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Abstract
This paper develops inference tools for the number of common latent factors between two panels having a

large cross-sectional dimension n and small time series dimension T . I propose an approach that builds on

general tests for the dimension of the intersection of two matrix column spaces, where each matrix is ob-

served with noise. The test statistics are based on canonical correlations, and their asymptotic distributions

are derived via perturbation methods. An application to large cross-sectional panels of monthly US stock

returns and corporate bond returns finds 4-5 common factors during the 2019-2020 period. These common

factors explain around 30% of the cross-sectional variance in stock returns and at least 50% of the cross-

sectional variance in bond returns. Moreover, I document a structural break in the factor loadings of stock

returns between the pre-COVID and COVID years, while for bond returns I find two factors with constant

loadings between the pre-COVID and COVID years.
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1 Introduction

Factor models are widely used as a dimension reduction tool for large panels in economics, see e.g. Bai and

Ng (2002), Stock and Watson (2002) and Bai (2003), as well as other fields. In finance, approximate factor

models constitute the backbone of the Arbitrage Pricing Theory (APT), see Ross (1976) and Chamberlain

and Rothschild (1983). In such models, a small number of latent factors explain a large portion of the panel

data variation. The two most popular methods for extracting latent factors in panels are Principal Component

Analysis (PCA) and Factor Analysis (FA). A natural question when extracting latent factors on two separate

panels is how many latent factors are common to both, and how many are panel specific. For instance,

one might be interested in the number of common factors driving returns of stocks and corporate bonds,

or between stocks in two different industries. More generally, determining the number of common latent

factors between separate panels is crucial to understand common drivers of risk premia among different

groups of assets. The question is challenging because (1) latent factors are estimated with noise, and (2)

latent factors can only be estimated up to some unknown rotation matrix. In particular, the second point

implies that traditional correlations between extracted factors will not provide a meaningful measure of

their dependence in general.

The main contribution of this paper is to propose tests for the number of common latent factors between

two panels having a large cross-sectional dimension n and small time series dimension T , i.e. two short

panels. I propose an approach that builds on general tests for the dimension of the intersection of two matrix

column spaces, where each matrix is observed with noise. By working with matrix column spaces I take into

account the issue outlined in (2), and by introducing noise I taking into account the issue outlined in (1). The

test statistics are based on canonical correlations, defined as the eigenvalues of a matrix constructed from

inner products between orthonormal bases for each subspace. The dimension of the subspace intersection,

which corresponds to the number of common factors between the two short panels, is shown to be equal

to the number of unit canonical correlations, which constitutes the foundation for my tests. I propose two

different statistics to test the dimension of the subspace intersection, depending on whether the matrices have

(1) a fixed number of rows or (2) an increasing number of rows. For short panels, the first case corresponds

to testing for common factors between two cross-sections over the same time period (see section 6.1), while

the second case corresponds to testing for common factors in the same cross-section over two different
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time periods (see Section 6.2). I derive the asymptotic distributions of the two statistics using perturbation

methods. I show that the fixed dimensional case yields sample canonical correlations converging to unity

at the super-consistent rate Op( 1
n), while in the increasing dimensional case convergence occurs at rate

Op(
1√
n

).

I use my methodology to tests for common latent factors between monthly US stock returns and cor-

porate bond returns. I focus on the 2019-2020 period, i.e. the pre-COVID year and the COVID year. I

find between 4 and 5 common factors driving the returns of US stocks and bonds during this period. These

common factors explain around 30% of the cross-sectional variance in stock returns, and at least 50% of

the cross-sectional variance in bond returns. I find that stocks returns had between 1 and 2 specific factors

during the pre-COVID and COVID years, explaining between 5% and 8% of their cross-sectional variance.

On the other hand, while bond returns had only 1 specific factor during 2019, explaining around 15% for

their cross-sectional variance, they had 6 specific factors during the 2020 COVID year, explaining around

40% of their cross-sectional variance. I also document a structural break in the factor loadings of stock

returns between the pre-COVID and COVID years, while for bond returns I find two factors with constant

loadings between the pre-COVID and COVID years.

My work is most closely related to the literature using canonical correlations to study latent factor

models. Bai and Ng (2006) and Pelger (2019) employ canonical correlations to measure similarity between

principal components (PCs) and observed factors, whereas Goyal, Perignon, and Villa (2008) use canonical

correlations to study similarity of the factor structure driving stock returns on the NYSE and NASDAQ.

Andreou et al. (2019) consider inference on the number of common factors in a two group factor setting

using canonical correlations computed from PCs, while Choi et al. (2023) propose two selection criteria

for the number the common factors when there are possibly more than two groups, robust to the presence

of serially correlated and weakly cross-sectionally correlated idiosyncratic errors. Pelger and Xiong (2022)

use canonical correlations to construct a test of change of loadings in a state-varying factor model. Other

closely related work include Chen (2010, 2012), Wang (2012), Ando and Bai (2015, 2017), Breitung and

Eickmeier (2016) and Han (2021). The methodologies put forward in all these papers rely on panels having

large cross-section n and large time dimension T .

In recent work, PCA and FA have also been applied to large cross-sectional latent factor models with
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small time dimension, i.e. short panels with large n but small T . Fortin et al. (2022) show how PCA can be

used to conduct inference on the number of factors when errors have a spherical covariance structure (see

also Theorem 4 in Bai (2003)), whereas Fortin et al. (2023) rely on FA and a diagonal error covariance

structure. The small T perspective is interesting because it mitigates concerns about panel unbalanceness

and yields an effective approach to capture general forms of time-variation in factor betas, risk premia

and number of factors by performing the analysis in short subperiods (either non-overlapping, or rolling

windows) of the sample of interest. On the other hand, the small T setting makes inference on the number

of factors more difficult because it induces an error-in-variable problem in the estimation of the factor

loadings (see Fortin et al. (2022)). This paper complements the above literature by proposing new tests for

the number of common latent factors between two short panels.

The outline of the paper is as follows. In Section 2 I lay out the theoretical framework and introduce test

statistics for the dimension of the intersection of two matrix column spaces. In Section 3 I consider testing

when the space dimension is fixed. In Section 4 I consider three special cases, i.e. when root-n consistent

estimators are available, the number of columns is increasing, or instrumental variables are available. In

Section 5 I consider testing when the space dimension is increasing. In Section 6 I provide an empirical

application where I test for common latent factors driving monthly US stock returns and corporate bond

returns. I provide concluding remarks in Section 7.

2 Framework

Let Π1 and Π2 be m × k1 and m × k2 matrices respectively. I allow Π1 and Π2 to be rank deficient, i.e.

r1 := rank(Π1) ≤ k1 and r2 := rank(Π2) ≤ k2. I assume that Π1 and Π2 are unobserved, but that noisy

proxies are available:

Π̂j = Πj + Ψj , j = 1, 2. (1)

For example, Π̂j could represent an estimator. The methods will hold under general assumptions about the

noise Ψj . Let col(A) denote the column space of matrix A, and let k0 denote the dimension of col(Π1) ∩

col(Π2). The problem I consider is to test H0(k) : k0 = k against H1(k) : k0 < k, for some 0 ≤ k ≤

min(r1, r2). If Π1 and Π2 were observed, then the problem would be degenerate, as k0 could be determined
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with certainty1.

The test strategy relies on canonical correlations, see e.g. Anderson (2003) and Magnus and Neudecker

(2007). While canonical correlations are traditionally employed to study linear dependence between two sets

of random variables, they can also be used to measure closeness between two linear subspaces, namely the

dimension of their intersection.. Let Uj be an m × rj matrix with orthonormal columns spanning col(Πj),

j = 1, 2.

Definition 1 The canonical correlations ρl between Π1 and Π2 are the eigenvalues of R1,2 := U ′1U2U
′
2U1,

ordered as ρ1 ≥ ρ2 ≥ ... ≥ ρr1 .

Since the nonzero eigenvalues of R1,2 are the same as the nonzero eigenvalues of R2,1 := U ′2U1U
′
1U2, the

number of nonzero canonical correlations is at most min(r1, r2). The following proposition provides the

theoretical foundation for our tests.

Proposition 1 Under H0(k) we have

1. The k largest canonical correlations between Π1 and Π2 are equal to 1. The other canonical corre-

lations are strictly less than 1.

