captures the idea that
buses and trains use less space per passenger than cars do. Allowing for some congestion
in public transit, as with driving, would not alter the results qualitatively, as long as this
congestion effect is weaker than it is for driving.2 Also, a public transit passenger may
care about many other factors than congestion, such as network size, fleet capacity, and
train/bus frequency, which are easier to interpret as non-rivalrous public goods.

The assumption that road space is exogenously given is meant to capture that roads
require less public spending than public transit does (although driving does incur a pri-
vate cost; see below). This assumption is done mostly for simplicity; road space does not
need to come at exactly zero cost for the results to hold.

4.1 Income, Taxes, and Consumption

Let yi denote pre-tax income per agent in location i, and τi the public-transit tax. (I abstract
from other taxes.) Letting D denote the exogenous private cost of driving (capturing in-
surance, repairs, the car itself, etc.), the budget constraint can be written

Cij =

 (1 − τi)yi − D if agent j drives,
(1 − τi)yi if agent j does not drive.

(4)

It is assumed throughout that yi ≥ D/α, which does not matter for the results qualita-
tively, but reduces the number of cases we need to consider. (It ensures that some agents
will always drive in an equilibrium with public transit taxes.)

Incomes do not differ between agents in a location, so all agent heterogeneity is cap-
tured by the preference parameter ηj. One way to introduce an agent-specific income

2Specifically, I could let public transit users have a transportation consumption of Tij = Pi/[(1 − zi)Li]
κ

for some κ ∈ [0, 1). This would not change the results qualitatively. Here I consider the case where κ = 0.
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component without changing any results would be to let both the driving cost and in-
comes vary proportionally between agents, leaving the driver/non-driver consumption
ratio the same across agents.3

4.2 Public Transit Provision

Provision of public transit depends on aggregate tax revenue. Taxes are levied uniformly,
with each of the Li agents paying τiyi in taxes, so that total tax revenue equals τiyiLi. This
revenue is transformed into public transit according to the production function

Pi = (τiyiLi)
λ , (5)

where we assume that λ ∈ (0, 1), so that the marginal effect of resources spent on transit
declines with the amount spent.

4.3 Equilibrium

The equilibrium in location i is such that (i) agents choose to drive, or not drive, to maxi-
mize individual utilities; and (ii) the (uniform) tax rate, τi, maximizes utility of the median
voter. Part (ii) captures the model’s political-economy mechanism. Part (i) means we can
substitute (3), (4) and (5) into (1), to write the utility of an agent in location i as

Vij = max
{

VD
ij , VND

ij

}
, (6)

where VD
ij and VND

ij are utilities associated with driving and not driving, respectively, de-
fined as follows:

VD
ij = α ln [(1 − τi)yi − D] + (1 − α) ln

(
ηjX
ziLi

)
, (7)

and
VND

ij = α ln [(1 − τi)yi] + (1 − α)λ ln (τiyiLi) . (8)
3That is, suppose that an agent j in location i earns income yij = Aihj and faces a driving cost of hjD. Then

the ratio [(1 − τi)Aihj − hjD]/[(1 − τi)Aihj] boils down to the same as if using (4), but with Ai replacing yi.
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4.3.1 Tax Rates

Section A.1 in the Online Appendix derives the public transit tax and the fraction driving
in equilibrium. There are three types of equilibrium and changing Li shifts the economy
from one equilibrium to another at certain thresholds.

First, an equilibrium where all agents choose to drive (zi = 1) must be such that taxes
are zero (τi = 0), since there is no point funding transit if no one uses it.

Next, let τ∗
i be the tax rate that drivers prefer if some other agents are not driving. This

will be the tax rate in an equilibrium where drivers make up a majority, but not 100% of
the population, i.e., zi ∈ (1/2, 1). Intuitively, improved public transit eases congestion, so
drivers may prefer a positive tax rate.4

As shown in Section A.1.2 of the Online Appendix, τ∗
i is defined from G(τ∗

i ) ≡ 0,
where

G(τ) = − α

1 − τ
− δαyi

(1 − τ) yi − D
+

λ(1 − α)

τ
. (9)

This implicitly defines τ∗
i > 0 in terms of exogenous variables other than Li.

Similarly, let
τ∗∗

i =
λ(1 − α)

α + λ(1 − α)
(10)

be the tax rate preferred by those who choose to use public transit. This is the equilibrium
tax rate if non-drivers are a majority, zi < 1/2, and maximizes VND

ij in (8).

4.3.2 Population Thresholds

The type of equilibrium depends on population, Li. Let L̂i denote the level of Li below
which the equilibrium is such that all agents drive. I show in the appendix that we can
write this as

L̂i =

(
B∗

i
z∗i

) 1+δ
1+λ

, (11)

where

B∗
i =

[
(1 − τ∗

i )yi − D
(1 − τ∗

i )yi

] α
(1−α)(1+δ)

[
X

(τ∗
i yi)λ

] 1
1+δ

, (12)

4For examples and discussion of such political preferences, see, e.g., Anderson (2014).
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and
z∗i =

[
(1 − τ∗

i )yi − D
yi − D

] α
1−α

< 1, (13)

where the inequality comes from τ∗
i > 0. We can interpret z∗i as the level to which zi must

fall to induce those agents who still drive to support a tax of τ∗
i , which (recall) is leveled

uniformly on both drivers and non-drivers. The factor B∗
i contains variables, other than

Li, that determine zi; see (18) below.
Next, let ̂̂Li denote the level of Li above which the equilibrium is one with non-drivers

in majority, zi < 1/2. I show in Section A.1.5 of the Online Appendix that

̂̂Li = (2B∗∗
i )

1+δ
1+λ , (14)

where B∗∗
i is defined similarly as B∗

i in (12), except that τ∗
i is replaced by τ∗∗

i :

B∗∗
i =

[
(1 − τ∗∗

i )yi − D
(1 − τ∗∗

i )yi

] α
(1−α)(1+δ)

[
X

(τ∗∗
i yi)λ

] 1
1+δ

. (15)

The intuition behind how L̂i and ̂̂Li are derived, and what B∗∗
i and B∗

i mean, will become
more clear soon.

Having defined the population thresholds L̂i and ̂̂Li, we can now write the equilibrium
tax rate as

τi =



0 if Li < L̂i,

τ∗
i if Li ∈ [L̂i,

̂̂Li),

τ∗∗
i if Li ≥ ̂̂Li,

(16)

and the equilibrium fraction driving as

zi =



1 if Li < L̂i,

Z(yi, τ∗
i , Li) if Li ∈ [L̂i,

̂̂Li),

Z(yi, τ∗∗
i , Li) if Li ≥ ̂̂Li,

(17)

11



where

Z(yi, τi, Li) =

[
(1 − τi)yi − D
(1 − τi)yi

] α
(1−α)(1+δ)

[
X

(τiyi)λ

] 1
1+δ

L
− 1+λ

1+δ

i . (18)

Note from (12) and (18) that B∗
i = Z(yi, τ∗

i , 1), i.e., the first two factors on the right-hand
side in (18) evaluated at τi = τ∗

i . It can now be seen from (11), (12), (17), and (18) that a
population level of L̂i, and a tax rate of τ∗

i , generate a fraction driving of Z(yi, τ∗
i , L̂i) = z∗i ,

where z∗i is given by (13).5

Analogously, to understand where ̂̂Li comes from, note from (14), (15), (17), and (18)
that Z(yi, τ∗∗

i , ̂̂Li) = 1/2. That is, ̂̂Li is the population level where non-drivers can form a
majority and implement their preferred tax rate, τ∗∗

i .
From (17) and (18) we can easily find the total number of drivers, ziLi.

4.3.3 Traffic Fatalities

The last step in the model analysis is to introduce some metric of traffic fatality rates.
As discussed already, the model structure does not lend itself easily to explicitly capture
collisions. To bring us a little closer to interpreting traffic fatalities, I simply assume an
exogenous relationship between total traffic deaths, denoted Ki, and two other factors
that the model can capture: (1) the total number of drivers, ziLi, and (2) speed of driving,
which I let be proxied by space per driver, X/(ziLi). I use this functional form:

Ki = (ziLi)
γ

(
X

ziLi

)β

, (19)

where γ > 0 and β > 0, i.e., both higher speeds and more drivers lead to more total
fatalities. It also makes sense to assume that γ > β, meaning the net effect on total traffic
fatalities from an increase in the total number of drivers is positive.6

It now follows that the traffic fatality rate, Ki/Li, depends on total population accord-
ing to

Ki

Li
= Xβzγ−β

i Lγ−β−1
i . (20)

5To see it another way, use (17) and (18) to note that z∗i = Z(yi, τ∗
i , L̂i) = Z(yi, τ∗

i , 1)L̂
− 1+λ

1+δ
i = B∗

i L̂
− 1+λ

1+δ
i .

Solving for L̂i gives (11).
6The theoretical link from more congestion to lower speeds, and thus lower fatalities, has been noted by,

e.g., Shefer and Rietveld (1997), Green et al. (2016), and Tang and Van Ommeren (2022).
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If γ = 1+ β, then the traffic fatality rate is independent of population (Li), and all changes
are driven by the fraction who drive (zi), meaning the traffic fatality rate is constant when
all drive (zi = 1). Setting γ slightly below 1 + β allows the fatality rate to be strictly
decreasing in population, also when zi = 1, but the more interesting results refer to the
case when zi < 1 (see below).

4.3.4 Numerical Illustration

Figure 2 shows how the equilibrium outcomes change with Li for one numerical example
(α = .25; yi = 10; X = 1; D = 1.25; β = 1; γ = 1.95; λ = .2; δ = .8). These numbers
are arbitrary, but the qualitative features hold under a broad set of parameter values. The
most important assumptions here are that δ > λ and γ < 1 + β, as discussed below.

I then vary Li from close to zero to above ̂̂Li. The top panel in Figure 2 shows how the
tax rate makes discrete jumps when population reaches the two thresholds L̂i and ̂̂Li, and
the panel right below shows the associated shifts in the fraction of the population who
drive.

The total number of drivers (shown in the third panel from the top) also shifts down
when population reaches these thresholds, but is otherwise increasing, which hinges on
δ > λ, since ziLi is proportional to L

δ−λ
1+δ

i ; cf. (18). Intuitively, public transit must be costly
enough, and driving valued sufficiently by the marginal driver, for a larger population to
be associated with more drivers.

The bottom panel of Figure 2 shows logged traffic fatalities per capita, ln(Ki/Li); cf.
(20). Here I have assumed γ < 1 + β to generate a negative relationship with population
for Li < L̂i, i.e., when all agents drive (zi = 1). However, for Li > L̂i (meaning zi < 1) the
relationship is negative as long as

γ <
1 + δ

δ − λ
+ β, (21)

which is a weaker condition than γ < 1 + β.
The main insight from Figure 2 is that the model can generate a pattern where more

densely populated locations have more drivers, i.e., more congestion, but also lower rates
of traffic fatalities, and a lower fraction of the population who drives.

13



Varying Income Levels Figure 3 shows the relationship between the fraction driving
and population (i.e., zi and Li) for different income levels, yi. The parameter values are
otherwise the same as in the numerical example in Figure 2 (which refers to yi = 10). The
long-dashed black curve in Figure 3 thus corresponds to the curve in the second panel
from the top in Figure 2.

For all levels of yi, there is a negative relationship between the zi and Li. However, the
relationship between incomes and driving is ambiguous. That is, locations with higher
incomes may have higher, or lower, levels of zi. For low population levels, the high-income
location (yi = 10, the long-dashed curve) drives the least (has the lowest zi), but for higher
population levels the lowest-income location (yi = 2.5, the solid curve) has the lowest
fraction driving.

Intuitively, there are two opposing effects involved. On the one hand, low incomes
make the amount of public transit (Pi) smaller at any given tax rate, due to the smaller tax
base, which makes provision of public transit less attractive. On the other hand, low in-
comes imply a high fixed cost of driving (D) relative to income, which makes voters more
inclined to support public transit as an alternative to driving. Which effects dominates is
ambiguous.

The same patterns as in Figure 3 hold for traffic fatality rates, since those vary (primar-
ily) with zi. In other words, the relationship between population density and traffic fatality
rates (or the fraction driving) is unambiguously negative, while that between per-capita
incomes and traffic fatalities (or the fraction driving) can be either positive or negative.

4.4 Migration

The analysis so far has treated Li as exogenous. An alternative approach is to let agents
migrate, so that Li adjusts to equalize utilities across locations. Section A.2 in the Online
Appendix explores a setting with two locations and frictionless migration (for simplicity
assuming away agent heterogeneity, δ = 0). Then there may exist multiple equilibria. In-
tuitively, since public transit is a public good, one location will tend to “specialize” in only
driving, and the other provide some public transit; the location with larger population is
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the one with less driving. This aligns well with the findings when treating Li as exogenous
(and with the empirical evidence below), i.e., a negative relationship between population
density and the fraction driving (and traffic deaths).

More interestingly, when allowing for differences in income between the two locations,
then the location with the lower fraction driving could be either the richer, or the poorer,
location. In that sense, the relationship between zi and yi is ambiguous also when allowing
for migration, just as when we treated Li as exogenous.

5 Data

The main empirical analysis makes use of two datasets, one made up by U.S. counties and
the other by European regions. More discussion about sources and variable definitions are
provided in Sections 5.1 and 5.2 below, with details deferred to Sections A.3.2 and A.3.3
of the Online Appendix.

As far as possible, all variables have been adjusted to be comparable between the two
datasets. For example, population density is measured in persons per square kilometers
and traffic deaths per 100,000 population. However, the units of measurement do not
affect coefficient estimates, since all variables are logged in the empirical analysis.

The main difference between the two data sets is the year of study. For the U.S., the
variables mostly refer to 2010, which is the latest year with good county-level population
data. For the European data, I choose the year 2018, which is the latest with data available
for the United Kingdom. The exception is European homicide rates, where I use the latest
year available, which happens to be 2010.

I also use per-capita incomes for U.S. counties but GDP per capita for Europe, for rea-
sons discussed in more detail in Section 5.2 below.

5.1 United States

U.S. data come from a few different sources. Population density and urbanization come
from the 2010 U.S. Census, which is the latest year for which county-level population data
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is available. Population density is total county population divided by land area in square
kilometers. The urbanization rate is computed as urban population over total population.

Since both density and urbanization are available only for 2010 (at least according to
what I have found), for most other variables I try to use measures for the same year, or
adjacent years.

Data on traffic fatalities are from the Fatality and Injury Reporting System Tool (FIRST)
at the National Highway Traffic Safety Administration (NHTSA). I calculate the traffic
fatality rate as total traffic fatalities in 2010 per 100, 000 population in the same year.

Population density in 1900 is based on data from a website maintained by Andrew
J. Van Leuven (Van Leuven, 2020). This variable is also measured as people per square
kilometer.

Per-capita income data are from the Bureau of Economic Analysis and refer to 2010.
Data on life expectancy are from the Centers for Disease Control and Prevention. These

are measured in years and at birth and refer to 2010-2015.
Homicide (murder) rates are also computed using data from the Centers for Disease

Control and Prevention, and measured as rates per 100,000 people. Since data is often
missing I took the average rate over the decade 2006-2016 (2016 being the last year re-
ported), allowing for better coverage than if using only a single year.

Data on the fraction commuters using public transit in 2010 come from the American
Community Survey, conducted by the U.S. Census Bureau, and is calculated as the fraction
using public transit out of the total number of commuters.

Data on the Republican vote share 2000-2016 and property taxes in 2010 come from
Bazzi et al. (2020).

5.2 Europe

All data for Europe, and neighboring countries, come from an online database hosted by
Eurostat, a body that compiles data from statistical agencies in EU member countries, and
a few others (e.g., Turkey and Norway). I refer to these as “European” data for short.

I consider the regional disaggregation unit known as NUTS 2, which is the intermedi-
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ate level of the Nomenclature of Territorial Units for Statistics. NUTS 2 regions are larger
than most U.S. counties, which makes the European sample smaller, but also allows ac-
cess to most variables needed. For example, traffic fatalities are not available at the more
disaggregate NUTS 3 level.

As mentioned already, I use GDP per capita for Europe but income per capita for the
U.S. The reason, in short, is that I have not been able to find per-capita income data from
Eurostat. This is not ideal, as some inhabitants may work and produce in one region but
to different degrees consume, drive, pay taxes, and/or use public transit in another re-
gion. However, this distinction may matter less for NUTS 2 regions than the much smaller
U.S. counties, if GDP and income levels are more proportional to each other for larger
economies than small.7

6 Empirical Analysis

6.1 Main Results

6.1.1 United States

Figure 4 plots log traffic fatality rates against log population density across all U.S. counties
with data available, with state acronyms indicated. The negative relationship is clear.
Counties in, say, New York are more densely populated and have lower traffic fatality
rates than counties in, e.g., Texas and Nevada. However, the negative relationship is not
driven (only) by differences between states or regions, but also appear in the same plots
for the most populous states of California, Florida, New York, and Texas; see Figure 5.

Table 1 presents some regression results based on U.S. counties. The negative correla-
tion is highly significant in the unconditional specification in column (1), corresponding
to the plot in Figure 4. This holds when we add controls for log per-capita incomes and
log life expectancy in columns (2) and (3); when we add state fixed effects in column (4);
and when clustering standard errors on states in column (5).

7There are per-capita GDP data available for U.S. counties from the BEA, but for such small and open
geographical units it arguably makes more sense to use per-capita incomes.
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Controlling for life expectancy in columns (3)-(5) may be interpreted as partly absorb-
ing variation in the quality of hospital care and related factors that decide if a vehicle
collision is fatal, or not. The negative and significant coefficient on population density
when controlling for life expectancy then suggests that this conditional correlation may
be due to factors that cause (serious) crashes in the first place, and thus better capture the
degree to which people rely and depend on cars.

Notably, controlling for life expectancy renders the coefficient on log per-capita in-
comes insignificant in Table 1, and it stays insignificant when adding state fixed effects.
(The same holds when adding only state fixed effects, and no life expectancy control; those
results are not reported here.) In other words, incomes are not as robustly associated with
traffic deaths as density is, broadly consistent with the model’s predictions.

Table A.1 in the Online Appendix presents the same regressions as in Table 1, but with
urbanization in place of of population density. Those results are similar to the ones in Table
1, although the coefficient on log per-capita income there stays negative and significant.