2. If E1 is a r1 × k matrix whose orthonormal columns are eigenvectors of R1,2 corresponding to

eigenvalues 1, then the orthonormal columns of U1E1 span col(Π1) ∩ col(Π2).

3. If O1 is a r1 × (r1 − k) matrix whose orthonormal columns are eigenvectors of R1,2 correspond-

ing to eigenvalues strictly less than 1, then the orthonormal columns of U1O1 span the orthogonal

complement of col(Π1) ∩ col(Π2) in col(Π1).

By symmetry Proposition 1 also holds with indices 1, 2 interchanged, with E2 and O2 being defined in

terms of R2,1. The test statistics I consider for conducting inference on k0 are function of sample canonical

correlation estimators ρ̂1 ≥ ρ̂2 ≥ ... ≥ ρ̂r1 . The definition of these estimators will depend on the set-up

specifics, and are given in Sections 3 and 5. I present the test statistics next.

1For example using the formula k0 = rank(Π1) + rank(Π2)− rank([Π1 : Π2]).
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Definition 2 The statistics to test the null hypothesisH0(k) are (i) ξ(k) := n(
∑k

l=1 ρ̂l−k) and (ii) ζ(k) :=

n
∑k

l=1(ρ̂l − 1)2.

Note that statistics ξ(k) and ζ(k) entail different rates of convergence for the first k sample canonical cor-

relations, namely Op( 1
n) and Op( 1√

n
). Statistic ξ(k) is considered in Sections 3 , while statistic ζ(k) is

considered in Section 5. The test procedures in these sections take the ranks r1 and r2 as given. In prac-

tice r1 and r2 might be unknown. In this case one can build on results of the rank testing literature, see

e.g. Cragg and Donald (1996), Robin and Smith (2000), Kleibergen and Paap (2006), Al-Sadoon (2017), to

obtain estimators r̂1 and r̂2 satisfying r̂1 = r1 and r̂2 = r2 with probability approaching one, and then the

asymptotic theory below remains unchanged. Details on how to implement such estimators in the different

settings we consider are provided in the Appendix.

Some remarks on notation. We use σl(A) and λl(A) (the latter only when A is symmetric) to denote re-

spectively the lth largest singular value and lth largest eigenvalue of a matrixA. We use vec(A) and vech(A)

(the latter only whenA is symmetric) to denote respectively the vectorization and half-vectorization of a ma-

trix A. We let Kp,q denote the commutation matrix of order (p, q), and Dp denote the duplication matrix of

order p. We use A+ to denote the Moore-Penrose inverse (pseudoinverse) of a matrix A, Tr(A) to denote

the trace of square matrix A, and A ⊗ B to denote the Kronecker product between matrices A and B. The

symbol⇒ denotes convergence in distribution, and N(0,Σ) denotes the multivariate Gaussian distribution

with mean zero and covariance matrix Σ. Except for the symbols introduced in this section, the symbols

introduced below are specific to each section, and their definitions do not carry over to other sections.

3 Fixed dimensional case

In this section we take m as fixed and we assume that root-n consistent estimators Û1 and Û2 are available

for U1 and U2.

Assumption 1 The estimator Ûj admits the expansion

ÛjHj = Uj + Ψ̂j +Op(
1

n
) , (2)

with Û ′jÛj = Irj , Ψ̂j = Op(
1√
n

), andH′jHj = Irj +Op(
1√
n

), j = 1, 2.
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Assumption 1 implies in particular that ÛjÛ ′j = UjU
′
j + Op(

1√
n

), i.e. root-n consistency of the projectors.

Estimators Ûj satisfying Assumption 1 can be obtained in different settings. We provide three examples in

the next section.

Definition 3 The sample canonical correlations ρ̂l between Π̂1 and Π̂2 are the eigenvalues of R̂1,2 :=

Û ′1Û2Û
′
2Û1 ordered as ρ̂1 ≥ ρ̂2 ≥ ... ≥ ρ̂r1 . Moreover we use Ê1 to denote the r1 × k matrix whose

orthonormal columns are eigenvectors of R̂1,2 corresponding to its k largest eigenvalues.

Since the nonzero eigenvalues of R̂1,2 are the same as the nonzero eigenvalues of R̂2,1 := Û ′2Û1Û
′
1Û2, the

number of nonzero sample canonical correlations is at most min(r1, r2). The next proposition provides a

second-order expansion for the k largest sample canonical correlations under H0(k).

Proposition 2 Let Assumption 1 hold, and let ρ̂l be as in Definition 3. Under H0(k) we have

ρ̂l = 1 + λl(−W ′Ψ̂′QQ′Ψ̂W ) +Op(
1

n3/2
) ,

for l = 1, . . . , k, where Ψ̂ := Ψ̂1U
′
1 − Ψ̂2U

′
2, W is m × k with orthonormal columns spanning col(Π1) ∩

col(Π2), and Q is m× (m− r1 − r2 + k) with orthonormal columns spanning the orthogonal complement

of col(Π1) + col(Π2). Moreover, we have Û1Ê1 = U1E1R1 + Op(
1√
n

), where R1 is k × k and satisfies

R′1R1 = Ik +Op(
1√
n

).

The first part Proposition 2 relates the deviations of the k largest sample canonical correlation from unity

to the k largest eigenvalue of a negative semi-definite matrix, up to a third order term. The negative sign

is related to the fact ρ̂l is bounded above by 1 by construction. The asymptotic expansion of ρ̂l does not

feature a first order term, which implies the rate ρ̂l = 1 + Op(
1
n) for l = 1, . . . , k under H0(k). This is a

super-convergence result, and in general we only have ρ̂l = ρl +Op(
1√
n

) for l > k under H0(k).

By summing the expansion of ρ̂l − 1 in Proposition 2 for l = 1, . . . , k and using the properties of trace

yields the expansion of ξ(k) under H0(k):

ξ(k) = −nTr(W ′Ψ̂′QQ′Ψ̂W ) + op(1)

= −nvec(Ψ̂)′(WW ′ ⊗QQ′)vec(Ψ̂) + op(1).

Under regularity conditions, the next assumption is implied by a central limit theorem.
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Assumption 2 We have
√
nvec(Ψ̂)⇒ N(0,Σ) as n→∞.

We allow Σ to be rank deficient, but it must be nonzero to have a nondegenerate test. In Section 4 we show

how Assumption 2 can be satisfied under more primitive assumptions. By the result on the distribution of

quadratic forms of Gaussian vectors, we get the next result.

Proposition 3 Let Assumption 1 and 2 hold. Under H0(k) and as n→∞ we have

ξ(k)⇒ −
k(m−(r1+r2−k))∑

l=1

λlχ
2
l ,

where the χ2
l are independent chi-square variables with one degree of freedom, and the λl are the eigenval-

ues of the positive semi-definite matrix Ξ := (W ⊗Q)′Σ(W ⊗Q). Under H1(k) we have ξ(k)
p→ −∞ as

n→∞.

Since col(Π1) + col(Π2) is a subspace of Rm, we have the lower bound k0 ≥ r1 + r2 −m. Hence we only

need to test H0(k) for k between max{r1 + r2 −m, 0}+ 1 and min{r1, r2}. For values of k in this range

the asymptotic distribution of ξ(k) is nondegenerate, unless Ξ is nil2.

Next we consider a feasible version for the test. Let Ŵ := Û1Ê1 and let Q̂ denote the m × (m −

r1 − r2 + k) matrix whose orthonormal columns are eigenvectors of Û1Û
′
1 + Û2Û

′
2 corresponding to its

m− r1 − r2 + k smallest eigenvalues.

Lemma 1 Let Assumption 1 hold. Under H0(k) we have (Ŵ ⊗ Q̂)O = W ⊗Q+ op(1) where O is k × k

and satisfies O′O = Ik. Under H1(k) we have (Ŵ ⊗ Q̂) = Op(1).

Let Σ̂ be a consistent estimator of Σ, and let Ξ̂ := (Ŵ ⊗ Q̂)′Σ̂(Ŵ ⊗ Q̂). Then it follows from Lemma 1 and

the Lipschitz continuity of eigenvalues for symmetric matrices that λl(Ξ̂) = λl(Ξ) + op(1) under H0(k),

and λl(Ξ̂) = Op(1) under H1(k). Hence we can consistently estimate critical values of the asymptotic

distribution of ξ(k) underH0(k) by simulating a large number of draws from
∑k(m−(r1+r2−k))

l=1 λ̂lχ
2
l ,where

λ̂l are the eigenvalues of Ξ̂. Under H1(k) these critical values remain bounded in probability. This yields a

feasible version of the test with asymptotic correct size under H0(k) and asymptotic power 1 under H1(k).