6.1.2 Europe

Consider next European NUTS 2 regions. Figure 6 plots the log traffic fatality rate against
log population density across all regions with data available, with country acronyms in-
dicated, showing a clear negative relationship. In Figure 7, we also find similar negative
patterns within France, Germany, Spain, and the UK, the countries with the largest num-
bers of NUTS 2 regions

The regression results in Table 2 show that the negative association between traffic
fatalities and density is robust to similar controls as those that we used for the U.S. in
Table 1. (As discussed, income per capita is here replaced by GDP per capita, due to data
availability.) The other variables also show similar correlations as those found in U.S.
data. Population density has a more robust association with traffic fatalities than GDP per
capita (although it here takes country fixed effects to render the GDP per capita coefficient
insignificant).

Table A.2 in the Online Appendix uses urbanization instead of population density,
finding a negative association with traffic fatalities, again with more robust correlations
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for density than for GDP per capita.

6.1.3 Comparing the United States and Europe

As discussed in Section 5, not all variables are defined identically between the two data
sets, and they also refer to different years: 2010 and 2018, for the U.S. and Europe, respec-
tively. Note also that 2010 had comparatively low traffic fatality rates in the U.S. overall
(see Section 3).

However, with these caveats in mind, it is interesting to note that the coefficients on
the density variable are similar in size when comparing Tables 1 and 2, in particular when
including fixed effects.

To illustrate this, Figure 8 shows a single plot of log traffic fatalities against log popu-
lation density where U.S. counties and European regions are overlaid, together with asso-
ciated best-fit lines. The intercepts differ, with the U.S. being more deadly, but the slopes
are very similar.8 The slopes become even more similar if we drop sparsely populated
but relatively safe Norway. My interpretation is that these correlations reflect a relatively
deep-rooted force that is common across otherwise quite different societies. Urban and
densely populated places always tend to be less car dependent.

At the same time, the fact that the intercept is so much higher for the U.S. shows that
there are differences in traffic fatality rates across the Atlantic. To gauge this quantitatively,
I used the unconditional regression in column (1) of Table 1 to predict the U.S. traffic death
rate based on the mean of the log population density in Europe (unweighted across all
regions). This generates a drop in the mean (non-logged) U.S. traffic fatality rate from 23.1
to 9.6 per 100,000 people, which can be compared to a sample mean of 5.6 for Europe.
In other words, based on this regression, a bit over half of the U.S.-Europe gap in traffic
fatality rates can be accounted for by differences in population density.

8I do not show the results here, but if we run regressions on these merged data, then the coefficient on a
U.S. dummy always comes out as positive and significant, while the interaction between U.S. dummy and
log population density tends to either come out as insignificant, or, when more precisely estimated, small
in size relative to the coefficient on log population density.
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6.2 Other Measures of Car Dependence

This paper interprets traffic fatalities as a proxy for (or at least something connected to) car
dependence in a broad sense. Next, I consider a couple of alternative measures. I have not
been able to find a single measure that is available both across U.S. counties and European
regions. For the U.S., I consider the fraction of the commuting population who relied on
public transit, and for Europe the number of vehicles per capita.

The latter of these might be most in line with the existing literature.9 Alas, while vehi-
cles per capita can be found at the state level in the U.S. (and for select cities) it is apparently
not available at the county level.

Table 3 presents results for the U.S., based on the exact same type of regressions as in
Table 1, but with the log transit use rate as the dependent variable. The correlations now
carry the opposite sign, as one would expect, since more public transit use is associated
less car dependence. The estimated coefficient on log population density comes out as
positive and highly significant throughout, while the results for per-capita incomes are
slightly weaker, consistent with the results in Table 1.

There are also some notable differences. The sample size and the explanatory power
are both much higher when using traffic fatalities in Table 1 than with public transit use
in Table 3; the sample shrinks by about 250 counties and R-squared falls from the .41-.48
range to .10-.31. The estimated coefficients are also somewhat smaller in absolute terms.
Although one can have different interpretations, my own suggested conclusion is that the
traffic death rate better captures variation in car dependence than public transit use does,
at least in a U.S. context.

Table 4 presents the same type of regressions across European NUTS 2 regions as those
in Table 2, but with log vehicles per capita as the dependent variable, instead of the log
traffic fatality rate. In column (1), we note that high population density is associated with
more vehicles per capita, the opposite of what we would expect given our previous result.
However, this is driven by urban areas being richer. When controlling for per-capita GDP
the correlations come out as negative and significant, which holds also with the other

9See, e.g., Ostermeijer et al. (2022), who use vehicles per capita at the city level worldwide.
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controls, and qualitatively matches the results for traffic fatality rates in Table 2. However,
the coefficient on log GDP per capita comes out as positive, the exact opposite of what we
found in Table 2. Again, this conforms with the previous findings, and with the model, that
income (or GDP) has a less consistent association with car dependence than population
density does.

Moreover, like with the transit use rate in the U.S. data, the sample here is smaller due
to vehicle data being more limited, and the R-squared statistic mostly comes out as lower.
The magnitude of the estimated elasticities differs by a factor of almost 4. Considering the
specification in column (4) of each table, a 1% increase in population density is associated
with roughly a .31% decline in traffic fatality rates in Table 2 but only a .083% drop in
vehicles per capita in Table 4.

6.3 Mechanisms

6.3.1 Homicide Rates

One possibility is that high rates of traffic fatalities are caused by rural areas having a
more violent (and/or careless) culture, and thus less safe driving. For example, Grosjean
(2014) and Couttenier et al. (2017) link violence in the U.S. to deep-rooted cultural and
institutional events, which could affect traffic behavior too.

To explore this possibility, I next control for homicide rates, a common proxy for overall
violence (see, e.g., Pinker, 2011). This shrinks the samples, due to missing homicide data
for many counties and NUTS 2 regions.10 However, the two data sets still cover some
counties/regions in at least 44 U.S. states and 21 European countries, respectively.

Table 5 presents the same regressions as in Table 1, but adding a control for the log
homicide rate. The coefficient on log population density stays negative and highly signifi-
cant, and the coefficient on the log homicide rate comes out as positive and almost equally
significant throughout. This suggests that what is often called traffic violence may be as-
sociated with more general forms of violence.

Table 6 considers Europe, adding a control for the log homicide rate to the regressions
10For Europe we also lose four observations with no homicides when logging.
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in Table 2. Like for the U.S., the negative association between population density and
traffic deaths is unchanged when adding this control, and the homicide rate itself shows
a positive correlation with traffic deaths, although here the estimates are not significant
when adding country fixed effects.

In the Online Appendix, I present results when using the log homicide rate as the
dependent variable (see Tables A.3 and A.4). For the U.S., homicide rates are indeed lower
in more densely populated counties, although the estimated coefficient estimates are not
always significant. For Europe, the association between homicide rates and density tends
to come out as positive, so rural parts of Europe are not generally more violent than cities,
even though they have worse road safety.

In sum, there is little to suggest that the link between population density and traffic
fatalities captures a culture of violence. However, the homicide rate itself tends to show a
positive association with traffic fatalities (in particular in U.S. data) so there seems to exist
some connection between traffic violence and other forms of violence.

6.3.2 Historical Population Density

Next I explore if the results could be driven by factors affecting both traffic fatalities and
city growth and thus population density. For example, car dependence may lead to both
traffic fatalities and urban sprawl, and thus low density. Ostermeijer et al. (2022) compare
cities across the world and find that car ownership, instrumented by the presence of do-
mestic car manufacturing in 1920, appears to lead to lower urban population density. U.S.
highways also seem to have had a causal effect on urban sprawl (Baum-Snow, 2007, 2010).

To explore to what extent this chain of causation may drive our results, Table 7 con-
siders the sample of U.S. counties but regresses the log traffic fatality rate on log popula-
tion density in 1900 instead of modern population density, prior to the expansion of car
use. (I have not been able to find any historical population density for European NUTS
2 regions.) The correlations are still negative and highly significant in all specifications,
although slightly smaller in size compared to Table 1. Interestingly, the coefficient on per-
capita incomes in Table 7 comes out as more consistently significant, possibly because it
helps absorb some of the variation captured by modern population density in Table 1.
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Table A.5 in the Online Appendix instead uses population density in 1900 as instru-
ment for modern population density. The coefficient on the instrumented density variable
is negative and highly significant throughout, while that on per-capita incomes turns in-
significant when adding state fixed effects.

Absent other factors affecting both population density in 1900 and modern traffic fa-
tality rates, this might suggest that the link is causal.

6.3.3 Political Covariates

Table 8 presents results from the same U.S. county level-regressions as in Table 1, but con-
trolling for two political variables: the Republican Presidential vote share 2000-2016 and
the property tax rate in 2010, both logged. These may absorb some of the mechanisms
through which population density can impact traffic fatalities. For example, higher den-
sity may make voters more supportive of property taxes to fund public transit, making
people less car dependent and traffic fatalities lower, and the Republican vote share may
proxy for a general resistance to such taxes.

However, entering these controls does not render the coefficient on log population
density insignificant, although it shrinks the estimated size of the coefficient marginally.
(This also holds when letting each of the two controls enter separately.) This is actually
consistent with the model, where traffic deaths (and the fraction driving) are decreasing
with population density also over those intervals where tax rates stay constant; cf. Figure
2.

Moreover, both of these two political variables seem to carry the expected signs when
significant: traffic fatality rates tend to be higher in counties with a more right-leaning vot-
ing population, and lower property tax rates. If we think of these variables as capturing a
general willingness to fund public transit, this seems consistent with the model. However,
neither variable comes out as significant when entering state fixed effects.

6.3.4 Kitchen-Sink Regressions

The final exercise I undertake is to regress traffic death rates on population density, per-
capita incomes (or GDP), and life expectancy, as well as the other variables considered in
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the previous sections. For the U.S., these are the homicide rate, the fraction using public
transit, the Republican Presidential vote share, and the property tax rate (all logged as
before). For Europe, I use the homicide rate, vehicles per capita, and one more variable
that I have not explored yet, the length in kilometres of motorways per capita (all logged).

This kind of “kitchen-sink” approach allows us to explore if anything used thus far can
render population density insignificant.

Results from a few such regressions are presented in Tables 9 and 10, for the U.S. and
Europe, respectively. In both tables, I restrict the sample to those counties and NUTS 2
regions for which we have data on all variables, meaning all regressions are based on the
same minimum sample (425 counties and 119 NUTS 2 regions). All regressions include
state fixed effects for the U.S. and country fixed effects for Europe, and standard errors are
clustered on states and countries, respectively. These are arguably the most “demanding”
specifications we may consider using these data.

The results in both Tables 9 and 10 show that the only variable that stays significant
throughout at the 1% level is log population density.

As in Section 6.3.1, the log homicide rate carries a positive coefficient and is relatively
precisely estimated in the U.S. data, although not for Europe.

The property tax rate comes out with the expected negative sign for the U.S. in Table 9,
here indeed a little stronger than in Table 8. As discussed already, this matches the model
well.

For Europe, log vehicles per capita comes out as positive and significant at the 10%
level, which is hardly surprising. But, as mentioned, this does not weaken the estimated
coefficient on log population density, so the link between density and road safety seems
to be about more than just car ownership.

These results are qualitatively very similar when not restricting the samples, in partic-
ular the significance levels for the negative coefficient estimates for log population density.
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7 Conclusion

This paper has explored the empirical relationship between population density and traffic
death rates, finding a very robust negative correlation across both U.S. counties and Euro-
pean regions. Urban areas have better traffic safety records than rural areas in both Europe
and the U.S. This contrasts with other externalities from driving, such as congestion and
air pollution, which are well known to be worse in cities.

While the results for population density are very robust, the relationship between per-
capita incomes and traffic death rates is more mixed, although mostly negative.

To make sense of some of these patterns I have also presented a model where agents
choose between driving and using tax-funded public transit. Once a location becomes
sufficiently densely populated, it switches from a zero-tax and zero-public-transit mode
to a regime with some taxation and public transit use, although drivers are still in majority.
Further increases in density can eventually make non-drivers a majority, rasing tax rates
and public transit provision further.

The model can explain why higher population density is associated with a larger to-
tal number of drivers (i.e., more congestion and pollution), but a lower fraction of the
population driving, and lower traffic fatality rates.

At the same time, the effects of changes to per-capita incomes are ambiguous, consis-
tent with the somewhat weaker correlation between traffic fatality rates and per-capita
incomes found in the data.
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Tables and Figures
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density −0.304∗∗∗ −0.295∗∗∗ −0.307∗∗∗ −0.343∗∗∗ −0.343∗∗∗

(0.007) (0.008) (0.008) (0.010) (0.014)

Log income per capita −0.425∗∗∗ −0.060 0.068 0.068

(0.061) (0.067) (0.078) (0.104)

Log life expectancy −4.623∗∗∗ −1.831∗∗∗ −1.831∗∗∗

(0.438) (0.540) (0.631)

R2 0.41 0.42 0.43 0.48 0.48
Number of obs. 2866 2810 2717 2717 2717

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on state. The unit of observation is a county. * indicates
p <0.10, ** p <0.05, and *** p <0.01.

Table 1: Traffic Deaths and Population Density: United States.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density −0.252∗∗∗ −0.149∗∗∗ −0.159∗∗∗ −0.310∗∗∗ −0.310∗∗∗

(0.026) (0.030) (0.031) (0.033) (0.051)

Log GDP per capita −0.555∗∗∗ −0.459∗∗∗ 0.112 0.112

(0.082) (0.091) (0.092) (0.135)

Log life expectancy −2.440∗∗∗ −1.944 −1.944

(0.696) (1.851) (2.491)

R2 0.34 0.48 0.50 0.80 0.80
Number of obs. 317 274 271 271 271

Fixed effects None None None Country Country

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on country. The unit of observation is a NUTS 2 region. *
indicates p <0.10, ** p <0.05, and *** p <0.01.

Table 2: Traffic Deaths and Population Density: Europe.
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Dependent variable is the log public transit use rate

(1) (2) (3) (4) (5)

Log population density 0.237∗∗∗ 0.197∗∗∗ 0.242∗∗∗ 0.266∗∗∗ 0.266∗∗∗

(0.019) (0.019) (0.020) (0.022) (0.046)

Log income per capita 1.278∗∗∗ 0.569∗∗∗ 0.323∗ 0.323

(0.131) (0.160) (0.167) (0.225)

Log life expectancy 7.449∗∗∗ 1.996∗ 1.996

(0.908) (1.089) (1.480)

R2 0.10 0.14 0.17 0.31 0.31
Number of obs. 2581 2432 2355 2355 2355

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. The dependent variable is the log of the fraction using
public transit out of those that either drive or use public transit. (Driving includes car pooling.)
Robust standard errors are indicated in parentheses, except for column (5), which clusters on state.
The unit of observation is a county. * indicates p <0.10, ** p <0.05, and *** p <0.01.

Table 3: Public Transit Rates and Population Density: United States.
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Dependent variable is log vehicles per capita

(1) (2) (3) (4) (5)

Log population density 0.034∗ −0.071∗∗∗ −0.058∗∗ −0.083∗∗∗ −0.083∗∗

(0.019) (0.024) (0.023) (0.024) (0.037)

Log GDP per capita 0.776∗∗∗ 0.607∗∗∗ 0.535∗∗∗ 0.535∗∗

(0.099) (0.114) (0.120) (0.216)

Log life expectancy 2.899∗∗∗ −1.838 −1.838

(0.703) (1.708) (1.830)

R2 0.01 0.42 0.44 0.83 0.83
Number of obs. 293 251 249 249 249

Fixed effects None None None Country Country

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. The dependent variable is the log of vehicles per capita.
Robust standard errors are indicated in parentheses, except for column (5), which clusters on state.
The unit of observation is a NUTS 2 region. * indicates p <0.10, ** p <0.05, and *** p <0.01.

Table 4: Vehicles per Capita and Population Density: Europe.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density −0.246∗∗∗ −0.218∗∗∗ −0.205∗∗∗ −0.208∗∗∗ −0.208∗∗∗

(0.015) (0.017) (0.015) (0.016) (0.020)

Log income per capita −0.361∗∗∗ −0.150 −0.100 −0.100

(0.114) (0.108) (0.109) (0.173)

Log life expectancy −4.464∗∗∗ −4.466∗∗∗ −4.466∗∗∗

(1.025) (1.303) (1.376)

Log homicide rate 0.279∗∗∗ 0.247∗∗∗ 0.157∗∗∗ 0.126∗∗∗ 0.126∗∗

(0.035) (0.035) (0.044) (0.045) (0.051)

R2 0.56 0.58 0.59 0.72 0.72
Number of obs. 469 460 430 430 430

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on state. The unit of observation is a county. * indicates
p <0.10, ** p <0.05, and *** p <0.01.

Table 5: Controlling for Homicide Rates: United States.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density −0.192∗∗∗ −0.133∗∗∗ −0.134∗∗∗ −0.326∗∗∗ −0.326∗∗∗

(0.035) (0.032) (0.032) (0.044) (0.052)

Log GDP per capita −0.466∗∗∗ −0.369∗∗∗ 0.160 0.160

(0.104) (0.116) (0.129) (0.194)

Log life expectancy −2.883∗∗∗ −3.077 −3.077

(0.940) (2.349) (2.393)

Log homicide rate 0.433∗∗∗ 0.240∗∗∗ 0.208∗∗∗ 0.065 0.065

(0.047) (0.051) (0.052) (0.042) (0.047)

R2 0.43 0.54 0.58 0.85 0.85
Number of obs. 159 154 153 153 153

Fixed effects None None None Country Country

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on country. The unit of observation is a NUTS 2 region. *
indicates p <0.10, ** p <0.05, and *** p <0.01.

Table 6: Controlling for Homicide Rates: Europe.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density 1900 −0.208∗∗∗ −0.196∗∗∗ −0.202∗∗∗ −0.229∗∗∗ −0.229∗∗∗

(0.012) (0.012) (0.012) (0.018) (0.042)

Log income per capita −0.965∗∗∗ −0.738∗∗∗ −0.798∗∗∗ −0.798∗∗∗

(0.073) (0.084) (0.094) (0.093)

Log life expectancy −3.289∗∗∗ −0.944 −0.944

(0.543) (0.684) (0.947)

R2 0.16 0.23 0.24 0.31 0.31
Number of obs. 2602 2566 2493 2493 2493

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses, except
for column (5), which clusters on state. The unit of observation is a county. * indicates p <0.10, **
p <0.05, and *** p <0.01.