2In fact by Proposition 1 we have ρ̂l = 1 for l = 1, . . . , r1 + r2−m since col(Û1) + col(Û2) is a subspace of Rm.

Hence ξ(k) = 0 if k ≤ r1 + r2 −m.
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4 Discussion of three special cases

In this section we particularize the general results of Section 3 by showing how to obtain estimators Ûj

satisfying Assumption 1 in three cases: (1) k1 and k2 are fixed and the elements of Ψj are asymptotically

Gaussian after scaling, (2) k1, k2 are increasing and the elements of Ψj are zero-mean random variables, or

(3) instrumental variables are available.

4.1 Fixed number of columns

Let us first consider the case where k1, k2 are fixed and Π̂1, Π̂2 are root-n consistent estimators for Π1 and

Π2.

Assumption 3

√n1vec(Ψ1)
√
n2vec(Ψ2)

⇒ N(0,Ω) with n1
n2
→ µ > 0 as n1, n2 →∞.

Let n := min{n1, n2}, µ̂j :=
√

nj

n , and µj := limn→∞ µ̂j , j = 1, 2. LetUjSjV ′j be an SVD decomposition

of µ̂jΠj , where Sj is rj × rj diagonal containing its nonzero singular values, for j = 1, 2. Correspondingly

let ÛjŜj V̂ ′j be a "truncated" SVD decomposition of µ̂jΠ̂j , where Ŝj is rj × rj diagonal containing its rj

largest singular values, for j = 1, 2.

Lemma 2 Let Assumption 3 hold. Then we have

ÛjHj = Uj + µ̂jΨjVjS
−1
j +Op(

1

n
),

whereHj satisfiesH′jHj = Irj +Op(
1√
n

), for j = 1, 2.

It follows from Lemma 2 and Assumption 3 that Assumption 1 is satisfied with Ψ̂j := µ̂jΨjVjS
−1
j . More-

over Assumption 3 implies that Assumption 2 is satisfied with Σ := AΩA′ and A := [(µ1Π1)+′ ⊗ Im) :

−(µ2Π2)+′ ⊗ Im]. Hence Proposition 3 applies.

From Π̂j = Πj + op(1) (Assumption 4) and continuity of the pseudoinverse we have (µ̂jΠ̂j)
+ :=

V̂jŜ
−1
j Û ′j = (µjΠj)

+ + op(1). It follows that Â := [(µ̂1Π̂1)+′ ⊗ Im : −(µ̂2Π̂2)+′ ⊗ Im] is consistent for

A. Hence we can consistently estimate Σ provided we have a consistent estimator for Ω.
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4.2 Increasing number of columns

Let us next consider the case where k1 = n1 and k2 = n2 with n1, n2 →∞, so that the number of columns

in Π1 and Π2 is increasing while the number of rows remains fixed. In this case col(Πj) becomes eventually

constant, because the additional columns do not add new dimensions to the space for nj sufficiently large.

In particular H0(k) and H1(k) are well-defined and Proposition 1 is still valid, for n1, n2 sufficiently large.

We consider the following assumptions.

Assumption 4 We have

(i)



√
n1vech( 1

n1
Ψ1Ψ′1 − Φ̂1,1)

√
n2vech( 1

n2
Ψ2Ψ′2 − Φ̂2,2)

vec( 1√
n1

Ψ1Π1)

vec( 1√
n2

Ψ2Π2)

⇒ N(0,Ω) with n1
n2
→ µ > 0 as n1, n2 →∞.

(ii) 1
nj

ΠjΠ
′
j → Σj,j as nj →∞, where rank(Σj,j) = rj , j = 1, 2.

We interpret Φ̂j,j as a root-n consistent estimator for the unobservable centering term Φj,j := E[ 1
nj

ΨjΨ
′
j ].

Centering is required because, e.g. diagonal elements of 1
nj

Ψ′jΨj are averages of squared random variables.

If Φ̂j,j = Φj,j + op(
1√
nj

), then one can consider Φj as known, but in general we only require Φ̂j,j =

Φj,j +Op(
1√
nj

), so that
√
n(Φ̂j,j − Φj,j) can contribute to Ω.

Let n, µ̂j and µj be as in Section 4.1. Let UjDjU
′
j be an eigendecomposition of µ̂j

nj
ΠjΠ

′
j , where Dj

is rj × rj diagonal containing its nonzero eigenvalues, for j = 1, 2. Correspondingly let ÛjD̂jÛ
′
j denote

the "truncated" eigendecomposition of µ̂j( 1
nj

Π̂jΠ̂
′
j − Φ̂j,j), where D̂j is rj × rj diagonal containing its rj

largest eigenvalues, for j = 1, 2.

Lemma 3 Let Assumption 4 hold. Then we have

ÛjHj = Uj + µ̂j
[ 1

nj
ΨjΠ

′
j +

1

nj
ΠjΨ

′
j +

1

nj
ΨjΨ

′
j − Φ̂j,j

]
UjD

−1
j +Op(

1

n
),

whereHj satisfiesH′jHj = Irj +Op(
1√
n

), for j = 1, 2.

If Φj,j is spherical, say Φj,j = cjIm with cj > 0, then we can take the "truncated" eigendecomposition

of µ̂j
nj

Π̂jΠ̂
′
j (without subtracting µ̂jΦ̂j,j), because the bias µ̂jΦj,j can be absorbed into the matrix Hj in
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this case, and then the expansion in Lemma 3 holds with Φj,j instead of Φ̂j,j . In particular we can take

Φ̂j,j = Φj,j in Assumption 4. This trick is used in Theorem 4 of Bai (2003) to show that, under sphericity,

PCA is consistent even for fixed T .

It follows from Lemma 3 and Assumption 4 that Assumption 1 is satisfied with Ψ̂j := µ̂j
[

1
nj

ΨjΠ
′
j +

1
nj

ΠjΨ
′
j + 1

nj
ΨjΨ

′
j − Φ̂j

]
UjD

−1
j . Moreover Assumption 4 implies that Assumption 2 is satisfied with

Σ := AΩA′ and A := [((µ1Σ1,1)+′ ⊗ Im)Dm : −((µ2Σ2,2)+′ ⊗ Im)Dm : ((µ1Σ1,1)+′ ⊗ Im)(Im2 +Km) :

−((µ2Σ2,2)+′ ⊗ Im)(Im2 +Km)]. Hence Proposition 3 applies.

From 1
nj

Π̂jΠ̂
′
j − Φ̂j,j = Σj,j + op(1) (Assumption 4) and the continuity of the pseudoinverse we

have (µ̂jΣ̂j,j)
+ := ÛjD̂

−1
j Û ′j = (µjΣj,j)

+ + op(1). It follows that Â := [((µ̂1Σ̂1,1)+′ ⊗ Im)Dm :

−((µ̂2Σ̂2,2)+′ ⊗ Im)Dm : ((µ̂1Σ̂1,1)+′ ⊗ Im)(Im2 +Km) : −((µ̂2Σ̂2,2)+′ ⊗ Im)(Im2 +Km)] is consistent

for A. Hence we can consistently estimate Σ provided we have a consistent estimator for Ω.

4.3 Instrumental variables

Let us consider again the case where where k1 = n1 and k2 = n2 with n1, n2 →∞. Instead of Assumption

4, let us assume that there exist nj×Kj matrices of instrumental variablesZj satisfying the next assumption.

Assumption 5 There exist nj ×Kj matrices Zj , j = 1, 2, satisfying

(i)

vec( 1√
n1

Ψ1Z1)

vec( 1√
n2

Ψ2Z2)

⇒ N(0,Ω) with n1
n2
→ µ > 0 as n1, n2 →∞.

(ii) col( 1
nj

ΠjZj) = col(Πj) for nj sufficiently large, j = 1, 2.

(iii) 1
nj

ΠjZj → Γj as nj →∞, where rank(Γj) = rj , j = 1, 2.

Let n, µ̂j and µj be as in Section 4.1. Let UjSjV ′j be an SVD decomposition of µ̂jnj
ΠjZj , where Sj is rj×rj

diagonal containing its nonzero singular values, for j = 1, 2. Correspondingly let ÛjŜj V̂ ′j be a "truncated"

SVD decomposition of µ̂jΓ̂j :=
µ̂j
nj

Π̂jZj , where Ŝj is rj × rj diagonal containing its rj largest singular

values, for j = 1, 2.

Lemma 4 Let Assumption 5 hold. Then we have

ÛjHj = Uj +
µ̂j
nj

ΨjZjVjS
−1
j +Op(

1

n
),
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whereHj satisfiesH′jHj = Irj +Op(
1√
n

), for j = 1, 2.

It follows from Lemma 4 and Assumption 5 that Assumption 1 is satisfied with Ψ̂j :=
µ̂j
nj

ΨjZjVjS
−1
j .

Moreover Assumption 4 implies that Assumption 2 is satisfied with Σ := AΩA′ and A := [(µ1Γ1)+′⊗ Im :

−(µ2Γ2)+′ ⊗ Im)]. Hence Proposition 3 applies.

From Γ̂j = Γj + op(1) (Assumption 5) and the continuity of the pseudoinverse we have (µ̂jΓ̂j)
+ :=

V̂jŜ
−1
j Û ′j = (µjΓj)

+ + op(1). It follows that Â := [(µ̂1Γ̂1)+′ ⊗ Im : −(µ̂2Γ̂2)+′ ⊗ Im] is consistent for A.

Hence we can consistently estimate Σ provided we have a consistent estimator for Ω.

5 Increasing dimensional case

In this section we consider the case where m = n and k1, k2 are fixed, so that the number of rows in Π1

and Π2 is increasing while the number of columns in each matrix remains fixed. In this case, although the

space dimension is increasing, the dimensions of col(Π1), col(Π2), and col(Π1)∩ col(Π2) become constant

for n sufficiently large3. In particular H0(k) and H1(k) are still well defined in this set-up. Proposition 1

applies: the k largest eigenvalues of R1,2 are equal to 1, and the remaining ones are strictly less than 1, for

n sufficiently large4.

Obtaining a consistent basis estimator for col(Πj) in this set-up is more difficult, because Π̂j is not a

consistent estimator for Πj , and the approaches in Sections 4.2-4.2 are not directly applicable. The strategy

is to proceed indirectly by first obtaining a basis estimator for the row space of Πj , and then a basis estimator

for col(Πj) via the SVD decomposition. Let UjSjV ′j be an SVD decomposition of 1√
n

Πj j = 1, 2. The

relationship Uj = 1√
n

ΠjVjS
−1
j suggests the estimator Ûj := 1√

n
Π̂j V̂jŜ

−1
j , where V̂j and Ŝj are suitably

chosen estimators. To this end we consider the following assumptions.

Assumption 6 We have

3Indeed rank(Πj) is a nondecreasing bounded sequence, hence must converge. Similarly rank(Π1) + rank(Π2)−

rank([Π1 : Π2]) must converge.
4In contrast to Section 3, the r1 − k smallest eigenvalues of R1,2 now depend on n. For consistency of the test

against H1(k) we need to rule out the possibility that these eigenvalues become arbitrarily close to 1 asymptotically.

See Assumption 8 below.
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(i) The estimator V̂j satisfies V̂jHj = Vj + Op(
1√
n

) with H′jHj = Irj + Op(
1√
n

) and V̂ ′j V̂j = Irj ,j =

1, 2.

(ii) The estimator Φ̂i,j satisfies 1
nΨ′iΨj − Φ̂i,j = Op(

1√
n

), i, j = 1, 2, with Φ̂1,2 = Φ̂′2,1.

(iii) 1
nΨ′jΠj = Op(

1√
n

), j = 1, 2.

Estimators V̂j satisfying Assumption 6 (i) can be obtained using e.g. the approaches in Section 4.2-4.3

applied to Π′j . As in Section 4.2, we interpret Φ̂i,j as a root-n consistent estimator for the unobservable

centering term Φi,j := E[ 1
nΨ′iΨj ]. For Sj we use the estimator Ŝ2

j := V̂ ′j ( 1
nΠ̂′Π̂− Φ̂j,j)V̂j , for j = 1, 2.

Lemma 5 Let Assumption 6 hold. Then we have

ÛjHj = Uj +
1√
n

ΨjGj , (3)

where Gj = V̂jŜ
−1
j Hj andHj satisfiesH′jHj = Irj +Op(

1√
n

), for j = 1, 2.

In contrast to Assumption 1, the remainder 1√
n

ΨjGj in Lemma 5 is not of order Op( 1√
n

), and the results in

Section 3 do not apply. In fact the term 1
nG
′
iΨ
′
iΨjGj induces a bias in the inner product Û ′iÛj . It explains

the separate treatment needed for the problem at hand. The correction of this bias will ultimately lead to a

slower convergence rate for the k largest sample canonical correlations. The next definition is a modification

of Definition 3.

Definition 4 The sample canonical correlations ρ̂l between Π̂1 and Π̂2 are the eigenvalues of R̂1,2 :=

(Û ′1Û2 − B̂1,2)(Û ′2Û1 − B̂2,1), ordered as ρ̂1 ≥ ρ̂2 ≥ ... ≥ ρ̂r1 , where B̂i,j := Ŝ−1
i V̂ ′i Φ̂i,j V̂jŜ

−1
j , j = 1, 2.

Moreover we use Ê1 to denote the r1 × k matrix whose orthonormal columns are eigenvectors of R̂1,2

corresponding to its k largest eigenvalues.

The term B̂i,j corrects for the bias in Û ′iÛj . By definition we have Û ′jÛj − B̂j,j = Irj , and so R̂1,2 =

(Û ′1Û1 − B̂1,1)−1R̂1,2(Û ′2Û2 − B̂2,2)−1, i.e. the weighted an unweighted versions of R̂1,2 are numerically

equivalent. This property is key in deriving the asymptotic expansion of ρ̂l below.

Proposition 4 Let Assumption 6 hold and let ρ̂l be as in Definition 4. Under H0(k) we have

ρ̂l = 1 + λl(−E′Ψ̂E) +Op(
1

n
),

13



for l = 1, . . . , k, where E := [E′1S
−1
1 V ′1 : −E′2S

−1
2 V ′2 ]′, E2 := U ′2U1E1, Ψ̂ =

Ψ̂1,1 Ψ̂1,2

Ψ̂2,1 Ψ̂2,2

, and

Ψ̂i,j := 1
nΨ′iΨj − Φ̂i,j , j = 1, 2. Moreover, we have Û1Ê1 = U1E1R1 + 1√

n
Ψ1V̂1Ŝ

−1
1 Ê1 +Op(

1√
n

), where

R1 satisfiesR′1R1 = Ik +Op(
1√
n

).

In contrast to Proposition 2, the asymptotic expansion of ρ̂l in Proposition 4 features a first order term,

which drives the asymptotic distribution. The quadratic form −EΨ̂E is not always negative definite, which

is related to the fact that ρ̂l is no longer bounded above by 1 due to the bias correction in Definition 4.

Note that the definition of E2 in Proposition 4 corresponds to a specific choice of eigenvectors of R2,1

corresponding to eigenvalue 1. This choice ensures convergence of the off-diagonal blocks in EE′ (see

Lemma 6 below). Squaring and summing the expansion of ρ̂l − 1 in Proposition 4 for l = 1, . . . , k and

using the properties of trace yields the asymptotic expansion of ζ(k) under H0(k):

ζ(k) = nTr((E′Ψ̂E)2) + op(1)

= nvec(Ψ̂)′(EE′ ⊗ EE′)vec(Ψ̂) + op(1).

It remains to establish the asymptotic behavior of vec(Ψ̂) and EE′.

Assumption 7 We have


√
nvech( 1

nΨ′1Ψ1 − Φ̂1,1)
√
nvech( 1

nΨ′2Ψ2 − Φ̂2,2)
√
nvec( 1

nΨ′1Ψ2 − Φ̂1,2)

⇒ N(0,Ω) as n→∞.

From Assumption 7 we have
√
nvec(Ψ̂)⇒ N(0,Σ) as n→∞, where Σ := AΩA′ and

A :=

[Ik1
0

⊗
Ik1

0

 :

 0

Ik2

⊗
 0

Ik2

 : [Ik1k2 +Kk1,k2 ]

 0

Ik2

⊗
Ik1

0

].
The convergence of EE′ is considered in the next lemma.