Table 7: Modern Traffic Deaths and Population Density in 1900: United States.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density −0.280∗∗∗ −0.273∗∗∗ −0.290∗∗∗ −0.340∗∗∗ −0.340∗∗∗

(0.008) (0.008) (0.009) (0.011) (0.016)

Log income per capita −0.297∗∗∗ −0.039 0.062 0.062

(0.062) (0.068) (0.079) (0.105)

Log life expectancy −4.094∗∗∗ −1.838∗∗∗ −1.838∗∗∗

(0.466) (0.543) (0.644)

Log poperty tax rate −0.200∗∗∗ −0.165∗∗∗ −0.094∗∗∗ −0.050 −0.050

(0.022) (0.023) (0.025) (0.056) (0.082)

Log Republican vote share 0.195∗∗∗ 0.198∗∗∗ 0.152∗∗∗ −0.010 −0.010

(0.051) (0.051) (0.051) (0.059) (0.079)

R2 0.43 0.43 0.44 0.48 0.48
Number of obs. 2842 2793 2707 2707 2707

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses, except
for column (5), which clusters on state. The unit of observation is a county. * indicates p <0.10, **
p <0.05, and *** p <0.01.

Table 8: Traffic Deaths and Political Variables: United States.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density −0.210∗∗∗ −0.205∗∗∗ −0.202∗∗∗ −0.205∗∗∗ −0.175∗∗∗

(0.023) (0.020) (0.025) (0.023) (0.025)

Log income per capita −0.091 −0.086 −0.117 −0.086 −0.114

(0.174) (0.174) (0.161) (0.173) (0.146)

Log life expectancy −6.444∗∗∗ −4.758∗∗∗ −6.417∗∗∗ −6.431∗∗∗ −4.299∗∗∗

(1.453) (1.479) (1.408) (1.448) (1.522)

Log homicide rate 0.111∗ 0.152∗∗

(0.056) (0.069)

Log poperty tax rate −0.146∗ −0.135∗

(0.083) (0.076)

Log Republican vote share 0.041 0.145

(0.083) (0.109)

Log public transit rate −0.009 −0.007

(0.018) (0.023)

R2 0.71 0.71 0.71 0.71 0.72
Number of obs. 425 425 425 425 425

Fixed effects State State State State State

Standard errors Clustered Clustered Clustered Clustered Clustered

Notes: Ordinary least squares regressions. Standard errors are indicated in parentheses, all clustered
on state. All specifications also include state fixed effects. All columns are based on the minimum
sample for which we have data on all variables. The unit of observation is a county. * indicates
p <0.10, ** p <0.05, and *** p <0.01.

Table 9: The Kitchen Sink: United States.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density −0.363∗∗∗ −0.367∗∗∗ −0.329∗∗∗ −0.353∗∗∗ −0.325∗∗∗

(0.033) (0.032) (0.028) (0.032) (0.025)

Log GDP per capita 0.148 0.151 −0.059 0.153 −0.041

(0.130) (0.142) (0.183) (0.114) (0.189)

Log life expectancy −2.864 −2.143 −2.792 −3.293∗ −2.303

(1.939) (1.955) (1.974) (1.720) (1.929)

Log homicide rate 0.052 0.065

(0.040) (0.042)

Log vehicles per capita 0.424∗∗ 0.408∗∗

(0.177) (0.188)

Log km motorway per capita 0.042 0.040

(0.035) (0.029)

R2 0.86 0.86 0.87 0.86 0.87
Number of obs. 119 119 119 119 119

Fixed effects Country Country Country Country Country

Standard errors Clustered Clustered Clustered Clustered Clustered

Notes: Ordinary least squares regressions. Standard errors are indicated in parentheses, all clustered
on country. All specifications also include country fixed effects. All columns are based on the mini-
mum sample for which we have data on all variables. The unit of observation is a NUTS 2 region. *
indicates p <0.10, ** p <0.05, and *** p <0.01.

Table 10: The Kitchen Sink: Europe.
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Figure 1: Aggregate time trends in the United States.
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A Online Appendix

A.1 Model Derivations

A.1.1 Finding Z(yi, τi, Li)

Consider an equilibrium in which some drive and some do not drive, so that zi < 1. In
this equilibrium there must exist some agent who is indifferent between driving and not
driving. Let that agent’s driving preference, ηj, be denoted η̃. Equalizing the expressions
for VD

ij and VND
ij in (7) and (8), with ηj = η̃, gives

[
(1 − τi)yi − D
(1 − τi)yi

]α

=

[
(τiyi)

λ L1+λ
i zi

Xη̃

]1−α

. (A.1)

The agents who choose not to drive are those with the lowest levels of ηj. Thus, the fraction
of the population with ηj below η̃ (the level of the marginal agent) must equal 1 − zi, i.e.,
the fraction of the population who does not drive. Using the Pareto distribution in (2), it
follows that

F(η̃) = 1 − η̃− 1
δ = 1 − zi, (A.2)

implying
η̃ = z−δ

i . (A.3)

Using (A.1) and (A.3) to solve for zi gives the expression for Z(yi, τi, Li) in (18). Thus, if
an equilibrium exists where some arents are not driving, then it must be such that zi =

Z(yi, τi, Li).

A.1.2 Finding τ∗
i

Next I derive τ∗
i . Recall that this is the tax rate in an equilibrium where some do not drive

and drivers are in majority, zi ∈ [1/2, 1). Let ṼD
i denote the utility of the agent who is

indifferent between driving and not driving. Setting ηj = η̃ in (7) (where, recall, η̃ is the
ηj of the marginal driver) gives

ṼD
i = α ln [(1 − τi)yi − D] + (1 − α) ln

(
X

ziLi

)
+ (1 − α) ln(η̃). (A.4)

1



The utility of an other agent who drives (i.e., with ηj > η̃) is also given by (7). Using (A.3)
and (A.4), this can be rewritten as

VD
ij = α ln [(1 − τi)yi − D] + (1 − α) ln

(
X

zi Li

)
+ (1 − α) ln(ηj)

= ṼD
i + (1 − α) ln(ηj)− (1 − α) ln(η̃)

= ṼD
i + (1 − α) ln(ηj) + (1 − α)δ ln(zi)

= α ln [(1 − τi)yi] + (1 − α)λ ln (τiyiLi) + (1 − α) ln(ηj) + (1 − α)δ ln(zi),

(A.5)

where the last equality uses the fact ṼD
i = VND

ij , which must hold by the definition of ṼD
i ,

and the expression for VD
ij in (8).

The tax rate in an equilibrium where drivers are in a majority maximizes (A.5), subject
to zi = Z(yi, τi, Li). Substituting zi = Z(yi, τi, Li) in (18) into (A.5), and ignoring terms
that do not involve τi (containing the logs of yi, Li, and ηj) gives this objective function:

WD
ij = α ln(1 − τi) + (1 − α)λ ln (τi)

+(1 − α)δ
{[

α
(1−α)(1+δ)

]
ln

[
(1−τi)yi−D

1−τi

]
−

(
λ

1+δ

)
ln(τi)

}
.

(A.6)

Rearranging, and factoring out 1/(1 + δ), we can write

WD
ij =

1
1 + δ

{α ln(1 − τi) + (1 − α)λ ln (τi) + αδ ln ([1 − τi] yi − D)} . (A.7)

Maximizing (A.7) with respect to τi, the first-order condition can be written

− α

1 − τi
+

(1 − α)λ

τi
− αδyi

(1 − τi) yi − D
= 0. (A.8)

The left-hand side of (A.8) is simply the function G(τi) in (9). Thus, the equilibrium tax
rate when drivers are in a majority, τ∗

i , is defined from G(τ∗
i ) ≡ 0.

A.1.3 Finding τ∗∗
i

Next I derive τ∗∗
i , which is the tax rate in an equilibrium where some do not drive and

non-drivers are in majority, zi < 1/2. This is found by simply maximizing VND
ij in (8)

with respect to τi, which gives τ∗∗
i as in (10). It can also be found by setting δ = 0 in (A.8).

That is, when heterogeneity is removed all agents are indifferent between driving and no
driving, and thus agree on the same tax rate.

2



A.1.4 Finding L̂i

Let VD,0
ij denote the level of VD

ij associated with zero taxes, and thus no public transit and
all agents driving. Setting τi = 0 and zi = 1 in (7) gives

VD,0
ij = α ln (yi − D) + (1 − α) ln

(
ηjX
Li

)
. (A.9)

Similarly, let VD,τ∗

ij denote the level of VD
ij associated with the optimal tax rate when drivers

are in majority and some do not drive, i.e., τi = τ∗
i and zi < 1. From (7), this can be written

VD,τ∗

ij = α ln [(1 − τ∗
i )yi − D] + (1 − α) ln

(
ηjX
ziLi

)
. (A.10)

Setting VD,τ∗

ij = VD,0
ij in (A.9) and (A.10) we can solve for what zi must equal for agents

to be indifferent between the two tax rates (τi = τ∗
i and τi = 0, respectively). Denote that

level of zi by z∗i . Equalizing (A.9) and (A.10), setting zi = z∗i , gives the expression in (13).
The next task is to find what level of population implements zi = z∗i . Using (18), with

τi = τ∗
i , gives

z∗i = Z(yi, τ∗
i , Li) =

[
(1 − τ∗

i )yi − D
(1 − τ∗

i )yi

] 1
(1−α)(1+δ)

[
X

(τ∗
i yi)λ

] 1
1+δ

L
− 1+δ

1+λ

i = B∗
i L

− 1+δ
1+λ

i , (A.11)

where B∗
i = Z(yi, τ∗

i , 1) is defined in (12). Solving (A.11) for Li gives L̂i in (11).