Assumption 8 We have 1
nΠ′iΠj → Σi,j as n → ∞, where rank(Σj,j) = rj , j = 1, 2. Moreover, the

eigenvalues of RΣ,1,2 := Σ+
1,1Σ1,2Σ+

2,2Σ2,1 of order greater than k are strictly less than 1.

14



Let V̄jS̄2
j V̄
′
j be an eigendecomposition of Σj,j , where S̄2

j rj × rj diagonal containing its nonzero eigen-

values, for j = 1, 2. Moreover let Ē := [Ē′1S̄
−1
1 V̄ ′1 : −Ē′2S̄

−1
2 V̄ ′2 ]′, where Ē1 is an r1 × k matrix whose

orthonormal columns are eigenvectors of R̄1,2 := S̄1V̄
′

1RΣ,1,2V̄1S̄
−1
1 corresponding to eigenvalue 1, and

Ē2 := S̄−1
2 V̄ ′2Σ2,1V̄1S̄

−1
1 Ē1

5.

Lemma 6 Let Assumption 8 hold. Under H0(k) we have EE′ = ĒĒ′ + op(1).

By the result on the distribution of quadratic forms of Gaussian vectors, we get the next result.

Proposition 5 Let Assumption 6-8 hold and let ρ̂l be as in Definition 4. Under H0(k) and as n → ∞ we

have

ζ(k)⇒
k2∑
l=1

λlχ
2
l ,

where the χ2
l are independent chi-square variables with one degree of freedom, and the λl are the eigenval-

ues of the positive semi-definite matrix Ξ := (Ē ⊗ Ē)′Σ(Ē ⊗ Ē). Under H1(k) we have ζ(k)
p→ ∞ as

n→∞.

Next we consider a feasible version of the test. Let Ê := [Ê′1Ŝ
−1
1 V̂ ′1 : −Ê′2Ŝ

−1
2 V̂ ′2 ]′, where Ê2 := Û ′2Û1Ê1.

Lemma 7 Let Assumption 6 hold. Under H0(k) we have ÊO = Ē + op(1), where O is k× k and satisfies

O′O = Ik. Under H1(k) we have Ê = Op(1).

Let Ω̂ be a consistent estimator of Ω, Σ̂ := AΩ̂A, and Ξ̂ := (Ê⊗Ê)′Σ̂(Ê⊗Ê). It follows from Lemma 7 and

the Lipschitz continuity of eigenvalues for symmetric matrices that λl(Ξ̂) = λl(Ξ) + op(1) under H0(k),

amd λl(Ξ̂) = Op(1) under H1(k). Hence we can consistently estimate critical values of the asymptotic

distribution of ζ(k) under H0(k) by simulating a large number of draws from
∑k2

l=1 λ̂lχ
2
l , where λ̂l are the

eigenvalues of Ξ̂. Under H1(k) these critical values remain bounded in probability. This yields a feasible

version of the test with asymptotic correct size under H0(k) and asymptotic power 1 under H1(k).

5Ē2 has orthonormal columns which are eigenvectors of R̄2,1 := S̄2V̄
′
2RΣ,2,1V̄2S̄

−1
2 corresponding to eigenvalue

1, where RΣ,2,1 := Σ+
2,2Σ2,1Σ+

1,1Σ1,2.
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6 Empirical application

In this section, I test hypotheses about the number of common latent factors between short panels of monthly

US stock returns and corporate bond returns. Monthly stock returns are from the Center for Research in Se-

curities Prices (CRSP), and monthly bond returns are from the Wharton Research Data Services (WRDS)

bond database 6. I focus on 2019-2020 period, i.e. the pre-COVID and COVID years. The stock sample

consists of US common stocks trading on the NYSE, AMEX or NASDAQ. I exclude financial firms (Stan-

dard Industrial Classification codes between 6000 and 6999) and penny stocks (stock price below 5 USD).

The bond sample consists of US corporate bonds linked to non-financial companies having at least one US

common stock trading on NYSE, AMEX or NASDAQ. 7 I use the bond return variable RET_L5M, which

requires an available bond transaction price within the last 5 trading days of the current and previous months.

I remove bonds classified as convertible, with maturity less than one year, with total par-value volume less

than 10,000 USD, and with price below 5 USD or above 1,000 USD in a given month.

To stay coherent with notation in the previous sections I use Y1 and Y2 to denote panels (matrices) of

stock or bond excess returns. The columns of Y1 and Y2 represent different stocks or different bonds, and

the rows represent consecutive months. I consider the case where each panel follows a static factor model:

Yj = Fjβ
′
j + εj , j = 1, 2, (4)

where Fj is the matrix of unobservable factor values, βj is matrix of factor loadings, and εj is the matrix of

error terms. I work conditionally on a given realization of the factor paths, i.e. I treat F1 and F2 as unknown

matrix parameters. Hence only εj is random on the right-hand side in (3).

6The WRDS bond database is a cleaned database based on the Enhanced Trade Reporting and Compliance Engine

(TRACE) data and the Mergent Fixed Income Securities Database (FISD). It was introduced by WRDS in April 2017.
7I use the bond linking table from WRDS to link the WRDS bond data to CRSP.
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6.1 Common factors in the returns of stocks and bonds

I first consider the case where panels Y1 and Y2 represent respectively the cross-sections of stock and bond

returns over the same time period:

[
Y1 Y2

]
=
[
F1,s F2,s Fc

]
β′1,s 0

0 β′2,s

β′1,c β′2,c

+
[
ε1 ε2

]
,

where Fc denotes the T × kc matrix of common latent factors between Y1 and Y2, and Fj,s denotes the

T × kj,s matrix of panel specific factors, j = 1, 2. I use n1 and n2 to denote cross-section size (the

number of columns) in Y1 and Y2 respectively. The goal is to conduct inference on kc when T is fixed and

n1, n2 → ∞. I use the regularity assumptions listed in Appendix A. In particular, I work with spherical

errors (Assumption A.3), which allows to consistently estimate latent factors in each panel with PCA even

when T is small, see Bai (2003) Theorem 4 and FGS (2022).

Lemma 8 Let Assumption A.1 hold. Then kc equals the dimension of col(F1β
′
1) ∩ col(F2β

′
2).

Lemma 8 implies that we are in the set-up of Section 4.2, with Π̂j := Yj , Πj := Fjβ
′
j , Ψj := εj , and

Φ̂j := Φj := E[ 1
nεjε

′
j ] (see Assumption A.3. and the discussion after Lemma 3 regarding the spherical

case). Assumption 4 (ii) is satisfied under Assumption A.1-A.2, and Assumption 4 (i) is equivalent to

√
n1vech(Z1)
√
n2vech(Z2)
√
n1vec(W1)
√
n2vec(W2)

⇒ N(0,Ω) as n1, n2 →∞, (5)

where Zj := 1
nj
εjε
′
j − E[ 1

nεjε
′
j ] and Wj := 1

nj
εjβj , j = 1, 2. In Appendix A.1, I verify that this distribu-

tional convergence result holds under cross-sectional independence of the error terms and other regularity

conditions, and provide a consistent estimator Ω̂ for Ω.

I start by estimating the rank rj of Πj (number of factors) using the estimator r̂j from Appendix B, which

satisfies r̂j = rj with probability approaching one. Then, I test for the null hypothesis of k common factors

between Y1 and Y2 using the statistic ξ(k) computed from the sample canonical correlations in Definition
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3, with estimators Ûj computed as in Lemma 2 for the spherical case (see discussion after Lemma 3). The

p-value of the test are obtained by simulating 10,000 draws from the distribution in Proposition 3, using

estimators Ξ̂ and Σ̂ at the end of Sections 3 and 4.2. In Appendix C I also provide consistent estimators σ̂2
j,c

and σ̂2
j,s for

σ2
j,c :=

Tr(Fcβ
′
j,cβ
′
j,cF

′
c)

Tr(YjY ′j )
, σ2

j,s :=
Tr(Fcβ

′
j,sβ
′
j,sF

′
c)

Tr(YjY ′j )
, j = 1, 2. (6)

The ratio σ2
j,c measures the fraction of average cross-sectional variance explained by the common factors in

each panel, while σ2
j,s measures the fraction explained by the panel specific factors.

Figure 1 shows the results for the year 2019, i.e. the pre-COVID year. The time series dimension is

T = 12, and the cross-section dimensions are n1 = 1, 968 and n2 = 2, 273. I find r̂1 = 7 factors driving

stock returns and r̂2 = 6 factors driving bond returns during this period. The first panel in Figure 1 shows

the min(r̂1, r̂2) = 6 sample canonical correlations between the two panels. Since max(r̂1 + r̂2− T, 0) = 1

the first sample canonical correlations is equal to 1 by construction (see discussion after Proposition 3). The

second panel in Figure 1 shows the statistic ξ(k) scaled by 1/n. The third panel shows the p-values of

the test. Building on the results in Pötscher (1983), we can obtain a consistent estimator of the number of

common latent factors between the two panels by allowing the asymptotic size α go to zero as n1, n2 →∞

in the sequential testing procedure. I use the rule α = min(10/n1, 10/n2)8 which gives a size of 0.44%.

With this α the third panel of Figure 1 indicate k̂c = 5 common factors during the period. Figure 2 shows

the decomposition of the average cross-sectional variance in each panel based on (6). We can observe that

around 66% of the cross-sectional variance in stock returns is due to idiosyncratic noise, while for bonds the

fraction is around 33% . Moreover, common factors explain around 30% of the cross-sectional variance in

stock returns, and around 50% of the cross-sectional variance in bond returns.

Next I repeat the exercise for year 2020, i.e. the COVID year. The results are displayed in Figure 3. The

time series dimension is T = 12, and the cross-section dimensions are n1 = 1, 950 and n2 = 2, 196. I find

r̂1 = 5 factors driving stock returns and r̂2 = 10 factors driving bond returns during this period. Using the

size rule α = min(10/n1, 10/n2) = 0.46% gives k̂c = 4 common factors during the period. From Figure 4

we can observe that the partition of cross-sectional variance has remained similar to 2019 for stocks. On the

other hand, the partition of cross-sectional variance for bonds has changed quite drastically. Bond specific

8α = 10/n satisfies the theoretical rule logα/n→ 0 given in Pötscher (1983).
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factors now explain more than 33% of the cross-sectional variance, while common factors explain close to

60%. Idiosyncratic noise in bond returns now contributes to only 5% of the cross-sectional variance.

6.2 Stability of the factor structure in the returns of stocks and bonds during

COVID

Next I consider the case where Y1 and Y2 represent the cross-section of stock or bond returns over two

non-overlapping time periods:

Y1

Y2

 =

F1,s 0 F1,c

0 F2,s F2,c



β′1,s

β′2,s

β′c

+

ε1

ε2

 ,
where F1,c and F2,c are T1×kc and T2×kc matrices respectively, and represent paths of the common factors

in the two time periods, while F1,s and F2,s are T1 × k1,s and T2 × k2,s matrices respectively, and represent

paths of the period specific factors. Note that common factors have the same loadings in the two periods.

Therefore I identify common factors between the two time periods by the stability of their loadings, see also

Pelger and Xiong (2022). I use n to denote the cross-section size (number of columns) in Y1 and Y2. The

goal is to conduct inference on kc when T1, T2 are fixed and n→∞. I use the regularity assumptions listed

in Appendix A. In particular, I work with spherical errors (Assumption A.3), which allows to consistently

estimate latent factors in each panel with PCA even when T1 and T2 are small, see Bai (2003) Theorem 4

and FGS (2022).

Lemma 9 Let Assumption A.2 hold. Then kc equals the dimension of col(β1F
′
1) ∩ col(β2F

′
2).

Lemma 9 implies that we are in the set-up of Section 5, with Π̂j := Y ′j , Πj := βjF
′
j , Ψj := ε′j , and Φi,j =

E[εiε
′
j ]. I consider the estimators Φ̂i,j = 0, i 6= j, and Φ̂j,j = σ̂2

j ITj , where σ̂2
j = 1

n(Tj−rj) trace(Q̂
′
jYjY

′
j Q̂j),

the orthonormal columns of Q̂j are eigenvectors of 1
nYjY

′
j corresponding to its T − rj smallest eigenvalues,

and rj is the rank of Πj .

Lemma 10 Under Assumption A.1-A.5 we have σ̂2
j = 1

n(Tj−rj) trace(Q
′
jεjε

′
jQj) + Op(

1
n), where the or-

thonormal columns of Qj span the orthogonal complement of col(Fj), j = 1, 2.
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It follows from Lemma 7 and the properties of trace that vech( 1
nΨ′jΨj − Φ̂j,j) = Xjvech( 1

nΨ′jΨj −Φj,j),

where Xj := (IT 2 − 1
T−rj vec(IT )vec(QjQ

′
j)
′)DTj . Hence Assumption 6 (i) is equivalent to

√
nX1vech(Z1)
√
nX2vech(Z2)
√
nvec(Z1,2)

⇒ N(0,Ω) as n→∞, (7)

where Z1,2 := 1
nε1ε

′
2. In Appendix A.2, I verify that this distributional convergence result holds under

cross-sectional independence of the error terms and other regularity conditions, and provide a consistent

estimator Ω̂ for Ω . Assumption 6 (ii) is met under Assumption A.4, and Assumption 6 (iii) is met under

Assumption A.1-A.2. Assumption 6 (iv) is maintained for consistency of the test under the alternative. In

Appendix C I also provide consistent estimators σ̂2
j,c and σ̂2

j,s for

σ2
j,c :=

Tr(Fj,cβ
′
cβcF

′
j,c)

Tr(YjY ′j )
, σ2

j,s =
Tr(Fj,sβ

′
j,sβj,sF

′
j,s)

Tr(YjY ′j )
, j = 1, 2, (8)

The ratio σ2
j,c measures the fraction of average cross-sectional variance explained by the common factors in

each period, while σ2
j,s measures the fraction explained by the period specific factors.

I start by testing for common factors in stock returns between the years 2019 and 2020, i.e. the pre-

COVID year and COVID year. Hence the time series dimensions are T1 = 12 and T2 = 12. The cross-

section size is n = 1, 739 9. I use the estimates r̂j from Section 6.1, namely r̂1 = 7 and r̂2 = 5. The first

panel in Figure 5 shows the min(r̂1, r̂2) = 5 sample canonical correlations between the two panels. The

second panel in Figure 5 shows the statistic ζ(k) scaled by 1/n. The third panel shows the p-values of the

test. Since the p-values are zero for all values of k the test indicates no common factors between the two

periods. Figure 6 shows the decomposition of cross-sectional variance in the two periods. We can observe

that the partition between systematic and idiosyncratic cross-sectional variance is similar between the two

periods.

Next I repeat the exercise for bond returns. The cross-section size is n = 1, 627 10. I use the estimates

r̂j from Section 6.1, namely r̂1 = 6 and r̂2 = 10. Using the size rule α = 10/n = 0.61% the third

9I use only stocks with available returns over the 24 months period from January 2019 to December 2020. Hence

the cross-section size is smaller than in Section 6.1
10I use only bonds with available returns over the 24 months period from January 2019 to December 2020. Hence

the cross-section size is smaller than in Section 6.1.
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panel of Figure 7 indicates 2 common factors between the two period. Figure 8 shows the decomposition of

cross-sectional variance in the two periods. We can observe that common factors explain around 30% of the

cross-sectional varianace in bond returns during the pre-COVID and COVID years.

7 Concluding remarks

In this paper I develop inference tools the number of common latent factors between two panels having a

large cross-sectional dimension n and small time series dimension T . I propose an approach that builds

on general tests for the dimension of the intersection of two matrix column spaces, where each matrix

is observed with noise. An application to large cross-sectional panels of monthly US stock returns and

corporate bond returns finds 4-5 common factors during the 2019-2020 period. These common factors

explain around 30% of the cross-sectional variance in stock returns and at least 50% of the cross-sectional

variance in bond returns. Moreover, I document a structural break in the factor loadings of stock returns

between the pre-COVID and COVID years, while for bond returns I find two factors with constant loadings

between the pre-COVID and COVID years.

The methodology can be used to address many other relevant questions in asset pricing and other fields.

On the theoretical side, on could consider testing for common factors when one set of factors is observable

(estimated without noise) and thereby provide a method to compare the factor spaces of statistical and

economic factors in short panels, similar to Bai and Ng (2006) and Pelger (2019). Alternatively, one could

consider extending the method to test for common latent factors among three or more short panels. I leave

these interesting extensions for future research.
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Figure 1: The first panel displays the sample canonical correlations. The second panel displays the statistic

ξ(k) scaled by 1
n . The third panel displays the p-values of the test. The period is January 2019 to December

2019, i.e. pre-COVID year.
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Figure 2: The figure displays the partition of cross-sectional variance for stock and bond returns. The

period is January 2019 to December 2019, i.e. pre-COVID year.