A.1.5 Finding ̂̂Li

Recall that ̂̂Li is the population threshold above which non-drivers become a majority,
implementing their preferred tax rate, τ∗∗

i . Thus, ̂̂Li is defined from Z(yi, τ∗∗
i , ̂̂Li) = 1/2.

Using (18), with τi = τ∗∗
i , gives

̂̂Li =

2
[
(1 − τ∗∗

i )yi − D
(1 − τ∗∗

i )yi

] 1
(1−α)(1+δ)

[
X

(τ∗∗
i yi)λ

] 1
1+δ


1+δ
1+λ

, (A.12)

which can be rewritten as in (14) and (15).

A.2 Allowing for Migration

In the main text I let Li vary exogenously. This section explores migration by letting Li

adjust endogenously to equalize utilities across locations.
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To that end, I first assume away heterogeneity between agents, setting δ = 0 and thus
ηj = 1 for all agents j. That way I do not need to keep track of an endogenous type
distribution across locations, as different types may migrate to different locations. The
main implication of this assumption is that δ > λ cannot hold, meaning the model can no
longer produce a positive relationship between ziLi and Li. Thus, I here also set λ = 1

to simplify the notation. This means that public transit provision is here linear in tax
revenues; cf. (5).

With δ = 0 and λ = 1 in (9) and (10), it is straightforward to see that the two tax rates
are identical:

τ∗
i = τ∗∗

i = 1 − α. (A.13)

Similarly, we see from (12) and (15) that

B∗
i = B∗∗

i =

[
αyi − D

αyi

] α
1−α X

(1 − α)yi
. (A.14)

and
z∗i =

[
αyi − D
yi − D

] α
1−α

. (A.15)

With (1 + δ)/(1 + λ) = 1/2, it then follows that L̂i in (11) becomes

L̂i =

(
B∗

i
z∗i

) 1
2

=

[
(yi − D)α

αα(1 − α)1−αyi

] 1
2(1−α)

X
1
2 . (A.16)

We can now write the tax rate as

τi =


0 if Li ≤ L̂i,

1 − α if Li > L̂i,

(A.17)

and the equilibrium fraction driving as

zi =


1 if Li ≤ L̂i,

(
αyi−D

αyi

) α
1−α X

(1−α)yi L2
i

if Li > L̂i,

(A.18)

where we use (A.17) and (18) with δ = 0 and λ = 1.
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As in the model without migration, when Li exceeds L̂i it becomes optimal to switch
from a regime with no taxes and only driving to one with taxation and some public transit
provision. Note, however, that in this setting we do not need to know whether drivers or
non-drivers are in a majority, as long as some agents use public transit. The reason is that
agents are ex-ante identical and thus indifferent between the two modes of transportation
in equilibrium, and therefore prefer the same tax policy.

To explore migration decisions, I derive payoffs to living in location i. Substituting the
expressions for τi and zi in (A.17) and (A.18) into the utility function defined by (6) to (8),
with ηj = 1, gives us this indirect utility function:

Ui = max{UD
i , UND

i } =


UD

i if Li ≤ L̂i,

UND
i if Li > L̂i,

(A.19)

where UD
i and UND

i are given by

UD
i = α ln (yi − D) + (1 − α) ln

(
X
Li

)
, (A.20)

and
UND

i = ln
[
αα(1 − α)1−α

]
+ ln(yi) + (1 − α) ln(Li). (A.21)

We can interpret UD
i and UND

i as the utilities associated with the two tax regimes (τi = 0

and τi = 1 − α, respectively) being imposed exogenously.
Figure A.2 plots various variables against Li in three stacked panels: UD

i and UND
i in

the top panel; Ui = max{UD
i , UND

i } in the middle panel; and zi in the bottom panel. The
relationship between Ui and Li is U-shaped, with Ui minimized at Li = L̂i, where the
shift to public transit occurs. For Li ≤ L̂i, everyone is driving (zi = 1), and Ui = UD

i is
decreasing in Li. This is due to the increased congestion caused by adding more drivers
as population expands, reducing transportation consumption.

For Li > L̂i, the fraction driving falls below one and is decreasing in Li, while Ui =

UND
i is increasing in Li. Here larger population brings more tax revenue with which to

fund public transit provision, which raises utility for those that use public transit, and
thus also drivers, since agents are indifferent between driving and using public transit.
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A.2.1 A Two-Location Setting: The Symmetric Case

I next consider a case with two locations, indexed i ∈ {A, B}, with populations LA and
LB, such that total population across both locations sums up to unity, LA + LB = 1.

Agents earn income yA (yB) if they choose to live in location A (B). For now, I consider
the fully symmetric case, letting incomes be the same in two locations, here denoted just
y.

With free (or frictionless) migration, the associated indirect utilities, UA and UB, must
equalize in equilibrium. This is illustrated in Figure A.3, which has two panels, both of
which show the population in location A on the horizontal axis. We can thus read the
population in location B as LB = 1− LA. The top panel plots the indirect utilities (UA and
UB), corresponding to that in the middle panel in Figure A.2, while the bottom panel of
Figure A.3 shows car dependency in the two locations (zA and zB).

Since the two locations are symmetric with respect to their exogenous variables, they
face the same population thresholds for using public transit. That threshold is here as-
sumed to fall below 1/2, i.e.,

L̂A = L̂B =

[
(y − D)α

αα(1 − α)1−αy

] 1
2(1−α)

X
1
2 < 1/2, (A.22)

which holds for small enough X.
Under this assumption, three equilibria exist:

1. A locally unstable equilibrium with population of 1/2 in each location.

2. A locally stable equilibrium with populations LA ∈ (1/2, 1) in location A, and LB ∈

(0, 1/2) in location B, such that LB + LA = 1.

3. A locally stable equilibrium with populations LB ∈ (1/2, 1) in location B, and LA ∈

(0, 1/2) in location A, such that LA + LB = 1.

Proofs and derivations and deferred to Section A.2.3 below.
The equilibria of type 2 and 3 are simply each other’s mirror images, i.e., LA = LB and

LA = LB. The equilibrium of type 1 is not very interesting, since it is unstable.
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A.2.2 A Two-Location Setting: The Asymmetric Case

The case where the two locations differ in income levels can be understood from Figure
A.4, which is otherwise numerically identical to that in Figure A.3, but such that yB > yA.
This means that the curve for indirect utility in location B shifts up relative to that for lo-
cation A. As long as the shift is small enough the equilibrium where location A has larger
population than location B, and lower car dependency, still exists. That is, when compar-
ing the two locations the poorer one can have larger population but less car dependency.

This mirrors the result in Section 4.3.4. That is, the relationship between population
density and car dependency (Li and zi) is here negative, while that between per-capita
incomes and car dependency (yi and zi) can be positive or negative.

A.2.3 Finding and Characterizing the Equilibria

First I show that the equilibrium of type 1 exists, which amounts to showing that UA =

UB when the population equals 1/2 in each location. We have assumed that L̂A = L̂B <

1/2, so we know that zi < 1 and Ui = UND
i for i ∈ {A, B}. Setting LA = LB = 1/2 in

(A.21), with yi = y, we get UA = UB.
To show that this equilibrium is locally unstable, set LA = 1/2 + ε, and LB = 1/2 − ε,

for some small ε > 0. Since (A.21) is increasing in Li, this implies UA > UB. Vice versa,
setting LA = 1/2 − ε, and LB = 1/2 + ε, for some small ε > 0, gives UB > UA.

Next I show that an equilibrium of type 2 exists. We need to show that there exist
LA > 1/2 and LB < 1/2, such that LB + LA = 1 and UA = UB when LA = LA and
LB = LB. Since LA > 1/2, it must hold in equilibrium that

UA = UND
A = ln

[
αα(1 − α)1−α

]
+ ln(y) + (1 − α) ln(LA),

which implies UB = UD
B , since otherwise (i.e., if UB = UND

B ) we must have LB = LA,
which cannot hold, since we postulated that LB < 1/2 < LA; thus, this equilibrium (if it
exists) must be such that

UB = UD
B = α ln (y − D) + (1 − α) ln

(
X

1 − LA

)
.
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Write the difference between UA = UND
A and UB = UD

B for any level of LA as

∆ = ln
[
αα(1 − α)1−α

]
+ ln(y) + (1 − α) ln(LA)

−α ln (y − D) + (1 − α) ln
(

X
1−LA

)
.

We can now search for a level of LA on the interval (1 − L̂A, 1) = (1 − L̂B, 1), such that
∆ = 0; cf. Figure A.3.

Consider first the point LA = 1 − L̂A = 1 − L̂B, where LB = 1 − LA = L̂B. Here UB

reaches its minimum point, but UA does not (due to symmetry and LA ̸= L̂A = L̂B). Thus
∆ > 0.

Next we note that ∆ → −∞ as LA → 1 (and LB → 0).
Thus, there must exist some level of LA on the interval (1 − L̂A, 1), such that ∆ =

UA − UB = 0. That level is LA. Since 1 − L̂A > 1/2, it follows that LA ∈ (1/2, 1).
To show that this equilibrium is locally stable, note that

∂∆
∂LA

= (1 − α)

(
1

LA
− 1

1 − LA

)
=

(1 − α) (1 − 2LA)

LA (1 − LA)
,

which implies ∂∆/∂LA < 0 at LA = LA > 1/2.
To show that the equilibrium of type 3 exists and is stable follows the same steps as

those for the equilibrium of type 2, except that A and B switch places.