65%

26%

8%

34%

52%

14%

25



Figure 3: The first panel displays the sample canonical correlations. The second panel displays the statistic

ξ(k) scaled by 1
n . The third panel displays the p-values of the test. The period is January 2020 to December

2020, i.e. COVID year.
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Figure 4: The figure displays the partition of cross-sectional variance for stock and bond returns. The

period is January 2020 to December 2020, i.e. COVID year.

68%

27%

5% 5%

58%

37%

27



Figure 5: The first panel displays the sample canonical correlations. The second panel panel displays the

statistic ζ(k) scaled by 1
n . The third panel displays the p-values of the test. The two periods are January

2019 to December 2019 (pre-COVID year) and January 2020 to December 2020 (COVID year). The results

are based on the cross-section of stock returns.
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Figure 6: The figure displays the partition of cross-sectional variance for the two periods: January 2019

to December 2019 (pre-COVID year) and January 2020 to December 2020 (COVID year). The results are

based on the cross-section of stock returns.
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Figure 7: The first panel displays the sample canonical correlations. The second panel panel displays the

statistic ζ(k) scaled by 1
n . The third panel displays the p-values of the test. The two periods are January

2019 to December 2019 (pre-COVID year) and January 2020 to December 2020 (COVID year). The results

are based on the cross-section of bond returns.
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Figure 8: The figure displays the partition of cross-sectional variance for the two periods: January 2019

to December 2019 (pre-COVID year) and January 2020 to December 2020 (COVID year). The results are

based on the cross-section of bond returns.
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Proof of Proposition 1

Suppose H0(k) holds. Let Uk be a T × k matrix with orthonormal columns spanning col(Π1) ∩ col(Π2).

Let Q1 be a T × (r1−k) matrix with orthonormal columns spanning the orthogonal complement col(Π1)∩

col(Π2) in col(Π1), and similarly for Q2. Since col(Π1) = col(U1) and col(Π2) = col(U2) there exist

orthonormal matrices O1 and O2 such that

[UkQ1] = U1O1

[UkQ2] = U2O2

Therefore,

R = O1

Ik 0

0 Q′1Q2Q
′
2Q1

O′1
and so the eigenvalues of R are those of Ik and Q′1Q2Q

′
2Q1. Now, if x, y are unit vectors then by

Cauchy-Schwarz we have x′Q′1Q2y ≤ 1, with equality holding if and only if Q1x and Q2y are linearly

dependent. The latter case is impossible because otherwise there would exists a nonzero vector lying in

col(Uk) ∩ col(Q1) = {0}. It follows that the singular values of Q′1Q2 are all stricly less than 1. The con-

clusion follows.

Proof of Proposition 2

Let us define Ψ̃j := ÛjHj − Uj and Ũj := Uj + Ψ̃j , so that (2) reads ÛjHj = Ũj . Substituting into the

expression for R̂1,2 in Definition 3 and using that Û ′jÛj = Irj and that Hj is invertible with probability

approaching 1, we get

R̂1,2 = (Û ′1Û1)−1Û ′1Û2(Û ′2Û2)−1Û ′2Û1 = H1R̃1,2H−1
1 (9)

where R̃1,2 := (Ũ ′1Ũ1)−1Ũ ′1Ũ2(Ũ ′2Ũ2)−1Ũ ′2Ũ1. It follows that R̂1,2 and R̃1,2 have the same eigenvalues.

Note that R̃1,2 is not symmetric, but it can be expanded around the symmetric matrix R1,2.
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Lemma 11 Let Xi,j := U ′iΨ̃j + Ψ̃′iUj + Ψ̃′iΨ̃j and suppose that ‖Xi,j‖ = Op(ρ), i, j = 1, 2, where ρ ↓ 0.

Then

R̃1,2 = R1,2 + Ψ̃I + Ψ̃II +Op(ρ
3),

where

Ψ̃I = −U ′1M2Ψ̃1,2 − Ψ̃′1,2M2U1 − Ψ̃′1,2Ψ̃1,2 +X1,1(Ir1 −R1,2) = Op(ρ),

Ψ̃II = (Ψ̃′1,2(U2 + Ψ2) + U ′1M2Ψ2)(Ψ̃′1,2(U2 + Ψ2) + U ′1M2Ψ2)′

+X1,1(U ′1M2Ψ̃1,2 + Ψ̃′1,2M2U1 + Ψ̃′1,2Ψ̃1,2) = Op(ρ
2),

Ψ̃1,2 = Ψ̃1 − Ψ̃2U
′
2U1,

and M2 = Im − U2U
′
2.

Let P̃ be an r1 × r1 matrix whose columns are eigenvectors of R̃1,2. Since R̃1,2 is not symmetric we

cannot choose P̃ to have orthonormal columns in general. However from (10) we see that we can choose

P̃ = H−1
1 P̂ , where P̂ is the r1 × r1 matrix whose orthonormal columns are eigenvectors of R̂1,2. By

Assumption 1 this choice satisfies P̃ ′P̃ = Ir1 + Op(
1√
n

). Note also that Assumption 1 implies that we can

take ρ = 1√
n

in Lemma 8. In particular, using H′1H1 = Ir1 + Op(
1√
n

) and the Lipschitz continuity of

eigenvalues for symmetric matrices, we get

λl(R̃1,2) = λl(R̂1,2) = λl(R1,2) +Op(
1√
n

), l = 1, . . . , r1.

We are now in a position to apply the general eigenvalue expansion result in Proposition 6, with A := R̃1,2

and Ψ := Ψ̃I + Ψ̃II +Op(
1

n3/2 ) = Op(
1√
n

). We get

D̂k = Ik +R−1
(
E′1ΨE1 + E′1ΨW1(Im−k − Γ)−1W ′1ΨE1

)
R+Op(

1

n3/2
) (10)

Ê1 = H1E1R+Op(
1√
n

) (11)

where D̂k is k × k diagonal containing the k largest eigenvalues of R̂1,2 and Ê1 is r1 × (r1 − k) with

orthonormal columns representing the corresponding eigenvectors, E1 and W1 are defined in Proposition

1, Γ is (r1 − k) × (r1 − k) diagonal containing the r1 − k smallest eigenvalues of R1,2, and R satisfies

R′R = Ik +Op(
1√
n

).
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Lemma 12 Under Assumption 1 we haveE′1ΨE1 +E′1ΨW1(Im−k−Γ)−1W ′1ΨE1 = −E′1Ψ̂′1,2ΞΨ̂1,2E1 +

Op(
1

n3/2 ), where Ψ̂1,2 and Ξ are defined in Proposition 2. Moreover, Ξ has the properties stated in Propo-

sition 2.

The first part of Proposition 2 now follows by substituting the result of Lemma 9 into (11), and using

Ψ̂1,2 = Op(
1√
n

) (from Assumption 1), R′R = Ik + Op(
1√
n

), and the Lipschitz continuity of eigenvalues

for symmetric matrices. The second part of Proposition 2 follows from Û1Ê1 = Ũ1H−1
1 Ê1 = U1E1R +

1√
n

Ψ1V̂1Ŝ
−1
1 Ê1 +Op(

1√
n

).

Proof of Proposition 4

Let us define Ψ̃j := ÛjHj − Uj and Ũj := Uj + Ψ̃j , so that (3) reads ÛjHj = Ũj . Substituting into

the expression for R̂1,2 in Definition 4, and using that Û ′jÛj − B̂j,j = Irj and that Hj is invertible with

probability approaching 1, we get

R̂1,2 = (Û ′1Û1 − B̂1,1)−1(Û ′1Û2 − B̂1,2)(Û ′2Û1 − B̂2,1)(Û ′2Û2 − B̂2,2)−1 = H1R̃1,2H−1
1 , (12)

where R̃1,2 := (Ũ ′1Ũ1− B̃1,1)−1(Ũ ′1Ũ2− B̃1,2)(Ũ ′2Ũ1− B̃2,1)(Ũ ′2Ũ2− B̃2,2)−1 and B̃i,j := G′iΦ̂i,jGj . Note

that R̃1,2 is not symmetric, but it can be expanded around the symmetric matrix R1,2.

Lemma 13 Let Xi,j := S−1
i V ′i ( 1

nΠ′iΨj + 1
nΨ′iΠj + 1

nΨ′iΨj − Φ̂i,j)VjS
−1
j . Under Assumption 6 we have

R̃1,2 = R1,2 + Ψ̃I +Op(
1

n
)

where Ψ̃I = −X1,1R1,2 − U ′1U2X2,2U
′
2U1 +X1,2U

′
2U1 + U ′1U2X2,1.

Let P̃ be an r1 × r1 matrix whose columns are eigenvectors of R̃1,2. Since R̃1,2 is not symmetric we

cannot choose P̃ to have orthonormal columns in general. However from (14) we see that we can choose

P̃ = H−1
1 P̂ , where P̂ is the r1 × r1 matrix whose orthonormal columns are eigenvectors of R̂1,2. Since

H′1H1 = Ir1 + Op(
1√
n

) (Lemma 5) this choice satisfies P̃ ′P̃ = Ir1 + Op(
1√
n

). Besides, using Lemma 13,

H′1H1 = Ir1 +Op(
1√
n

), and the Lipschitz continuity of eigenvalues for symmetric matrices, we get

λl(R̃1,2) = λl(R̂1,2) = λl(R1,2) +Op(
1√
n

), l = 1, . . . , r1.
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We are now in a position to apply the general eigenvalue expansion result in Proposition 6, with A := R̃1,2

and Ψ := Ψ̃I +Op(
1
n) = Op(

1√
n

). We get

D̂k = Ik +R−1E′1ΨE1R+Op(
1

n
) (13)

Ê1 = H1E1R+Op(
1√
n

) (14)

where D̂k is k×k diagonal containing the k largest eigenvalues of R̂1,2,Ê1 is r1×(r1−k) with orthonormal

columns representing the corresponding eigenvectors, andR satisfiesR′R = Ik +Op(
1√
n

).

Lemma 14 We have E′1ΨE1 = −E′Ψ̂E +Op(
1
n), where E and Ψ̂ are defined in Proposition 4.

The first part of Proposition 4 now follows by substituting the result of Lemma 14 into (15), and using

Ψ = Op(
1√
n

) (from Assumption 6), R′R = Ik + Op(
1√
n

), and the Lipschitz continuity of eigenvalues for

symmetric matrices. The second part of Proposition 4 follows from Û1Ê1 = Ũ1H−1
1 Ê1 = U1E1R, using

(16) , Ũ1 = U1 + 1√
n

Ψ1G1, and G1 = V̂1Ŝ
−1
1 H1.

A Feasible central limit theorems

In this section we provide feasible central limit theorems for (6) and (8).

Assumption A.1 rank(Fj) = rj , j = 1, 2.

Assumption A.2 Σβ,j := limnj→∞
1
nj
β′jβj is positive definite, j = 1, 2.

Assumption A.3 The diagonal elements inE[ 1
nj
εjε
′
j ] are equal, and the off-diagonal elements inE[ 1

nj
εjε
′
j ]

are op( 1√
nj

), j = 1, 2.

Assumption A.4 Wj := 1
nj
εjβj = Op(

1√
nj

) and Zj := 1
nj
εjε
′
j − E[ 1

nεjε
′
j ] = Op(

1√
nj

), j = 1, 2.

Assumption A.5 n1
n2
→ µ > 0.
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A.1

A.2

C Rank selection

In this Appendix we provide selection criteria for the rank of an m × k matrix Π when a noisy proxy is

available:

Π̂ = Π + Ψ

The criteria exploit separation of singular values. Let r denote the true rank of Π, and let g(n) denote a

generic penality function satisfying the following two conditions as n→∞:

1. g(n)→ 0

2. ng(n)→∞

Moreover we use σl(A) to denote the lth largest singular value of an m × n matrix A, and ‖A‖2>s =∑min{m,n}
l=s+1 σ2

l (A) to denote the sum of its singular values of order higher than s.

C.1

Let us first consider the setting where m is fixed and m, k are fixed and ‖Ψ‖ = Op(
1√
n

). Then we have the

expansion Π̂ = Π+Op(
1√
n

). From the Lipschitz continuity of singular values and the fact that rank(Π) = r

we get

σl(Π̂) =


σl(Π) +Op(

1√
n

), l = 1, . . . r

Op(
1√
n

), l > r

In particular ‖Π̂‖2>r = Op(
1
n). Let ∆l = ‖Π̂‖2>l − g(n). Then ∆l > 0 with probability approaching 1 for

l < r, whereas ∆l < 0 with probability approaching 1 for l = r. It follows that r̂ := min{0 ≤ l ≤ k :

∆l < 0} statisfies r̂ = r with probability approaching 1.
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C.2

Next we consider the setting where m is fixed and k = n → ∞. We assume that we have estimators Φ̂(l),

0 ≤ l ≤ r, and that the following conditions are satisfied

1. 1
nΨΨ′ − Φ̂(r) = Op(

1√
n

).

2. 1
nΨΠ′ = Op(

1√
n

).

3. ‖ 1
nΠ̂Π̂′ − Φ̂(l)‖2>l > c with probability approaching 1 for some c > 0 and all l < r.

Using 1 and 2 above we get the expansion 1
nΠ̂Π̂′ − Φ̂(r) = 1

nΠΠ′ + Op(
1√
n

). Using the the Lipschitz

continuity of singular values and the fact that rank(Π) = r for n sufficiently large we get σl( 1
nΠ̂Π̂′−Φ̂(r)) =

Op(
1√
n

) for l > r. Hence ‖ 1
nΠ̂Π̂′ − Φ̂(r)‖2>r = Op(

1
n). Let ∆l = ‖ 1

nΠ̂Π̂′ − Φ̂(l)‖2>l − g(n). Then ∆l > 0

with probability approaching 1 for l < r (by 3 above), whereas ∆l < 0 with probability approaching 1 for

l = r. It follows that r̂ := min{0 ≤ l ≤ m : ∆l < 0} satisfies r̂ = r with probability approaching 1.

C.3

We consider again the case where m is fixed and k = n → ∞. We assume that instrumental variables are

availabe, i.e. there exists n×K matrix Z satisfying the following conditions, where Γ := 1
nΠZ.

1. 1
nΨZ = Op(

1√
n

)

2. col(Γ) = col(Π) for n sufficiently large.

3. σr(Γ) > c for some c > 0 and n sufficiently large.

From 1 we have the expansion Γ̂ = Γ +Op(
1√
n

). Using Lipschitz continuity of singular values and the fact

that rank(Γ) = r for n sufficiently large (by 2) we get

σl(Γ̂) =


σl(Γ) +Op(

1√
n

), l = 1, . . . , r

Op(
1√
n

), l > r

Then we can use the same estimator as in C.1, replacing Π̂ with Γ̂ and using condition 3 to get ∆l > 0 with

probability approaching 1 for l < r.
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C.4

Finally we consider the case where m = n → ∞ and k is fixed. Since rank(Π) = rank(Π′) this case

reduces to C.2.

D Eigenvalue expansion

Proposition 6 Let A be an m × m symmetric matrix whose k largest eigenvalues are exactly 1, while

the other eigenvalues are strictly less than 1. Let Â = A + Ψ, where Ψ is a (not necessarily symmetric)

perturbutation such that ‖Ψ‖ = Op(
1√
n

). Moreover suppose that there exist m ×m matrix P̂ and m ×m

diagonal matrix D̂ satisfying

ÂP̂ = P̂ D̂

P̂ ′P̂ = Im +Op(
1√
n

)

D̂ =

Ik 0

0 Γ

+Op(
1√
n

)

where Γ is (m− k)× (m− k) diagonal containing the m− k eigenvalues of A strictly less than 1. Then

D̂k = Ik +R−1
(
E′ΨE + E′ΨW (Im−k − Γ)−1W ′ΨE

)
R+Op(

1

n3/2
) (15)

Ê = ER+Op(
1√
n

) (16)

where Ê is m× k containing the first k columns of P̂ ,R is a k× k matrix satisfyingR′R = Ik +Op(
1√
n

),

E is an m × k matrix whose orthonormal columns are eigenvectors of A corresponding to eigenvalue 1,

and W is an m × (m − k) matrix whose orthonormal columns are eigenvectors of A corresponding to

eigenvalues strictly less than 1.

Proof of Proposition 6
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