A.3 Data

A.3.1 United States Aggregate Data

The analysis in Section 3 relies on two sources. First I use data from the National Safety
Council, a self-described U.S. non-profit group advocating for traffic safety. From that
website I followed the links “Data Table” and “Download Excel Sheet” to download a file
called “Motor-Vehicle Deaths and Rates.xlsx.” This file contains time-series data on traffic
fatality rates per 100,000 population (in column H of the .xlsx file), and on the aggregate
number of vehicles (column C).

Then I downloaded population data from USA Facts, another non-profit. On that web-
site I clicked on “Download Data” to access a file called population_usafacts.csv, which
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contains data in total U.S. population from 1900. Merging this .csv file with the .xlsx file
described above allows me to calculate the vehicle ownership rate per capita as the aggre-
gate number of vehicles over total U.S. population.

A.3.2 United States County Data

Traffic fatalities: Data on traffic fatalities are from the Fatality and Injury Reporting Sys-
tem Tool (FIRST), an online data portal set up by the National Highway Traffic Safety Ad-
ministration (NHTSA). To retrieve the data, I first select People from the options Crashes,
Vehicles, People, Drivers, Occupants, Pedestrians, and Pedalcyclists. Under Select Fatal-
ity and/or Injury, I choose Persons Killed in Fatal Crashes. I then set Select Time Frame
to 2010, which is the year for which I have (good) data on population density; see below.
I leave blank under Select State or Region and Filter Your Selection. Finally, under Build
Your Report, I enter the data elements State and County for Rows, and Crash Date (year)
for Columns. When clicking Submit a new windows opens. Scrolling down I can down-
load an Excel file (called CrashReport). This contains total traffic deaths by county. Using
data on total population by county, as described below, I then calculate the traffic fatality
rate per 100, 000 population.

Population density and urbanization. Data on population density and urbanization
come from the website 2010 Census Urban and Rural Classification and Urban Area Cri-
teria, hosted by the U.S. Census Bureau. The data I use is in the Excel file “Percent Urban
and Rural In 2010 by State and County [< 1.0 MB],” downloadable from the website. To
calculate population density I divide total population (POP_COU) by area (AREA_COU),
and then multiply by 1, 000, 000 to convert from square meters to square kilometers. The
urbanization rate is computed as urban population (POP_URBAN) divided by total pop-
ulation (POP_COU).

Per-capita income: Per-capita income data are from the Bureau of Economic Analysis
and refer to per capita personal income (in dollars) for the year 2010. The data were re-
trieved by first selecting “County and MSA personal income summary: personal income,
population, per capita personal income” under the tab Table. I then make the following
selections: County under Major Area; “All counties is the US” under State; “Per capita

9

https://cdan.dot.gov/query
https://cdan.dot.gov/query
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html
https://apps.bea.gov/itable/?ReqID=70&step=1


personal income” under Statistic; Levels under Unit of Measure; and 2010 under Time
Period.

Life expectancy: Data on life expectancies at birth were downloaded from the Data
Visualization Gallery hosted by the National Center for Health Statistics at the Centers
for Disease Control and Prevention. The download was made through a link labelled
“Download Datasets: CSV Format,” and the variable used is in a column labelled just
“Life Expectancy” (with other columns reporting range and standard errors). The data
refer to life expectancies at birth 2010-2015 and are provided as averages at the census
tract level, finer than counties. They were aggregated to the county level by taking the
(unweighted) average across census tracts in each county. This dataset does not provide
numerical identifiers (County FIPS Codes) so the merging with other data was done by
county and state name in the format “Autauga, AL.”

Homicide rates: Data on homicide (murder) rates are from the Compressed Mortality
database, hosted by the Centers for Disease Control and Prevention. To retrieve the full
dataset, I follow the web link and click Agree to the conditions, after which a new webpage
opens providing a data portal. There I make the following selections:

• Under 1. Organize table layout, I select “Group Results By County And By Year.”

• Under 2. Select location, State/County or CBSA, I indicate “States” under “Click a but-
ton to choose locations by State, Census Region, or HHS Region.” Then I indicate
“*All* (The United States)” under Browse and States.

• Under 2.a. Select urbanization classifications, I select 2013 and All Categories.

• Under 3. Select years and demographics, I select “All Ages,” “All Genders,” “All Races,”
and “All Origins.” Under Year I highlight all years from 1999 to 2016; I do not high-
light “All Years.”

• Under 4. Select cause of death, I select the option “Injury Intent and Mechanism” and
the indicate “Homicide” under “Injury Intent” and “All Causes of Death” under
“Injury Mechanism & All Other Leading Causes.”
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• Under 5. Other Options, I indicate “Show Totals,” “Show Zero Values,” and “Show
Suppressed Values.”

After clicking Send a new webpage opens, from where the data was downloaded in
.txt format by clicking Export. The downloaded file was then converted into .xlsx format
to be read in Stata.

The homicide rate per 100,000 population is calculated as the number of deaths over
reported population (divided by 100,000) for each county and year. In the downloaded
data these variables are labelled Deaths and Population. I then calculate the mean homi-
cide rate for each county across all years from 2006 to 2016 (2016 being the last year with
data reported). These means may be based on different sets of years for different counties,
since many county-years have missing data. Choosing the same year for all counties (e.g.,
2009 or 2010) shrinks the sample further.

Historical population density: Data on historical population levels come from a web-
site maintained by Andrew J. Van Leuven (Van Leuven, 2020), also posted on GitHub. The
data can be downloaded in .csv format through the link “Here is a direct download of the
data.” For county area I use the variable (AREA_COU), retrieved from the U.S. Census
Bureau to calculate modern population density (see above). To compute population den-
sity I divide Van Leuven’s population measure for 1900 (pop_1900) by the county’s land
area, and then multiply by 1, 000, 000 to convert from square meters to square kilometers.

Republican vote share and property taxes: The political variables are from Bazzi
et al. (2020) and was downloaded in Stata (.dta) format from Wiley’s Online Library.
The data come in a zip folder, found under “Supporting Information” and “Data and
Programs.” The filename is ecta200214-sup-0002-dataandprograms.zip and the dataset
is called proptaxvote.dta, found in the unzipped folder “data.” The variables used here
are called avgrep2000to2016 (the Republican Presidential vote share 2000-2016) and prop-
ertytaxrate2010 (the property tax rate in 2010).

The fraction commuters using public transit: This variable is based on numbers from
the American Community Survey, conducted by the U.S. Census Bureau and referring
to the year 2010. The table is called B08130–MEANS OF TRANSPORTATION TO WORK
BY PLACE OF WORK–STATE AND COUNTY LEVEL, which can be downloaded as a
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zipped file, and unzipped as a .csv file. I first calculated the total number of commuters as
the sum of all people using public transit, those driving alone, and those car pooling. The
fraction using public transit is then calculated as the total number of people using public
transit over the total number of commuters.

A.3.3 European Regional Data

All data for Europe (and some neighboring countries) come from the Eurostat database
linked to here. This is the body of the European Union that collects and maintains data
from the nationals statistical agencies of both EU member countries, and a few other coun-
tries, such as Turkey and some European Free Trade Association (EFTA) countries.

The statistical classification system known as NUTS (Nomenclature of Territorial Units
for Statistics) has three levels of subnational divisions. I here use the intermediate level
(NUTS 2), which permits access to data to all of the variables I am interested in, in partic-
ular traffic deaths, which I have not been able to access at the more disaggregate NUTS 3
level.

Since NUTS 2 regions are larger than U.S. counties, I use GDP per capita for NUTS 2
regions and per-capita incomes for U.S. counties.

General first steps: For all variables below, the process involves first searching under
a specific code in the Eurostat database linked to above, which gives access to various
datasets containing different variables. After clicking “Access dataset,” a portal opens
where I can make selections. In all cases, under the tab Selection I set the available geopo-
litical units for rows, and years (or Time) for columns. I also click the tab Format to indicate
“codes and labels,” which ensures that the downloaded data contains both region names
and the relevant code (for later merging). Under the tab Download I choose “Full dataset
[with the code for dataset indicated],” and then “Spreadsheet (.xlsx).” This downloads a
file in .xlsx format, which can cleaned in Excel and/or be read directly in Stata.

From that file, I choose the year 2018 (the latest with UK data) for all variables below,
unless otherwise indicated. The main exception is homicide rates, where I use the latest
year available, 2010.

Population density: Data on population density is accessed by searching under the
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code tgs00024 in the Eurostat database. This allows access to a dataset called “Population
density by NUTS 2 region.” The download produces an .xlsx file with a name containing
tgs00024. The numbers are report as persons per square kilometre, so no further compu-
tations are needed after reading the data in Stata.

Urbanization: The urbanization data can be retrieved by searching under the code
lfst_r_lfsd2hh in the Eurostat database. Under the tab “Degree of urbanisation [deg_urb],”
I can click “Check All” to highlight “Cities,” “Towns and suburbs,” “Rural areas,” and
“No response,” The download produces an .xlsx file containing fst_r_lfsd2hh, and a few
sheets. The number of city households (coded as DEG1 in the spreadsheet) is reported
in Sheet 2, measured in thousands. The total number of households (coded TOTAL) is
reported in Sheet 1, also in thousands. The urbanization rate is calculated as the number
of city households over the total number of households.

GDP per capita: Data on Gross Domestic Product per capita (or per inhabitant) can be
found by searching under the code tgs00005 in the Eurostat database. The downloaded
.xlsx file containing the code tgs00005. The GDP per capita measurements are corrected
for purchasing power differences, or what in the downloaded file is called “Purchasing
power standard (PPS, EU27 from 2020), per inhabitant [PPS_EU27_2020_HAB].”

Traffic fatalities: Data on the total number of fatalities in traffic can be found be search-
ing under tran_r_acci in the Eurostat database. I adjust the selections to “Check All” under
the tabs “Type of victim” and “Unit of measure [unit].” This ensures that the download
includes data on the total number killed per million inhabitants (as well as totals). The
downloaded .xlsx file contains tran_r_acci, and the variable used in the analysis can be
found in Sheet 2 of the downloaded file. To get the rate in units per 100,000 people, rather
than per million (the reported format), I multiply the reported values by 10.

Life expectancy: To download data on life expectancy at birth by (sex and) NUTS 2
region, I searched under the code tgs00101 in the Eurostat database. I then selected “Check
All” under the tab Sex, meaning data are reported separately for male, female, and total
population. The downloaded file contains the code tgs00101. The variable used here are
for total population, reported in Sheet 1 of the file, with these settings.

Total population: Data on total population can be found be searching under the code
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tgs00096 in the Eurostat database linked to above. This allows download of an .xlsx file
with the code tgs00096, which reports population on January 1, for all years selected, by
NUTS 2 region. From the downloaded file, I select the years 2010 and 2018 (both referring
to January 1) because these population totals are used to compute homicide rates and the
number vehicles per capita below.

Homicides: To compute homicide rates I first retrieve data on homicide totals by
searching under the code crim_gen_reg in the Eurostat database. This gives me access
to a dataset called “Crimes recorded by the police by NUTS 3 regions,” which also in-
cludes NUTS 2 level data. I select “Check All” under the tab “International classification
of crime for statistical purposes (ICCS),” which makes the download include a couple of
different types of crime, of which the focus here is on “Intentional homicide.” With these
settings, the downloaded .xlsx file contains the code crim_gen_reg, with homicide totals
reported in Sheet 1 of the downloaded file.

At the time I made the download, the homicide (and other crime) totals are available
only for the years 2008-2010, from which I selected 2010. To get the homicide rate I divide
total homicides by total population in 2010 (see above) after matching by NUTS 2 codes
in Stata. I then multiply by 100,000 to get the rate as homicides per 100,000 population.

Note also, as already mentioned, that these data are provided at both the NUTS 2 and
NUTS 3 levels, the latter being more disaggregated, but here I use only observations at the
NUTS 2 level.

Vehicles per capita: To retrieve data on the number of registered vehicles I search
under the code tran_r_vehst in the Eurostat database (link above). This produces a link
to access a dataset called “Stock of vehicles by category and NUTS 2 regions.” Under the
tab Vehicles I indicate “Check All,” so that the download includes data on various types
of vehicles. Under the tab “Unit of measure” I indicate only “Number,” and not units
per thousand inhabitants, because the latter has many missing observations. With these
settings, the downloaded .xlsx file contains the code tran_r_vehst, with total number of
registered vehicles, trailers and motorcycles, reported in Sheet 1 of the downloaded file;
the variable is called “All vehicles (except trailers and motorcycles) [TOT_X_TM].” From
this sheet I select the column with year 2018, and to get vehicles per capita I divide the
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total number vehicles by total population in 2018 (see above) after matching by NUTS 2
codes in Stata.

Motorways per capita: To retrieve data on the length of motorways I search under
the code tran_r_net in the Eurostat database. Under the tab “Transport infrastructure,”
I select “Check All” to make sure that the variable “Motorways [MWAY]” is included in
the download. Under the tab “Unit of measure [unit]” I select “Kilometre [KM].” The
downloaded file has the code tran_r_net in the name. The year 2018 is selected. I then
divide by 2018 population to get a variable measured in kilometers per capita.

15



Online Appendix Tables and Figures

16



Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log urbanization rate −0.335∗∗∗ −0.213∗∗∗ −0.219∗∗∗ −0.247∗∗∗ −0.247∗∗∗

(0.031) (0.028) (0.028) (0.030) (0.045)

Log income per capita −1.043∗∗∗ −0.801∗∗∗ −0.786∗∗∗ −0.786∗∗∗

(0.084) (0.098) (0.099) (0.171)

Log life expectancy −2.792∗∗∗ −2.115∗∗∗ −2.115∗∗

(0.550) (0.701) (0.791)

R2 0.12 0.20 0.21 0.31 0.31
Number of obs. 2349 2297 2228 2228 2228

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on state. The unit of observation is a county. * indicates
p <0.10, ** p <0.05, and *** p <0.01.

Table A.1: Traffic Deaths and Urbanization: United States.
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Dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log urbanization rate −0.347∗∗∗ −0.221∗∗∗ −0.230∗∗∗ −0.331∗∗∗ −0.331∗∗∗

(0.084) (0.068) (0.070) (0.068) (0.072)

Log GDP per capita −0.689∗∗∗ −0.616∗∗∗ −0.284∗∗ −0.284

(0.070) (0.086) (0.111) (0.178)

Log life expectancy −1.569∗ 0.984 0.984

(0.839) (2.660) (3.513)

R2 0.19 0.48 0.48 0.66 0.66
Number of obs. 221 221 221 221 221

Fixed effects None None None Country Country

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on country. The unit of observation is a NUTS 2 region. *
indicates p <0.10, ** p <0.05, and *** p <0.01.

Table A.2: Traffic Deaths and Urbanization: Europe.
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Dependent variable is the log homicide rate

(1) (2) (3) (4) (5)

Log population density −0.180∗∗∗ −0.062∗∗ −0.066∗∗∗ −0.044 −0.044

(0.026) (0.027) (0.023) (0.029) (0.044)

Log income per capita −1.255∗∗∗ −0.078 −0.055 −0.055

(0.163) (0.140) (0.140) (0.123)

Log life expectancy −16.034∗∗∗ −15.570∗∗∗ −15.570∗∗∗

(1.024) (1.415) (1.876)

R2 0.13 0.26 0.57 0.65 0.65
Number of obs. 477 467 436 436 436

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on state. The unit of observation is a county. * indicates
p <0.10, ** p <0.05, and *** p <0.01.

Table A.3: Homicides and Population Density: United States.
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Dependent variable is the log homicide rate

(1) (2) (3) (4) (5)

Log population density 0.043 0.139∗∗∗ 0.125∗∗∗ 0.050 0.050

(0.043) (0.049) (0.046) (0.034) (0.039)

Log GDP per capita −0.912∗∗∗ −0.644∗∗∗ −0.063 −0.063

(0.110) (0.144) (0.141) (0.204)

Log life expectancy −4.828∗∗∗ −12.564∗∗∗ −12.564∗∗∗

(1.477) (2.738) (3.063)

R2 0.01 0.32 0.35 0.74 0.74
Number of obs. 160 154 153 153 153

Fixed effects None None None Country Country

Standard errors Robust Robust Robust Robust Clustered

Notes: Ordinary least squares regressions. Robust standard errors are indicated in parentheses,
except for column (5), which clusters on country. The unit of observation is a NUTS 2 region. *
indicates p <0.10, ** p <0.05, and *** p <0.01.

Table A.4: Homicides and Population Density: Europe.
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2nd stage: dependent variable is the log traffic fatality rate

(1) (2) (3) (4) (5)

Log population density (instrumented) −0.267∗∗∗ −0.259∗∗∗ −0.284∗∗∗ −0.307∗∗∗ −0.307∗∗∗

(0.011) (0.012) (0.013) (0.017) (0.019)

Log income per capita −0.537∗∗∗ −0.143∗ −0.043 −0.043

(0.068) (0.079) (0.095) (0.096)

Log life expectancy −4.650∗∗∗ −1.973∗∗∗ −1.973∗∗∗

(0.482) (0.584) (0.656)

R2 0.39 0.40 0.42 0.47 0.47
Number of obs. 2602 2566 2493 2493 2493

1st stage: dependent variable is log population density in 2010

Log population density 1900 0.778∗∗∗ 0.755∗∗∗ 0.711∗∗∗ 0.745∗∗∗ 0.745∗∗∗

(0.022) (0.022) (0.022) (0.033) (0.105)

Log income per capita 1.649∗∗∗ 2.094∗∗∗ 2.459∗∗∗ 2.459∗∗∗

(0.107) (0.138) (0.146) (0.187)

Log life expectancy −4.795∗∗∗ −3.345∗∗∗ −3.345∗∗

(0.769) (0.871) (1.701)

R2 0.52 0.57 0.57 0.70 0.70
Number of obs. 2602 2566 2493 2493 2493

1st-stage F-statitic 319.24 261.78 285.33 160.04 29.07
p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Fixed effects None None None State State

Standard errors Robust Robust Robust Robust Clustered

Notes: First- and second-stage IV regressions, where modern population density (in 2010) is instrumented with
population density in 1900. Robust standard errors are indicated in parentheses, except for column (5), which
clusters on state. The 1st-stage F-statistic refers to the Anderson-Rubin F test of significance of endogenous
regressors, retrieved as e(arf) after using the command ivreg2 in Stata. The unit of observation is a county. *
indicates p <0.10, ** p <0.05, and *** p <0.01.

Table A.5: Traffic Deaths and Modern Population Density Instrumented With Population
Density in 1900: United States.
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Figure A.1: Aggregate time trends in the United States from 1990.
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Figure A.2: Equilibrium in one location.
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